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PREFACE 

 

Some of the sea level sleep studies were conducted at the Peninsula Private Sleep 

Laboratory, Manly, NSW. 

 

The ventilatory response tests were conducted at the Department of Respiratory 

Medicine and Sleep Disorders of Royal Prince Alfred Hospital, Camperdown, NSW. 

 

The procedures and protocol of this research were approved by the University of 

Sydney Human Ethics Department (Nepal research) and by the University of 

California, San Diego, Human Research Protection Committee (White Mountain 

research). Informed consent was obtained from all volunteers. 

 

This thesis represents my original work. This work has not been presented previously 

for the purpose of obtaining a degree.  

 

 

Pamela Lesley Johnson 

March, 2008 
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SUMMARY 

This thesis describes the work carried out during four treks, each over 10-11 days, 

from 1400m to 5000m in the Nepal Himalaya and further work performed during 

several two-night sojourns at the Barcroft Laboratory at 3800m on White Mountain in 

California, USA. Nineteen volunteers were studied during the treks in Nepal and 

seven volunteers were studied at White Mountain. All subjects were normal, healthy 

individuals who had not travelled to altitudes higher than 1000m in the previous 

twelve months. 

 

The aims of this research were to examine the effects on sleep, and the ventilatory 

patterns during sleep, of incremental increases in altitude by employing portable 

polysomnography to measure and record physiological signals. A further aim of this 

research was to examine the relationship between the ventilatory responses to hypoxia 

and hypercapnia, measured at sea level, and the development of periodic breathing 

during sleep at high altitude. In the final part of this thesis the possibility of 

preventing and treating Acute Mountain Sickness with non-invasive positive pressure 

ventilation while sleeping at high altitude was tested. 

 

Chapter 1 describes the background information on sleep, and breathing during sleep, 

at high altitudes. Most of these studies were performed in hypobaric chambers to 

simulate various high altitudes. One study measured sleep at high altitude after 

trekking, but there are no studies which systematically measure sleep and breathing 

throughout the whole trek. 
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Breathing during sleep at high altitude and the physiological elements of the control 

of breathing (under normal/sea level conditions and under the hypobaric, hypoxic 

conditions present at high altitude) are described in this Chapter.  

 

The occurrence of Acute Mountain Sickness (AMS) in subjects who travel form near 

sea level to altitudes above 3000m is common but its pathophysiology not well 

understood. The background research into AMS and its treatment and prevention are 

also covered in Chapter 1. 

 

Chapter 2 describes the equipment and methods used in this research, including the 

polysomnographic equipment used to record sleep and breathing at sea level and the 

high altitude locations, the portable blood gas analyser used in Nepal and the 

equipment and methodology used to measure each individual’s ventilatory response to 

hypoxia and hypercapnia at sea level before ascent to the high altitude locations. 

 

Chapter 3 reports the findings on the changes to sleep at high altitude, with particular 

focus on changes in the amounts of total sleep, the duration of each sleep stage and its 

percentage of total sleep, and the number and causes of arousals from sleep that 

occurred during sleep at increasing altitudes. 

 

The lightest stage of sleep, Stage 1 non-rapid eye movement (NREM) sleep, was 

increased, as expected with increases in altitude, while the deeper stages of sleep 

(Stages 3 and 4 NREM sleep, also called slow wave sleep), were decreased. The 

increase in Stage 1 NREM in this research is in agreement with all previous findings.
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However, slow wave sleep, although decreased, was present in most of our subjects at 

all altitudes in Nepal; this finding is in contrast to most previous work, which has 

found a very marked reduction, even absence, of slow wave sleep at high altitude. 

Surprisingly, unlike experimental animal studies of chronic hypoxia, REM sleep was 

well maintained at all altitudes. 

 

Stage 2 NREM and REM sleep, total sleep time, sleep efficiency and spontaneous 

arousals were maintained at near sea level values.  

 

The total arousal index was increased with increasing altitude and this was due to the 

increasing severity of periodic breathing as altitude increased. An interesting finding 

of this research was that fewer than half the periodic breathing apneas and hypopneas 

resulted in arousal from sleep. There was a minor degree of upper airway obstruction 

in some subjects at sea level but this was almost resolved by 3500m. 

 

Chapter 4 reports the findings on the effects on breathing during sleep of the 

progressive increase of altitude, in particular the occurrence of periodic breathing. 

This Chapter also reports the results of changes to arterial blood gases as subjects 

ascended to higher altitudes. As expected, arterial blood gases were markedly altered 

at even the lowest altitude in Nepal (1400m) and this change became more 

pronounced at each new, higher altitude. Most subjects developed periodic breathing 

at high altitude but there was a wide variability between subjects as well as variability 

in the degree of periodic breathing that individual subjects developed at different 

altitudes. Some subjects developed periodic breathing at even the lowest altitude 
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and this increased with increasing altitude; other subjects developed periodic 

breathing at one or two altitudes, while four subjects did not develop periodic 

breathing at any altitude. 

 

Ventilatory responses to hypoxia and hypercapnia, measured at sea level before 

departure to high altitude, was not significantly related to the development of periodic 

breathing when the group was analysed as a whole. However, when the subjects were 

grouped according to the steepness of their ventilatory response slopes, there was a 

pattern of higher amounts of periodic breathing in subjects with steeper ventilatory 

responses. 

 

Chapter 5 reports the findings of an experimental study carried out in the University 

of California, San Diego, Barcroft Laboratory on White Mountain in California. 

Seven subjects drove from sea level to 3800m in one day and stayed at this altitude 

for two nights. On one of the nights the subjects slept using a non-invasive positive 

pressure device via a face mask and this was found to significantly improve the 

sleeping oxyhemoglobin saturation. The use of the device was also found to eliminate 

the symptoms of Acute Mountain Sickness, as measured by the Lake Louise scoring 

system. This finding appears to confirm the hypothesis that lower oxygen saturation, 

particularly during sleep, is strongly correlated to the development of Acute Mountain 

Sickness and may represent a new treatment and prevention strategy for this very 

common high altitude disorder.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1 General Introduction and Historical Perspective 

The effects of high altitude on sleep and breathing have been known since man first 

ventured from low altitude into the mountains for adventure, recreation or travel into 

mountain areas. Mountaineers noticed that breathing became laboured and that 

seemed to be due to some lack of quality in the air they breathed, necessitating deeper 

and more frequent breaths. Exertion caused profound breathlessness and many 

suffered from headache, nausea and lassitude. Sleep was restless, fragmented and 

unrefreshing. Observations of breathing during sleep were that there were long pauses 

in breathing followed by several large, deep breaths.  

 

In the late 19th century Egli-Sinclair, a scientist who was also a keen mountaineer 

noticed his companion, when asleep during a pause in climbing a mountain, had a 

breathing pattern similar to “the Stokes character” (Egli-Sinclair 1891). Another 

Alpinist, Tyndall, who was a physician, was woken from sleep by his companion 

during a mountain climbing expedition because he was worried about his repeated 

cessations in breathing (Tyndall 1860). 

 

Breathing during sleep at high altitude was first recorded in 1898 by the Italian 

scientist, Mosso at 4559 metres in the Italian Alps. This recording of breathing during 

sleep at high altitude confirmed the reports of Cheyne-Stokes respiration observed by  

countless high altitude travellers (Mosso 1898).
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When advances in technology allowed the electrophysiological recording of sleep, the 

first to do so at high altitude was Joern in 1970. He studied two men during their 

sojourn at the South Pole, which has a barometric pressure equal to an altitude of 

3000-3800m above sea level. Anecdotal reports of poor sleep quality and highly 

fragmented sleep at high altitude were confirmed by this study; Joern found that the 

lightest stage of sleep was markedly increased while the deeper stages were 

decreased; in one man REM sleep was reduced to only 10% (Joern et al. 1970). 

 

Since this initial study of sleep at high altitude many studies have been performed at 

geologically high altitude locations and at simulated high altitude in hypobaric 

chambers. The presence of periodic breathing during sleep has been demonstrated 

many times and poor quality, fragmented sleep is a common feature of high altitude. 

 

1.2 Normal Human Sleep 
 
Sleep is a behavioural state in which postural recumbence, unresponsiveness, closed 

eyes and quiescence normally occur. There are two distinct types of sleep: non rapid 

eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is 

comprised of four stages with each being “deeper” than the previous stage i.e. Stage 1 

NREM is the lightest and stages 3 and 4 the deepest. The electroencephalogram 

(EEG), derived from scalp electrodes, demonstrates that the electrical activity of the 

brain in each of these sleep stages is distinct from the other stages. Stage 1 is a low 

amplitude, mixed frequency pattern; in Stage 2 spindles and K complexes occur; in 

Stages 3 and 4 high amplitude, slow EEG signals occur for ≥20% and ≥50% of the 30  
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second sleep period respectively. REM sleep was discovered in 1953 by Aserinsky 

and Kleitman; it was found to be as unlike NREM sleep as NREM was to 

wakefulness. In REM sleep the EEG is similar to the awake EEG but muscle atonia is 

present and rapid eye movements occur. When subjects were woken during these 

episodes of rapid eye movements they reported the occurrence of vivid dreams 

(Aserinsky and Kleitman 1955).  

 

In normal, young adults sleep begins with Stage 1 sleep which persists for a few 

minutes only; during Stage 1 sleep it is easy to awake from mild stimulus i.e. there is 

a low arousal threshold in this sleep stage. Stage 2 sleep follows and continues for 10-

25 minutes, after which slow wave sleep (Stages 3 and 4) begins; an incrementally 

larger stimulus is needed to produce an arousal from Stages 2, 3 and 4.  REM sleep 

usually occurs after 60-100 minutes of sleep and this first REM sleep period usually 

last for less than ten minutes. The stimulus needed to cause arousal during REM sleep 

varies across the REM period; this variability of the arousal threshold is possibly due 

to the arousal stimulus being incorporated into a dream rather than causing arousal 

from sleep. This pattern of NREM sleep alternating with REM sleep occurs across the 

night with each period of REM sleep becoming longer. Stages 3 and 4 NREM 

predominate in the first third of the night and REM sleep dominates the last third. 

Brief episodes of wakefulness are common but are usually too short to be remembered 

after a night’s sleep. Wakefulness constitutes less than 5% of the sleep period. Stage 1 

normally constitutes about 2-5%, Stage 2 45-55%, Stage 3 3-8%, Stage 4 10-15% and 

REM sleep 20-25% of the night’s sleep. 
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Slow wave sleep is maximal in young children and decreases with age in both 

amplitude and percentage of total sleep. It is very difficult to arouse children from 

sleep but, with increasing age, the arousal threshold becomes lower and the number of 

arousals from sleep across the night increases. Thus, with increasing age sleep quality 

may decrease in some people as periods of wakefulness and the number of arousals 

from sleep increase. 

 

Sleep onset involves a shift from sympathetic to parasympathetic regulation; muscle 

tone is reduced, blood pressure and heart rate are decreased, cerebral blood flow 

decreases in NREM sleep then increases markedly in REM sleep. The muscle activity 

in NREM sleep is slightly decreased compared to wakefulness but, in REM sleep, 

there is a dramatic reduction in muscle activity. Upper airway resistance is increased 

during sleep in association with relaxation of upper airway musculature. Breathing 

becomes somewhat unstable with sleep onset and the loss of the wakefulness control 

of breathing (Orem et al. 1985; Longobardo et al. 2002), but in SWS breathing is 

regular, and slower, compared to wakefulness, with a slightly higher tidal volume. In 

REM sleep breathing becomes irregular and shallow in association with muscle 

twitches and rapid eye movements.   

 

With sleep onset cortical input into the control of breathing (wakefulness control) is 

lost (Orem et al. 1985; Longobardo et al. 2002) and at the same time there are changes 

to the ventilatory responses to low oxygen and high carbon dioxide which become 

even more blunted in REM sleep.  
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These alterations in heart rate, blood pressure, muscle tone and breathing during sleep 

are all present in normal, healthy humans when sleeping at sea level. Changes to the  

amount of ambient oxygen, or diseases that affect breathing can cause marked 

aberrations in oxygen and carbon dioxide levels during sleep. 

 

1.3 Sleep at High Altitude 

Sleep disturbance is common after acute ascent to high altitude. Complaints include 

frequent awakenings with a sense of suffocation and the need to gasp for breath, 

unrefreshing sleep, and daytime sleepiness with cognitive impairment. Objective 

findings include the presence of periodic breathing in most people (Reite et al. 1975, 

Weil et al. 1978) reduced amounts of deeper sleep and increased lighter sleep (Joern 

et al. 1970, Reite et al. 1975, Miller and Horvath 1977, Nicholson et al. 1988 and 

many others since) increased wake time and arousals from sleep, but with total sleep 

time unchanged. Sleep was not recorded electrophysiologically at high altitude until 

the 1970s but the study of breathing during sleep has a longer history. Descriptions of 

the poor sleep and altered breathing pattern experienced at high altitude were 

published in the nineteenth century by several physicians and scientists who were also 

mountaineers. Tyndall (1860), who was a physicist and keen Alpine mountaineer, on 

his first ascent of Mont Blanc in 1857 describes falling asleep during a rest from the 

climb and being woken by his companion who became worried when he noticed that 

Tyndall was not breathing for long periods of time. Another nineteenth century report 

by Egli-Sinclair (1891-2) described his breathing during sleep at an altitude of 4400m 

as being of the “Stokes character, that is it seemed regular during a certain time, after  
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which a few rapid and profound breaths were drawn, a total suspension for a few 

seconds then following”.      

 

Mosso (1898) was the first to extensively study breathing during sleep at high 

altitude, at 4559m on Monte Rosa in the Italian Alps. He measured breathing by 

means of a lever resting on the chest that recorded breathing movements onto a 

smoked cylinder and found that apneas lasting for about twelve seconds occurred 

repetitively with hyperpneic episodes of three to four breaths following.  

 

When advancements in technology enabled sleep to be recorded 

electrophysiologically with surface electrodes and pen and ink polygraphs, the first of 

many studies into sleep at high altitude was performed. The protocols for each study 

differed; some were recorded at high altitude locations at various elevations while 

others utilized hypobaric chambers to simulate high altitude. Some studies recorded 

sleep after acute exposure to hypobaric hypoxia/high altitude while others recorded 

sleep days or weeks after ascent. In some studies, particularly those performed in 

altitude chambers, several nights’ sleep were recorded after the subjects had spent 

each day at sea level. Some studies recorded sleep for one night only while others 

repeated the measurements on more than one occasion with varying amounts of time 

between recordings, therefore studying acclimatisation to high altitude. In most 

studies sleep at high altitude was characterised by the reduction, and in some cases 

complete loss, of slow wave sleep i.e. Stages 3 & 4 non rapid eye movement (NREM) 

sleep, increased numbers of arousals or awakenings from sleep and an increase in  
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light sleep (Stage 1 NREM sleep). 

 

This decrease or loss of slow wave sleep (SWS) with an increased number of arousals 

from sleep was hypothesised as being an adaptive measure to the hypoxic conditions 

of high altitude. Sleep is known to be associated with a decrease in minute ventilation  

 

and this decrease was thought to become worse with deeper sleep stages, hence the 

curtailment of SWS in which ventilation would be at its lowest and hypoxia at its 

worst. The increased number of arousals at high altitude would act as a stimulus to 

breathing and thus maintain higher levels of oxygenation during sleep under 

hypobaric hypoxic conditions. 

 

The first scientific studies into the changes in sleep patterns in humans in 

environmentally hypobaric hypoxic conditions were by Joern et al in 1970 and Natani 

et al in 1970 who performed polysomnography on men stationed at Antarctica, which 

has a barometric pressure of 485 to 525mmHg corresponding to an altitude of 3000 to 

3800 metres above sea level. Joern et al studied two men aged 35 and 50 years over 

three nights in the first week of their sojourn at the South Pole, recording sleep using 

electro-encephalogram (EEG), electro-oculogram (EOG) and submental electro-

myogram (EMG). Measurements of ventilation were made from an impedance 

pneumograph and arterial blood gases were sampled and analysed. 

 

Joern et al found that compared to sleep data from a normal, healthy, middle-aged 

population Stage 1 NREM sleep was significantly increased to over 10% of total sleep  
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in one subject and over 25% in the other subject; Stage 2 NREM was within normal 

range in one subject but increased to nearly 70% in the other subject. Slow wave sleep 

(Stages 3 and 4 NREM) was minimal in both subjects. In one subject rapid eye 

movement (REM) sleep was reduced to 10% of sleep time but, in the other subject it 

remained within normal limits (23%). The older of the subjects had periodic breathing 

during sleep in Stage 1 NREM; this consisted of periods of apnea followed by bursts  

of rapid, deep respiration (hyperpnea) with activation patterns (arousal) occurring in 

the EEG during hyperpnea. The older subject also had symptoms of Acute Mountain 

Sickness (headache, malaise, anorexia, nausea and vomiting). Both men rated their 

sleep as “poor and not restful”.  

 

The authors comment that their findings on the altered patterns of sleep in their 

subjects failed to correspond to any previously described situation. They also 

postulated that the absence of symptoms associated with these changed sleep patterns 

(both subjects felt well during the day and were able to engage in quite strenuous 

physical activity) may be due to the sleep changes being “related to the normal 

physiological adaptation to reduced pO2”. The authors discussed the well known drop 

in ventilation that occurs with sleep and its concomitant fall in alveolar pO2; normally 

this is insignificant but, at high altitude under hypoxic conditions this drop in 

ventilation and alveolar pO2 occurs on the steep part of the oxygen dissociation curve 

and can produce significant falls in oxygen saturation. They also comment that Bulow 

(1963) has described a progressive depression of the carbon dioxide drive on 

respiration during the successive stages of sleep with the highest threshold found in 

slow wave sleep; thus it is “possible that the elimination of periods of sleep associated  
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with the greatest diminution of respiration is particularly advantageous in the acute 

hypoxic state. The hypothesis offered is that decreases in ventilation and alveolar pO2 

is minimised by the curtailment of slow wave sleep as a means of avoiding worsening 

the hypoxic condition found at high altitude”.    

 

Natani et al (1970) studied sleep in four men, using the same methodology as Joern et 

al (1970), at sea level, four times during a year spent at the South Pole and then again 

at sea level several months after their return. This study was mainly concerned with 

the psychological problems that occur during long sojourns at the South Pole, 

particularly insomnia, depression and anxiety. However, sleep changes were recorded 

and reported. These authors reported that total sleep time was unaltered but sleep 

latency was significantly increased during all recordings at the South Pole, slow wave 

sleep was significantly reduced and remained so several months after return to sea 

level. REM sleep and Stages 1 & 2 NREM sleep were unaltered. The men were able 

to physically function well during the days despite the decrements in slow wave sleep. 

The authors postulate that the well known psychological changes that manifest in men 

staying at the South Pole (slight depression, insomnia and anxiety) may be associated 

with the decreased slow wave sleep. 

 

The first study to objectively quantify sleep patterns and associated physiology in 

humans at a high altitude location was by Reite et al (1975) who studied six normal, 

healthy young men aged 19-23 years, over twelve days spent at an altitude of 4300 m 

at the U.S Army Research Facility on the summit of Pikes Peak in Colorado. The 

mean atmospheric pressure at this altitude is 450 mmHg. The men were studied at sea  
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level on two non-consecutive nights with polysomnography that recorded sleep onto a 

Grass Model 6 polygraph using three channels of EEG, three channels of EOG and 

submental EMG. Breathing was recorded with a mercury strain gauge around the 

chest and electro-cardiography (ECG) was recorded via one electrode on the sternum. 

An oxygen cannula was placed in the nares for the purpose of oxygen administration  

which was given at 4L/minute for five minutes, after increasing the flow rate from 0 

to 4L/min over several minutes. The subjects were flown to Denver, Colorado, USA 

then driven to Pikes Peak. Sleep was recorded on the first night at high altitude and on 

four more occasions during a twelve day sojourn. 

 

All subjects complained of sleeplessness on their first night at altitude (several 

subjects thought they had not slept at all) and the objective findings demonstrated 

significantly reduced Stages 3 & 4 NREM (slow wave) sleep, significantly increased 

Stage 1 NREM sleep, a trend towards less REM sleep with Stage 2 NREM sleep 

unchanged. Arousals from sleep were significantly increased with a trend towards 

more time spent awake. Total sleep time was unchanged. All measurements tended 

towards a return to baseline values by the last night at altitude and this was 

accompanied by improved subjective sleep quality. 

 

Five of the six subjects developed periodic breathing during sleep at high altitude. The 

periodic breathing consisted of four or five rapid breaths (hyperpnea), followed by a 

10-20 second period of breathing cessation (apnea). Hyperpneas were occasionally 

associated with EEG arousal lasting for several seconds. The mean heart rate during 

sleep at high altitude was higher and during periodic breathing the heart rate was  
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decreased during the apneic phase and increased during the hyperpneic phase with a 

difference of up to twenty beats per minute. Periodic breathing ceased within a minute 

or two of REM sleep commencing. 

 

When oxygen was administered during sleep at high altitude periodic breathing was 

quickly abolished but there were no effects on sleep state or arousals, nor was there 

any effect on sleep state or arousals when oxygen was administered during sleep at 

sea level. 

 

Alveolar PAO2 and PACO2 values demonstrated marked hypoxia (mean PAO2 

52mmHg) and hypocapnia (mean PACO2 29mmHg)   persisting throughout the eleven 

days at high altitude with PAO2 tending to increase slightly over time at high altitude 

but PACO2 decreasing further. 

 

The authors concluded that the major finding of their study were that subjective and 

objective sleep quality was dissimilar i.e. all subjects complained of sleeplessness but 

objective measurement found no decrease in total sleep time and substantial amounts 

of all sleep stages present. They suspected that the increased arousals and awakenings 

from sleep contributed to the subjective feelings of poor sleep quality. They 

postulated that the increased arousals may be due to low barometric pressure 

influencing the reticular activating system, either directly via the carotid baroreceptors 

or indirectly via hypoxic or hypocapnic influences on carotid and aortic 

chemoreceptors but the possible role of these mechanisms’ effect on the reticular  
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activating system and increased arousals from sleep are highly speculative. 

 

It is possible that the number of arousals per hour of sleep was underestimated in this 

study due to the criteria used to score an arousal i.e. EMG activation, eye movement 

and alpha activity had to be present for an arousal to be scored; in most studies an 

arousal is scored in NREM sleep when the EEG abruptly changes, usually to a faster  

signal e.g. alpha or theta and it is only in REM sleep that EMG activation is also 

needed to score arousal. 

 

Another finding from this study was the presence of periodic breathing during sleep at 

high altitude in five of the six subjects and the authors postulate that the hypocapnia 

of high altitude increases sensitivity to carbon dioxide i.e. the CO2 sensor gain is 

increased causing the feedback mechanism that controls ventilation to oscillate, 

resulting in periodic breathing. However, oxygen administration during sleep 

eliminated periodic breathing in the subjects, suggesting that hypoxia-dependent 

disruption of central nervous system function may contribute importantly to the 

development of periodic breathing at high altitude. During REM sleep periodic 

breathing was abolished, implying a change of state of respiratory control 

mechanisms coincident with the onset of REM sleep. 

 

Miller and Horvath (1977) published the finding from their research conducted on 

four male and four female subjects, aged 18-29 years, in simulated altitude of 

3500metres in a hypobaric chamber. The subjects spent only the nights in the 

hypobaric chamber. They recorded sleep by use of EEG, EOG and ECG over five  
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nights. The first three nights the subjects slept in the chamber at 747 mmHg/ sea level 

to accustom them to the experimental conditions. On nights three, four and five the 

subjects were instrumented with surface scalp electrodes and circumferential Mylar 

tape electrodes to allow impedance ECG recording. On nights four and five the 

hypobaric chamber was brought to a simulated altitude of 3500m (493 mmHg) and 

the subjects slept from about 2300 hours until about 0600 hours.  

 

The authors reported that REM sleep was significantly reduced and Stage 1 NREM 

increased on night 4 compared to night 3 and Stage 2 NREM percentage was 

reciprocally smaller; there were no other changes to sleep stage percentage. Night 4 

(first night at 3500m) was more disturbed than other nights. They also found that on 

night 4 male subjects experienced more time awake than female subjects and had less 

Stage 2 NREM and REM sleep.  

 

The authors concluded from this research that slow wave sleep was not reduced at 

high altitude as had been reported in previous work. The hypothesis that the loss or 

reduction of slow wave sleep at high altitude and the increased arousal from sleep 

protects against sleep hypoventilation that may be more pronounced in deeper, less 

disrupted sleep allowing greater levels of hypoxia was not supported by the findings 

from this research.  

 

A study on rats by Pappenheimer (1977) aimed to investigate the physiological basis 

of insomnia at high altitude that have been reported by mountaineers as well as 

scientists studying sleep at high altitude; this work on sleep under normobaric hypoxia  
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specifically looked at changes in slow wave sleep. Rats with implanted EEG 

electrodes were studied in a chamber in which different gas mixtures were added. 

Normal sleep in rats occurs in 5-15 minute periods with slow wave sleep (60µV 

compared to 12.5µV when awake) occupying 50% of sleep time. The rats’ sleep was 

recorded for 5-7 hour periods for five months. When the rats breathed 10% oxygen  

(equivalent to 5540m altitude) SWS was not sustained for longer than 2-3 minutes, 

being interrupted by frequent brief returns to a lower voltage EEG closer to the wake 

value. It appeared that whenever the animal attempted to achieve sustained SWS it 

woke up. The amount of SWS was reduced in hypoxic rats to 30% of sleep time 

compared to 50% when breathing 21% oxygen. Behaviourally, the rats appeared 

restless when sleeping in hypoxic conditions, frequently turning around to curl up 

again as if to seek a more comfortable position. 

 

The hypoxic rats hyperventilated which resulted in respiratory alkalosis; when 4% 

CO2 was added to the hypoxic mixture, respiratory acidosis was prevented but there 

was no prevention of sleep disturbance; leading the author to conclude that it is 

reduced oxygen pressure and not respiratory alkalosis that causes the sleep 

disturbances, possibly from carotid body chemoreceptor feedback to the reticular 

activating system. 

 

In rats breathing 21% oxygen, minute volume and frequency were reduced in slow 

wave sleep but in the hypoxic rats frequency was increased; when CO2 was added 

during sleep, frequency and minute volume decreased from which the author  
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concluded that, in hypoxia, the increase of hypoxic sensitivity leading to increased 

ventilation, is dependent on CO2.  

 

Pappenheimer comments that this work has quantitatively established that hypoxia 

interferes with normal sleep, confirming the subjective reports of insomnia at high  

altitude. However, the techniques used supplied information only about slow wave 

sleep and the experimental conditions were hypoxia only, not hypobaric hypoxia. 

 

Ryan and Megirian (1982) studied the sleep/wake pattern (SWP) in six male rats 

under normoxic and hypoxic conditions before and after carotid sinus nerve (CSN) 

section i.e. ablation of the carotid body. The rats breathing air had a typical and 

consistent pattern of sleep with proportions of slow wave sleep, REM sleep and 

wakefulness being characteristic for the rat i.e. REM sleep was almost always 

preceded by SWS which usually lasted for more than two minutes. After CSN section 

the SWP parameters remained unchanged when breathing air. On the first day of 

breathing 10% oxygen dramatic changes to the SWP occurred: REM sleep almost 

disappeared, SWS was considerably reduced and the duration of the epochs of these 

sleep states was shortened. The frequency of state changes between wake and SWS 

was greatly increased. After denervation of the carotid body these changes persisted 

during hypoxia. On the second day of hypoxia after spending the night having REM 

sleep suppressed by having the rats sleep on a flower pot (REM paralysis would cause 

the rats to fall into water) the intact rats were without REM sleep and the changes in 

SWP were not significantly different from the first day of hypoxia. After CSN section  
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the SWP was closer to normoxia with REM sleep appearing in increasing amounts 

and the percentage of SWS the same as intact rats breathing air. The duration of the 

epochs of REM, SWS and wake were no longer significantly different from those 

during normoxia. The frequency of state changes also was closer to the normal 

pattern. 

 

The authors concluded that peripheral denervation i.e. ablation of the CSN, in rats 

breathing 21% oxygen has no effect on the SWP, the percentage of time in each state 

of consciousness (wake, SWS, REM) or the frequency of changes between the three 

states. When the rats breathed 10% oxygen striking disruption of all parameters of the 

SWP occurred but on the second day of hypoxia the sleep disruption became less 

striking, largely due to a shift in the pattern of mean duration of epochs towards 

normoxic conditions. Thus, carotid peripheral chemoreceptors play a more important 

role in controlling the duration of states than in modifying the frequency of state 

changes during hypoxic challenge. The authors state that it is evident from this work 

that hypoxia exerts its affect on the SWP via central mechanisms as well as via the 

peripheral chemoreceptor. Disconnection of these receptors permits an amelioration 

of the disrupting effects of hypoxia on the SWP as the exposure to hypoxia is 

prolonged. 

 

This study confirmed that hypoxia attenuates REM sleep to a greater extent than SWS 

in the adult rat. The most sensitive parameter of the SWP which is disrupted by 

hypoxia is the duration of the epochs. About 1.6-2 minutes of SWS are necessary 

before REM sleep can occur; REM sleep is the last step in the normal sequence of  
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states of consciousness (wake, SWS, REM); therefore it is the state that is most 

vulnerable to suppression. It would be misleading however, to believe that the 

duration of the SWS epoch preceding the onset of REM is not critical.  

 

The same group, in 1983, examined the effects on the sleep wake-pattern (SWP) of 

adding CO2 to the hypoxic mixture before and after carotid sinus nerve transection in 

male rats. During periods spent breathing air (21% oxygen and 4% carbon dioxide) or  

10% oxygen and 4% carbon dioxide, the SWP was examined before and after CSN 

section. When rats breathed air enriched with 4% CO2 compared to breathing air 

alone, there was no difference in the pattern of percentage of time spent in each state 

of consciousness (wake, SWS, REM) and this was true before and after CSN 

denervation. The mean epoch duration and frequency of state change were also 

unchanged in both groups with and without CO2 addition. When breathing 10% O2 

with 4% CO2 SWP was markedly disrupted, with the greatest change being in the 

pattern of frequency of changes in state. There was also marked changes in the 

percentage of time spent in each state and their epoch durations. These changes were 

present after denervation. 

 

The authors concluded that hypoxia in the presence of hypocapnia caused disruption 

of the SWP chiefly through a change in the pattern of mean epoch duration. 

Hypercapnic hypoxia disrupts SWP chiefly through a change in the pattern of 

frequency of state changes. Carotid denervation partially restored the SWP in 

hypocapnic hypoxia but had no effect on rats breathing a hypercapnic hypoxic mix.  
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Thus, in the rat the peripheral chemoreceptor reflex pathway has functional 

importance in hypocapnic hypoxia but not in hypercapnic hypoxia. 

 

Another study by Pappenheimer (1984) aimed to determine whether hypoxic 

insomnia is mediated by the peripheral oxygen receptors. Sleep in rats was analysed 

before and after carbon monoxide was administered in concentrations sufficient to 

produce moderate cerebral hypoxia without stimulation of breathing via the peripheral 

oxygen sensors. The rats were also studied after a period of acclimatisation to hypoxia  

with continued stimulation of peripheral receptors over a period of weeks. The 

amplitude of cortical slow waves during sleep was measured from recordings of 

hippocampal EEG. The findings from this study confirmed that hypoxia virtually 

abolished REM sleep and shifted the amplitude of slow waves towards awake values. 

Similar disruption of sleep occurred from inhalation of carbon monoxide sufficient to 

lower the oxyhemoglobin saturation to around 35%. Hypoxia induced by breathing 

10.5% oxygen resulted in markedly increased ventilation but was unaffected by 

carbon monoxide. Pappenheimer concluded from these results that the peripheral 

chemoreceptors do not mediate sleep disruption in hypoxia. The intense subjective 

complaints of sleeplessness at high altitude that do not correlate with observation of 

conventional EEG may be due to this decrease in the amplitude of slow waves during 

sleep i.e. hypoxia reduces the intensity of NREM sleep without greatly reducing the 

total duration.  

 

After acclimatisation to hypoxia, sleep gradually returned to near normal values. 

Ventilation during the two week acclimatisation period decreased slightly but  
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remained at high levels; presumably due to continued drive from the carotid bodies. 

Partial recovery of sleep is therefore not attributable to diminished drive from the 

chemoreceptors controlling ventilation.  

 

Berssenbrugge et al (1983) studied six men at simulated altitude of 3500m (455 

mmHg) in order to ascertain the mechanisms of hypoxia-induced periodic breathing 

during sleep. This study was mainly focused on the mechanism of periodic breathing 

but the sleep stages were reported in the findings, adding to the small body of 

knowledge of sleep at high altitude. They found that, compared to baseline sleep 

studies conducted at sea level, total sleep time was unchanged at 3500m but light 

sleep (Stages 1 and 2 NREM) was increased significantly from 61% to 83%, slow 

wave sleep was significantly reduced from 25% to 13% and REM sleep was 

significantly reduced from 15% to 4%. 

 

In another study by the same group (Berssenbrugge et al.1984) investigating the effect 

of sleep state on acclimatisation to hypoxia, seven men were studied at sea level and 

over four nights in a hypobaric chamber at simulated altitude of 3500m. The authors 

were interested in the ventilatory acclimatisation to hypoxia and the effects that sleep 

state had on breathing during sleep under hypobaric hypoxic conditions over a four 

day period; however changes in sleep were reported. They found that compared to sea 

level total sleep time at 3500m altitude was unchanged, light sleep (Stages 1 and 2 

NREM) was significantly increased, slow wave and REM sleep were significantly 

decreased. They also found that over the four days spent at 455 mmHg sleep stages  
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returned to near normal amounts.  

 

Finnegan et al (1985) published their work on ambulatory EEG monitoring of high 

altitude mountaineers. Twelve members of the Army Mountaineering Expedition to 

Mount Api (7130m) in North West Nepal were studied during the two week ascent  

from 4115 to 6220m. Ten of the subjects had twenty-channel clinical EEGs at sea 

level before the climb and three subjects had twenty channel EEG on return from the 

climb. During the climb three channels of EEG were recorded for 24 hours in nine  

subjects. 

 

They found that there was a reduction in slow wave sleep at high altitude when 

compared to two control groups of six soldiers each who were performing similar 

activities at sea level, and with three soldiers from the control group who were less 

active at sea level.  The overall time spent in Stage 4 NREM sleep at altitude was 30.4 

minutes, a 65% reduction compared to the six men active sea level group, who spent 

an average of 85.5 minutes in Stage 4 NREM sleep and a 74% reduction compared to 

the three man less active group who spent a mean of 116.3 minutes in Stage 4 NREM 

sleep. In the three men who had both sea level and high altitude EEG recordings the 

reduction in Stage 4 NREM was from 68-77%. 

 

REM sleep was also reduced at altitude from between 22% and 39% in the three men 

who had sea level and altitude EEG recording. They also found that the mean number 

of arousals per hour of sleep was six. 
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The authors comment that the reduction in slow wave sleep noted by them was 

despite the fact that high rates of energy expenditure is known to increase SWS. This 

reduction in SWS and REM sleep accords with the belief of mountaineers that their 

sleep is of a poorer quality at high altitude (including members of their own party). 

However the subjects remained healthy despite hypoxia, perhaps as a result of partial  

acclimatization and good hydration. 

 

The next published work that reported the findings from a study performed at a high 

altitude location, rather than in a hypobaric chamber, was by Selvamurthy et al (1986)  

who studied twenty seven male subjects at 3500m in the Western Himalayas over a 

two week period. Fifteen subjects were lowlanders taken to 3500m for the first time 

i.e. sojourners (SJ); six were acclimatized lowlanders (AL) and six were high altitude 

natives (HAN). Baseline sleep studies were performed at sea level on the SJ group 

before the subjects were flow to an altitude of 3500m; sleep was recorded every 

second night on each subject in the three groups over a two week period using EEG, 

EOG, EMG and ECG. They found in the SJ group that, compared to sea level, total 

sleep time and sleep efficiency were unaltered at 3500m, slow wave sleep was 

significantly reduced and arousals increased with acute exposure to high altitude over 

the two weeks spent at 3500m. This reduction in SWS persisted in the SJ group for 

two weeks on return to sea level while sleep efficiency improved and latency to all 

sleep stages shortened even though there had been no significant changes to sleep 

efficiency or sleep latencies at 3500m. The SJ subjects complained of poor sleep and 

of tiredness. Four in the SJ group had signs and symptoms of Acute Mountain 

Sickness (AMS) in the first week at 3500m and these subjects did not have either  
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frequent arousals or a reduction in SWS. 

 

The authors in this study suggested that the frequent arousals from sleep at high 

altitude observed in their SJ group was an adaptive feature to prevent the accentuation 

of hypoxemia known to result from hypoventilation during sleep at high altitude. In  

their group four subjects who did not have increased arousals or reduced slow wave 

sleep developed AMS symptoms. The AL and HAN groups also had reduced slow 

wave sleep compared to the SJ group at sea level but AL and HAN had fewer 

arousals; the authors state that this further supports the thesis that curtailment of SWS  

is an adaptive feature of sleep at high altitude. The authors propose that the subjects 

suffering AMS may have attenuated chemoreceptor sensitivity which fails to sense the 

increased hypoxemia during sleep; they could also have reticular damping due to 

hypocapnia and alkalosis, which would reduce the number of arousals from sleep 

caused by reticular stimulation. 

 

Research performed during a trek in the Himalayas was reported by Nicholson et al 

(1988) who studied the sleep of six climbers, three of whom ingested a drug known to 

improve arterial oxygenation and reduce periodic breathing i.e. acetazolamide 500mg 

daily, and three of whom ingested placebo. Upon reaching an altitude of 4150-4846m 

each subject ingested temazepam 10mgs on one night and placebo for another night 

(temazepam is thought to improve sleep at high altitude but may also depress 

ventilatory response to carbon dioxide thereby worsening hypoxemia). Sleep was 

recorded by means of two EEG, two EOG and submental EMG. Breathing movement 

was recorded using a chest impedance method. Sleep was recorded at sea level, one  



 
 Literature Review   

 

23

 

night at 1100-1400m, one night at 2750-3650m and two nights at 4150-4846m. The 

study found that, at the lower altitude (1100-1400m) compared to sea level total sleep 

time and sleep efficiency were reduced and awake time was increased in all subjects; 

at the medium altitude (2750-3650m) compared to sea level, the only change was 

reduced sleep efficiency in all subjects; but at the highest altitude (4150-4846m) sleep  

was markedly disturbed in all subjects with reduced total sleep time and sleep 

efficiency, less REM sleep, awake time and latency to sleep were increased. When 

compared to medium altitude the sleep at the highest altitude was also significantly 

poorer with total sleep time and sleep efficiency reduced, latency to sleep increased 

and reduced REM sleep. Acetazolamide was shown to increase Stage 2 NREM sleep 

and reduce wake time. Temazepam decreased latency to sleep and increased REM 

sleep. The subjects reported better sleep quality when taking temazepam >4000m. 

There were no differences in the amount of periodic breathing during sleep in those 

taking acetazolamide or in those taking temazepam and disturbed sleep persisted with 

and without periodic breathing. 

 

The authors of this study believe that the changes in sleep architecture at 1100-1400m 

were due to time change between London and Kathmandu; this theory is supported by 

the finding that sleep was little altered from sea level values at the medium altitude. 

They conclude that acetazolamide improves sleep at medium altitude but above 

4000m marked sleep disturbances persist and temazepam in low doses is beneficial at 

this altitude. However, it was not known if temazepam depressed ventilation because 

no measurement of oxygenation was utilized and they suggest further studies are  
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needed to clarify the relationship between benzodiazepines and sleep hypoxemia. 

 

The findings from a French medical high altitude expedition to the Himalayas were 

reported by Goldenberg et al (1988).  The study was carried out at 4800m. Twelve 

subjects (three female) had sleep studies recorded at sea level and at 4800m using  

EEG, EOG and submental EMG to record sleep, and chest and abdominal effort bands  

to record breathing during sleep. Six subjects were given a benzodiazepine 

(loprazolam 1mg) and the other six received placebo on the first four nights after 

arrival at 4800m and again for four nights after twenty days at 4800m. Sleep studies  

were performed on the fourth night after arrival and again after twenty four days.  

 

In the placebo group the results of the sleep studies were increased wakefulness, 

decreased SWS and REM sleep. All subjects complained of increased wakefulness 

during the sleep studies. Periodic breathing occurred in all subjects to varying 

degrees; the female subjects exhibited less PB than the male subjects. After twenty 

four days of acclimatisation to 4800m sleep returned to near normal values and PB 

decreased. Loprazolam tended to decrease Stage 2 latency and did not worsen SWS 

depression or affect the amount of PB or apnea length; however the benzodiazepine 

did not improve the complaints of wakefulness. 

 

All the subjects had periodic breathing during sleep at high altitude during Stages 1 

and 2 NREM and two subjects had PB in REM sleep. The increased arousals and 

wake time were not correlated to the amount of PB, with some subjects having almost  
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no PB but still many awakenings and arousals. 

 

The authors conclude that acclimatisation to high altitude improves sleep and periodic 

breathing. The presence of periodic breathing at high altitude may be useful for 

altitude adaptation; sleep modifications such as reduced SWS, increased arousal and 

wakefulness could also be adaptive, preventing worsening hypoventilation during  

sleep. Benzodiazepines preserved these adaptive mechanisms. 

 

Another study undertaken at a high altitude location was by Normand et al (1990) who 

studied six lowlanders (four men, two women) at sea level and then after three weeks  

spent at 3800m in Bolivia to determine the relationship between sleep state, periodic 

breathing and oxyhemoglobin saturation. The hypothesis was that periodic breathing 

during sleep negatively influences arterial oxyhemoglobin saturation. The authors also 

wanted to determine whether sleep deficits at high altitude are due to cold conditions 

at night (known to decrease REM sleep) and the vigorous activity of climbing during 

the days. Sleep studies were performed at sea level and then after three weeks spent at 

3800m. Sleep was recorded using EEG, EOG and EMG. Chest and abdominal 

movement was recorded using strain gauges with nasal airflow monitored with 

thermistors. ECG and oxyhemoglobin saturation (SaO2) were also recorded. Arterial 

blood was analysed for PaO2, PaCO2 and pH. 

 

These researchers found that total sleep time, all sleep stages and the arousal index 

were unaltered from sea level measurements. Periodic breathing occurred in NREM 

sleep in three male subjects but there was no difference in the sleep structure, mean  
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SaO2, PaO2, PaCO2 or pH in subjects with or without periodic breathing. 

 

The authors conclude from this study that high altitude does not induce any change in 

sleep organization and that periodic breathing does not alter sleep or arterial oxygen 

saturation. They propose that many of the sleep disruptions experienced by climbers 

and mountaineers may be due in part to the conditions in which they are living –  

intense muscular activity during the days and uncomfortable and cold conditions at 

night. However, the sleep studies that these authors have compared their findings to 

were performed under conditions of acute exposure to high altitude (Reite et al. 1975,  

Pappenheimer 1977), whereas this work was carried out after three weeks at 3800m. 

 

The highest altitude at which research into sleep in humans has been carried out is the 

work of Anholm et al (1991) who conducted studies in a hypobaric chamber at 

simulated altitudes of 4572m, 6100m and 7620m. These studies were called Operation 

Everest II. Studies were also performed at sea level before and after the high altitude 

research. Five men were studied over a forty day stay in a hypobaric chamber under 

increasing reduction in barometric pressure. Sleep was recorded using EEG and EOG; 

respiratory data was collected by means of chest and abdominal inductance and a 

close fitting face mask; ECG and oxyhemoglobin saturation were also recorded. 

 

The findings from this study were that all subjects complained of some degree of poor 

sleep throughout Operation Everest II, with symptoms including difficulty falling 

asleep, frequent awakening and feeling unrefreshed in the morning. The monitoring 

equipment worn by the subjects and the uncomfortable sleeping arrangements were  
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thought to be partially responsible for poor sleep but complaints were also present 

when sleep was not monitored so hypobaric hypoxia also played an important part in 

poor subjective sleep quality. There were significant increases in the time spent awake 

after sleep onset, arousals (2-10 seconds) and amount Stage 1 NREM sleep; there 

were significant decreases in total sleep time, Stage 2 NREM and in REM sleep. Slow 

wave sleep was not decreased in these subjects. SWS and REM sleep were also  

reduced on the first sea level sleep study from what is normal in this age group 

(around 21% for SWS and 25% for REM sleep) but both increased on the second 

sleep study at sea level after completion of the high altitude studies i.e. REM sleep  

approached normal amounts at 21 ± 5% but SWS remained reduced at 10.6 ± 8.6%. 

 

The authors commented that this work has presented new findings in sleep 

architecture and oxygen desaturation at extreme altitude. Sleep under hypobaric 

hypoxia was disrupted by frequent arousals and reduced REM sleep; severe oxygen 

desaturation   (<50%) was observed at 282mmHg (7620m) and in one subjects at 

6100m. They also suspect that several factors may have altered normal sleep at 

altitude in this group i.e. noisy equipment, cots or mattresses on the floor, snug-fitting 

face masks, ear oximeters and inductance bands. The sea level studies were performed 

only on one occasion so sleep deficits may have been due to “first night effects” of 

uncomfortable monitoring equipment. However, sleep became more fragmented with 

increasing altitude which can only be the effects of hypoxia. Nearly all the subjects 

thought that the discomfort of wearing the monitoring equipment interfered with their 

sleep with one subjects refusing further sleep studies above 4572m (429mmHg). The 

reduction in REM sleep and the number of awakenings (10-20 seconds) were nearly  
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the same at 4572m as they were at 7620m; similarly sleep efficiency did not decrease 

further after 4572m. This suggests that sleep disturbance does not worsen above 

4572m but the authors suspect that the sleep changes could not be detected by the 

standard sleep scoring paradigm, which is based on 20-30 second periods of EEG to a 

single sleep stage (20s in this study) with brief 3-5s arousals not reflected in the sleep 

stages. As a result, changes in the total sleep time and various sleep stages do not fully  

explain the subjective impressions of sleep loss or deterioration in daytime 

performance. The number of arousals however, increased progressively as altitude 

increased and are a more sensitive index of sleep impairment. At 6100m and 7620m  

the longest uninterrupted period of sleep was less than ten minutes and this is 

indicative of severe sleep fragmentation. 

 

Mizuno et al (1993) aimed to clarify the relationship between sleep architecture and 

periodic breathing at high altitude. The study was performed in a hypobaric chamber 

at simulated altitudes of 1500m, 3000m and 4000m. Five healthy young male subjects 

were studied at sea level in the chamber and then one night at each of the three 

altitudes above sea level (ASL). The sleep studies were performed at least three days 

apart and the order of the ASL studies was randomised. Polysomnographic recordings 

included EEG, EOG, EMG, ECG, oxyhemoglobin saturation (SaO2) and breathing 

from a thermistor and a pressure sensor under the back.   

 

Sleep architecture measurements were similar for sea level, 1500m and 3000m but at 

4000m sleep was disturbed and the architecture significantly altered. Sleep latency, 

sleep efficiency and total sleep time were reduced with time spent awake after sleep  
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onset increased at 4000m. The nights were divided into three parts: early, middle and 

late part of the time in bed (TIB); in this way each sleep stage’s percentage in each 

part of the night was calculated. In the early part of the sleep study there were no 

differences for any altitude but in the middle and late parts the amount of time spent 

awake after sleep onset was increased, the percentage of Stage 1 NREM was  

increased, and REM sleep percentage decreased. Periodic breathing occurred in all 

subjects at 3000m and was increased at 4000m but was highly variable among the 

subjects with three subjects having 100 apneas or hypopneas per hour and one subject 

having only 7 per hour. The number of periodic breathing apneas and hypopneas was 

significantly higher at 4000m. Periodic breathing time for each sleep stage was also 

calculated. Tendency to PB was significantly higher for Stage 1 NREM than for slow 

wave sleep (SWS), with only minimal amounts of PB occurring in SWS at 3000m but 

three subjects had 20% to near 100% appearance of PB in SWS at 4000m. 

 

The authors concluded from this study that because the research was conducted in a 

hypobaric chamber and the subjects arrived at the chamber about an hour before going 

to sleep, the brief adaptation time may have caused an increase in the hypoxic effect 

on sleep. It is necessary to investigate sleep after a longer hypoxic exposure before 

sleep onset. They note that sleep disturbances definitely occurred above 3000m with 

definite increases in wake, Stage 1 and decreased REM in the middle and late parts of 

sleep at 4000m which suggests that the increased hypoventilation of sleep in the early 

part of sleep resulted in severe hypoxemia and contributed to the increased arousal 

response in the middle and late parts. The position on the steep part of the oxygen 

dissociation curve at altitudes above 3000m would ensure that hypoventilation during  
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sleep would result in a marked reduction in oxyhemoglobin saturation (SaO2) and 

decreased SaO2 has been suggested to cause sleep disturbance. Deep sleep (SWS), in 

which the most intense stimulus is needed to induce arousal, was observed in the early 

part of the night at 4000m suggesting that arousal was not caused by lower SaO2 in 

deep sleep. Sympathetic stimulation caused by hypoxia in the early part of the night  

may also have contributed to the increased arousals in the middle and later parts. The 

shortened latency to sleep that was observed at 4000m suggests that liability to sleep  

was enhanced by hypoxia. 

 

The effects of periodic breathing on sleep architecture and oxyhemoglobin saturation 

was investigated by Salvaggio et al (1998). Five subjects were studied (three male, 

two female). The subjects trekked from 2800m to 5050m over six days and stayed at 

5050m for four weeks. Polysomnography was performed during the first and fourth 

week at 5050m with recordings of EEG, EOG, chin EMG, oxyhemoglobin saturation 

(SaO2), airflow using nasal cannula with a pressure transducer, chest and abdominal 

inductance plethysmography. The changes in sleep architecture found in the first 

week at 5050m were: decreased slow wave sleep (SWS was absent in four of the 

subjects) with less SWS in the two subjects who had less periodic breathing; the 

arousal index was increased with more arousals occurring during periodic breathing 

than in regular breathing; Stage 1 NREM sleep was increased and REM sleep was 

unchanged. In the fourth week at 5050m SWS showed a trend towards an increase 

from the first to fourth week but was still missing in one subject; arousals remained 

significantly increased in the fourth week; Stage 1 NREM remained increased in three  
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subjects but had returned to near sea level values in two subjects. 

 

The authors concluded that slow wave sleep tends to disappear at high altitude even in 

subjects with little periodic breathing; sleep fragmentation was associated with 

arousals during the hyperpneic phase of periodic breathing. Periodic breathing is 

associated with only a small increase in SaO2 with respect to regular breathing but  

improves over time spent at altitude during wake and sleep regardless of the breathing 

pattern. The authors note that fragmented sleep occurred in periodic breathing and  

regular breathing hence the occurrence of PB is not a major determinant of decreased 

SWS.  

 

Research by Zielinski et al (2000) reported on a group of nine male subjects who were 

studied at sea level and at 3200m on the first and sixth night. Polysomnography 

included recordings of EEG, EOG, chin and tibial EMG, airflow by thermistor, chest 

and abdominal movement, pulse oximetry, ECG and body position. The subjects were 

driven to the high altitude location at 3200m. Sleep architecture changes at 3200m 

were few, with a small decrease of 2-4% in slow wave sleep and unchanged 

percentages of all other sleep stages. There were, on average, twice as many arousals 

at altitude with large individual variations in the number of arousals and awakenings. 

Periodic breathing was absent in four subjects but present to varying degrees in the 

other five subjects in NREM sleep; PB was present to the same degree on the first and 

fourth nights at 3200m. The number of arousals and time awake did not change from 

night one to night four at altitude despite a 2% improvement in SaO2.  
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The authors comment that their findings are different from previous work by Miller & 

Horvath (1977) who found, at 3500m that Stage 1 NREM sleep was increased and the 

work of Selvamurthy (1986) who found that at 3500m sleep was increasingly 

fragmented and that slow wave sleep was decreased. They suggest that the differences 

may be due to the slightly higher altitudes at which the above studies were performed. 

Also less comfortable conditions in the hypobaric chamber may have worsened sleep  

quality. They conclude that at an altitude of 3200m sleep quality remains satisfactory 

and the incidence of periodic breathing is rather low compared to that observed at  

higher altitudes. Large individual variations in the number of awakenings, arousals 

and intensity of periodic breathing are present. 

 

Mizuno et al (2005) published a study into sleep on Mount Fuji (3776m). Three men 

were driven from sea level to 2380m then climbed for 4.5hours to reach the summit. 

Polysomnography was conducted using EEG, EOG, mentalis EMG and ECG In two 

of the three subjects nasal airflow, chest movement and oxygen saturation were 

monitored. The sleep studies were performed sea level a month after return form high 

altitude and on four consecutive nights spent at 3776m. The first night spent at Mt 

Fuji was considered to be affected by the previous night’s short sleep time and the 

4.5hour climb to the summit so sleep studies were performed on the second to the 

fifth night at 3776m. Due to technical problems the results from one subject on night 

three were lost.  

 

Sleep architecture was altered at 3776m, with two subjects having significantly more 

time awake after sleep onset on the second night and one subject on the fifth night;  
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arousals were increased in two subjects on all nights at altitude; longer latency to 

sleep was observed in one subject on the fourth and fifth nights; slow wave sleep was 

decreased in one subject on three nights and on two nights in another subject; the 

amount of REM sleep did not change.  

 

The authors concluded that sleep architecture at 3776m remained unacclimatised over 

the five nights. In previous work by Normand et al (1990) sleep architecture was 

normal after three weeks spent at 3800m so the conclusion is that acclimatisation  

takes longer than five days therefore, when arriving at a high altitude location, 

schedules of work and rest should be carefully planned during the first week. 

 

High altitude not only induces hypoxia but because of the increased ventilation that 

the hypoxia causes, hypocapnia is also present. A study that examined the effect on 

sleep of hypocapnia in cats was carried out by Lovering et al (2003). Four adult cats 

were instrumented to record EEG, EMG diaphragm and pontogeniculooccipital 

(PGO) waves and the trachea intubated. Tidal O2 and CO2 as well as airflow were also  

recorded. The cats breathed air (normoxia), hypocapnic and isocapnic hypoxic gas 

mixtures while sleep and breathing were measured. Compared to normoxia the 

hypoxic (10% O2) significantly reduced REM sleep by approximately 80% and 

increased latency to REM sleep. These changes were caused by reductions in both 

duration and the number of REM sleep periods. When CO2 was added to the hypoxic 

mix to create isocapnic hypoxia, significant increases occurred in both time in REM 

and the number of REM sleep periods. Nevertheless REM sleep was still reduced by 

approximately 30% in isocapnic hypoxia compared to normoxia. Other sleep  
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parameters were not significantly affected by either hypocapnic or isocapnic hypoxia. 

Sleep disruption was not caused by sleep disordered breathing; ventilation increased 

(both rate and depth) during hypoxia but no periodic breathing occurred.  

 

Mechanical ventilation was used to induce hypocapnia while maintaining normoxia. 

REM sleep was significantly decreased with increasing levels of hypocapnia. With 

extreme hypocapnia wakefulness was increased and there was a trend towards  

decreased NREM sleep, reduced total sleep time and sleep efficiency. Arousal from 

sleep was increased in isocapnic hypoxia and also during mechanical ventilation. 

There was a strong negative correlation between the number of awakenings and the 

duration of REM sleep. 

 

The authors concluded from this study that, as found in previous work, hypoxia 

decreases the amount of REM sleep. However, at high altitude, the body must cope 

with both hypoxia and hypocapnia; this work shows that hypocapnia without hypoxia 

decreases the amount of REM in cats. Thus hypoxia induced sleep disruption in cats is  

not only caused by low O2 conditions but also by low CO2. This may also be the case 

with sleep disruption in humans at high altitude. 

 

Each of these studies into sleep at high altitude has a different protocol; some were 

conducted at actual high altitude locations which were reached either by land or air 

travel while some were reached after days or weeks of trekking; others studies were 

conducted in hypobaric chambers to simulate high altitude; some studies were 

conducted only after acute exposure to high altitude while others were conducted on  
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more than one occasion over a period of time spent at high altitude thereby obtaining 

results that are relevant to acclimatisation as well as acute exposure to high altitude. 

The differing protocols involving different altitudes (simulated or geographical), time 

before studies were conducted, scoring methods make comparison and accord  

between the studies difficult. 

 

However, the findings from all these studies demonstrate that subjective sleep quality 

in humans is worse at altitudes above 3200m, total sleep time is generally unchanged 

but in many instances the lighter sleep stages are increased and deeper sleep stages 

(slow wave sleep) are decreased with REM sleep remaining unaltered or decreased. 

Sleep fragmentation is a feature of all the sleep studies performed and this appears to 

worsen with increasing altitude. Subjective sleep quality also decreases with 

increasing altitude with a concomitant deterioration in daytime function. Periodic 

breathing is almost universal at high altitude but with a wide individual range in 

severity. Periodic breathing does not disappear after time spent at high altitude and 

may indeed be a physiological adaptive mechanism. 

 

The increased number of arousals and awakenings during sleep at high altitude may 

be due to the worsening hypoxia that occurred during sleep at high altitude. The 

hypoxia may be somewhat alleviated by repetitive arousal; this sleep fragmentation 

may be the cause of reduced amounts of slow wave sleep, and both increased arousals 

and slow wave sleep reduction may be adaptive mechanisms to prevent the 

hypoventilation that normally occurs during sleep but leads to severe oxygen 

desaturation during sleep at high altitude. Sleep quality improves over time spent at  
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high altitude; this is most likely due to the improvement in oxygen saturation that 

occurs with acclimatisation. 

 

1.4 Periodic Breathing 
 
Periodic breathing (also called Cheyne-Stokes respiration after the two physicians 

who classified it in the mid nineteenth century) is a repeating pattern of apnea, in 

which respiratory effort is absent, and hyperpnea. Unstable ventilatory control during 

sleep is the underlying mechanism of periodic breathing (PB) but the pathophysiology 

of the various forms of PB vary greatly. PB represents instability of the respiratory 

feedback control system and occurs in congestive heart failure and conditions such as 

strokes that affect the cerebral cortex of the brain; PB is common in infancy and at 

high altitude.  

 

In heart failure, PB results in elevated mortality, which may result from the repetitive 

fluctuations in blood gases, blood pressure and heart rate. The pathophysiology is 

thought to be related to decreased cardiac output resulting in slowed circulation time, 

decreased lung volume and increased chemoreflex slope with increased lag time to 

ventilatory response.  

 

PB at high altitude is common during sleep at high altitude and is secondary to 

increased ventilation brought about by hypoxia and the hypocapnia that results from 

increased ventilation. 
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The dynamics of periodic breathing can be most clearly explained from an 

understanding of the feedback system that regulates breathing. Neural and circulatory 

interactions play a major role in the control of breathing during sleep. The feedback 

system consists of a controller, a plant and a communication channel. In the  

respiratory control system the chemoreceptors and the brain are the controllers, the 

lungs, blood and respiratory muscles are the plant and the circulation is the 

communication channel.  

 

Peripheral chemoreceptors respond to PaO2 and PaCO2, and the central 

chemoreceptor in the medulla responds to H+ concentration. The system operates to 

keep the arterial partial pressures of oxygen and carbon dioxide within a restricted 

range by regulating the level of ventilation. 

 

PB occurs in sleep as a consequence of the loss of the input from higher centres of the 

brain, called the wakefulness drive (Orem et al. 1985; Longobardo et al. 2002) and a 

change in control of breathing reliant on chemoreceptors alone. Sleep onset results in 

decreased ventilation and a rise in PaCO2 to a few mmHg above the apnea threshold, 

making it less likely that central apnea occurs. 
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Figure 1.4. Schematic representation of changes to ventilation at high altitude 
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During sleep, the maintenance of regular respiratory rhythm is dependent on chemical 

stimuli. Sullivan et al (1978) demonstrated that withdrawal of standard stimuli to 

breathing by administration of oxygen, induction of metabolic alkalosis or 

interruption to vagal afferents did not lead to changes in respiration during 

wakefulness but caused apnea during sleep. The unmasking of the apneic threshold in 

NREM sleep has since been demonstrated by several studies. Using mechanical  
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ventilation during sleep, Skatrud and Dempsey (1983) elicited a progressive, linear 

reduction in the diaphragm EMG until apnea occurred.  Mechanical ventilation was 

also used by Simon et al (1993) to demonstrate a sleep induced increase of 2-4mmHg 

in the set point for PaCO2 independent of sleep induced changes in airway resistance  

and Meza et al (1998) used assisted ventilation (proportional assist and pressure 

support ventilation) to identify an apneic threshold that is a few MmHg below eupneic 

pCO2. 

 

Mechanical ventilation was also used by Semple et al (1999) to control tidal volume at 

waking eupneic levels in order to prevent hypoventilation and increased PaCO2 which 

is normally present upon transition from awake to light sleep. At sleep onset apneas of 

15 seconds occurred. These observations demonstrate the marked CO2 dependence of 

ventilatory control at sleep onset and the critical importance of the normal sleep 

induced hypoventilation as a deterrent to apnea and breathing instability. 

 

The major effect of sleep on respiratory control appears to be the unmasking of an 

extremely sensitive apneic threshold at a PaCO2 close to normal resting values. This 

causes instability in the ventilatory system during sleep.  

 

Periodic breathing is induced at high altitude when the PaCO2 is driven to below 

normal levels by the increased ventilation induced by hypoxia. Sleep onset often 

results in central apnea followed by ventilatory overshoot which drives the PaCO2 

below the apneic threshold and perpetuates the periodic breathing cycle.    
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Loop gain is an engineering term used to describe the stability of a system that is 

controlled by negative feedback loops. In the case of respiration, loop gain represents 

the gain or sensitivity of the negative feedback loop that controls ventilation and can 

be described mathematically as the ratio of a corrective response (e.g. hyperpnea) to a  

disturbance (e.g. apnea). If the corrective response is greater in magnitude than the 

disturbance then the loop gain is 1 which leads to self sustaining oscillations in 

breathing (e.g. periodic breathing); if the loop gain is less than 1, the oscillations  

decay, but the degree of decay depends on the strength of the disturbance and 

correction.    

 

Models based on chemical feedback control of ventilation have been proposed to 

explain respiratory instability at high altitude. Khoo et al (1991) suggest that two 

factors are needed for self sustaining ventilatory instability; a “disturbance” and a 

“correction”. This would constitute a negative feedback loop. In order to maintain 

instability the magnitude of the correction must be greater than the disturbance; this 

ratio is the “loop gain”. The other requirement is that the corrective response should 

occur 180º out of phase with the disturbance; the corrective response then augments 

the disturbance instead of inhibiting it. The higher the loop gain at a phase of 180º, the 

more likely it is that periodic breathing will occur, the more marked the pattern of 

periodic breathing, and the shorter the length of the periodic breathing cycle. 

Therefore, delays in information transfer, increased controller gain, or decreased 

system damping will all result in periodic breathing. All these conditions occur at high 

altitude. 
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The hypobaria-induced hypoxia of high altitude leads to a low PaO2; the response to 

hypoxia is curvilinear so that a low PaO2 increases the gain in the chemoreceptor 

system (the controller gain). The CO2 response is enhanced by hypoxemia, decreased 

by hypocapnic alkalosis and is linear. Slowed circulation time has been demonstrated  

at high altitude by Lahiri et al (1983 and 1984) by measuring the lag time from peak 

ventilation of a periodic breathing cycle and the peak SaO2 measured at the ear; at 

5400m altitude the lag time was found to be 12 seconds compared to 6.8 – 9.4  

seconds at sea level. Therefore, the increased gain of the oxygen chemoreflex system 

and the increased circulation time makes the ventilatory feedback system unstable as 

predicted by the loop gain model. 

 

Hypoxemia and hypocapnia must both be present for the induction of periodic 

breathing. Berssenbrugge et al (1983) first induced PB in subjects at simulated high 

altitude in a hypobaric chamber then administered carbon dioxide to induce 

normocapnia while maintaining hypoxemia; the periodic breathing was eliminated. 

Administration of oxygen during hypoxia induced periodic breathing initially caused 

a lengthening of the apneas then a gradual shortening and elimination of apneas. The 

stabilization of breathing during oxygen administration resulted in a progressive 

increase in the end-tidal CO2.  They concluded that in hypoxia induced periodic 

breathing the ventilatory system behaves in a manner consistent with the presence of 

CO2 apneic threshold operating very close to the eupneic CO2 obtained in NREM 

sleep. 
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PB is common in those who travel to high altitude but varies between individuals; the 

cause of this individual variation is unknown. 

 

1.5 Changes in Ventilation at High Altitude:  the Role of the Peripheral 
 Chemoreceptor 

 
As altitude increases, barometric pressure decreases and although the partial pressure 

of oxygen remains unchanged, its absolute pressure decreases. At sea level inspired 

oxygen is approximately 150mmHg and approximately 120mmHg at 1600 metres  

above sea level. The expected arterial partial pressure of oxygen (PaO2) decreases 

from 100mmHg at sea level to 70mmHg at 1600m. The initial response to the hypoxia 

caused by ascent to high altitude is an increase in ventilation. This response is 

mediated by the peripheral chemosensor, the carotid body, which is a tiny organ 

located at the bifurcation of the carotid artery. The peripheral chemosensor detects the 

lower partial pressure of oxygen in the arterial blood and sends a signal along the 

carotid sinus nerve to the respiratory centre in the brainstem. An efferent signal is then 

sent from the brainstem to the muscles of respiration which causes an increase in 

ventilation. At any level of PaO2 the peripheral chemoreceptor also responds to the 

pH of arterial blood; as hydrogen ion concentration increases (acidosis) ventilation 

increases. The increased ventilation, which is triggered by the carotid body in 

response to hypoxia and acidosis, involves increased tidal volume rather than 

increased breath rate.  

 

The control of breathing was poorly understood until the last hundred years, when 

some basic discoveries began to throw some light on this area of respiratory  
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physiology. Studies into the regulation of respiration under acute hypoxia were 

published by Nielsen and Smith in 1952. Their work in two human subjects showed 

that there was a linear dependence of ventilation on alveolar PCO2 and the slope of 

this relationship was increased by hypoxia. Then work by Dejours et al (1957),  

demonstrated that ventilatory drive arises from PaO2; this raised questions about the 

supposed dominance of CO2 in chemoreflex control. Finally, Cunningham (1973) 

quantitated the interaction of hypoxic and hypercapnic stimuli in ventilatory control.  

 

These studies were consolidated by the following investigations of the peripheral 

chemoreceptor of the carotid body.  

 

There have been many studies that have confirmed the importance of the carotid body 

as the trigger for increased ventilation in response to hypoxia. Studies have 

demonstrated that integrity of the arterial chemoreceptor drive is essential in 

determining the level of ventilation and normal acid-base balance of the blood and 

cerebro-spinal fluid at low altitude and high altitude.  

 

Biscoe et al (1970) studied single afferent chemoreceptor fibres in the sinus nerve in 

vivo, in cats in intact circulation studies. They studied the effect on a single afferent 

fibre of changes in arterial pO2, pCO2 and hydrogen ion concentration [H+] with no 

attempt being made to control blood pressure or measure flow i.e. the carotid sinus 

was perfused naturally. The authors found that the response curve to decreased arterial 

pO2 was similar to a hyperbola i.e. the frequency of nerve impulses increased rapidly 

at first and then slowed. The discharges of single efferent fibres increased both with  
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increasing PaCO2 at constant pH and PaO2, and with increasing [H+] at constant 

PaCO2 and PaO2. The authors concluded that single carotid body afferent fibres of the 

cat can be activated in vivo by an increase in either arterial [H+] and increased arterial 

pCO2 as well as by a decrease in arterial pO2.  

 

Bouverot and Bureau (1975) studied three awake dogs at simulated high altitude in a 

hypobaric chamber at 140m and 3550m. Measurements recorded were resting 

ventilation, pulmonary gas exchanges, respiratory gases and pH of the arterial blood,  

acid-base status in the cerebro-spinal fluid (CSF) and ventilatory responses to 

transient oxygen inhalation. The dogs were studied before and after bilateral carotid 

body denervation. At low altitude denervation resulted in hypoventilation and 

respiratory acidosis in arterial blood and CSF. At 3550m hyperventilation and the 

related alkalosis did not occur in the denervated dogs but did occur in intact animals 

within thirty minutes of exposure to high altitude. Hyperventilation continued to 

increase over three hours in the intact animals. In the denervated dogs, 

hyperventilation was delayed and occurred after 24 hours hypoxic exposure. The 

authors concluded that the strength of ventilatory acclimatisation to high altitude is 

dependent on the strength of the arterial chemoreceptor drive. Integrity of this 

chemoreflex drive of breathing is essential in determining the eupneic level of 

ventilation and normal acid-base status of the blood and CSF at low altitude and at 

high altitude.  

 

Forster et al (1976) studied ponies at sea level and simulated altitude before and after 

chemoreceptor denervation. At sea level after denervation hypoventilation occurred;  
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at simulated hypobaric hypoxia (PaO2 40-47 mmHg) hyperventilation, which was 

observed in normal ponies, was prevented. During the second and eighth hour of 

hypoxia ventilation increased in both groups (intact and denervated), which is a 

common characteristic of acclimatisation, but it only persisted in the intact ponies; in 

the denervated ponies hyperventilation was evident only through the 12th and ceased  

after the 44th hour. The authors concluded that peripheral chemoreceptors are essential 

for normal ventilatory acclimatisation to hypoxia.  

 

Long et al (1993) investigated both the initial increase in ventilation that occurs with 

acute exposure to hypoxia and the decrease in ventilation that is known to occur after 

the first five minutes (called the hypoxic ventilatory roll-off). They studied the 

ventilatory response to isocapnic hypoxia of cats that had either carotid denervation or 

a sham operation. The measurements recorded were arterial pO2 and end-tidal pCO2 

and arterial pCO2. They were studied first in room air and then at moderate hypoxia 

(PaO2 40-55 mmHg). Sham/intact animals demonstrated a biphasic response to 

hypoxia; ventilation rose to 211% of control at 5 minutes then fell to 114% of control 

at 25 minutes. Denervated cats showed neither the initial nor the subsequent decrease 

in ventilation. They then added 2% CO2 to the inspirate and the results were similar: 

intact cats showed biphasic response to hypoxia but denervated cats showed neither 

increase nor decrease in ventilation. The authors concluded that both the initial 

increase and then the decrease in ventilation with acute exposure to hypoxia are 

dependent on peripheral chemoreceptor output. 
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Bisgard and Vogel (1971) studied four calves at sea level and five calves at 1600m 

above sea level after carotid body excision in order to examine the role of the carotid 

chemoreceptor in ventilation and whether the loss of the carotid body would depress 

ventilation and result in pulmonary hypertension. They found that ventilation was 

depressed in all the calves following ablation of the carotid body but there was a wide 

variation in minute ventilation so the blood gas analysis was found to be a more  

reliable indicator of ventilation. The PaCO2 increased from 40mmHg to 50mmHg in 

sea level calves after carotid body ablation indicating a 33% reduction in ventilation. 

The reduction in 1600m calves was 35%; the authors concluded that the carotid  

bodies are active in maintaining effective ventilation at sea level and 1600m. There 

was a reduction but not complete loss of ventilatory response to acute hypoxia after 

carotid body ablation. This is in contrast to the ventilatory response found in dogs, 

goats and man. Pulmonary hypertension was the most striking hemodynamic change 

noted in the 1600m calves; the authors concluded that this was due to hypoxic 

pulmonary vasoconstriction which was potentiated by hypercapnia and slight acidosis. 

 

Studies in humans of carotid body denervation have examined the effects of 

glomectomy, a procedure practised widely since 1961 when improvement in asthma 

symptoms followed removal of the carotid bodies. Wood et al (1965) reported the 

results of this surgical procedure in three patients. The carotid bifurcation region was 

exposed and the carotid body excised. Arterial blood gas analysis and lung function 

tests were performed before and after the surgery. In all three cases, one week after 

surgery the oxygen saturation (SaO2) was lower, the PaCO2 was higher, pH lower and 

bicarbonate higher. Ten to sixteen months after surgery the SaO2 remained lower,  



 
 Literature Review   

 

47

 

PaCO2 higher, pH lower and bicarbonate higher. These results indicated that 

ventilation was suppressed by removal of the carotid bodies. Two patients had no 

improvement in asthma symptoms while one did have improvement but most likely 

due to changes in medication. The authors recommend that this procedure not be 

performed in future. 

 

A study of two subjects who had bilateral carotid body removal and denervation of 

the carotid sinuses, as a treatment for asthma, was published by Holton and Wood 

(1965). The two patients were tested before the operation breathing various gas  

mixtures to measure ventilatory responses: 10% oxygen, with 3% CO2 and 6% CO2. 

The responses for subject A was normal i.e. hyperpnea resulted from breathing the 

mixtures. There was no cyanosis. Subject B, before operation, responded to 10% 

oxygen by hyperventilation but there was no change when breathing 3% CO2. 

Ventilation was markedly depressed by breathing 38% oxygen. Two weeks after the 

operation the most obvious change in Subject A was depression of respiration caused 

by breathing 10% oxygen. At the end of the testing subject A was extremely cyanosed 

though still conscious. The tests were repeated 10 and 30 weeks after operation in 

Subject A. On these two occasions mean minute volume was neither depressed nor 

stimulated by 10% oxygen and the subject became slightly cyanosed. The responses 

to CO2 were normal except that on one occasion 3% CO2 did not stimulate breathing.  

 

In subject B for several days after the operation, breathing was sometimes irregular 

and slow. Measurement on day 16 after surgery on subject B found breathing to be 

grossly abnormal i.e. episodes of irregular breathing and small minute volume when  
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breathing 10% oxygen but the mean ventilation over the 4 minute test was the same as 

when breathing room air and 100% oxygen and was 45% lower than before the 

operation. The tests were repeated 10 and 30 weeks after the surgery. In Subject B the 

arterial oxygen saturation (SaO2) was 98% before operation and 90% 16 days after 

operation. Breathing 10% oxygen for 4 minutes decreased the SaO2 by 37% after 

which, when breathing room air, the breathing was irregular and the SaO2 fell often  

for the next 20 minutes. The patient had many episodes of slow, irregular breathing 

after this test for many hours. After 6 weeks Subject B was tested again and minute 

ventilation had returned to near normal whilst breathing room air; the response to  

breathing 10% oxygen was similar to pre-operatively but the response to 3% CO2 was 

now a marked stimulation of breathing. The 10% oxygen test was administered twice; 

on the first occasion ventilation increased, indicating chemoreceptor activity. In spite 

of this, 10% oxygen resulted in a period of hypoventilation causing hypoxemia. When 

10% oxygen was given for a second time ventilation was decreased. Thirty four 

weeks after the operation the responses to gas mixtures were similar to those at 6 

weeks. 

 

The authors also tested baroreceptor function. The effect of carotid body denervation 

in both subjects was systemic hypertension accompanied by a rise in heart rate that 

persisted throughout the period of observation. Tilting the subjects from horizontal to 

erect elicited normal responses before the operation, i.e. diastolic pressure rise. For a 

few weeks after the operation tilting the subjects produced no change in blood 

pressure but then returned to preoperative levels.  
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The authors suggest that the return of ventilatory responses to near normal may be a 

function of the aortic chemoreceptors which could either have become more sensitive 

or increased in number. Alternatively, the central nervous system may have adapted to 

information from the aortic body receptors.  

 

The response to CO2 was not decreased by carotid body denervation in either subject, 

which is in agreement with most previous findings in animals and in man but 

disagrees with the findings of Nakayama (1961)  that CO2 hyperpnea was abolished 

by the operation in humans.  

 

Wade et al (1970) published their results on ventilatory responses of fourteen patients 

who underwent carotid endarterectomy for transient cerebral ischemia. Seven of these 

patients had unilateral carotid endarterectomy performed and seven had bilateral 

endarterectomy. Ventilatory response to oxygen and carbon dioxide was performed 

before and 3-38 days after surgery. Unilateral endarterectomy had little effect on 

hypoxic responses whereas bilateral endarterectomy always abolished them. Resting 

PaCO2 increased in all fourteen patients with the mean value before surgery in the 

unilateral group being 37.5mmHg and after surgery 40.1mmHg (p<0.05) and in the 

bilateral group being 38.9mmHg and after surgery 44.7mmHg (p<0.001). There were 

no significant differences in PaO2 or pH as a result of surgery. Follow up ventilatory 

response testing 16 days to 10 months after surgery revealed a sustained loss of 

ventilatory response to hypoxia and a persistent elevation in resting PaCO2. 

 

 



 
 Literature Review   

 

50

 

Bilateral endarterectomy also affected the blood pressure response to hypoxia. 

Systolic BP decreased in response to eucapnic hypoxia whereas it had resulted in an 

increased BP before surgery. 

 

The authors concluded that bilateral endarterectomy abolished the normal ventilatory 

and blood pressure responses to acute hypoxia and increased the resting PaCO2,  

indicating a loss of carotid body function as a result of damage to the carotid body or 

its nerve or blood supply at the time of surgery. The nature of the damage can not be 

specified but any or all of the structures could be damaged by this surgical technique.  

The authors also attempted to calculate the percentage of ventilatory response for 

which the carotid chemoreceptor is responsible; since mean PaCO2 increased from  

38.9mmHg to 44.7mmHg, ventilation is 87 per cent (38.9/44.7 X 100%) of normal. 

Assuming that extra cellular pH at the medullary chemoreceptors is the same in the 

steady states before and after surgery and, hence, that the contribution of the 

medullary chemoreceptors to ventilation is unchanged, the 13% decrease in 

ventilation suggests that the carotid bodies are responsible for 13% of the original 

respiratory drive.  

 

These studies have demonstrated that when the carotid body was destroyed ventilation 

decreased and there was loss of increased ventilation upon acute exposure to hypoxia 

and also the loss of the hypoxic ventilatory roll-off that occurs normally after 5-15 

minutes of exposure. These studies confirm that the carotid body is the primary sensor 

of hypoxia. In the study in which the intact carotid afferent nerve fibres were studied  
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in vivo it was demonstrated that decreasing PaO2 as well as increasing PaCO2 and 

acidosis caused stimulation and increased discharge of the carotid nerve. 

 

1.6 Changes in Ventilation at High Altitude: Ventilatory Responses to  
 
Hypoxia and Hypercapnia 
 
 
Over one hundred years ago it was known that an increase in blood CO2 or a decrease 

in O2 caused ventilation to increase. There is a wide variation in individual responses 

to high altitude hypoxia. Ventilation increases in all animals that are acutely exposed 

to hypoxia and these changes have been thoroughly studied in humans and animals. 

Measurement of the individual’s ventilatory response to hypoxia, under both eucapnic 

and hypercapnic conditions, and the ventilatory response to hypercapnia under  

hyperoxic, hypoxic and eupneic conditions have been measured in order to discover 

the differing roles of these ventilatory responses in high altitude conditions. 

 

The peripheral chemoreceptor’s action in increasing ventilation in response to 

hypoxia is brisk because it responds to oxygen and hydrogen ion concentration in the 

arterial blood that bathes it; whereas the action of the central chemoreceptor is slower 

to effect change in breathing because it is stimulated by hydrogen ion concentration of 

the cerebrospinal and brain fluid rather than arterial blood.  

 

There are three independent factors known to determine respiration: a peripheral 

chemoreflex, a central chemoreflex and a basal (or waking) drive. Studies have been 

performed that aimed to examine and clarify the action and interaction of these three 

factors. 
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To examine the effect of hypoxia on the ventilatory response to carbon dioxide in 

man, Mohan and Duffin (1997) published their findings from a study in which  

rebreathing following hyperventilation was used to measure the ventilatory responses 

to CO2 at PaO2 of 100, 80, 60 and 40mmHg.  

 

Seven men were studied using the Read (1967) rebreathing technique in which the 

subject, wearing a nose clip, breathed through a mouth piece connected to a Y-valve, 

allowing the experimenter to switch between room air and a breathing bag. 

Ventilation was monitored via a spirometer that was connected to the bag, which was 

enclosed in a rigid container. The flow of oxygen into the bag was controlled by a  

computer to maintain iso-oxia during the testing. Expired air was sampled from a 

small tube in the mouth piece in order to continuously monitor the partial pressures of 

expired oxygen and carbon dioxide. Prior to rebreathing, the subjects hyperventilated 

room air for 5 minutes, following a “slow and deep” breathing pattern. The end tidal 

CO2 reached by this method was approximately 25mmHg. At the start of rebreathing 

the subjects were instructed to take three deep breaths, as an aid to rapid equilibration. 

The partial pressure of CO2 in the inspired air was maintained at 40-45mmHg in order 

that, when rebreathing began alveolar air, rebreathing bag air and arterial blood partial 

pressure of CO2 rapidly equilibrated to the decreased venous partial pressure of 

approximately 35mmHg. A plateau in the end tidal partial pressure of CO2, where the 

value remained unchanged over several breaths, indicated equilibration and was a 

prerequisite for continuing the rebreathing test. The partial pressure of oxygen in the 

rebreathing bag was chosen so that alveolar and arterial partial pressures of oxygen 

rapidly equilibrated to the chosen iso-oxic end tidal partial pressure i.e. 100, 80, 60  
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and 40mmHg. Rebreathing continued until the end tidal CO2 reached a partial 

pressure of 60mmHg. 

 

Breath-to-breath ventilation was plotted versus time to determine the first break point 

above which ventilation increased. Breath-to-breath ventilation versus end tidal partial 

pressure of CO2 was plotted to identify the break point above which ventilation 

increased; this break point was interpreted as the threshold for either the peripheral or 

the central chemoreflex ventilatory response to CO2, depending on the subject and the 

iso-oxic end tidal partial pressure. 

 

The authors found that the ventilatory response to carbon dioxide and the effect of 

hypoxia varied considerably between subjects. The peripheral chemoreceptor 

threshold varied between subjects and between iso-oxic end tidal partial pressures; the 

overall mean declined slightly from 41mmHg at iso-oxic end tidal partial pressures of 

80 & 100mmHg to 39mmHg at iso-oxic end tidal partial pressures of 40 & 60mmHg 

with the overall mean threshold for 100mmHg being significantly greater than at 60 & 

40mmHg. The sensitivity of the peripheral chemoreceptor also varied between 

subjects and between iso-oxic partial pressures but the sensitivity increased in all 

subjects with hypoxia with most of the increase occurring at an iso-oxic end tidal 

partial pressure of 40mmHg, being significantly greater than at 60, 80 and 100mmHg. 

 

The central chemoreflex threshold also varied between subjects and between iso-oxic 

end tidal pressures. The overall mean declined from 48mmHg at iso-oxic end tidal 

partial pressures of 100 & 80mmHg, to 47mmHg at 60mmHg iso-oxic end tidal  
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partial pressure and 45mmHg at 40mmHg iso-oxic end tidal partial pressure. The 

overall central chemoreceptor threshold was significantly less at an iso-oxic end tidal 

partial pressure of 40mmHg than at 80 & 100mmHg; but the authors point out that the  

decrease in the overall mean of the central chemoreceptor threshold was attributable 

to one subject only, who had a mean of only 41mmHg At an iso-oxic end tidal partial 

pressure of 40mmHg only four of the seven subjects reached their central threshold 

before reaching their breathing limits. 

 

The central chemoreceptor sensitivity did not vary between iso-oxic end tidal partial 

pressures but did vary widely between subjects.  

 

The authors commented that in this study they used a modified Read rebreathing 

method, in which the subjects voluntarily hyperventilated to reduce body stores of 

carbon dioxide, to test the ventilatory responses to the hypercapnic range with the 

addition of a flow of oxygen sufficient for metabolism so as to maintain iso-oxia. 

Holding the oxygen end tidal partial pressure constant during rebreathing, and 

allowing the CO2 to slowly increase due to metabolism, ensured that the end tidal 

partial pressures of CO2 reflected those of the central and peripheral chemoreceptor 

environment during rebreathing. The end tidal partial pressures of CO2 should be the 

same as at the central and peripheral chemoreceptors at the start of rebreathing, and 

the rates of change of these partial pressures should be the same during rebreathing; 

the authors believed that their methodology ensured that these considerations were 

met. They found that the overall mean peripheral chemoreceptor threshold for CO2 

was 41mmHg, which was similar to the findings from previous studies. This estimate  
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is near to the normocapnic partial pressure of CO2. The variation of peripheral 

chemoreceptor threshold with hypoxia was small (2mmHg) which is smaller than that 

found by previous studies in dogs (8mmHg) and cats (8-10mmHg). The central  

chemoreflex threshold for CO2 during rebreathing varied widely between subjects and 

the authors are hesitant to suggest that hypoxia may influence the threshold; the 

overall mean was close to normocapnia. 

 

The implication of this research for the control of breathing in humans is that carbon 

dioxide must exceed its peripheral chemoreflex threshold before end tidal oxygen 

partial pressures in the range 40-100mmHg can affect breathing via the peripheral 

chemoreflex. The authors concluded that it is the degree to which carbon dioxide  

exceeds the peripheral chemoreceptor threshold and not necessarily its elevation 

above resting partial pressures that will determine the magnitude of the ventilatory 

response to hypoxia.  

 

A study that is relevant to conditions at high altitude was published by Corne et al 

(2003); they studied the hypoxic ventilatory response of eight subjects (four male, 

four female) during acute stable hypocapnia. Mechanical volume ventilation using a 

mouth piece was used to create acute stable hypocapnia 6mmHg and 12mmHg below 

the pre-determined eucapnic level. A t-piece with two unidirectional valves was 

incorporated into the mouth piece so that subjects were connected to an inspiratory 

and an expiratory circuit; this allowed control of the proportion of inspiratory gas that 

passed through a CO2 absorber thereby permitting adjustment of the concentration of 

CO2 in the inspired gas. A pneumotachograph measured flow tidal volume; airway  
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pressure and end tidal pressure of CO2 (PETCO2) were monitored with a pressure 

transducer and a mass spectrometer; oxygen saturation was monitored with a finger 

probe. Oxygen was added to the circuit to maintain normoxia then tidal volume was  

increased with the goal of lowering the PETCO2 to 12mmHg below baseline. Once the 

target PETCO2 was reached the oxygen supply was cut off to induce hypoxia with trial 

termination occurring when the SaO2 reached 80%. The trial was repeated with 

PETCO2 at 6mmHg below eucapnia and at eucapnic levels. The authors chose this 

method because it was possible to control the fall in CO2; lowering the CO2 by 

inducing hypoxia (as in previous research) has limited application because the range 

of hypocapnia over which hypoxic responses can be studied is limited by the hypoxic 

response itself i.e. the individual variation in hypoxic ventilatory responses ensures  

that different levels of hypocapnia are achieved by differing levels of ventilation. 

Under these conditions stable hypocapnia could be maintained regardless of whether a 

hypoxic response was present and the hypocapnia was able to be maintained before 

and during the hypoxic challenge. This methodology obviated behavioural responses 

while critical measurements were taken. Hypoxia was surreptitiously induced while 

maintaining spontaneous rhythmic respiratory efforts throughout the trials, allowing 

accurate measurement of the ventilatory response to hypoxia under stable hypocapnia.  

 

Changes in ventilation were assessed to determine the ventilatory response to hypoxia 

during hypocapnia. They found that the hypoxic response was attenuated at mild 

levels of steady hypocapnia and became negligible at moderate levels of steady 

hypocapnia in normal subjects. The authors state that this is the first study to 

demonstrate convincingly that hypoxic response disappears below a threshold of  
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stable end tidal CO2 i.e. no response to hypoxia was detectable when the CO2 was 

reduced by an average of 11mmHg. 

 

The authors concluded that this was the first study to demonstrate convincingly that 

hypoxic response disappears below a threshold of stable PETCO2. In all subjects, 

including those who displayed a vigorous response to hypoxia at eucapnia, no 

response was detectable when PETCO2 was reduced by an average of 11mmHg. The 

authors commented that, because their study involved only eight subjects, they could 

not exclude the possibility that an occasional individual may retain a hypoxic 

response when stable PETCO2 is reduced by more than 11mmHg.  

 

The authors also commented on the issue of the interaction between the central and 

peripheral chemoreceptor in the ventilatory response to hypoxia; they note that the 

results of this study provide support for the existence of a central mechanism that 

contributes to the interaction. The total disappearance of hypoxic response during 

moderate hypocapnia provides an important clue to the central and peripheral 

interaction. In this study respiratory motor activity was present throughout; if an 

excitatory input, associated with hypoxia, was received by the respiratory motor 

centres of the brainstem, an increase in respiratory activity should result; the lack of 

such an increase during moderate hypocapnia, therefore suggests that no excitation 

was received by the respiratory motor centres at this level of CO2. This lack of input 

cannot be because peripheral chemoreceptors do not respond to hypoxia at PaCO2 

levels used in this study: first, peripheral chemoreceptors have been shown, in animal 

studies, to retain substantial sensitivity to PaO2 when the PaCO2 is 30mmHg or even  
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lower. Second, human studies have shown that even at PaCO2 levels in the mid 20s 

the peripheral chemoreceptors are not silenced. It seems reasonable, therefore to 

conclude that central CO2 determines whether peripheral chemoreceptor input is  

conveyed to the respiratory motor centres. This may result if central pCO2 controlled 

the gain of intermediate neural pathways that process peripheral chemoreceptor input 

before its arrival at the motor centres. Below a threshold of central pCO2 the gain is 

zero. Alternatively, central and peripheral activities are summed and a threshold total 

amount is required before chemoreceptor activity of either source can influence 

respiratory motor output. The results from this study cannot distinguish between the 

two possibilities. The conclusion that the central pCO2 controls the traffic between 

peripheral chemoreceptors and respiratory motor centres could help reconcile the two  

concepts. The relatively slow equilibration with blood of the central pCO2; thus when 

the pCO2 rises during a hypoxic challenge, the increase in central pCO2 will lag and 

instantaneous PETCO2 will thus overestimate central pCO2, leading to the false 

conclusion that the hypoxic response disappears with minimal hypocapnia. 

Conversely, when PETCO2 progressively falls during a fast hypoxic challenge, 

instantaneous PETCO2 underestimates central pCO2, leading to the conclusion that the 

hypoxic response may survive severe hypocapnia.  

 

The demonstration that PCO2 at the central chemoreceptors must exceed a certain 

value before hypoxia can produce a drive to breathing has important implications. 

Hyperventilation can produce central apnea and the subject may lose consciousness 

from hypoxia before experiencing any hypoxic or CO2 drive to breathe. This scenario 

is possible because of the differences between the CO2 and O2 dissociation curves;  
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hyperventilation can substantially decrease total CO2 content while having little effect 

on total O2 content, and even in the region of the steepest part of the oxygen 

dissociation curve its slope is considerably lower than that of the CO2 dissociation  

curve. Thus, a given a change in O2 content produces a much greater change in PaO2 

than the change in PaCO2 produced by a similar change in CO2 content.  

 

The authors commented on some clinical implications from their study. In periodic 

breathing the cessation of breathing occurs when the PaCO2 decreases below the 

threshold, but in a matter of seconds it rises again to reinitiate breathing. The 

deteriorating PaO2 during the apnea likely does not contribute to the re-initiation of 

breathing. This scenario explains the periodic breathing that occurs at high altitude.  

 

Increased ventilation when awake lowers the PaCO2 to below the apneic threshold 

and with sleep onset apnea and hyperpnea occur in a repetitive pattern. 

 

There is positive interaction between CO2 and hypoxia mediated ventilatory responses 

such that the slope of the CO2 response is augmented when the PaO2 is lower and the 

response to hypoxia is augmented when PaCO2 is higher. 

 

The role of the central chemoreceptor in the ventilatory response to changes in carbon 

dioxide has been extensively studied but the interaction between the peripheral 

(carotid body) chemoreceptor and the central chemoreceptor remains controversial. In 

an attempt to clarify this relationship, Smith et al (2006) studied unanaesthetised dogs 

whose carotid sinus was reversibly isolated to maintain normal tonic activity of the  
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carotid body chemoreceptor while preventing it from sensing systemic changes in 

CO2, thereby allowing the determination of the response of the central chemoreceptor 

alone. The authors aimed to quantify the speed of response of the central and  

peripheral CO2 sensors. The authors compared the speed of the increase in ventilation 

when only the central chemoreceptor was able to sense CO2 and when both the central 

and peripheral chemoreceptors were able to sense CO2. They found that the 

ventilatory response to abrupt increases in PETCO2 was delayed by ~11 seconds when 

only the central chemoreceptors could sense the CO2 increase while the carotid 

chemoreceptors were present but maintained at normal blood gas values. They also 

found that the central chemoreceptors account for ~63% of the steady-state ventilatory 

sensitivity to hypercapnia, thus the remainder of the steady-state ventilatory  

sensitivity to hypercapnia, ~37%, was due to the carotid chemoreceptors. They also 

found a wide variability among dogs. 

 

The authors proposed that the somewhat slower response of the central 

chemoreceptors versus the peripheral chemoreceptors coupled with the absence of 

nearly 40% of available CO2 sensitivity prevents the central chemoreceptors from 

contributing significantly to ventilatory responses to rapid changes in PaCO2 such as 

those after periods of hypoventilation and hyperventilation (ventilatory undershoots 

and overshoots) observed during sleep disordered breathing. Periodic breathing that 

occurs in congestive heart failure and in hypoxia, consists of ventilatory overshoots 

secondary to increases in PaCO2 (that occurs during the apneic phase of PB). This 

overshoot, consisting of 3-4 hyperpneic breaths, normally occurs within 2-3 breaths 

after an apnea. In the dogs where carotid chemoreceptors were able to sense CO2, a  
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much faster onset of the hyperpneic response to CO2 demonstrated that carotid bodies 

were the primary receptors and provide a substantial ventilatory overshoot in response 

to hypoxic stimuli present during apnea. 

 

1.7 Ventilatory Responses to Hypoxia and Hypercapnia:  Relationship to 
 Periodic Breathing during Sleep at High Altitude  
 
It has been proposed by several investigators that individuals with a high ventilatory 

response to hypoxia are more likely to develop periodic breathing (PB) during sleep at 

high altitude. This concept is best explained by the concept of control theory which 

has been well explained by Khoo et al (1982). These authors pointed out that two 

factors are necessary for self-sustaining oscillatory behaviour in a control system: a 

disturbance and a corrective action. A change in alveolar ventilation can be identified  

as the disturbance at high altitude i.e. hypoxia induced hyperventilation which results 

in the corrective action of lowered arterial PCO2 which tends to reduce ventilation by 

its action on the central and peripheral chemoreceptors and thus constitute negative 

feedback. In order for sustained oscillatory behaviour to occur, the corrective action 

must exceed the disturbance; this ratio is known as loop gain. The second necessary 

condition is that the corrective action be presented 180º out of phase with the 

disturbance, so that what would otherwise inhibit the change in ventilation now 

increases it. Sustained periodic breathing (oscillatory behaviour) occurs when the loop 

gain exceeds unity at a phase difference of 180º.  This theory predicts that the higher 

the loop gain, the more likely periodic breathing is to occur and the shorter the cycle 

length. In individuals with a more sensitive hypoxic ventilatory response the loop gain 

is increased and these individuals would be expected to exhibit more PB at high 

altitude.  
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In order to test the theory that a high ventilatory response to hypoxia is related to the 

development of periodic breathing during sleep at high altitude, Lahiri et al (1983) 

studied six high altitude-dwelling Sherpas, one low altitude dwelling Sherpa and  

seven Caucasian lowlanders at 5400m. All the subjects were male and had spent at 

least 32 days at 5400m before data collection. 

 

Breathing during sleep in high altitude dwelling Sherpas, with low hypoxic 

ventilatory response (HVR) was compared with seven lowland dwelling Caucasians 

and the low altitude dwelling Sherpa, all with steep HVR, to determine the 

relationship between HVR and PB.  

 

Six of the seven lowlanders and the low altitude dwelling Sherpa developed periodic 

breathing during sleep with cycle times of 19-23 seconds and apneas lasting 10-17 

seconds. The PB typically consisted of three or four large breaths in quick succession 

followed by an absence of breath (and respiratory effort) for about ten seconds. The 

first breath after apnea was inspiratory. The time delay between peak ventilation and 

peak oxyhemoglobin saturation, measured at the ear, was 13 seconds. This lag time 

provided an estimate of lung to carotid body circulatory delay. When these subjects 

were administered oxygen until SaO2 reached 100% there were two effects on 

breathing: inspiratory volumes decreased and apneas increased from 10 to 17 seconds. 

The apneas became hypopneas, then regular breathing resumed. Lahiri suggested that 

oxygen administration diminished the arterial chemoreceptor drive and hence 

respiratory drive. In the absence of respiratory drive, apneas were prolonged, which 

also means that central CO2 drive was not an adequate stimulus to breathing. Regular  
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breathing did not resume until arterial and tissue PCO2 increased enough to provide 

adequate stimulus to breathing. The authors assumed from these results that low PaO2 

is critical in the development and maintenance of PB. 

 

Also tested during sleep was the effect of lowered inspired oxygen. The SaO2 was 

lowered from 73mmHg to 65mmHg by administering nitrogen. The effect of this was 

to lower the trough of SaO2 from 77% to 74% with no change to cycle time or apnea 

length.  

 

When CO2 was administered apneas were eliminated, breathing frequency increased 

and tidal volume decreased. Total ventilation for each cycle increased but PB 

persisted with a cycle time of 21 seconds. The amplitude of oscillations in SaO2  

decreased and the mean SaO2 increased due to the increased ventilation. When CO2 

was withdrawn, the apneic period returned to 10 seconds after about 135 seconds.  

 

 The Sherpas did not develop PB with apnea during sleep at 5400m. When nitrogen 

was administered to lower the pO2, PB was still not induced. When a deep breath was 

taken an apnea occurred then breathing oscillations but this was not sustained. When 

oxygen was administered and the SaO2 raised, ventilation decreased momentarily with 

a few oscillations following. Two of the Sherpas studied occasionally showed striking 

desaturations during sleep, with SaO2 as low as 53% which was followed by a large 

breath, a ten second apnea and 5-6 cycles of PB.  
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The Sherpa subjects, who showed attenuated sensitivity to hypoxia when awake, also 

showed least PB during sleep.  The lowlanders, who showed high ventilatory response 

to hypoxia when awake, manifested large amount of PB during sleep. The authors 

suggest that these results demonstrate that chemoreflex sensitivity and high altitude 

PB are related.  

 

Another study that examined the relationship between HVR and PB was by Hackett et 

al (1987). This group was interested in examining the effects of two drugs, almitrine 

and acetazolamide, on periodic breathing and sleeping oxygen saturation at high 

altitude. The study was conducted on four male climbers at Mount McKinley 

(4400m). Hypoxic ventilatory responses were measured when awake at 4400m and 

again after treatment with each of the drugs. Periodic breathing and sleeping oxygen 

saturation were measured. They found that both drugs improved the sleeping SaO2;  

acetazolamide reduced PB whereas almitrine did not have an effect on PB.  Almitrine 

increased the HVR whereas acetazolamide had no effect on the HVR.  

 

The higher the HVR, the higher the percentage of time spent in PB during sleep  

(p <0.02). This confirms previous work by Lahiri et al (1983 ) and Berssenbrugge et 

al (1983) who also found this relationship between HVR and PB at high altitude.  

 

The relationship between the ventilatory response to hypoxia and the development of 

periodic breathing at high altitude has been examined by these authors and it appears 

that the higher the HVR the more periodic breathing occurs during sleep at high 

altitude. 
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1.8 Breathing during Sleep at High Altitude  
 
Investigation into breathing during sleep at high altitude has a history reaching back to 

the 19th century. Mountaineers who were also scientists or physicians wrote articles 

that commented upon the breathing patterns during sleep at high altitude. One such 

report is by Egli-Sinclair (1894) who wrote that breathing “had the Stokes character,  

that is, it seemed regular during a certain time, after which a few rapid and profound 

breaths were drawn, a total suspension for a few seconds then following”. Dr William 

Stokes, an Irish physician had described, in 1854, the pattern of breathing that 

“consists in the occurrence of a series of inspirations, increasing to a maximum and 

then declining in force and length until a state of apparent apnoea is established”. 

Another Irish physician, John Cheyne, had described the same pattern in 1818 and so 

the breathing pattern is known as Cheyne-Stokes breathing. This pattern of breathing  

usually was observed in the final stages of heart failure when the patient was very 

near to death. 

 

In 1898 Mosso published his findings from investigations performed during an ascent 

of Monte Rosa in the Italian Alps. Mosso took with him an apparatus to measure 

breathing; this apparatus consisted of “a slender metal bar” that rests on the chest of a 

supine subject “turning on a pivot that rises and falls as it traces the respiratory 

movements on a rotating cylinder”. During a stay at the Regina Margherita Hut 

(4559m) Mosso recorded his brother’s respiration during sleep in which periodic 

breathing sometimes persisted for hours and described it thus “three descending 

movements, of which the first is forcible and the other two or three weak, being  
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followed by a pause which lasted regularly twelve seconds before the return of 

another series of three descending respirations. When the thorax is still and the line 

becomes horizontal, the pulsations of the heart, fourteen or sixteen in number, are 

clearly noticeable in the latter”. He then went on to comment that a “physician seeing 

these tracings would say that they were from a dying person” as this “interrupted 

respiration is indeed often observed shortly before death”. This form of breathing,  

first described by Cheyne and Stokes, bears their name.  

 

These findings from Mosso have since been confirmed by many studies carried out at 

various altitudes from sea level up to 8050m in hypobaric chambers and at actual high 

altitude locations. Periodic breathing has been shown to be extremely common in 

lowlanders ascending to high altitude and many studies have been conducted to 

determine its pathophysiology and each individual’s susceptibility. 

 

The causes of periodic breathing were investigated by Douglas and Haldane (1909). 

In their experiment the subject sat in an arm chair and hyperventilated for two minutes 

which caused an apnea of about two minutes duration, followed by a few minutes of 

Cheyne-Stokes (periodic) breathing before a return to normal breathing. This 

breathing pattern was recorded using a modified Marey stethograph. Samples of 

alveolar air were taken during this period of abnormal breathing in order to analyse 

the cause of the periodic breathing. They found that the partial pressure of O2 (pO2) 

rose during hyperventilation from about 100mmHg to a maximum of 141mmHg then 

fell rapidly during the apnea to 32mmHg at which point the breathing returned and 

pO2 rapidly rose to 70mmHg; another apnea followed and the pO2 again fell, this time  
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to about 42mmHg. During the few minutes of periodic breathing following the initial 

apnea the pO2 rose and fell but with smaller incremental changes, until the oscillations 

gradually became less and less and breathing became steady after about seven 

minutes.  From these results Douglas and Haldane went on to explain Cheyne-Stokes 

breathing thus: “the fall in alveolar oxygen-pressure during the primary apnoea, and 

consequent fall in oxygen pressure in the arterial blood and the respiratory centre, 

leads to formation of lactic acid in the respiratory centre. As a consequence of this the 

threshold exciting pressure of CO2 in the respiratory centre is greatly lowered, so that 

the centre is excited even though the CO2-pressure in it is probably more than 10mm. 

below the normal threshold exciting value. The breathing at once raises the alveolar 

oxygen-pressure and lowers the CO2-pressure, with the result that oxygen want is at 

once removed and the lactic acid previously formed is promptly oxidised or 

neutralised, leaving the CO2-pressure in the centre far below the threshold exciting 

value. Apnoea thus results, and is only terminated when the alveolar oxygen again 

falls sufficiently to lower the threshold CO2-pressure to the actual CO2-pressure in the 

centre. While this process is repeated again and again, the average CO2-pressure in the 

centre is rising, so that there is less and less of the abnormal want of correspondence 

between the CO2-pressure in the alveoli and that in the centre.” The authors repeated 

the experiment using different protocols i.e. oxygen instead of air was breathed in the 

last six breaths of the two minute period of hyperventilation and this caused a very 

long apnea (>4 minutes) then breathing recommences quietly with no sign of periodic 

breathing; when oxygen is given in just the last breath of hyperventilation a shorter 

apnea (3minutes) occurs followed by a short episode of periodic breathing; when the 

hyperventilation period was reduced so too was the apnea and periodic breathing  
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episode. When several breaths of a mixture poor in oxygen was taken at the end of the 

two minutes of hyperventilation the apnea was shortened and the periodic breathing 

episode increased. They concluded that these experiments confirmed their theory of 

the cause of periodic breathing. The authors conducted these experiments on each 

other and noticed that periodic breathing was more easily produced in one of them 

than in the other; they concluded that there were individual variations in the 

susceptibility of the respiratory centre to want of oxygen. 

 

They then repeated the experiment using a tube attached to a small tin of soda lime so 

that the subject re-breathes his own air after it has been deprived of its CO2. The 

oxygen content in the air fell rapidly until hyperpnea was produced, which caused 

fresh air from the distal end of the tube to reach the lungs and the pO2 to rise; an 

apnea then occurred because the hyperpnea has reduced the pCO2 to below the apneic  

threshold, pO2 again fell and another hyperpnea resulted; permanent periodic 

breathing thus resulted. They noted that, if the tube was too long, the subject became 

cyanosed and this did not disappear with the hyperpnea as it did when a shorter tube 

was used. They surmised that asphyxia would result if a still longer tube were used. 

Using the same method with a long tube but with a tin that did not contain soda lime, 

the authors found that periodic breathing resulted; when the distal end of the tube was 

attached to oxygen the periodicity disappeared.  

 

Thus by these simple but ingenious methods the authors learned much about the 

control of breathing, the pathophysiology of periodic breathing and the roles of O2  
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and CO2 in its genesis.  

 

The control of breathing during wake and sleep has been extensively investigated. The 

control of breathing during hypoxic sleep has been less well studied and many 

unanswered questions remain. The ventilatory response to hypoxia is thought to be a 

major factor in the development of periodic breathing (PB) during hypoxic sleep, with  

a high ventilatory response leading to more PB but this theory has not been 

resoundingly proved. 

 

Phillipson et al (1977 and 1978) studied sleeping dogs in order to examine 

hypercapnic and hypoxic ventilatory responses during sleep. In the first study three 

sleeping dogs were examined; sleep was determined by EEG and behavioural criteria. 

They used a rebreathing technique to induce hyperoxic hypercapnia and found that 

arousal from sleep occurred in NREM sleep when the alveolar CO2 reached 54.2 ± 3.4 

mmHg and in REM sleep when the alveolar CO2 reached 60.3 ± 4.2 mmHg. In REM  

sleep the arousal response to hypercapnia was between 14% and 33% less than the 

arousal response in NREM sleep. The authors concluded that centres involved in both 

waking and ventilatory responses to hypercapnia behave as if they are less aware of or 

responsive to CO2 in REM sleep than in NREM sleep.  

 

In the study to examine arousal and ventilatory response to hypoxia (1978) the authors 

studied four sleeping dogs. Hypoxia was induced by a rebreathing technique in which 

the CO2 was maintained at the eucapnic level. Arousal occurred when the 

oxyhemoglobin saturation reached 87.5 ± 2.6% during slow wave sleep and at 70.5 ±  
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3.4% during REM sleep (p<0.005). The irregular breathing that is typical of REM 

sleep continued during hypoxia but ventilation was increased. The authors concluded 

that although arousal responses to CO2 are delayed in REM sleep, ventilatory 

responses remain intact and therefore may be of importance in maintaining adequate 

ventilation during REM sleep. 

 

In humans the respiratory responses to hypoxia and hypercapnia have been shown to 

be reduced; the behavioural and cognitive influences on control of breathing are 

eliminated with sleep onset. The result of these changes to ventilation is 

hypoventilation (decreased tidal volume and respiratory rate) which is most marked in 

slow wave sleep (Stages 3 and 4 NREM).  During slow wave sleep the PaCO2 is 

increased by about 2-7mmHg with a reciprocal fall in the PaO2.  

 

The changes in ventilatory responses to hypoxia and hypercapnia have been 

demonstrated in work carried out by Douglas et al (1982 and 1982a) who studied 

sleeping humans. They aimed to provide evidence for the belief that ventilation during  

sleep is due to the sum of the hypoxic and hypercapnic drives. In previous work it had 

been found that hypercapnic ventilatory response (HCVR) was decreased during sleep 

but the hypoxic ventilatory response (HVR) is maintained at the awake level. HVR 

was measured awake and asleep; the subjects wore a full face mask that did not leak 

and hypoxia was induced by the introduction of nitrogen into the inspirate to lower 

the end tidal pO2 to 40 mmHg over 3-4 minutes whilst maintaining isocapnia. The 

authors found that HVR was significantly reduced in all sleep stages compared to 

awake levels (p<0.05), and was lowest in REM sleep. There was no difference in  
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HVR in Stage 2 NREM sleep and in Stages 3 and 4 NREM (slow wave) sleep. Minute 

ventilation during sleep was significantly reduced and this was due to shallow 

breathing that was worst in REM sleep. 

 

Tidal volume awake was 0.71 ± 0.06; in Stage 2, 0.58 ± 0.02; in slow wave sleep, 

0.52 ± 0.03 and in REM sleep, 0.43 ± 0.03 litres. They found no difference between 

phasic and tonic REM sleep. 

 

The authors concluded that HVR is reduced during sleep in men. The degree of 

depression is related to sleep stage, being most marked during REM sleep with the 

response reduced to a third of awake levels. 

 

The same group then studied HCVR in sleeping men and women (1982a). Face mask 

was again used during the tests awake and asleep. The face mask was connected to a 

bag containing 40% oxygen and 60% nitrogen and the end tidal CO2 was raised by at 

least 4% (at least 6mmHg) while the end tidal O2 was kept at 130mmHg. The mean  

HCVR was significantly reduced during sleep compared to wakefulness; there was no 

difference between Stage 2 and slow wave sleep. HCVR then fell further during REM 

sleep to 28% of awake value. There was no difference between the male and female 

subjects. The end tidal CO2 was significantly higher during sleep and, again 

significantly higher in REM sleep than in Stage 2 and slow wave sleep: awake, 34 ± 

0.8; Stage 2, 35.9 ± 0.09; slow wave sleep, 36.4 ± 0.09 and REM sleep, 37 ± 0.8 

mmHg. 
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The authors concluded that the HCVR falls during sleep in adults with a further 

reduction in REM sleep. 

 

Berssenbrugge et al (1983) examined the effects of sleep state on acclimatisation to 

hypoxia in seven men in a hypobaric chamber that simulated an altitude of 4300m. 

The authors attempted to define the role that suprapontine structures of the brain had 

on acclimatisation to chronic hypoxia. During wakefulness, NREM and REM sleep 

different structures of the central nervous system are activated and the authors 

reasoned that these different sleep states may be used as a model for testing the 

importance of changes in suprapontine influence on the mediation of ventilatory 

acclimatisation. 

 

Measurements of PaCO2, SaO2, HCO3 and pH were measured during wakefulness, 

NREM sleep and REM sleep, under these conditions of simulated high altitude, on 

acute exposure, after 10-32 hours and after 72-91 hours. During wakefulness the acute 

exposure to hypoxia caused the PCO2 to fall by 5.1±1.2 mmHg, then by a further  

3±0.9mmHg after 20 hours and a further 2.6±0.7 mmHg by 83 hours. The mean SaO2 

was lowest at 0.8 hours exposure (75%) then increased by 83 hours to 82% coincident 

with increased ventilation. Respiratory alkalosis persisted during hypoxia with the 

arterial pH increased by 0.05 units acutely and remained at this level for the duration 

of the hypoxic exposure despite additional hyperventilation and compensatory 

reduction in HCO3 concentration.  
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In NREM sleep acute hypoxia (1.9 hours) caused the PCO2 to fall by 7.2 ± 1.9mmHg; 

by 21 hours’ exposure by a further 4.3 ± 1.3 mmHg with no further fall by 83 hours of 

hypoxia. Ventilation increased, as in wakefulness, with increasing hypoxic exposure. 

The mean SaO2 was lowest at 1.9 hours (64%) and highest at 83 hours (76%) in  

association with increased ventilation. Respiratory alkalosis prevailed during NREM 

sleep as in wakefulness, and the arterial pH increased acutely by 0.7± 0.01 units and 

remained unchanged during the remaining time spent in hypoxia. 

 

In REM sleep, after 21 hours in hypoxia the mean PCO2 had dropped 10.8 mmHg 

with little additional change occurring from 21-83 hours. Measurements of SaO2 and 

acid-base status were similar to NREM sleep levels. 

 

When the subjects were acutely returned to normoxia after 83 hours hypoxic exposure 

the main effects in wakefulness and NREM sleep were: 1) SaO2 increased to 97%; 2) 

ventilation decreased but still remained 31% and 26% higher than chronic normoxia 

in each state respectively; and 3) PCO2 was unchanged or increased but was still 

8.9±1.1 and 10.7 ± 1.0 mmHg below chronic normoxia levels in each state. These  

results demonstrate that the hyperventilation that persisted with acute normoxia was 

similar in degree during wakefulness and NREM sleep. 

 

The authors concluded from this study that there is no effect of sleep state on the 

ventilatory acclimatisation to hypoxia. The percentage fall in PCO2 was remarkably 

similar in all sleep states (-27 to -31%) with half of this fall occurring during the acute 

phase of hypoxic exposure. A substantial amount of ventilatory acclimatisation  
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occurred during the first 24 hours at 4300m with much of this change occurring 

during sleep. Sleep caused a small but consistent alveolar hypoventilation. The 

authors concluded that, because they did not see a significant effect of sleep state, the  

suprapontine influences on ventilatory control which are dependent on wakefulness 

are not essential to the process of ventilatory acclimatisation. 

 

Under hypoxic conditions of high altitude, ventilation increases during both 

wakefulness and sleep, this is believed to be mediated by the peripheral 

chemoreceptor. Studies by White et al (1987), into high altitude periodic breathing 

during sleep have investigated the role of the hypoxic ventilatory response (HVR) and 

the hypercapnic ventilatory response (HCVR) and found that those people with a high 

HVR as well as a high HCVR are more likely to develop PB although the number of 

subjects was small (6) and only 2 of those developed PB. To investigate the role that 

acclimatisation to high altitude has on periodic breathing and chemoresponsiveness 

during sleep, this group studied six men at sea level and an altitude of 4340m when 

awake and during NREM sleep. The hypoxic ventilatory response (HVR) was 

measured when the subjects were awake and also in NREM sleep at sea level and at  

4340m. During HVR testing at sea level CO2 was added to the mixture breathing to 

keep the PETCO2 to within 2 mmHg of the resting level; during sleep HVR testing 

CO2 was not added in order to mimic conditions at altitude. As a result the PETCO2 

fell during all studies. Hypercapnic ventilatory response (HCVR) was measured in 

awake and in NREM and REM sleep, although it was not possible to attain the same 

degree of hypercapnia (10-15mmHg above resting levels) during sleep, due to arousal 

so during sleep a PETCO2 8mmHg above resting level was considered hypercapnia;  
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but even this level often led to arousal from sleep at high altitude and 4mmHg above 

resting levels, in addition to a doubling of ventilation, was considered to be acceptable  

to measure the HCVR. The HCVR was measured at a constant SaO2, maintained at 

the eupneic level, at sea level and at high altitude. 

 

Sleep studies were performed at sea level and on nights 1, 4 and 7 at 4340m. 

Continuous recordings of EEG, EOG and EMG with respiratory variables recorded 

intermittently due to equipment limitations. The respiratory pattern during sleep was 

measured by recording flow and end tidal CO2 from sampling ports in the full face 

mask.  

 

The authors found that at sea level and at high altitude the HCVR were reduced by 

NREM and REM sleep. The NREM HCVR was reduced by about 50% of the awake 

value and in REM sleep by about 20% of the awake value. When the subjects were 

initially exposed to altitude the HCVR increased during wakefulness and in NREM 

sleep; in REM sleep the HCVR did not increase over the sea level values. On 

subsequent nights at high altitude the HCVR did not increase further but there was a  

progressive shift leftwards of the HCVR from sea level to day 1 at altitude and from 

day 1 to day 4 at altitude with no further increase after day 4. This is true for awake, 

NREM and REM sleep.  

 

Although acute exposure to altitude did not increase hypoxic sensitivity, the slope of 

the HVR increased steadily and significantly with time spent at altitude. This increase 

occurred despite the studies being conducted at progressively lower PCO2 levels. 



 
 Literature Review   

 

76

 

Periodic breathing occurred in three of the six subjects and varied quantitatively 

between the three. All periodic breathing occurred in NREM sleep. 

 

The number of periodic breathing pauses per hour at night 1 at altitude correlated best 

with the HVR measured at sea level in NREM sleep; and was nearly significantly 

correlated both with awake sea level isocapnic HVR and the NREM sea level HCVR. 

Periodic breathing was abolished by the addition of either CO2 or O2 to the inspired 

mixture. 

 

The authors state that there are four primary observations from this study: 1) the HVR 

increased steadily with time at altitude up to 7 days; 2) the slope of the HCVR 

increased on initial exposure but did not increase further over 7 days, although the 

position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep 

induced decrements in both ventilation and hypercapnic responsiveness to altitude 

were similar to those observed at sea level with apparently equal acclimatisation 

during wake & sleep and 4) the quantity of periodic breathing during sleep at altitude 

was highly variable and tended to occur more frequently in individuals with higher  

ventilatory response to both hypoxia and hypercapnia. The periodic breathing 

diminished with time spent at altitude.  

 

The steady increase that the authors found in the HVR over time at altitude may be an 

important contributor to the gradual increase in ventilation at high altitude, which 

occurs despite a progressively lower PCO2 and higher SaO2. Previous work on carotid 

denervated goats, ponies and sheep had found an important role for the carotid  
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chemoreceptor in acclimatisation i.e. ventilatory acclimatisation was diminished or 

absent in these animals with ablated carotid bodies. The authors state, however that 

they were unable to show a significant correlation between the individual changes in  

ventilation and hypoxic responsiveness over the acclimatisation period. As a result the 

relationship between the VR to acute hypoxia and changes in ventilation during 

chronic hypoxia (acclimatisation) must remain speculative. The authors did not find 

an increase in the HCVR over time at altitude but comment that this could be due to 

the fact that the responses on days 4 and 7 were conducted at higher SaO2 than on day 

1. Had all studies been conducted at a similar SaO2 the HCVR may have increased 

over time.  

 

The finding that there was no measure of chemosensitivity measured on the first night 

at altitude, awake or asleep, that correlated with periodic breathing on that night 

surprised the authors; they suggested that it may be due to the increased hypocapnia 

occurring at altitude in subjects with a high HVR. The hypocapnia could have reduced 

the measured response to isocapnic hypoxia at altitude, thus confusing their 

measurements. They found that, with acclimatisation, the PETCO2 level fell before an  

apnea (apneic threshold) as well as the PETCO2 level necessary to regularise 

ventilation during sleep in the two subjects who developed PB. They suggest that this 

may be due to the shift leftwards (to a lower PCO2) of the ventilation/PCO2 

relationship that occurs with acclimatisation. 

 

The periodic breathing was abolished by the addition of either oxygen or carbon 

dioxide and, in both cases, breathing became rhythmic as the PCO2 increased. The  
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SaO2 rises over time spent at altitude and breathing decreases; thus the PCO2 is not 

driven as low as in acute exposure to altitude. It appears that hypoxia is necessary to 

stimulate ventilation and leads to the hypocapnia that produces periodic breathing. 

 

The carotid body may also be an important sensor of CO2 and play a major role in the 

development of periodic breathing during sleep at high altitude. 

 

Smith et al (2003) published their findings of the investigation of the role of the 

carotid body in the development and maintenance of central sleep apnea. This work 

concentrated on the ventilatory sensitivity to CO2 below eupnea and specifically on 

the hypocapnia induced apneic threshold that plays such a major role in periodic 

breathing development at high altitude. The authors stated that the causes of central 

sleep apneas are 1) transient ventilatory overshoot, usually attributable to changes in 

ventilatory drive that are secondary to changes in sleep state and 2) a subsequent 

hypocapnia combined with a highly sensitive apneic threshold that is unmasked 

during NREM sleep. In this research the authors attempted to find the chemoreceptors 

that are primarily responsible for sensing the transient reductions in PETCO2 and  

causing apnea during sleep. They studied dogs that were either carotid body 

denervated or intact and used mechanical assisted ventilation to cause ventilatory 

overshoot and apnea. They found that apnea occurred within two breaths in the intact 

dogs (6-10 seconds after the beginning of ventilatory overshoot and reduced PaCO2); 

while in the denervated animals apneas did not occur until 30-35 seconds after the 

onset of ventilatory overshoot and reduced PaCO2. The authors concluded that the 

carotid bodies were required for the apnea that normally occurs following ventilatory  
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overshoot and for the consequent periodic breathing. Carotid body denervated dogs 

not only required more time to develop apnea but also required twice as much 

hypocapnia (-10.1 ± 2.1 vs. -5.1 ± 0.4 mmHg) to develop apnea of the same durations 

when they were intact. The authors then went on to investigate the role of the carotid  

chemoreceptor versus that of the medullary chemoreceptor in the development of 

hypocapnia induced apnea. They used an intact dog in which one carotid body was 

denervated and the other was perfused via an extracorporeal circuit. When the carotid 

body was perfused with hypocapnic, normoxic blood in the sleeping dog, ventilation 

(tidal volume) decreased in a progressive fashion but apnea did not occur. The authors 

suggested that apnea may only be induced when the ventilatory overshoot preceding 

hypocapnic apnea causes lung stretch; this mechanism is absent in the hypocapnia 

induced by the extracorporeal perfusion of the isolated carotid body. When the 

hypocapnic, extracorporeal perfusion of the carotid body was sustained, the reduced 

ventilation resulted in hypercapnia (CO2 4-7mmHg higher than control) and 

presumably brain extracellular fluid acidosis was also rising, yet the ventilation 

remained suppressed below control with only a relatively small upward trend in the 

face of severe acidosis. When the carotid body hypocapnia was suddenly removed, by  

switching out of the extracorporeal circuit, ventilation suddenly increased to a value 

greater than control, representing an unmasking of the medullary chemoreceptor CO2 

responsiveness that had been effectively suppressed by the inhibitory effects of 

carotid body hypocapnia. 

 

The authors proposed that data from these sleeping animal models with either intact 

perfused or denervated carotid bodies point to a strong and even dominant CO2  
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sensing role for the carotid chemoreceptors, especially during dynamic changes in 

PaCO2. Furthermore, the carotid chemoreceptors were shown to play an essential 

interactive role in causing apnea in response to transitory ventilatory overshoots. 

 

During sleep, under the hypoxic conditions of high altitude, the decrease in ventilation 

that occurs leads to further hypoxemia. The reduction in the hypoxic ventilatory drive 

during sleep contributes to the profound hypoxemia that occurs during sleep at high 

altitude. Studies of sleep at high altitude have demonstrated marked decrease in 

oxyhemoglobin levels compared to awake values. During sleep and exercise at high 

altitude the oxygen levels in the blood are at their lowest level. 

 

1.9 Ventilatory Acclimatisation to High Altitude  
 
Hyperventilation is one of the most important features of acclimatisation to high 

altitude. Immediately upon exposure to high altitude, ventilation increases in a 

hyperbolic fashion as partial pressure of oxygen (pO2) falls and in an inverse linear 

relationship when plotted against oxyhemoglobin saturation (SaO2) this increased 

ventilation slows after about 24 hours but continues to increase. When the PaO2 falls 

to approximately 60mmHg, which corresponds to SaO2 of approximately 90%, 

ventilation increases steeply. The PaO2 at which ventilation starts to increase 

corresponds to the PaO2 at which the oxygen dissociation curve begins to steepen.  
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Figure 1.9 The oxygen-haemoglobin dissociation curve. 

 

The O2-Hb dissociation curve is a sigmoidal curve that represents the relationship 
between O2 concentration and the percentage saturation of haemoglobin. As the 
concentration increases from about 90% there is a significant plateau in the curve. 
 

This increased ventilation results in respiratory alkalosis as CO2 is removed.  Humans 

undergo a progressive increase in ventilation upon exposure to high altitude/hypoxia 

and this response occurs despite the development of respiratory alkalosis and an 

improved arterial oxygen level i.e. acclimatisation. This response implies either a 

gradually increasing sensitivity of the carotid body or of the central respiratory 

controller in the brainstem. Acclimatisation to high altitude occurs over a period of 

days or weeks; each individual will acclimatise at a different rate and this is thought to  

be dependent on the individual’s ventilatory response to hypoxia (HVR). Research 

has demonstrated that HVR increases with time spent at high altitude but respiratory 

alkalosis persists; it is not known why ventilation continues to increase with time at  
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high altitude even though oxygenation is improved and blood has become more 

alkaline – the alkalosis should blunt ventilation but the hypoxic chemosensors  

continue to operate at a higher degree of sensitivity as acclimatisation proceeds. The 

ventilatory response to hypercapnia (HCVR) also changes with time spent at high 

altitude: there is a shift to the left as PaCO2 falls and a steepening of the carbon 

dioxide response line which results in the person being more sensitive to CO2 after 

time spent at high altitude. These changes to ventilation start immediately upon 

exposure to high altitude and continue over a period of days, resulting in a higher 

PaO2 and lower PaCO2. 

 

Several studies have investigated the effects of prolonged exposure to high altitude 

and the ventilatory acclimatisation that occurs. 

 

In 1953 Astrand published his work on acclimatisation to high altitude. In order to 

clarify the effects on ventilation of prolonged exposure to high altitude two male 

subjects were studied under conditions of simulated altitudes of 3000m for 3 days, 

and then 4000m for 5 days in a hypobaric chamber. Expired air was analysed, and 

breath rate and tidal volume were measured to assess ventilation. Acute exposure was 

compared to chronic exposure and to sea level values during rest and at various levels 

of exercise; the subjects exercised on a bicycle for 8-10 minutes at various intensities. 

The subjects breathed either air or oxygen, with or without the addition of 3.9% CO2.  

 

At high altitude, during exercise and at rest, ventilation was increased, with the 

highest ventilation occurring during the most vigorous exercise. When oxygen instead  
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of air was breathed ventilation decreased. At sea level during exercise, but not during 

rest, ventilation was decreased by the addition of oxygen to the inspirate. The higher  

the work load at sea level and at high altitude, the more pronounced was the increase 

in ventilation.  

 

Ventilation increased over time spent at high altitude. After five days at 4000m 

ventilation was increased by around 20% with any given workload compared to acute 

exposure to high altitude. 

 

The end tidal CO2 was lower at rest or any exercise level with prolonged exposure 

compared to acute exposure, confirming that ventilation was increasing over time. 

When oxygen was breathed on days four and five the end tidal CO2 rose from 

25mmHg to 31mmHg (decreased ventilation); however, the alveolar CO2 reached 

after five days exposure when breathing oxygen was markedly lower than the CO2 

when breathing air or oxygen at sea level during rest or any level of exercise. The 

authors therefore concluded that, in an acclimatised person given oxygen to remove 

the hypoxic drive, ventilation is driven by CO2 which suggests an increased sensitivity 

in the respiratory centre to CO2.  

 

On return to sea level after five days at 4000m ventilation was around 17% higher 

when breathing air and 23% higher when breathing oxygen that it was before ascent. 

Five days later ventilation returned to pre-exposure levels. When 3.9% CO2 was 

added to the inspirate before exposure to altitude, ventilation increased from 10 

L/minute to 22 L/minute. After five days high altitude exposure ventilation increased  
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from 11 L/minute to 47 L/minute when CO2 3.9% was added to the inspirate. After 

acute exposure to high altitude there was no difference in the ventilation in response 

to added CO2 when it was re-tested at sea level. 

 

The authors concluded that respiratory drive after acclimatisation to high altitude is 

more sensitive to CO2 than is normally the case. Within seven days return to sea level 

the respiratory drive is back to normal. Hypoxic drive dominates control of ventilation 

over time spent at high altitude and is most evident during exercise. Residual 

hyperventilation after acclimatisation, which persists for several days after return to 

sea level, has been ascribed in the past to greater sensitivity of the respiratory centre 

to the CO2/NaHCO3 ratio i.e. changes in ventilation were much more sensitive to CO2 

than it was prior to high altitude exposure; NaHCO3 is decreased during high altitude 

exposure and is restored five days after return to sea level.   

 

In order to study the ventilatory response over a period of time spent at high altitude, 

Forster et al (1971) studied three different groups of people: ten sea level residents 

before during and after a 45 day sojourn at 3100m; nine first and second generation 

natives of 3100m and nine adolescents born at sea level who had resided at 3100m for 

the past 2-16 years. 

 

Ventilatory response to hypoxia and CO2 was tested in the sea level residents before 

ascent, and after 4 days, 7 days and 45 days sojourn at 3100m then again after return 

to sea level. There was a 53% increase in ventilatory response to CO2 in seven of the 

ten lowlanders after 4 days at altitude and, from the 4th to the 45th day six of the ten  
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demonstrated 47% increase. After 45 days eight of the ten showed a definite increase 

with the mean being 120%.  

 

Highlanders were tested only at 3100m. In the highlanders ventilatory response to 

CO2 was similar to lowlanders at sea level but none of the individual indexes of the 

highlanders were as high as the mean index of the 45 day-acclimatised lowlanders. 

The ventilatory response to hypoxia increased in the lowlanders during their sojourn 

at 3100m with the greatest increase occurring after 2-3 weeks at high altitude. After 

the third week the response began to decrease in eight of the ten lowlanders and by 

the 45th day, in three subjects it had almost returned to sea level values. In the post-

altitude period the lowlanders were hyper-responsive to hypoxia with a mean increase 

of 150% on day 7 post altitude. After 45 days post altitude none of the lowlanders had 

returned to their pre-altitude levels.  

 

The highlanders were less responsive to hypoxia than the sojourning lowlanders 

(approximately 200% difference). Of the highlanders only two natives and two 

residing lowlanders were as responsive to hypoxia as the sojourning lowlanders. The 

ventilatory response to hypoxia was also lower in the highlanders than it was in the 

pre-altitude lowlanders. 

 

The authors concluded that with chronic exposure to high altitude the ventilatory 

response to hypoxia and CO2 change in the following ways: the response to both 

stimuli is increased from sea level during the first weeks of chronic exposure; the 

response to both stimuli is gradually reduced toward normal sea level values with the  
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hypoxic response decrease preceding the CO2 response decrease; if initial exposure 

was during childhood, the response to hypoxia decreases over months to below sea 

level values; the ultimate degree of desensitisation to hypoxia might be genetically 

determined and/or influenced by duration and intensity of chronic exposure. 

 

The role of the carotid body chemoreceptor in ventilatory response to chronic hypoxia 

in goats and sheep was studied by Lahiri et al (1981). The time-course changes in 

ventilation, pCO2, pH and pO2 of arterial blood and cisternal fluid were measured 

before and following surgical ablation of the carotid body and exposure to simulated 

altitude of 3660-5000m. The authors found that at sea level the animals 

hypoventilated chronically after ablation of the carotid bodies and developed mild 

hypoxemia and hypercapnia. When exposed to acute hypoxia before 

chemodenervation, the animals hyperventilated and developed alkalosis with 

decreases in pCO2, which reached a peak in two days. After denervation, in acute 

hypoxia, the increase in ventilation was small and delayed and the pH decreased from 

7.3 to 7.1 while the pCO2 rose. In the intact animals in hypoxia hyperventilation, with 

a fall in pCO2 and rise pH, reached its peak in two days then subsided over the next 

few days. Several denervated animals died during chronic hypoxia and the survivors 

showed either a small decrease or an increase in arterial pCO2. The authors concluded 

that in hypoxia an intact peripheral chemoreceptor (carotid body) is necessary for  

ventilatory acclimatisation which raises the arterial pO2 in spite of alkalosis. The 

authors also proposed that a central tissue metabolic acidosis resulting from a direct 

affect of acute hypoxia is partly compensated as hypoxia is prolonged and it decreases  
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ventilatory drive hence opposing the ventilatory acclimatisation during chronic 

hypoxia initiated by the peripheral chemoreceptors.  

 

A study of ventilatory acclimatisation in seven cats was conducted by Vizek et al 

(1987). The authors investigated the role of the peripheral chemoreceptors and 

mechanisms of ventilatory acclimatisation to hypoxia. The authors aimed to further 

investigate the ventilatory acclimatisation to hypoxia,  defined as a gradual increase in 

ventilation with a decrease in arterial PCO2; persisting hyperventilation despite 

improving oxygenation; and the fact that acclimatisation occurs even when hypoxia is 

limited to the carotid bodies and without systemic or brain hypoxia occurring. 

 

The study examined ventilatory and carotid body responses over a prolonged period 

of time i.e.48 hours in fourteen cats in a hypobaric chamber at simulated altitude of 

4600m. Ventilatory responses to hypoxia could be measured in each cat before and 

after hypoxic exposure but the invasive technique of carotid sinus nerve recording 

could only be done once in each animal. The authors therefore compared carotid body 

hypoxic responses of cats exposed to hypoxia with measurements made on a separate 

group maintained in room air. The two groups were matched according to their 

hypoxic ventilatory response (HVR). HVR was measured before and after 48 hours of 

hypoxic exposure of simulated altitude 4600m.  
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After 48 hours at 4600m the pH rose to 7.43 ± 0.02 compared to 7.36 ± 0.02 in 

controls. The end tidal (ET) CO2 fell from 34.5 ± 0.9 to 28.9 ± 1.2 mmHg in room air 

and from 28.1±1.8 to 21.8±1.9mmHg in hypoxia. The HVR increased following  

hypoxic exposure to an average 50% higher than pre-exposure levels. The carotid 

sinus nerve hypoxic response was 80% higher than the control group after hypoxic 

exposure. 

 

The authors also calculated a “translation index” to describe the central nervous 

system (CNS) translation or conversion of the peripheral chemoreceptor activity into 

ventilation during acclimatisation. This index was calculated by dividing ventilation 

by the increase in carotid sinus nerve activity produced by a decrease in PETO2 from 

150 to 40mmHg. They found that this index was unchanged by acclimatisation, 

averaging 0.76 ± 0.09 for acclimatised cats and 0.82 ± 0.07 for controls.  

 

The 48 hours of simulated altitude produced acclimatisation manifested as decreased 

PETCO2 and was accompanied by an increase in ventilation. This was associated with 

an increased carotid body response to hypoxia despite lower PETCO2. The response of 

the carotid body was larger in acclimatised cats during an isocapnic hypoxic 

challenge; that this response was larger despite a lower PETCO2, which typically 

depresses carotid response, suggests an impressive augmentation of carotid body 

function during acclimatisation. This is additional evidence that supports the 

suggestion that the change in peripheral chemoreceptor function may be a feature of 

acclimatisation. 
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On return to normoxia the PETCO2 was lower in the acclimatised cats which prompted 

the authors to ask whether basal carotid body activity increases with acclimatisation 

or is there increased translation of the peripheral chemoreceptor activity on 

ventilation. They compared the translation index in the two groups and found that it  

was not increased in acclimatised cats, suggesting that enhanced CNS translation of 

chemoreceptor activity into ventilation is not a major contributor to increased HVR in 

acclimatisation; by exclusion, the peripheral chemoreceptors are a more important 

source of the increased HVR with acclimatisation. This is further supported by the 

finding that output from both carotid bodies is necessary to maintain the increased 

level of ventilation and HVR in acclimatised cats. Unilateral section of the carotid 

sinus nerve resulted in increased PETCO2 and decreased HVR in acclimatised but not 

in control cats. The authors suggested that this indicates an increased dependency of 

ventilation and HVR on output from the carotid body during acclimatisation. 

 

The authors state that CNS involvement in acclimatisation remains unclear; the 

unchanged translation index suggests only a small role for the CNS during 

acclimatisation; perhaps CNS is responsible for maintaining increased ventilation as it 

persisted in acclimatised cats even after bilateral carotid sinus nerve section. They 

suggested that changes in secondary modulatory effects such as decreased activity of 

the inhibitory, possibly dopaminergic, influences.  

 

The authors concluded that enhanced peripheral chemoreceptor responsiveness 

accompanies acclimatisation to hypoxia and may contribute to the attendant rise in 

ventilation. 
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A study that aimed to further investigate the role of the carotid chemoreceptor in acute 

and prolonged hypoxia was published by Nielsen et al (1988). The authors conducted 

the research on goats because of its well documented and rapid acclimatisation to  

hypoxia. Forty six anaesthetised goats were studied; the carotid sinus was isolated and 

small strands teased out from the desheathed nerve in order for impulses to be 

recorded. The goats either inspired a gas mixture that achieved about arterial 

40mmHg PaO2 within ten minutes with PaCO2 maintained at about 40mmHg. Acute 

hypoxia was studied then prolonged steady-state isocapnic hypoxia was maintained 

for up to four hours while ten minute samples of arterial blood was analysed for PaO2, 

PaCO2 and pH.  

 

The authors found that in acute isocapnic hypoxia the discharge frequency of the 

carotid chemoreceptor fibres was a brisk on/off response to hypoxia and restoration of 

normoxia. The response curve was hyperbolic. In prolonged hypoxia (longer than 60 

minutes duration) there was a time-dependent increase in chemoreceptor discharge 

frequency after the first hour of hypoxia increasing at an average rate of 1.3 ± 0.02 

impulses per hour. 

 

After return to normoxia the discharge frequency was higher when compared to the 

pre-hypoxic period. However, the inability to restore blood gases in all cases made it 

impossible to conclude that the discharge frequency was different between pre and 

post measurements. 
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The authors used sodium cyanide (NaCN) to identify the carotid fibres in the 

preparation and also to test the integrity of the preparation during the study. Injection 

of NaCN into the carotid fibres resulted in an increase in impulse frequency from 1.7 

± 0.1/hour to 17.9 ± 0.7/hour. If the preparation did not exhibit a brisk response to 

NaCN the data were discarded. 

 

The authors concluded from this work that the responses of the goat to NaCN and to 

hypoxia are similar to other species. The carotid body chemoreceptor activity 

progressively increases in a time-dependent manner during isocapnic hypoxic 

exposure of more than one hour in anesthetised goats which agrees with work carried 

out on cats which demonstrated increased hypoxic sensitivity of the carotid 

chemoreceptor after two days and after four weeks exposure to hypoxia. When 

comparing the time course of the development of acclimatisation, it appears that 

acclimatisation to hypoxia is faster in the goat than the cat. The carotid body may play 

a direct role in providing ventilatory drive during acclimatisation to hypoxia. A 

characteristic of ventilatory acclimatisation to hypoxia is the persistent 

hyperventilation on first returning to normoxic conditions but the actual role of the 

carotid chemoreceptor is unknown; the authors suggest that exposure to prolonged 

hypoxia may cause a time-dependent depletion of the putative inhibitory carotid body 

neurotransmitter, dopamine which would result in increased carotid body activity as 

the inhibitory effects of dopamine is progressively withdrawn. 

 

The authors summarised their findings thus: the carotid body afferent discharge 

progressively increases during the course of sustained isocapnic hypoxia of more than  
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one hour in the anesthetised goat and, this increased activity contributes to the 

progressive hyperventilation characteristic of the initiation of ventilatory 

acclimatisation to hypoxia. 

 

These studies have examined ventilatory response to acute and prolonged hypoxia, 

and acclimatisation to high altitude. The carotid bodies sense both hypoxia and 

hydrogen ion concentration, exhibiting a multiplicative effect to the combined stimuli 

of hypoxia and changes in hydrogen ion concentration. Both the carbon dioxide 

partial pressure and the hydrogen ion concentration of arterial blood can affect the 

hydrogen ion concentration in the carotid body and thereby ventilation.  The 

ventilatory response to hypoxia in the presence of increased hydrogen ion 

concentration will be greater than the response to hypoxia alone. The existence of a 

threshold for the hydrogen ion concentration, below which no stimulation occurs, 

complicates the peripheral chemoresponse to hypoxia. The strength of hypoxia needed 

to elicit a response is greater at lower partial pressures of CO2 because of the 

existence of the threshold. However, at high altitude the arterial partial pressure of 

carbon dioxide is rapidly lowered due to increased ventilation and there is little doubt 

that this increase in ventilation is driven by lower barometric pressure leading to 

lowered alveolar oxygen pressure, stimulating the peripheral chemoreceptor.  

 

1.10 Periodic Breathing, Arousal from Sleep and Oxyhemoglobin Saturation  
 
 
During periodic breathing at high altitude only about half the periodic breathing 

(central) apneas result in arousal from sleep. Despite this failure to arouse, ventilation  
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increases after a period of 8-20 seconds of apnea and the oxyhemoglobin saturation 

rises, before another apnea begins.  

 

It has been known for some time that sleep results in decreased hypoxic and 

hypercapnic ventilatory responses. It seems that the most likely cause for the decrease 

in ventilatory responses during NREM sleep is the loss of the wakefulness drive to  

breathe (Orem et al. 1985; Longobardo et al. 2002), a decreased metabolic rate and an 

increase in airflow resistance. The further reduction of VR in REM sleep may be due 

to altered central nervous system function. This blunted VR allows the development 

of hypoventilation during sleep and of sleep-related hypoxemia and hypercapnia 

which is more marked in REM sleep. 

 

During sojourn at high altitude, in response to the hypoxic conditions, ventilation 

increases up to four fold with the result that after 12-24 hours the SaO2 rises and the 

PCO2 falls. At high altitude sleep onset hypoventilation leads to increased hypoxemia 

but this occurs in the presence of hypocapnia. The finding that arousal does not 

always occur with the apneas of periodic breathing may be explained by the fact that 

although marked hypoxemia occurs during the apneic phases of PB, PCO2 remains 

below the apneic threshold and there is no increase in intrathoracic pressure, no 

stretching of the lung nor increased resistance in the upper airway, all of which 

contribute to arousal from sleep. 

 

Arousal from sleep in humans in response to hypoxia has been shown to occur in only 

about half of hypoxic episodes. Berthon-Jones and Sullivan (1982) demonstrated this  
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poor hypoxic arousal response in nine normal, healthy human subjects (four female). 

During NREM and REM sleep the subjects were subjected to hypoxemia as low as  

70% saturation while maintaining eucapnia by using a rebreathing method. They 

found that there was a marked variability in arousal levels both in NREM and REM 

sleep, with subjects failing to awaken by 70% SaO2 (their safety level) in 12 out of 26 

(46%) NREM tests and in 7 of 15 (47%) REM sleep tests. The authors concluded that, 

in humans, at normal alveolar CO2 tension, hypoxia is a poor arousal stimulus for  

NREM and REM sleep. The authors also measured the hypoxic ventilatory response 

(HVR) awake and asleep and found that, in NREM sleep the HVR was reduced from 

0.68 ± 0.07 L/min/% SaO2 during wakefulness to 0.42 ± 0.6 L/min/% SaO2 and in 

REM sleep was further reduced to 0.33 ± 0.06 L/min/% SaO2. The reduced HVR was 

significant for wake to NREM and REM (p<0.01) but not for NREM to REM sleep. 

This confirms previous findings of reduced HVR in sleeping humans. 

 

It has been proposed that periodic breathing (PB) during sleep is advantageous i.e. the 

repetitive hyperventilation acts to maintain higher sleeping oxyhemoglobin saturation 

than sleep without PB. Alternatively, it has been proposed that PB and the increased 

cardiac output that may be present during the part of the PB cycle in which hypoxia is 

at its worst (hyperpneic phase), would result in enhanced delivery of this poorly 

oxygenated blood. 

 

West et al (1986) studied breathing in six male subjects who were acclimatised to 

6300m i.e. members of an Everest expedition residing at Camp 2 (6300m) for at least 

17 days prior to being studied. The subjects were found to have PB for an average of  
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72% of recording time and the mean oxyhemoglobin saturation (SaO2) was 73% and 

minimum 63%. Two subjects had a mean SaO2 <60%. The authors had previously  

performed arterial blood gas analysis and extrapolated the PaO2 to be in the order of 

33mmHg. Because all six subjects developed PB it was not possible to compare the 

SaO2 of subjects with and without PB but the authors hypothesized that PB would 

result in more severe oxygen desaturation and circulation of poorly oxygenated blood.  

The rationale for this assumption was that increased chemoreceptor gain occurs with  

time spent at high altitude and this increased chemoreceptor gain makes the 

respiratory control system more unstable, predisposing towards periodic breathing 

during sleep. This increase in the hypoxic ventilatory response has been linked to the 

success of mountain climbers who can tolerate extreme altitudes (Schoene et al, 

1984). The paradox presented by the presence of PB in those with a high HVR, and 

the profound hypoxemia that occurs during PB, with the success at high altitude of 

those with a high HVR has puzzled researchers for some years. There may be some 

physiological advantage that has not yet been understood, to PB during sleep at high 

altitude. 

 

Given the high incidence of periodic breathing at high altitude, Ghazanshahi & Khoo 

(1993) examined the effects of PB on blood gases and aimed to discover if the 

repetitive falls in oxygen that occur during PB impose physiological penalties. The 

muscular effort of breathing at high altitude is known to account for an increased 

proportion of oxygen uptake and the authors aimed to determine if the pauses in 

breathing effort during apneas were beneficial in the savings in muscular effort that 

may occur in PB.  
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The authors used computer modeling of gas exchange to examine whether ventilating 

with a PB pattern offered any advantage over uniform tidal breathing (TB). They 

found that, contrary to the general belief that PB and episodic apnea present 

detrimental effects, PB patterns can actually lead to more efficient gas transport. The 

SaO2 in TB was below the PB SaO2 minimum.  

 

There has been no definitive answer to the question of whether PB is advantageous 

during sleep at high altitude but it appears that the success at high altitude of 

lowlanders with high HVR may provide some evidence that, at least, PB is not 

detrimental to the tolerance for high altitude in those acutely exposed and those who 

are acclimatised. The lack of both a high HVR and the absence of PB in high altitude-

dwelling Sherpas further confuses the matter. 

    

1.11 Prevention and Treatment of Acute Mountain Sickness  

Acute Mountain Sickness (AMS) affects some people who ascend from sea level to 

altitudes above about 3000metres; but can affect some people at altitude as low as 

2000m.The symptoms are assumed to be due to mild cerebral edema from hypoxic 

brain injury and include headache, nausea, loss of appetite, ataxia, dizziness, 

weakness and poor sleep. The reported frequency of AMS varies widely from 9% to 

over 60% depending on the altitude.  

 

Acute mountain sickness has been described since at least 1531, the year the Moguls 

invaded Ladakh and Western Tibet. The Moguls called AMS “yas” and the Tibetans 

called it “damgiri” & “dam” (breath seizing) or “dugri” (poison of the mountain).  
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They described it as vomiting, exhaustion, difficulty sleeping, aphasia and swelling of 

the hands and feet. Death often eventuated if rapid descent was not undertaken; in 

fact, the Mogul sultan, Said Khan died of damgiri on the Suget Pass on his way from 

Ladakh to Kashgar. The cold, ever present at these high altitudes, worsened the 

condition and horses were also severely affected. 

 

Christian missionaries who travelled into central Asia and established missions in 

Tibet were among the first Europeans to bring back descriptions of AMS. One 

missionary, Father Andrade, crossed the Himalayas in 1624 and described part of the 

journey thus: “many people die on account of the noxious vapours that arise, for it is a 

fact that people in good health are suddenly taken ill and die within a quarter of an 

hour, but I think it is rather owing to the intense cold and want of heat, which reduces 

the heat of the body”. Other missionaries also believed that the illness was caused by 

noxious vapours that were extruded by poisonous weeds. Another missionary, Father 

Desidrei, in 1716 commented that he thought the symptoms of AMS were due to 

“sharp, thin air” and he suffered from severe headaches. This theory was supported by 

Father Belligatti who, in 1739, wrote that he believed that the illness resulted from the 

“rarefaction of the atmosphere”. Many years later the Russian traveler, Prejavalski, 

in1876, attributed the illness to “the enormous elevation and rarefaction of the air”. 

(Quotes from High Altitude Medicine and Physiology, 3rd Edition, 2000; eds. Ward, 

Milledge, West) 

 

The first modern description of AMS was by Ravenhill (1913) who described the 

condition as it affected miners in Chile who worked at 4700m. Ravenhill was serving  
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as a medical officer for the mining company and observed that the miners, who 

ascended to the mine by rail, were suffering the uncomplicated effects of altitude 

alone. AMS was called “puna” by the local Bolivians and Ravenhill used this term to 

describe AMS thus “It is a curious fact that the symptoms of puna do not evince 

themselves at once. The majority of newcomers have expressed themselves as being 

quite well on first arrival. As a rule, towards the evening, the patient begins to feel  

rather slack and disinclined for exertion. He goes to bed but has a restless and 

troubled night and wakes up the next morning with a severe frontal headache. There 

may be vomiting, frequently there is a sense of oppression in the chest but there is 

rarely any respiratory distress or alteration in the normal rate of breathing so long as 

the patient is at rest. The patient may feel slightly giddy on rising from bed and any 

attempt at exertion increases the headache, which is nearly always confined to the 

frontal region”. 

 

Prevention of AMS involves ascending slowly, resting for two days at each new 

altitude above 3000m before ascending further and prophylactic acetazolamide. 

Treatment of AMS depends on the severity: headache can be treated with paracetamol 

and caffeine if not severe; rest will often alleviate AMS symptoms. It is important to 

understand that AMS can lead to the more serious high altitude disorders: High 

Altitude Cerebral Edema (HACE) and High Altitude Pulmonary Edema (HAPE), both 

of which can be fatal. Rapid descent is recommended when AMS symptoms do not 

abate after rest, or if symptoms of cerebral edema (confusion, ataxia, coma) or 

pulmonary edema (pink frothy sputum, difficulty breathing) develop; it may be 

necessary to carry the AMS sufferer to lower altitude but, in mountain trekking and  
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climbing situations, it is often necessary for the sufferer to walk to lower altitudes. If 

oxygen is available it can be administered until descent is possible. Rapid recovery 

occurs with the use of a portable fabric hyperbaric chambers (Gamow bag made by 

Portable Hyperbarics Inc; Illion, NY, USA and Certec bag made by  Certec, 

Sourcieux le Mines, France)) into which the patient is sealed; the pressure inside is 

increased by use of a foot pump. These devices imitate rapid descent by 1500-2500  

metres. These bags are available in some areas of high altitude trekking and climbing. 

Recovery is usually rapid with either oxygen administration or use of the hyperbaric 

bags but the pressure must be maintained, and operation of the foot pump quickly 

becomes exhausting at high altitude.  

 

Treatments for AMS under field conditions are few. In some trekking and climbing 

areas there are no medical facilities, while in others there are aid stations or field 

hospitals that can provide oxygen and/or hyperbaric bag treatments.  

 

Positive end expiratory pressure (PEEP) is known to improve gas exchange in various 

forms of pulmonary edema, presumably by recruitment of microatelectatic alveoli and 

improvement of gas exchange. Wayne (1976) reviewed the mechanisms and actions of 

PEEP in the treatment of acute respiratory failure. Proposed mechanisms of the action 

of PEEP include the following: shift in interstitial pulmonary water into the 

capillaries; increased lung volumes by the prevention of expiratory airway collapse; 

increased diameter of the large and small airways, which thereby decreases airway 

resistance and improves the distribution of ventilation; decreased alveolar capillary  
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blood flow coupled with augmented alveolar ventilation, that results in an improved 

ventilation to perfusion ratio and PaO2. 

 

Research by two groups, Demling et al (1975) and Caldini et al (1975), found that 

PEEP did not have a drying effect on the lung; in fact it was found to favour 

accumulation of liquid in the extravascular space. 

 

In cases where airway collapse due to a surfactant defect and elevated minimal 

surface tension, PEEP may keep the airways open and maintain alveolar patency with 

an attendant increase in functional residual capacity.  

 

Several studies have examined the effect of PEEP at high altitude. Each of the 

following studies used a face mask and valve that applied pressure only during 

expiration i.e. expiratory positive airways pressure (EPAP), allowing inspiration to 

occur ambient pressure.  

 

PEEP/EPAP was used on Mount McKinley in Alaska to treat high altitude pulmonary 

edema (HAPE) by Larson (1985). Nine climbers were studied at an altitude of 4400m 

at the Mount McKinley medical aid station. Three of the climbers had HAPE (cough, 

cyanosis, dyspnoea, tachycardia, tachypnoea and râles) and six had no symptoms. 

PEEP of 5cms and 10cms was used via a spring loaded expiratory valve and face 

mask (Down’s). There was no change to oxygen saturation, respiratory rate or heart 

rate in the controls but, in the three patients the SaO2 rose from a mean of 53.3±10.1%  
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to 63±10.2 % with 5cms PEEP and to 72±5.7% with 10cms PEEP. The respiratory 

rate in the patients fell from a mean of 22±0 to 16.7±1.8 on 5cms PEEP and to  

15.7±3.1 on 10cms PEEP. The symptoms of HAPE improved while using PEEP but 

returned when the mask was removed. Two of the climbers returned to their tent and 

used PEEP 10cms for 6 hours as they awaited safe conditions before descending.  

 

The author concluded that PEEP is a useful tool in the treatment of HAPE in field 

conditions and, because the system exerts positive pressure only during expiration, the  

risk of barotrauma is small in individuals with no underlying lung disease. Venous 

return is presumably adequate because the system allows normal negative 

intrathoracic pressure during inspiration. They recommend PEEP as a first aid in 

HAPE in field conditions. 

 

Schoene et al (1985) evaluated the use of expiratory positive airways pressure (EPAP) 

on four climbers with HAPE and thirteen healthy climbers during exercise on a 

bicycle ergometer at Mount McKinley (4400m). The healthy volunteers (12 men, 1 

woman) had climbed to 4400m without developing altitude illness; resting SaO2 in 

this group was 85±3%. The four male patients with HAPE had dyspnoea, tachycardia, 

dry cough, râles and resting SaO2 of 54 ± 11%. The SaO2 increased significantly in 

the HAPE subjects with increasing EPAP of 5cms and 10cms, while the respiratory 

rate fell and tidal volume increased. There were no adverse effects from using EPAP. 

In the healthy volunteers, EPAP 5cms and 10cms at rest and during exercise increased 

SaO2.  
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The authors stated that EPAP works in this setting by improving V/Q match and gas 

exchange by the recruitment of microatelectatic alveoli, similar to the way in which 

PEEP is presumed to improve gas exchange in patients on mechanical ventilation. The 

heart rate did not increase in HAPE subjects when using EPAP and this supports the 

concept that using only expiratory pressure allows normal negative inspiratory 

pressures to occur and normal venous return. The authors recommend further studies 

to test the reliability of EPAP as treatment for HAPE in the field. 

 

The use of PEEP/EPAP to prevent the occurrence of AMS was tested by Savourey et 

al (1998). A group of 22 subjects who trained regularly as endurance runners were 

exposed to two sessions of 8 hours simulated altitude in a hypobaric chamber of 

4500m. The order was randomized and 2 weeks separated each 8 hour session in the 

chamber. The subjects were studied with or without PEEP of 5cms H2O during the 

hypobaric exposure. The 5cms H2O PEEP was applied using a face mask with a bi-

directional valve that allowed 0cms H2O inspiratory pressure. Oxygen saturation was 

measured and an AMS score was derived from the Lake Louise Acute Mountain 

Sickness questionnaire plus clinical assessment. Arterial oxygen, pH, carbon dioxide 

and sodium bicarbonate were measured from an arterial blood sample taken at 1700 

hours.   

 

The authors found that in the subjects without PEEP, 53% of subjects developed AMS 

with a Lake Louise Score (LLS) of 3 or higher (up to 12). In subjects with PEEP the 

prevalence of AMS was 23% (p < 0.01) with a LLS score below 3. The SaO2 was not 

significantly different with and without PEEP; PaO2 was slightly increased (+ 0.74%,  
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p = 0.06), PaCO2 was also slightly increased (+ 0.76%, p = 0.07) and pH was 

increased from 7.47 to 7.50, p = 0.04 with PEEP which the authors conclude attest to 

a lesser arterial alkalosis, probably related to the higher level of CO2. These changes 

may be due to PEEP’s ventilatory effects such as the recruitment of microatelectatic 

alveoli.  

 

Launay et al (2004) tested the use of PEEP at high altitude under field conditions in 

order to determine its effect in preventing the occurrence of AMS. The research was  

carried out during ascent of Mont Blanc (4810m). Eight healthy male subjects were 

studied. The PEEP consisted of a bi-directional valve that allowed 0cmsH2O 

inspiratory pressure and 5cmsH2O expiratory pressure; the valve was used with a face 

mask (Hans Rudolph). The eight subjects climbed Mont Blanc twice: once with PEEP 

of 5cms and once without PEEP. The presence of AMS was determined using the 

Lake Louise scoring method (72). Heart rate and pulse oximetry were measured using a 

finger probe and oximeter and blood pressure was taken at the same time; the Lake 

Louise score was also derived this time, using questionnaire and clinical assessment. 

 

The authors found that without PEEP 6 of the eight subjects developed AMS (75% 

prevalence) with Lake Louise scores of 3, 3, 3, 4, 4 and 6. When PEEP was used only 

one subject had a Lake Louise score of 3 (12.5% AMS prevalence). Heart rate and 

blood pressure were unchanged by PEEP. The oxygen saturation decreased during 

both ascents but tended to be higher with PEEP (p = 0.07). The authors concluded that 

low PEEP is an efficient method for preventing AMS under field conditions at high  
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altitude without any adverse medical side effects. They suggest that larger studies are 

needed and to better clarify the physiological mechanisms involved. 

 

It is clear from these studies that the use of expiratory positive airways pressure is a 

useful tool in the prevention and treatment of AMS and for the treatment of HAPE. 

The physiological mechanisms are not clear but recruitment of microatelectatic 

alveoli is proposed by most of the authors. Improvement in the oxygen saturation 

suggests that arterial blood oxygenation is improved with EPAP and this may be 

related to an increase in alveolar ventilation.  

 

In order to further examine the physiological mechanism by which PEEP improves 

ventilation Savourey et al (1999) studied 22 normal, healthy subjects during 4 hours 

of exercise and 4 hours at rest in hypobaric hypoxic conditions (4500m). The subjects 

were studied at 0m altitude and at 4500m one week apart, using 5cmsH2O of PEEP 

via face mask and a bi-directional valve (EPAP) during rest and exercising on cycle 

ergometer.  Ventilatory parameters and breathing pattern were calculated from: tidal 

volume, minute volume, duration of inspiration, duration of expiration, total breathing 

cycle, respiratory frequency (f), duty cycle (inspiratory time/total breathing cycle 

time) and mean inspiratory flow which were all calculated by computer from the 

flowmeter data. End tidal partial pressure of oxygen and carbon dioxide (PETO2 and 

PETCO2) were measured; heart rate and oxygen saturation were monitored.  

 

The results demonstrated that using PEEP under hypoxic conditions at rest and during 

exercise does not modify the breathing pattern. The absence of significant effects of  
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PEEP on the PETO2, although PEEP is used to improve gas exchange in high altitude 

illness, could indirectly suggest that in healthy subjects exposed to hypoxia impaired 

gas exchange is not present. The authors concluded that hypoxia modifies the drive 

component of the breathing pattern but not the inspiratory duty cycle and that, 

secondly those ventilatory parameters are affected by 5cms PEEP without changes in 

the breathing pattern, SaO2 or heart rate. Therefore PEEP does not alter ventilatory 

performance during short hypoxia at rest or during exercise. 

 

Although the mechanisms of PEEP/EPAP in preventing the occurrence of AMS and 

improving the symptoms when it does occur, as well as being beneficial in the  

treatment of HAPE, are not definite, it is an extremely useful tool to add to the limited 

methods available in field conditions at high altitude to treat high altitude illness. 
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CHAPTER 2 

GENERAL METHODS 
 
This Chapter describes the general methodology used for all experimentation in 

human subjects described in this thesis. Specific details relevant to each experimental 

protocol are described separately in the relevant chapters. 

 

Each volunteer gave informed consent and the study protocol was approved by the 

University of Sydney Human Research Ethics Committee (Nepal Study) or by the 

University of California, Human Research Protection Program (White Mountain 

Study). 

2.1 Subjects 
 
The nineteen subjects who were studied in the Nepal Himalaya were recruited from 

colleagues and associates. Each subject paid for his or her travel and accommodation 

expenses during the time in Bangkok and Nepal. Nineteen healthy, non smoking, sea 

level-dwelling volunteers were studied in Nepal and at sea level, and seven healthy, 

non-smoking, sea-level dwelling volunteers were studied at White Mountain and sea 

level. In the Nepal group there were ten male and nine female age matched subjects 

between twenty and fifty-two years of age (mean 34.1 ± 9.3 years); the mean body 

mass index (BMI) was 23.4 ± 2.8 kgs/m2 (range 17.5-27.4kgs/m2).  The White 

Mountain group consisted of students recruited from the University of California, San 

Diego. There were three female and four male volunteers aged 21-25 years (mean 

23.6±1.5); the BMI was 22.7 ± 1.8kgs/m2.  
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The specific demographic details of each volunteer are provided in the relevant 

chapter. 

 

The female subjects were not taking oral contraceptives during the time at high 

altitude nor for the month before the high altitude data collection. Subject #5 in the 

Nepal group was taking Flixotide bd and Ventolin prn but her asthma had been stable 

for several months before the trek and remained so during the trek. Subject #18 in the 

Nepal group took Ventolin prn for his asthma but had been stable for several months 

before the trek and remained so during the trek. No subject ingested alcohol on the 

day of their sleep study; no subject took respiratory stimulant or depressant 

medication 24 hours before their sleep study. Paracetamol, ibuprofen, codeine and 

caffeine were used for headache when required but none of these medications was 

ingested 12 hours before sleep studies. 

None had traveled to high altitude in the twelve months before the study.  

2.2 Sleep and Breathing during Sleep 
 
Each volunteer underwent an overnight polysomnography study at sea level before 

departing for the high altitude location. The White Mountain group had sleep studies 

performed in their homes and the Nepal group had sleep studies either in their own 

homes or in the Peninsula Private Sleep Laboratory, Manly, NSW, Australia. 

 
Sleep studies were conducted in the evenings when the subjects retired for the night. 

The Nepal group had nineteen usable sleep studies at sea level, 1400m and 3900m; 

two sleep studies were unusable at 3500m and one at 4200m; five sleep studies were 

unusable at 5000m. One sleep study had no SaO2 data at 3500m and four had no SaO2 
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data at 4200m. Therefore eighty seven sleep studies were analysed at high altitude and 

nineteen at sea level. 

All seven sleep studies in the White Mountain group, at sea level and two nights at 

3800m were usable for analysing breathing during sleep but only four had full EEG 

data for the purposes of analysing sleep architecture i.e. twenty one sleep studies were 

analysed. 

 

Fourteen of the Nepal subjects had arterial blood gas analysis within an hour of 

waking from the overnight sleep study at sea level and at each altitude during the trek, 

before ingesting food or caffeine. 

 

The Lake Louise Acute Mountain Sickness Questionnaire (Roach et al.1993) was 

administered to each subject within an hour of waking from the sleep studies, before 

ingesting food or caffeinated beverages. The score derived from this questionnaire 

was used to quantify the presence and severity of Acute Mountain Sickness. 

 

Sleep state was recorded using two channels of electroencephalogram (EEG; C3/A2, 

O2/A1), two channels of electro-oculogram (EOG), and one channel of submental 

electromyogram (EMG). Each 30 second epoch of recording was sleep staged visually 

according to the standard criteria of Rechtschaffen and Kales (1968). Each epoch was 

classified as either wakefulness (W), Stage 1 non rapid eye movement (NREM) sleep, 

Stage 2 NREM sleep, Stage 3 NREM sleep, Stage 4 NREM sleep (these last two 

stages were pooled and called slow wave sleep) and rapid eye movement (REM) 

sleep. Also calculated were: total sleep time in minutes, sleep latency (time from start 

of recording/lights out to sleep onset), REM latency (time from sleep onset to the first 
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epoch of REM sleep), sleep efficiency (percentage of recording time spent asleep) and 

minutes and percentage of total sleep of each sleep stage. 

An arousal from sleep was defined as an abrupt change in the EEG frequency lasting 

for 3-15 seconds; in REM sleep submental EMG tone also was present in order to 

score an arousal. Each arousal from sleep was attributed to either: obstructive 

apnea/hypopnea, central apnea/hypopnea according to the relationship of the start of 

the change in the EEG signal to the termination of the respiratory event. Arousals that 

were not related to any event detectable on the airflow or Respiratory Inductive 

Plethysmography (RIP) signals were deemed spontaneous arousals. An arousal index 

(AI) was calculated for the total AI which consisted of the obstructive 

apnea/hypopnea AI, central apnea/hypopnea AI and the spontaneous AI combined. 

 

Airflow was measured using nasal oxygen cannula and pressure transducer. Thoracic 

and abdominal movement were recorded using respiratory inductive plethysmography 

(RIP).  

 

Sleep channels, airflow, thoracic and abdominal movement were recorded by the 

Compumedics Portable polysomnography (PS1 or PS2) in the subjects’ homes and at 

high altitude, or by the Compumedics S series in the sleep laboratory. 

 

Oxygen saturation was measured by a finger oximeter (Biox 3700e; Ohmeda, 

Boulder, CO, USA, in the sleep laboratory and built-in oximeter in the Compumedics 

PS1/2 system in the home and at high altitude). 

 



 
 Chapter 2 General Methods   

 
 

110

The respiratory parameters measured included the apnea/hypopnea index (AHI) which 

was made up of obstructive and central apneas and hypopneas. The AHI was defined 

as the number of apneas and hypopneas occurring per hour of sleep. Obstructive 

apneas were defined as a cessation of airflow lasting ≥ 10 seconds with continuing 

respiratory effort (measured on the thoracic and abdominal RIP). Obstructive 

hypopneas were defined as a reduction of airflow ≥ 20% lasting ≥ 10 seconds, with 

continuing respiratory effort, and terminating with EEG arousal and/or oxygen 

desaturation ≥ 3%. Central apneas were defined as the cessation of breathing and 

respiratory effort lasting ≥ 10 seconds. Central hypopneas were defined as a reduction 

in airflow and respiratory effort ≥ 20% lasting ≥ 10 seconds and terminating with 

EEG arousal and/or oxygen desaturation ≥ 3%. 
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Figure 2.2.1 Portable Polysomnographic Equipment and Transportation 
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2.3 Ventilatory Response Testing 

Each subject had ventilatory response (VR) tests for eucapnic hypoxia, hypercapnic 

hypoxia and hyperoxic hypercapnia before departure to Nepal or White Mountain. 

These tests were performed during the afternoon two to three hours before or after 

2pm. The female subjects had VR testing performed in both the follicular and luteal 

phases of their menstrual cycles; these phases were determined by daily measurement 

and recording of the morning oral temperature and confirmed by analysis of venous 

blood taken at the time of the VR testing; follicle stimulating hormone, luteinising 

hormone, oestradiol and progesterone levels were tested to determine the phase of the 

menstrual cycle. The luteal phase was determined by increased temperature and the 

VR testing was performed within forty eight hours of the temperature spike; the 

testing was repeated within forty eight hours of menses (follicular phase).  

 

The Nepal subjects came to the VR testing facility in Royal Prince Alfred Hospital, 

Department of Sleep and Respiratory Medicine, Sydney, Australia.  

 

The slope of the change in minute ventilation was calculated by linear regression 

using the Microsoft program, Excel. Minute ventilation was calculated from computer 

recordings of inspiratory time, expiratory time, respiratory rate (frequency) and tidal 

volume. The slope of the change in minute ventilation against SaO2 and CO2 was 

calculated; the number derived for each test is used as the subject’s hypoxic and 

hypercapnic ventilatory response.  

 

 

 



 
 Chapter 2 General Methods   

 
 

113

2.3.1 Ventilatory Response Testing Equipment 
 

The ventilatory response equipment was originally developed by Dr Michael Berthon-

Jones [Berthon-Jones and Sullivan 1982; Berthon-Jones and Sullivan 1984] and is 

illustrated in Figure 2.3.1. The subject breathed via a mouthpiece which was 

connected via light, flexible polyethylene hoses to a completely closed, biased flow 

circuit comprising a four litre flow-through polyethylene bag, by-passable soda lime 

absorber and a fixed speed blower (12 volts, 50 litres/minute recirculation). Total 

circuit volume (bag full) was 8.3 litres. An adjustable outward bleed of 0-8 

litres/minutes with high dynamic resistance on the blower allowed circuit gas 

concentrations to be adjusted by injecting gases (air, oxygen, nitrogen or carbon 

dioxide) from a cylinder downstream from the bag. The bag was encased in a box 

connected to a No. 3 Fleisch pneumotach with 450 mm of smooth tubing each side to 

ensure laminar flow. Flow was measured with a differential pressure transducer 

(Validyne DP-45 and amplifier; Validyne Corp; Northbridge, CA, USA), with a Grass 

7P122B amplifier (Grass Instruments, Quincy, MA, USA). Resistance at the 

mouthpiece, at a flow rate of 1 litre/second, was 1.4cmH2O/litre/second. The total 

dead space of the mouthpiece and connecting tubing was 56 millilitres. The entire 

apparatus was in turn encased in a cabinet that could be pressurized. Circuit materials 

were acrylic, polyethylene, silicone rubber and food-grade PVC in order to minimise 

chemical odours.  

 
Arterial oxyhemoglobin saturation (SaO2) was measured continuously during testing 

via a finger probe and oximeter (Biox 3700e, Ohmeda, Boulder, CO, USA) set on fast 

sampling mode (5Hz). Heart rate data was also obtained from the oximeter. End tidal 

carbon dioxide tension (PETCO2) was measured using an infrared carbon dioxide 
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analyser (Hewlett-Packard HP 47210A Capnometer; Hewlett-Packard Inc; Waltham, 

MA, USA) connected to the mouthpiece. All signals were calibrated at the beginning 

and end of each test. The concentration of inspired oxygen (FiO2) was measured at the 

mouthpiece by a fast response paramagnetic oxygen analyser (Datex Multicap CNO-

103-21-01, Datex Instrumentation Corp; Helsinki, Finland) and displayed 

continuously to the operator. 

 

During each test the filtered flow signal, the PETCO2 and SaO2 signals and the heart 

rate were digitised and processed on an IBM compatible AT computer with a 12-bit 

A/D converter sampling at 125 Hz. From the flow signal, the inspiratory and 

expiratory time and tidal volume were measured and minute ventilation was 

calculated. 

 

The subjects were allowed to adjust to breathing via the mouthpiece attached to the 

circuit before testing commenced. This 5-10 minutes adjustment time, breathing room 

air, allowed the subject’s PETCO2 to settle to resting levels. 

 

The circuit is operated by a series of two sets of solenoid valves. The first set consists 

of low pressure valves which control the flow of gas in the breathing circuit. The 

valves allow for the adjustment of flow through the soda-lime absorber and allow the 

subject to be turned into or out of the breathing circuit. 

 

The second set of solenoid valves are high pressure reduction valves which allow the 

injection of short pulses of air, oxygen, carbon dioxide or nitrogen into the breathing 

circuit. By adjusting the number of pulses of each gas, this system allows for the 
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accurate and rapid control of the breathing circuit’s gas composition. Importantly, the 

injection of gas into the circuit occurred close to the return from the subject side of the 

circuit, thus a high level of mixing occurred before any changed gas composition 

appeared in the inspired line. 

 

The opening and closing of each of the solenoid valves within the circuit, and thus the 

gas composition of the circuit, is controlled by computer software (Laboratory 

Software, Leonay, NSW, Australia), which precisely maintains the subject’s SaO2 and 

PETCO2 at targets that have been set by the operator. The model for predicting the gas 

composition on-line to allow control of both oxygen saturation and end-tidal CO2 

during progressive hypoxia includes an index of metabolic rate to predict the fall in 

the SaO2. Controlling the PETCO2 depended on observation of the capnograph read-

out to direct air through the soda-lime absorber or not; each individual’s ventilatory 

response to hypoxia differed, with a brisk response causing a more rapid lowering of 

the PETCO2 and therefore required a greater adjustment and control of end-tidal CO2. 

 

Hyperoxic Progressive Hypercapnic Ventilatory Response Testing: the technique used 

in this research was described by Read (1967) i.e. hyperoxic rebreathing from a small 

bag initially containing carbon dioxide in concentration similar to that of oxygenated 

mixed venous blood.  

 
2.3.2 Ventilatory Response Testing Methods  

 
Calibration of the equipment used to monitor oxygen saturation, heart rate and end 

tidal carbon dioxide (SaO2, HR and CO2) was performed immediately prior to VR 

testing. Gas cylinders (oxygen, carbon dioxide and nitrogen), VR apparatus and the 
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computer are turned on and appropriate voltages generated by each piece of 

equipment to correspond to physiological outputs; the voltages are acquired by the 

computer and used to calculate and record SaO2, CO2 and HR. The equipment is 

prepared by filling and emptying the breathing bag several times to ensure room air is 

used during the initial part of the VR testing. 

 

The oxygen probe was applied to a finger. The subject breathed through the mouth 

piece of the VR equipment, with a nose peg used to prevent nasal breathing. The first 

five minutes was used to acclimatise the subject to the equipment and measure and 

record baseline oxygen saturation (SaO2) and end tidal carbon dioxide (PETCO2) 

while breathing room air.  

 
  2.3.3 Control of Oxygen Saturation 
 
The rate of addition of oxygen is based on the following equation: 
 

VO2 = metabolic rate (0.3L/min) + K/T ln (100 – Sa02)/(100 – target) 
 
where  K = 1.25L/min            
   
  T = 0.5 min 
 
  Target – target set by the operator  
 
The metabolic rate was chosen as an arbitrary value base on an average value from a  
 
number of normal subjects. Additionally, if the SaO2 was greater than the target value,  
 
and the SaO2 was above or equal to 84%, the circuit content was exchanged with N2 at 

a rate of 12L/min. 
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  2.3.4 Control of End-tidal Carbon Dioxide 
 
 
The PETCO2 was controlled by the use of the soda-lime absorber. The flow through 

the  soda-lime was switched in and out of the circuit with a variable fraction of a 5 

second cycle. Each breath, the duty cycle is adjusted by: 

 adjustment per breath = Ttot * (PETCO2 – target)(0.00125 + 0.05 * current 

fraction) 

where  Ttot – total time of a breath (in seconds) 

  Target = target PETCO2 set by the operator. 

 

The amount of adjustment depends on the current absorption and any error in the 

PETCO2. For example, if the absorber is completely bypassed, the adjustment will be 

0.125 %/sec/mmHg. If the absorber is on fully, adjustment will be by 0.51 

%/sec/mmHg. 

 

Each study consisted of three stages. Initially a five minute control period was 

recorded, where the subject breathed air via a mouth piece with CO2 extracted from 

the circuit by soda lime absorption and O2 added to maintain 21%. The subject’s mean 

PETCO2 mmHg was noted during that time.  

 
  2.3.5 Eucapnic Hypoxic Ventilatory Response Test 

In the second (eucapnic hypoxic) stage of the study, the subject’s SaO2 percentage 

was lowered to 80% over 90-120 seconds by the addition to the circuit of nitrogen at 

8% per minute; PETCO2 was maintained at the control value throughout this stage. 

Recording was started and allowed to proceed for 30-60 seconds before selecting 80% 
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target saturation; when SaO2 reached 80% the test was ended. In the third stage of the 

study the subject removed the mouthpiece and nose clip and breathed room air for ten 

minutes while SaO2 was continually monitored. 

 

  2.3.6 Hypercapnic Hypoxic Ventilatory Response Test 

The next study (hypercapnic hypoxia) was conducted in a similar manner to the 

hypoxic study; with the mouthpiece being inserted and the subject breathing room air 

for five minutes. The subject’s mean PETCO2 was noted and the target was set on the 

computer for the PETCO2 to reach 8mmHg above this control value. The subject’s 

PETCO2 was increased (by injecting a bolus of CO2 into the circuit) until it was 8-

9mmHg above the control value. The subject breathes via the mouth piece until the 

CO2 reaches the target; the subject continues to breathe on the apparatus for 5-7 

minutes, allowing the equilibration of the cerebrospinal fluid to that of arterial CO2. 

Recording is not started until after the equilibration period. When this PETCO2 value 

was reached the subject’s SaO2 was lowered to 80% over 90-120 seconds in the same 

method as the hypoxic study. The test was ended when the SaO2 reached 80%. The 

mouthpiece and nose clip were removed and the subject breathed room air for ten 

minutes while SaO2 is monitored. 

 

  2.3.7 Hyperoxic Hypercapnic Ventilatory Response Test 

Hyperoxic hypercapnic rebreathing was performed according to a modification of the 

Read rebreathing test (Read, 1967). The basis of the rebreathing test is the attainment 

of an equilibrium between inspired and expired CO2, which indicates that all 

compartments of the body (including the brain and specifically the ventrolateral 
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medulla where the central chemoreceptors are located) have been exposed to the 

inspired level of CO2.  

 

The circuit is filled with 100% oxygen by emptying and filling from the oxygen 

cylinder several times. A bolus of CO2 is then injected into the circuit such that the 

end tidal CO2 increases by approximately 8mmHg above baseline. The subject inserts 

the mouth piece, applies the nose peg and takes three deep breaths to facilitate the 

mixing of CO2 throughout the circuit and within the airways. Recording is started. 

The SaO2 remains at ~99-100% while the CO2 rises to around 65mmHg. The 

absorption of expired CO2 by the soda lime turned off is then ceased and the subject 

allowed to rebreathe their own CO2 through the recirculation of expired air. 

Rebreathing was maintained for a period of 5 minutes following the plateau i.e. the 

difference between inspired and expired CO2 was greater than 3mmHg. The test was 

continued until the PETCO2 reached 60-65mmHg, or for four minutes or until the 

subject was unable to tolerate further increases in CO2. The mouthpiece and nose clip 

were then removed and the subject breathed normally for ten minutes while SaO2 was 

monitored. The test was ended and the subject removed the mouth piece and nose peg.  

 

  2.3.8 Data Analysis 

Data was continuously acquired during testing. For each breath, a number of variables  

were collected during the test by the software and stored for later analysis. The 

filtered flow signal, the PETCO2 and the SaO2 signals were recorded onto an IBM 

compatible AT computer with a 12-bit A/D converter sampling at 125Hz. Software 

controlling the ventilatory response circuit was written in Column Oriented Language 

(COL), designed by Dr Michael Berthon-Jones at the University of Sydney. Data 



 
 Chapter 2 General Methods   

 
 

120

recorded in COL was converted to ASCII format and then imported into Microsoft 

Office Excel 2003, creating a spreadsheet of data for each individual test. Minute 

ventilation was then calculated by adding the inspiratory and expiratory tidal volumes 

and halving the product. Minute ventilation (in litres/minute) was plotted against the 

SaO2 or PETCO2 to give the slope of that change. All ventilatory responses to hypoxia 

and hypercapnia are reported as the slope of the change in ventilation plotted against 

change in SaO2 or PETCO2. 

 

  2.3.9 Statistical Analysis 

Linear mixed-effects was used to examine the effects of increasing altitude on each  
 
breathing parameter. 

 

Spearman’s rho (ρ) and Mann-Whitney non parametric correlations were used to 

assess how age, gender and ventilatory responses to hypoxia and hypercapnia affected 

the interactions between each sleep and breathing parameter and altitude. 

 

Regression was used to investigate the joint effects of gender and ventilatory 

responses on NREM periodic breathing apnea/hypopnea and the NREM periodic 

breathing arousal indices, and the REM central apnea/hypopnea and REM central 

arousal indices. 

 

Each sleep and breathing parameter was also compared to its sea level value using 

paired t tests. 
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CHAPTER 3 

SLEEP AT HIGH ALTITUDE 

 

3.1 Introduction 
 
Historically, sleep at high altitude has been known to be of poor quality, with frequent 

wakenings, gasping for breath and a sense that the sleep is unrefreshing. Much of this 

belief that sleep quality is poor at high altitude is due to anecdotal evidence: personal 

reports of mountaineers who slept poorly at high altitude and often observed their 

companions to have many pauses in breathing during sleep; these pauses were often 

described as being of the “Cheyne-Stokes” type. There have been several anecdotal 

reports of poor sleep at high altitude but a very good description was given by 

Barcroft (1925) who conducted studies on himself over six days and nights spent in a 

chamber in which the oxygen concentration was regulated to simulate altitudes from 

3050m to 4880m. Barcroft had several undergraduate students assisting with the 

research and they took turns to watch him during the night as he slept in the chamber. 

In the morning Barcroft asked his students how he appeared to have slept and was told 

that he had slept well which was in contrast to Barcroft’s experience which he 

described thus: “I thought I had been awake half the night and was unrefreshed in the 

morning. I was conscious of their moving about and looking through the glass to see 

whether or not I was awake. I used to count my pulse at intervals. The two opinions 

can only be reconciled on the hypothesis that whilst I spent most of the night in sleep, 

the slumber was very light and fitful with incessant dreams. Even some low degree of 

consciousness which fell short of wakefulness”.  This description of sleep at high 

altitude is similar to many other anecdotal reports.  
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Electrophysiological recordings of sleep have confirmed that total sleep time at high 

altitude is not altered but lighter sleep stages dominate and it appears that this 

increased light sleep contributes to subjective feelings of sleeplessness. 

 

Early recordings of breathing during sleep were recorded by Mosso (1898) who 

recorded breathing during sleep in the Italian Alps at an altitude 4559 metres by an 

ingenious method that employed a smoked cylinder onto which the pattern of 

breathing was transferred from a bar resting on the chest of his sleeping brother. This 

early research confirmed the presence of Cheyne-Stokes breathing during sleep and 

was also called “periodic breathing” to describe the repetitive and regular pauses in 

breathing. This abnormal breathing during sleep at high altitude is thought to be the 

cause of the poor sleep quality. 

 

Animal studies into sleep at simulated high altitude confirm that slow wave sleep is 

reduced. In one study (Pappenheimer 1977 and 1984) rats chronically implanted 

cortical electrodes were studied while breathing 10% oxygen, equivalent to an altitude 

of 5490m. The rats’ normal amount of slow wave sleep was reduced from 45% to 

27% when breathing this hypoxic mixture. The amplitude of the cortical EEG during 

sleep was also found to be reduced in the rats with a shift in the distribution of 

amplitudes towards the awake values. These animal studies may explain the poor 

subjective sleep quality consistently reported by sojourners at high altitude.  

 

Sleep was not recorded in humans electrophysiologically until the advances in 

technology enabled electro-encephalography and other physiological signals to be 

recorded. In 1970 and 1975 the first recordings of sleep at high altitude were carried 
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out. Joern (1970) recorded sleep in two men in their first few days at the South Pole, 

which has a reduced barometric pressure similar to 3000-3800m, due to the elevation 

of the area and to the earth’s spin. In this study Joern found that slow wave sleep, the 

deepest sleep stage, was markedly reduced, Stage 1 non rapid eye movement (NREM) 

sleep, the lightest sleep stage markedly increased with rapid eye movement (REM) 

sleep unchanged. It is not clear whether these changes to sleep were due entirely to 

the hypobaric hypoxia present at the South Pole or whether there was a contribution to 

sleep alterations by the changes in the light dark cycle present in the polar areas. 

 

Reite (1975) recorded sleep in six men at the actual high altitude location of Pike’s 

Peak at 4300m and found sleep to be markedly altered by acute exposure to high 

altitude with increased Stage 1 and reduced slow wave and REM sleep. Since these 

first studies many consequent studies have been performed, both at actual high 

altitude locations and in hypobaric chambers to simulate high altitude. 

 

The recording of sleep, and breathing during sleep, have confirmed many of the early 

reports of poor sleep and periodic breathing. Most studies have found that Stage 1 

NREM sleep is increased and slow wave sleep decreased while REM sleep has been 

found to be reduced in some studies and unchanged in other studies, while total sleep 

time is unchanged. 

 

The reports of poor subjective sleep quality at high altitude are possibly attributable to 

increased lighter sleep stages, decreased deeper sleep stages but also to the 

documented increase in sleep fragmentation. In one study done at high altitudes from 

4000-7620m, Anholm et al (1992) found that the number of brief arousals from sleep 
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increased from the sea level value of around 22/hour to over 160/hour at 7620m and 

the arousal index was markedly increased at 7620m when compared to 4572m.  These 

brief arousals were highly negatively correlated with the sleeping oxyhemoglobin 

saturation (SaO2) which led the authors to conclude that hypoxia was the main cause 

of these brief, repetitive arousals. 

 

The addition of oxygen during sleep at high altitude has been found to decrease the 

number of arousals and improve sleep (Luks et al.1998, West et al. 1995) particularly 

in increasing the amount of slow wave sleep and improving subjective sleep quality. 

 

The causes of the changes to sleep at high altitude have not been proved emphatically 

but the most widely accepted hypothesis is that hypoxia is the major contributing 

factor. Hypoxia produces increased ventilation, hypocapnia and periodic breathing 

during sleep. Periodic breathing is believed to be the most disruptive event of sleep at 

high altitude with its associated arousal from sleep and marked swings in 

oxyhemoglobin saturation and arterial carbon dioxide. Hypocapnia has recently been 

suggested as playing a major role in sleep disruption (Lovering et al 2003) but it may 

be the interplay between hypoxia and hypocapnia that is the dominant mechanism. 

 

In the research presented in this chapter we demonstrate the changes to sleep in a 

large group of subjects who undertook a trek from 1400m to 5000m in the Nepal 

Himalaya over a period of ten to eleven days. Sleep studies were conducted at sea 

level before departure to Nepal and these baseline sleep studies were used to compare 

differences in sleep architecture at altitudes 1400m, 3500m, 3900m 4200m and 

5000m.  
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This research is the first to study the sleep of a large group of subjects during real-life 

trekking conditions that reflect the activities undertaken by thousands of people each 

year, who travel to high altitude locations for the purposes of tourism and adventure. 

This specific aim of this research was to determine whether hypoxia, arousal from 

sleep or other factors present during a trek of this type contributed to the altered sleep 

architecture. 

 

3.2 Aims 

The aims of this Chapter were to examine the effects on sleep of incremental  

increases in altitude over a period of ten to eleven days’ trekking in the Nepal 

Himalaya.  

In particular the aims were: 

1) To determine the changes to the composition of sleep, the number of arousals from 

sleep and the amounts of each sleep stage compared to sea level, baseline amounts; 

and 

2) To determine whether previously reported changes to various sleep stages at high 

altitude were present in this large group of subjects. 
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3.3 Methods 

  3.3.1 Subjects 

Nineteen healthy, non-smoking, sea-level dwelling subjects (Table 3.4.01) were 

recruited from friends and colleagues. None had been to altitudes above 1000m in the 

twelve months before this research was conducted. There were ten male and nine 

female subjects between twenty and fifty-two years of age (mean 34.1 ± 9.3 years); 

the mean body mass index (BMI) was 23.4 ± 2.8 kgs/m2, (range 17.5 - 27.4kgs/m2).  

 

All the female subjects were pre-menopausal and none was taking oral contraceptives. 

Two subjects (#5 and #19) had asthma; one subject (#5) was taking Flixotide bd and 

Ventolin prn the other subject (#18) was taking Ventolin prn. Both asthmatic subjects 

had been stable for 4-6 months before departure to Nepal and remained free of 

exacerbations to asthma during the trek. 

 

Each subject gave informed consent and the protocol was approved by the University 

of  Sydney, Human Ethics Committee. 

 

  3.3.2 Measurements 

Overnight sleep studies (polysomnography) were conducted on each subject before 

departure to Nepal. These baseline sleep studies were conducted at sea level in 

Sydney, Australia either at the Peninsula Private Sleep Laboratory (n = 11) or in the 

subject’s home (n = 8). Overnight sleep studies were conducted at the following 

altitudes in Nepal: 1400m, 3500m, 3900m, 4200m and 5000m on either the first or 

second night at each altitude. 
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There were several unusable sleep studies due to battery failure or other technology 

failures. Only studies with ≥ 300 minutes of recording were used in the analysis. 

Sleep studies which had fewer than 300 minutes were removed from the analysis thus: 

one study at 1400m, one at 3900m, two at 4200m and six at 5000m. Two sleep studies 

failed and one had no SaO2 data at 3500m; one sleep study failed and four had no 

SaO2 data at 4200m, two sleep studies were unusable at 5000m due to battery failure 

after less than an hour’s sleep. Therefore, nineteen sleep studies were analysed at sea 

level, eighteen at 1400m and 3900m; seventeen sleep studies were analysed at 3500m, 

sixteen at 4200m and thirteen at 5000m. A total of eighty two sleep studies from high 

altitudes were used in the analysis. 

 

Sleep study equipment used was Compumedics (Melbourne, Australia) S Series in the 

laboratory, and portable systems (PS1 or PS2) in the home and during the time in 

Nepal. 

 

Parameters measured were two electro-encephalograms (EEG) consisting of central 

and occipital leads (C3/A2 and O2/A1); two (right and left) electro-oculograms 

(EOG); submental electro-myogram (EMG); two lead electro-cardiogram (ECG); 

chest and abdominal respiratory inductive plethysmography (RIP); anterior tibialis 

EMG; body position; nasal flow and oxyhaemoglobin saturation.  

 

  3.3.3 Protocol and Equipment 

Sleep studies were conducted either at the Peninsula Private Sleep Laboratory in 

Manly, NSW, Australia using Compumedics S Series monitoring equipment or in the 
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subject’s home using the same portable polysomnographic equipment used in Nepal 

i.e. Compumedics PS1 or PS2 portable monitoring equipment. 

 

Grass™ gold cup electrodes (Astro-Med Inc; West Warwick, RI, USA) were used to 

measure EEG, EOG and submental EMG.  

 

Leg EMG was measured using piezoelectric strain gauges (Compumedics). 

ECG was measured using Nikomed™ stick-on dots and Grass™ click-on electrodes. 

Compumedics respiratory inductive bands were used to measure chest and abdominal 

movement.  

 

Nasal flow was measured with a cannula (Salter™ 1606) and differential pressure 

transducer built into the Compumedics systems and sampled at 25Hz. 

 

Oxyhaemoglobin saturation was measured using a finger probe and an oximeter built 

into the Compumedics systems and sampled at 1Hz. 
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Figure 3.3.3 Polysomnography in the Field at High Altitude 
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3.3.4 Procedure 

The placement of the EEG, EOG and submental EMG electrodes followed the Ten-

Twenty Electrode System of the International Federation (1958). 

 
The skin was prepared by rubbing an abrasive gel (Nuprep™) on the area to which the 

electrode was to be attached.  

 

The EEG electrodes were applied using a 2cm2 piece of gauze which was spread with 

a thick coating of water soluble paste, (Grass™ EC2® Electrode Cream), which dried 

to an adhesive texture. The electrodes were filled with the same paste which is also 

electro-conductive.  

 

The EOG and submental EMG electrodes were filled with EC2® paste and attached 

with a 2cm2 piece of Fixomull® adhesive gauze.  

 

ECG electrodes were Compumedics clip on and Nikomed™ stick on dots were 

attached to the right side of the upper chest in the mid-clavicular area and to the left 

side of the lower chest below the axilla in the nipple line.  

 

Compumedics respiratory inductive plethysmography (RIP) bands were worn under 

the armpits and around the waist. The body position sensor was worn under the 

thoracic RIP band. 
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The anterior tibialis was identified by asking the subject to flex and extend the foot; 

the piezoelectric strain gauge was attached with surgical tape (Micropore™) to one 

leg. 

 

Airflow was measure with an oxygen cannula (Salter™ 1606) attached via 1-2 metres 

of oxygen tubing to the differential pressure transducer built into the Compumedics 

system. 

 

Oxyhaemoglobin saturation was measured with a finger probe and an oximeter built 

into the Compumedics system. 

 

EEG, EOG, EMG and ECG were sampled at 125Hz using 0.3µV low frequency filter 

and 30 µV high frequency filter. 

 

Respiratory movement (chest and abdominal RIP) was sampled at 25Hz.  Nasal flow 

was sampled at 125Hz. Oximetry and body position were sampled at 1Hz. 

 

The first sleep studies in Nepal were conducted in Kathmandu, altitude 1400m (see 

Figure 3.3.1b Trekking Map). After a 45 minute flight to Lukla (2800m) a three hour 

trek was undertaken to Phakding (2600m) where the first night of the trek was spent; 

sleep studies were not conducted at Phakding. The following day an eight hour trek to 

Namche Bazaar (3500m) was undertaken and two nights were spent at this altitude, 

sleep studies being conducted on either the first or second night. After two nights at 

Namche a three hour trek was undertaken to Khunde (3900m) where two nights were 

spent with sleep studies being conducted on night one or two. The next trek was to 
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Tyangboche (3900m) which was a seven hour day involving an altitude decrease of 

600m followed by an altitude increase of 600m; sleep studies were not performed 

during the single night spent at Tyangboche. An eight hour trek took the group to 

Pheriche (4200m) and two nights were spent here with sleep studies on either the first 

or second night.  The next stage of the trek was varied in the first two groups of 

subjects according to the presence of illness i.e. those subjects who were unwell 

trekked from Pheriche to Dugla (4800m) for a one night sojourn (no sleep studies) 

before trekking on to Lobuche (5000m). In the first two groups three subjects spent a 

night at Dugla and in the second group two subjects spent a night at Dugla. Subjects 

who were well trekked directly from Pheriche to Lobuche. The third group of five 

subjects all spent a night at Dugla regardless of the presence or absence of illness.  

Two nights were spent at Lobuche with sleep studies on either night one or two.  

 

Figure 3.3.1 displays the trekking map. Table 3.3.1 gives details for each subject at 

each altitude and the order of sleep study performed at that altitude i.e. first or second 

night. 
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Figure 3.3.4 a. Map of Nepal with Solu Khumbu region  
 
 

 

The trekking area, Solu Khumbu, in north-eastern Nepal. The area is accessed by a 
flight from Kathmandu in a twelve-seater, light aircraft. 
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Figure 3.3.4 b. Trekking Map 

 

 
The map shows the route covered by the trek from Lukla to Lobuche. The subjects 
flew by light aircraft from Kathmandu to Lukla and then walked to Phakding (2800m, 
no sleep studies) where the first night was spent. The next day the trek ascended to 
Namche (3500m) over a period of 6-7 hours and two nights were spent at this 
altitude. A 3-4 hour trek was then undertaken to Khunde (3900m) where two nights 
were spent then a descent of 600m followed by an ascent of 600m to Tyangboche 
(3900m) where one night was spent (no sleep studies). The trek then ascended over 5-
6 hours to Pheriche (4200m) where two nights were spent.  Some subjects then 
ascended to Dugla (4800m) for one night (no sleep studies) and some subjects trekked 
directly to Lobuche (5000m); subjects who had no signs or symptoms of Acute 
Mountain Sickness trekked directly to Lobuche. All subjects spent at least two nights 
at Lobuche. This concluded the sleep study collection. The subjects then descended to 
Pheriche and spent one night and then down into Namche for one night before 
descending into Lukla and  flying out to Kathmandu the next day. 
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Table 3.3.4 Order of Sleep Study at each altitude in each subject 

Subject 1400m 
night of 
sleep study 

3500m 
night of 
sleep study 

3900m 
night of 
sleep study 

4200m 
night of 
sleep study 

5000m 
night of 
sleep study 

1 1  1 1 1 
2 2 2 2 2 1 
3 2 2 1 1 1 
4 1 2 1  1 
5 1 1 2 2 1 
6 2 1 2 2 1 
7 1 1 1 2 2 
8 2 2 2 1 1 
9 1 1 1 2 2 
10 2 1 1 1 1 
11 2 1 2 2 1 
12 2  2 2 1 
13 2 2 1 1 1 
14 2 2 2 1 1 
15 1 2 2 2 1 
16 1 1 2 1 2 
17 2 2 1 1 2 
18 1 1 1 1 2 
19 1 1 1 1 2 
 

Due to the limitation of equipment to record sleep studies, the subjects were  
studied on either the first or second night at each new altitude and the order  
was randomised (by coin toss). 
 

 

  3.3.5 Polysomnography: Sleep Stage Scoring 

Overnight sleep studies were performed at sea level and in the Nepal Himalaya 

following the procedures outlined above. Recording was started when the subject was 

ready to sleep and was ended in the morning when the subject arose from bed. Only 

sleep studies with 300 minutes or more of recording time were used in the analysis. 
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Sleep was staged according to the criteria of Reschtshaffen and Kales (1968)  

Stage Wake is characterised by alpha activity and/or a low voltage, mixed frequency 

EEG. A high tonic EMG is usually present and often rapid eye movements and eye 

blinks are present in the EOG signals. 

 

Stage 1 non rapid eye movement (NREM) sleep is defined as a “relatively low 

voltage, mixed frequency EEG with a prominence of activity in the 2-7 cycles per 

second (cps) range. Vertex sharp waves may appear at an amplitude of up to 200µV. 

There are no rapid eye movements but slow rolling eye movements may occur. 

  

Stage 2 NREM sleep is defined as having 12-14 cps sleep spindles and/or K 

complexes on a background of relatively low voltage, mixed frequency EEG activity 

and in the absence of sufficient (i.e.<20%) slow wave activity. K complexes consist of 

a well delineated negative sharp wave immediately followed by a positive component. 

The total duration of the K complex exceeds 0.5 seconds. If less than 3 minutes of 

sleep time passes without the occurrence of either sleep spindles or K complexes (i.e. 

Stage 1) and in the absence of arousal, it is scored as Stage 2 but if it lasts longer than 

3 minutes it is scored as Stage 1. After an arousal in Stage 2 sleep, if no spindles or K 

complexes occur, it is scored as Stage 1 until a spindle or K complex occurs. 

 

Stage 3 NREM sleep is defined as high amplitude, slow wave activity for 20-50% of 

the 30 second epoch and Stage 4 NREM sleep as high amplitude, slow wave activity 

for >50% of each 30 second epoch. Slow waves are defined as 2cps or slower with an 

amplitude of >75µV from peak to peak. 
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REM sleep is defined by the concomitant appearance of a relatively low voltage, 

mixed frequency EEG activity and episodic rapid eye movements. The EEG pattern 

resembles Stage 1 NREM except that vertex sharp waves are not prominent and “saw 

tooth waves” may be present. Alpha activity is often prominent in REM sleep but is 1-

2cps slower than during wakefulness. There is an absence of spindles and K 

complexes. The submental EMG is used to detect the muscle atonia present in REM 

sleep and may show bursts of activity during vigorous rapid eye movements. 

 

Sleep staging was performed on the basis of visual inspection of 30 second epochs 

with at least half the epoch scored as the designated sleep stage. 

Sleep studies were analysed by two experienced scorers and at least 95% consensus 

was reached in ≥ 95% of sleep studies. 

 

  3.3.6 Definition of Arousal from Sleep and Assignment of Arousal 
           Type 

In defining an arousal from sleep, the guidelines from the Report of the American 

Sleep Disorders Association Task Force (1992) were used.  

 

The EEG signal was derived from the standard Reschtshaffen and Kales (1968) 

placement of scalp electrodes i.e. a central (C4 or C3) electrode referred to the 

opposite ear or mastoid (A1 or A2) and an occipital (O1 or O2) referred to the 

opposite ear or mastoid (A1 or A2). Referential electro-oculograms (LOC and ROC) 

referred to an electrode placed between the eyebrows on top of the nose. Submental 

EMG placed under the chin. 
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Arousal was defined as an abrupt change in EEG frequency which may include theta, 

alpha and/or frequencies greater than 16 Hz but not spindles. The subjects must be 

asleep, defined as ten continuous seconds or more of any sleep stage, before an 

arousal can be scored. A minimum of ten continuous seconds of intervening sleep is 

necessary before another arousal can be scored. The EEG shift must be a minimum of 

three seconds. Arousals in NREM sleep may occur without concurrent increases in 

submental EMG amplitude. Arousals in REM sleep can only be scored if 

accompanied by increases in submental EMG amplitude. 

 

In this study arousals were assigned as being due to either an obstructive respiratory 

event i.e. obstructive apnea or hypopnea, or a central respiratory event i.e. central 

apnea or hypopnea when the termination of the respiratory event and the beginning of 

the arousal were 1-3 seconds apart. When no event could be assigned as the cause of 

the arousal, it was labelled a spontaneous arousal. 

 

Arousal indices were calculated for each of the following arousal types 1) obstructive 

respiratory events, 2) central respiratory events, 3) spontaneous and 4) total arousal  

index. 

 

  3.3.7 Statistical Analysis 

Each sleep parameter was analysed to determine the effects of increasing altitude 

using linear mixed-effects model. Only sleep studies with recording times of 300 

minutes or more were used in the analysis. 
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Non-parametric correlations (Spearman’s rho and Mann-Whitney rank-sum) were 

used to determine the effects of age and gender on the relationship between sleep and 

altitude. 

 

Each sleep parameter was compared with its sea level value using paired t tests. 

Statistical significance was assumed at p values < 0.05. 

All results shown in the text are given as mean values ± SD unless otherwise stated. 
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3.4 Results 

  3.4.1 Subject Characteristics 

Nineteen subjects were studied. Demographic details are shown in Table 3.4.1 

 

Table 3.4.1. Nepal Subjects  
 
Subject Sex Age (years) Height (cms) BMI (kg/m2) 
1 M 20 197 17.5 
2 M 29 172 23.5 
3 M 29 173 23.5 

4 M 46 190 24.4 
5 F 26 159 27.3 

6 F 46 168 21.3 
7 F 42 160 21 
8 F 31 179 21.2 
9 F 40 175 23 
10 F 37 163 20 

11 M 42 188 26 
12 M 40 183 26.6 
13 M 21 183 22.4 
14 M 52 170 27 

15 F 23 165 21.3 
16 F 23 158 22.4 
17 F 31 153 27.4 
18 M 35 174 26.4 
19 M 35 193 23.1 

Means ± SD  34.1 ± 9.3 174.1 ± 12.8 23.4 ± 2.8 
 
Nineteen subjects were studied at sea level and at five altitudes in the Nepal 
Himalaya. All were healthy volunteers who had not been to altitudes above 1000m in 
the previous twelve months. 
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3.4.2 Sleep Architecture on the First and Second Night at each 

           Altitude 

The subjects were studied on either the first or second night at each new altitude due 

to equipment limitation (Table 3.3.1). When the sleep architecture was compared 

between the two nights we found surprisingly few differences between the groups. 

 

Only at two altitudes were there trends towards differences in any sleep parameter i.e. 

at 3500m there was a trend towards longer duration of REM in the group who had 

sleep studies on the second night at this altitude compared to the group studied on the 

first night : 75 ± 21 minutes in the group studied on the first night and 103 ± 37 

minutes in the group studied on the second night (p = 0.07). Not surprisingly and 

perhaps due to the very vigorous exercise involved in trekking from 2600m to 3500m 

over eight hours, there was a trend towards a shorter latency to sleep in the group 

studied on the first night at this altitude, with this group having a mean sleep latency 

of 20 ± 8 minutes compared to the group studied on the second night whose mean 

sleep latency was 36 ± 22 minutes (p = 0.07). 

 

Only at one other altitude was a trend towards a significant difference found in one 

sleep parameter i.e. at 4200m there was a longer mean duration of slow wave sleep in 

the group studied on the first night at this altitude: 86 ± 35 minutes of SWS versus 36 

± 22 minutes in the group studied on the second night (p = 0.06). 

 

  3.4.3 Total Sleep Time and Sleep Efficiency  

All sleep parameters reported are the results of analysis using linear mixed effects 

model. 
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At sea level the subjects had reasonably normal amounts of sleep, with an average 

total sleep time (TST) of 403 ± 65 minutes and sleep efficiency (time spent asleep 

during recording) of 88 ± 9 % (Table 3.4.2, Figures 3.4.1 and 2). 

 

Table 3.4.2. Sea Level 

Subject Recording 
Time (mins) 

Sleep Time 
(mins) 

Latency to 
sleep (mins) 

Sleep 
Efficiency % 

1 421 375 9 89 
2 454 442 3 97 

3 430 422 3 98 
4 446 433 4 97 
5 539 420 19 78 
6 528 419 23 79 
7 433 360 16 83 
8 567 474 47 84 
9 479 423 21 88 
10 399 316 32 79 
11 521 488 7 94 
12 336 328 3 98 
13 331 310 4 94 
14 483 305 31 63 
15 564 491 42 87 
16 530 482 13 91 
17 477 380 41 80 
18 347 323 3 93 
19 506 473 6 93 
Means ± SD 463 ± 73 403 ± 64 17 ± 15 88 ± 9 

 

Nineteen subjects were studied at sea level before departure for Nepal; overnight 
sleep studies were performed either in the subject’s home using portable 
polysomnography or in the Sleep Laboratory. Most subjects had between six and 
eight hours sleep. 
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Figure 3.4.1.  Total Sleep Time in minutes 
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Total sleep time at sea level was 403 ± 64 minutes and this was significantly reduced 
only at Kathmandu (p = 0.05), while at higher altitudes sleep time was similar to sea 
level amounts.  
 
Figure 3.4.2 Sleep Efficiency (percentage of recording time spent asleep) 
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Sleep efficiency (the percentage of recording time spent asleep) remained close to sea 
level values during the trek, being significantly reduced only at 3500m and 4200m (p 
= 0.05). 
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At the first and lowest altitude studied in Nepal i.e. Kathmandu at 1400m, the TST 

was reduced significantly to 353 ± 81 minutes (p = 0.05) with sleep efficiency (SE) of 

84 ± 10% (ns). 

 The TST at the next four altitudes studied were not significantly different with total 

sleep times at 3500m, 3900m, 4200m and 5000m of 389 ± 73, 391 ± 66, 373 ± 111 

and 392 ± 69 minutes.  

Sleep efficiency was, however reduced significantly at two altitudes during the trek 

i.e. at 3500m SE was reduced to 82  ±  8% (p = 0.05) and at 4200m SE was reduced to 

79  ±  15% (p = 0.05). At the other two altitudes i.e. 3900m and 5000m, SE was well 

maintained at near sea level values of 85  ± 10% and 83  ±  9%.  

 

Thus, there was little variation in either the total amount of sleep or the time spent 

asleep during recording. Total sleep time and sleep efficiency remained near normal, 

sea level values at most altitudes. Tables 3.4.2-6 and Figures 3.4.1 and 2. 
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Table 3.4.3 1400 metres 
 
Subject Recording 

Time (mins) 
Sleep Time 
(mins) 

Latency to 
sleep (mins) 

Sleep 
Efficiency % 

1 375 342 3 91 
2 391 344 31 88 

3 434 403 3 93 
4 440 374 35 85 
5 414 305 34 74 
6 370 342 23 92 
7 415 293 23 71 
8 330 272 48 82 
9 464 318 37 69 
10 354 223 51 63 
11 360 332 20 92 
12 406 301 11 74 
13 383 351 15 92 
14 N/A N/A N/A N/A 
15 521 501 3 96 
16 470 439 112 94 
17 300 238 45 79 
18 479 474 3 99 
19 565 476 4 84 
Means ± SD 415 ± 67 352 ± 80 28 ± 27 84 ± 10 

 
Eighteen subject’s sleep time, sleep efficiency and latency to sleep were analysed  
at 1400m (Kathmandu). Total sleep time was significantly reduced (p = 0.05) while 
sleep efficiency and latency to sleep were similar to sea level values. 
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Table 3.4.4 3500 metres 
 
Subject Recording 

Time (mins) 
Sleep Time 
(mins) 

Latency to 
sleep (mins) 

Sleep 
Efficiency % 

1 N/A N/A N/A N/A 
2 390 353 16 90 

3 496 473 8 95 
4 315 255 30 81 
5 429 352 12 82 
6 414 329 27 79 
7 514 400 10 78 
8 511 403 48 79 
9 448 328 31 73 
10 424 342 30 81 
11 442 299 15 68 
12 N/A N/A N/A N/A 
13 511 438 24 86 
14 510 344 26 67 
15 602 537 40 89 
16 569 481 26 85 
17 544 452 70 83 
18 450 414 12 92 
19 483 410 30 85 
Means ± SD 474 ± 70 389 ± 73 27 ± 16 85 ± 11 

 
Seventeen subjects’ sleep time, sleep efficiency and latency to sleep were analysed at 
3500m (Namche). Total sleep time and latency to sleep were similar to sea level 
values, while sleep efficiency was reduced (p = 0.05). 
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Table 3.4.5 3900 metres 
 
Subject Recording 

Time (mins) 
Sleep Time 
(mins) 

Latency to 
sleep (mins) 

Sleep 
Efficiency % 

1 420 398 8 95 
2 N/A N/A N/A N/A 

3 466 434 11 93 
4 468 436 20 93 
5 433 296 26 68 
6 300 284 5 95 
7 473 340 9 72 
8 466 393 40 84 
9 496 356 37 72 
10 387 333 13 86 
11 483 405 42 84 
12 474 370 36 78 
13 449 396 8 88 
14 478 300 12 63 
15 512 458 43 89 
16 536 510 20 95 
17 539 466 42 87 
18 416 387 8 93 
19 527 488 30 93 
Means ± SD 462 ± 58 391 ± 66 23 ± 14 85 ± 10 

 
Eighteen subjects’ sleep time, latency to sleep and sleep efficiency were analysed at 
3900m (Khunde) and there were no significant differences found between sea level 
values in any parameter measured at 3900m. 
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Table 3.4.6 4200 metres 
 
Subject Recording 

Time (mins) 
Sleep Time 
(mins) 

Latency to 
sleep (mins) 

Sleep 
Efficiency % 

1 N/A N/A N/A N/A 
2 502 428 27 85 

3 473 443 11 94 
4 N/A N/A N/A N/A 
5 N/A N/A N/A N/A 
6 302 278 3 92 
7 357 332 12 93 
8 579 415 54 87 
9 403 294 47 73 
10 472 351 85 74 
11 465 367 70 79 
12 387 164 36 42 
13 501 404 16 80 
14 320 147 6 46 
15 561 505 17 90 
16 601 535 16 89 
17 587 504 54 86 
18 451 382 16 85 
19 594 425 90 72 
Means ± SD 472 ± 98 373 ± 112 31 ±  24 79 ± 15 

 
Sixteen subjects’ sleep time, sleep efficiency and latency to sleep were analysed at 
4200m (Pheriche). Sleep efficiency was reduced (p = 0.05), while total sleep time and 
latency to sleep were similar to sea level values. 
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Table 3.4.7 5000 metres 
 
Subject Recording 

Time (mins) 
Sleep Time 
(mins) 

Latency to 
sleep (mins) 

Sleep 
Efficiency % 

1 397 357 7 90 
2 N/A N/A N/A N/A 

3 N/A N/A N/A N/A 
4 502 432 16 86 
5 N/A N/A N/A N/A 
6 N/A N/A N/A N/A 
7 422 384 17 91 
8 457 390 27 85 
9 474 344 49 73 
10 N/A N/A N/A N/A 
11 347 246 43 71 
12 N/A N/A N/A N/A 
13 511 432 13 85 
14 501 423 17 84 
15 543 516 18 95 
16 571 447 18 78 
17 429 354 83 83 
18 474 451 6 95 
19 509 322 390 63 
Means ± SD 472 ± 61 392 ± 69 31 ±  28 83 ± 10 

 
Thirteen subjects’ sleep time, sleep efficiency and latency to sleep were analysed at 
5000m (Lobuche). There were no significant differences found in any parameter. 
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  3.4.4 Sleep Stages: Duration and Percentage 

The lightest sleep stage, Stage 1 non rapid eye movement sleep (NREM) increased 

progressively with increasing altitude (Figures 3.4.3 and 3.4.4), becoming highly 

significantly increased from 3500m. This increase was true for both the duration of 

Stage 1 and its percentage of total sleep time.  

 

At sea level Stage 1 NREM duration was 14 ± 9 minutes and was increased, but not 

significantly, at 1400m to 18 ± 12. At the next highest altitude, 3500m Stage 1 NREM 

had increased to 31 ± 19 minutes (p < 0.001), and then to 36 ± 18 minutes at 3900m 

(p < 0.001), 26 ± 14 minutes at 4200m (p = 0.04) and 43 ± 17 minutes at 5000m (p < 

0.001). 

 

Figure 3.4.3 Duration in minutes of Stage 1 NREM Sleep 
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The lightest sleep stage, Stage 1 non-rapid eye movement (NREM) sleep, was 
increased at all altitudes in Nepal, with highly significant increases occurring 
at 3500m (p < 0.001),  3900m (p < 0.001), 4200m (p = 0.04) and 5000m (p < 0.001).  
This finding is in agreement with all previous studies of sleep at high altitude. 
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Stage 1 NREM percentage of total sleep was 3 ± 2% at sea level  and increased to 5 ± 

3% at 1400m (p = 0.03), 8 ± 6% at 3500m (p = 0.004), 9 ± 5% at 3900m  

(p < 0.001), 8 ± 8% at 4200m (p = 0.03) and 11 ± 6% at 5000m (p < 0.001).  

Figure 3.4.4 Percentage of Stage 1 NREM Sleep 

 
 
 

 
 

Percentage of Stage 1 NREM Sleep 
at Sea Level and High Altitude

0

5

10

15

20

25

0m         1400m     3500m     3900m     4200m     5000m

S
ta

ge
 1

 N
RE

M
 %

*

** ***
* ***

 

The percentage of total sleep spent in the lightest sleep stage, Stage 1 NREM sleep, 
was increased at all altitudes in Nepal, with significant increases at 1400m (p = 
0.03), 3500m (p = 0.004), 3900m (p < 0.001), 4200m (p = 0.03) and 5000m (p < 

.001). 

Stage 2 NREM sleep was unaffected by moderate and high altitudes but interestingly 

was significantly reduced at the lowest altitude during the trek. Sea level duration of 

Stage 2 NREM was 196 ± 41 minutes and at 1400m this was reduced to 149 ± 45 

minutes (p < 0.001). Stage 2 duration was maintained at near sea level values at 

3500m where it was 197 ± 36 minutes, at 3900m it was 193 ± 41 minutes, at 4200m 

182 ± 60 minutes and 176 ± 67 minutes at 5000m. 

 

0
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Figure 3.4.5 Duration in minutes of Stage 2 NREM Sleep 
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The duration of Stage 2 non-rapid eye movement (NREM) sleep was unchanged  
from sea level except at 1400m, where Stage 2 NREM was highly significantly 
reduced to only 149 ± 45 minutes (p < 0.001). At all other altitudes in Nepal Stage 2 
NREM duration was similar to sea level. 
 

The percentage of Stage 2 NREM was not significantly changed at moderate and high 

altitudes but, as with Stage 2 duration, the percentage of time spent in Stage 2 NREM 

was reduced at 1400m to 44 ±10% (p = 0.05).  At sea level Stage 2 NREM percentage 

was 50 ± 9%, at 3500m 52 ± 7%, at 3900m 50 ± 10%, at 4200m 49 ± 10% and at 

5000m 48 ± 8%.  
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Figure 3.4.6 Percentage of Stage 2 NREM Sleep 
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The percentage of time spent in Stage 2 NREM sleep was reduced only at 1400m 
(p = 0.05). At all other altitudes in Nepal Stage 2 percentage was similar to sea level. 
 
 
 
Slow wave sleep (SWS), comprising Stage 3 and 4 NREM sleep, decreased as 

expected with increasing altitude. This was true for both the duration of SWS and its 

percentage of total sleep. At sea level the duration of SWS was 96 ± 44 minutes and 

this was significantly decreased at all altitudes of 3500m and higher in Nepal. At 

1400m SWS duration was 86 ± 53 minutes (ns), 71 ± 45 minutes at 3500m (p < 

0.001), 72 ± 45 minutes at 3900m (p < 0.001),  70 ± 36 minutes at 4200m (p = 002) 

and 73 ± 28 minutes at 5000m (p < 0.001).  
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Figure 3.4.7 Duration in minutes of Slow Wave Sleep  
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Slow wave sleep duration, consisting of Stages 3 and 4 non-rapid eye movement  
(NREM) sleep was reduced from 3500m and higher, (p < 0.001 at 3500m,  
p < 0.001 at 3900m, p = 0.002 at 4200m and p< 0.001 at 5000m).  
This finding is in agreement with most studies into sleep at high altitude 
 

Slow wave sleep percentage at sea level was 24 ± 10% and was unaffected by 1400m, 

retaining close to the sea level the amount i.e. 26 ± 13%. By the next highest altitude 

of 3500m however, SWS had begun to be significantly decreased with a percentage of 

17 ± 10% (p = 0.006), and then to 17 ± 10% at 3900m (p < 0.001) and 18 ± 6% at 

5000m (p < 0.001). Unusually, at 4200m, the second highest altitude, SWS 

percentage of total sleep was 20 ± 8% which was not a significant reduction. 
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Figure 3.4.8 Percentage of Slow Wave Sleep 
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The percentage of time spent in slow wave sleep, comprising Stage 3 and 4 
 NREM sleep, was reduced at 3500m (p = 0.006), 3900m (p < 0.001) and 5000m 
(p < 0.001).  

 

Rapid eye movement (REM) sleep was unaffected by increasing altitude. Sea level 

duration of REM sleep was 92 ± 33 minutes was maintained near this amount at 

1400m with 86 ± 38 minutes, at 3500m with 85 ± 34 minutes, at 3900m with 90 ± 31 

minutes and at 4200m with 87 ± 34 minutes, and 86 ± 27 minutes at 5000m (p > 0.4 

for all altitudes). 
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Figure 3.4.9 Duration in minutes of REM Sleep  
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The duration of rapid eye movement (REM) sleep was not affected by high 
altitude, remaining similar to sea level values throughout the trek. 

 

REM sleep percentage at sea level was 23 ± 6% and this percentage was maintained 

very close to this amount at all altitudes: 25 ± 8% at 1400m, 22 ± 5% at 3500m, 24 ± 

7% at 3900m, 23 ± 7% at 4200m and 22 ± 5% at 5000m (p > 0.1 for all altitudes).  
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Figure 3.4.10. Percentage of REM Sleep. 
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The percentage of sleep time spent in rapid eye movement (REM) sleep was not  
affected by high altitude, remaining similar to sea level values throughout the trek. 

 

  3.4.5 Arousal Indices 

There were changes in the dominant type of arousal that occurred as altitude increased 

during the trek (Figures 3.4.11 – 3.4.16). This was expected, as periodic breathing and 

central respiratory events in REM sleep became prevalent as the trek reached higher 

altitudes. However, the total arousal index (AI) was not significantly increased until 

the highest altitude and the spontaneous arousal index was significantly decreased at 

the three highest altitudes. Periodic breathing and central REM events were the major 

contributors to the increased total arousal index. Surprisingly, arousals due to upper 

airway obstruction decreased significantly from 3500m, this was an unexpected 

phenomenon, with the subjects who had a minor degree of upper airway obstruction at 

sea level and 1400m having almost complete resolution of these respiratory events 

and of course, the arousals that were associated with them.  
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At 1400m the total arousal index was decreased significantly and at 5000m, increased 

significantly. However, at all other altitudes the total AI was unchanged; at sea level 

the total AI was 19 ± 8/hour, at 1400m it was 14 ± 8/hour (p = 0.001), at 3500m 17 ± 

9/hour, at 3900m, 20 ± 14/hour and at 4200m 26 ± 14/hour. As the highest altitude 

was reached a significant increase in the total AI occurred with 29 ± 17/hour at 5000m 

(p = 0.004).  

 

Figure 3.4.11 Total Arousal Indices 
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The total arousal index was significantly decreased at 1400m (p = 0.001) and 
significantly increased at 5000m (p = 0.004).  
At all other altitudes during the trek total arousal index was similar to sea level. 

 

This increased total AI was due to the increasing arousals of periodic breathing in 

NREM sleep and central respiratory events in REM sleep. Not surprisingly, at sea 

level there was no periodic breathing in NREM sleep in any subject but three subjects 

had between three and five central apneas in REM sleep which translated into a mean 

central AI (sleep) for the group of nineteen subjects of 0.05 ± 0.2. Periodic breathing 
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and central REM events were evident to a minor degree at the lowest altitude of 

1400m with a mean central AI of 1.5 ± 3/hour. This was almost entirely due to the 

presence of NREM sleep periodic breathing in two subjects (#11 and # 15) who had 

central AI of 28 /hour and 15/hour. Seven subjects had central events in REM sleep at 

1400m ranging from 5 – 11/hour, one of whom (#11) also had the highest NREM PB 

AI. Despite these low levels of central arousals at 1400m it was significantly 

increased from sea level (p = 0.01).  Central arousals dominated from 1400m onwards 

with a mean central AI at 1400m of  2 ± 3/hour (p = 0.007), 6 ± 6/hour (p = 0.01) at 

3500m, 12 ± 14/hour at 3900m (p<0.001), 17 ± 16/hour at 4200m (p<0.001) and 21 ± 

18/hour at 5000m (p = 0.01). 

 

There was a wide variation in the amount of central respiratory events and their 

associated arousals within the group. Some subjects had central AIs over 30/hour at 

several altitudes while others had AIs below 10/hour or below 5/hour. 
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Figure 3.4.12 Central Arousal Indices 
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Arousals due to periodic breathing and REM sleep central respiratory events 
increased, as expected, with increasing altitude during the trek.   
The central arousal index was significantly increased at 1400m (p = 0.01), at 3500m 
(p = 0.007), at 3900m (p < 0.001), at 4200m (p < 0.001) and at 5000m (p = 0.01). 
 

The central arousal indices were a combination of periodic breathing, which occurred 

predominantly in NREM sleep, and central apneas and hypopneas that occurred in 

REM sleep.  

 

The central REM AI at sea level was 0.05 ± 0.2/hour but was significantly increased 

even at the lowest altitude of 1400m i.e. 2 ± 3/hour (p = 0.001). From 3500m onwards 

the REM central AI was highly significantly increased (p < 0.001): 6 ± 6/hour at 

3500m, 12 ± 14/hour at 3900m, 17 ± 16/hour at 4200m and 21 ± 18/hour at 5000m 
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Figure 3.4.13 Central REM Sleep Arousal Indices 
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Arousals due to central apneas and hypopneas in REM sleep were increased, 
as expected, with increasing altitude during the trek.   
The REM sleep central arousal index was significantly increased at 1400m (p = 
0.001), and highly significantly increased at 3500m, 3900m, 4200m and 5000m (p < 
0.001).  
 

Arousals due to periodic breathing in NREM sleep were significantly increased from 

the lowest altitude if 1400m, with the AI increased to 2 ± 3/hour (p = 0.01). From 

3500m this was highly significantly increased (p < 0.001) to 8 ± 9/hour at 3500m, 13 

± 17/hour at 3900m, 22 ± 22/hour at 4200m and 26 ± 20/hour at 5000m. 
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Figure 3.4.14 Periodic Breathing (NREM Sleep) Arousal Indices 
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Arousals due to periodic breathing (PB) in non-rapid eye movement (NREM) sleep  
were increased, as expected, with increasing altitude during the trek.   
There was no periodic breathing in NREM in any subject at sea level but, from  
1400m onwards, arousals due to PB increased significantly: p = 0.01 at 1400m and  
p < 0.001 at 3500m and higher.  

 

Those arousals for which an associated event could not be determined, and deemed 

spontaneous arousals, were decreased at the three highest altitudes. The sea level 

value for the spontaneous AI was 7 ± 4/hour and at 1400m 6 ± 4/hour , 6 ± 3/hour at 

3500, 5 ± 4/hour at 3900m (p = 0.04), 5 ± 5/hour at 4200m (p = 0.02) and 4 ± 4/hour 

at 5000m (p = 0.03). 
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Figure 3.4.15 Spontaneous Arousal Indices 
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Arousals for which a cause could not be determined were called spontaneous  
Arousals and these were reduced at the three highest altitudes: p = 0.04 at 3900m, 
 p = 0.02 at 4200m and p = 0.03 at 5000m. 

 

The decreased incidence of obstructive apneas and hypopneas in the group as altitude 

increased translated into significantly decreased arousals associated with these events. 

The obstructive AI was attributable at sea level to seven subjects (#3-5, #8, #11, #13, 

and #14) who had a minor degree of upper airway obstruction at sea level with 

obstructive AI ≥ 10/hour; a further seven subjects (#1-2, #9-10, #15-16 and # 19) had 

obstructive AI from 6-9/hour. In these subjects very little upper airway obstruction 

persisted past 3500m. 

 

The obstructive AI at sea level was 11 ± 10/hour, at 1400m 6 ± 8/hour but as altitude 

increased this was significantly reduced. At 3500m the obstructive AI was 4 ± 5/hour 

(p = 0.007), 3 ± 4/hour at 3900m (p = 0.001), 4 ± 5/hour at 4200m (p = 0.006) and 2 ± 

2/hour at 5000m (pm = 0.003). 
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Figure 3.4.16 Upper Airway Obstruction Arousal Indices. 
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Arousals due to upper airway obstruction were significantly decreased from 
3500m. At sea level several subjects had a mild degree of upper airway obstruction 
during sleep but this virtually resolved with increased altitude: 3500m p = 0.007,  
3900m p = 0.001, 4200m p = 0.006 and 5000m p = 0.003. 
 

  3.4.6 Periodic Breathing Apnea/Hypopnea Arousal Indices in each 
           Sleep Stage at 3500m and 5000m 

Arousals due to periodic breathing (PB) in NREM sleep and central apneas and 

hypopneas in REM sleep increased as altitude increased (see Chapter 4) but fewer 

than half the PB apneas and hypopneas and the central REM apneas/hypopneas 

resulted in arousal from sleep. This represented significant differences between the 

PB apnea/hypopnea indices (AHI) and PB arousal indices (AI): at 3500m the PB AI 

was 9 ± 9/hour and the PB AHI 20 ± 19/hour (p = 0.01), at 3900m the PB AI was 14 ± 

17/hour and the PB AHI 28 ± 26/hour (p = 0.03),  at 4200m the PB AI was 24 ± 

24/hour and the PB AHI 52 ± 49/hour (p = 0.02) and at 5000m the PB AI was 29 ± 

27/hour and the PB AHI 74 ± 62/hour (p = 0.008). 

 

 



 
 Chapter 3 Sleep at High Altitude   

 
 

164

Figure 3.4.17 Relationship between Periodic Breathing Apnea/hypopnea Index 
(AHI) and the Periodic Breathing Arousal Index (AI). 
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The number of central apneas and hypopneas (periodic breathing) increased with 
increasing altitude but fewer than half these respiratory events were associated with 
arousal from sleep. 
The periodic breathing apnea/hypopnea index was significantly higher than the 
periodic breathing arousal index at all altitudes from 3500m and higher, p ≤ 0.01  
 

As altitude increased, the number of arousals following periodic breathing events 

(apneas and hypopneas) in NREM sleep and REM sleep central apneas/hypopneas 

were decreased in all but Stage 1 NREM sleep. Stages 1 and 2 NREM were more 

disrupted by PB as altitude increased than Stages 3 and 4 NREM or REM sleep.  

In Stage 1 NREM sleep at 3500m (Figure 3.4.18) the PB apnea/hypopnea index (AHI) 

was 56/hour and the PB arousal index (AI) was 21/hour. Thus, only 37% of 

apneas/hypopneas resulted in arousal. At 5000m (Figure 3.4.19) in Stage 1 the PB 

AHI was 89/hour and the PB AI 53/hour i.e. 59% of apneas/hypopneas resulted in 

arousal. 
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Figure 3.4.18 Stage 1 NREM periodic breathing and associated arousal at  
  3500m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 1 NREM at 3500m
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In Stage 1 non-rapid eye movement (NREM) sleep at 3500m, 37% of periodic  
breathing events resulted in arousal from sleep. 

 

Figure 3.4.19 Stage 1 NREM periodic breathing and associated arousal 
  at 5000m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour in Stage 1 NREM at 5000m
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Stage 1 non-rapid eye movement (NREM) sleep at 5000m, 59% of periodic  
breathing events resulted in arousal from sleep.  
 
 
In Stage 2 NREM at 3500m (Figure 3.4.20) the PB AHI was 23/hour and the PB AI 

11/hour i.e. 45% of apneas and hypopneas resulted in arousal. At 5000m in Stage 2 

(Figure 3.4.21).the PB AHI was 71/hour and the PB AI 26/hour i.e. 36% of 

apneas/hypopneas resulted in arousal. 
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Figure 3.4.20 Stage 2 NREM periodic breathing and associated arousal 
  at 3500m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 2 NREM at 3500m
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In Stage 2 non-rapid eye movement (NREM) sleep at 3500m 45% of periodic  
breathing events resulted in arousal from sleep.  
 
 
Figure 3.4.21 Stage 2 NREM periodic breathing and associated arousal 
  at 5000m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 2 NREM at 5000m
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In Stage 2 non-rapid eye movement (NREM) sleep at 5000m, 36% of periodic  
breathing events resulted in arousal from sleep.  
 
 
In Stage 3 NREM at 3500m (Figure 3.4.22) the PB AHI was 6/hour and the PB AI 

2/hour i.e. 34% of apneas/hypopneas resulted in arousal. At 5000m in Stage 3 (Figure 

3.4.23) the PB AHI was 51/hour and the PB AI 13/hour i.e. 25% of apneas/hypopneas 

resulted in arousal. 
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Figure 3.4.22 Stage 3 NREM periodic breathing and associated arousal 
  at 3500m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 3 NREM at 3500m
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In Stage 3 non-rapid eye movement (NREM) sleep at 3500m, 34% of periodic  
breathing events resulted in arousal from sleep.  
 
 
Figure 3.4.23 Stage 3 NREM periodic breathing and associated arousal 
  at 5000m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 3 NREM at 5000m
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In Stage 3 non-rapid eye movement (NREM) sleep at 5000m, 25% of periodic  
breathing events resulted in arousal from sleep.  
 

In Stage 4 NREM at 3500m (Figure 3.4.24) the PB AHI was 3/hour and the PB AI 

0.5/hour i.e. 15% of apneas/hypopneas resulted in arousal. At 5000m in Stage 4 

(Figure 3.4.25) the PB AHI was 36/hour and the PB AI 6/hour i.e. 15% of 

apneas/hypopneas resulted in arousal. 
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Figure 3.4.24 Stage 4 NREM periodic breathing and associated arousal 
  at 3500m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 4 NREM at 3500m
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In Stage 4 non-rapid eye movement (NREM) sleep at 3500m, 15% of periodic  
breathing events resulted in arousal from sleep.  
 
 
Figure 3.4.25. Stage 4 NREM periodic breathing and associated arousal 
  at 5000m 

Periodic Breathing Apneas & Hypopneas/hour (AHI) 
versus Arousals/hour (AI) in Stage 4 NREM at 5000m
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In Stage 4 non-rapid eye movement (NREM) sleep at 5000m, 15% of periodic  
breathing events resulted in arousal from sleep.  
 

In REM sleep at 3500m (Figure 3.4.26) the central AHI was 31/hour and the central 

AI 12/hour i.e. 41% of apneas/hypopneas resulted in arousal. At 5000m in REM sleep 

(Figure 3.4.27) the central AHI was 40/hour and the central AI 13/hour i.e. 33% of 

apneas/hypopneas resulted in arousal. 
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Figure 3.4.26 Central apneas and hypopneas in REM sleep and associated 
  arousal at 3500m 

Central Apneas & Hypopneas/hour (AHI) versus 
Arousals/hour (AI) in REM Sleep at 3500m
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In rapid eye movement (REM) sleep at 3500m, 41% of periodic breathing 
events resulted in arousal from sleep.  
 
 
Figure 3.4.27 Central apneas and hypopneas in REM sleep and associated 
  arousal at 5000m 

Central Apneas & Hypopneas/hour (AHI) versus 
Arousals/hour (AI)  in REM Sleep at 5000m
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In rapid eye movement (REM) sleep at 5000m, 33% of periodic breathing 
events resulted in arousal from sleep.  
 
 
Thus as sleep became deeper (Stages 3 and 4 NREM) fewer central events resulted in 

arousal from sleep. Arousal resulted more frequently when the central events occurred 

in Stages 1 and 2 NREM and in REM sleep, but in most cases fewer than half were 

associated with arousal from sleep. 
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3.5 Discussion 

The most important finding of this research was that most sleep parameters were 

largely unaffected by high altitude. Total sleep time, sleep efficiency, Stage 2 NREM 

and REM sleep all retained near normal amounts. Slow wave sleep was reduced at 

3500m and higher, apparently replaced by Stage 1 sleep. The most consistent and 

significant change to sleep architecture was in Stage 1 NREM sleep, which was 

increased at each altitude of 3500m and higher (p <0.001). Both the duration of Stage 

1 NREM sleep and the percentage of total sleep time that it occupied increased at 

3500m and remained at a much higher level than normal for each of the next three 

altitudes. As the lightest sleep stage, Stage 1, increased slow wave sleep decreased 

with significant reductions in duration and percentage at all altitudes of 3500m and 

higher. Stage 2 and total sleep time were reduced only at the lowest altitude of 1400m, 

and REM sleep was unaffected by altitude, maintaining near normal durations and 

percentages at every altitude in Nepal. 

 

The total arousal index (AI) was increased significantly only at the highest altitude 

and the main contributor to this increased total AI was the increased number of 

arousals due to periodic breathing, which occurred mainly in NREM sleep, and the 

central events in REM sleep.  The spontaneous AI did not contribute to the increased 

total AI as spontaneous arousals were decreased at the three highest altitudes. A 

surprising finding was that arousals due to upper airway obstruction were significantly 

decreased from even the lowest altitude of 1400m. 

 

This research was conducted under field conditions in the Nepal Himalaya and there 

were several sleep studies that failed to record, others that had too few hours of sleep 
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recorded to allow their use in the analysis and, at one altitude in particular, five sleep 

studies failed to record the oxygen saturation. Most of these losses of data were due to 

the failure of the batteries in the recording devices. Electricity availability was 

unreliable at two altitudes in the first two treks; batteries failed to fully charge and 

therefore recordings were incomplete. There was also illness in many of the subjects; 

most subjects suffered from one or more of the following: upper respiratory tract 

infection, gastroenteritis or acute mountain sickness, with one subject developing 

pneumonia at 3900m and another suffering from severe acute mountain sickness from 

3900m onwards.  

 

These problems made the data collection difficult at times, particularly when illness 

affected the investigators as well as the subjects. Cognitive function deteriorates with 

increasing altitude (Tune 1964; Denison et al, 1966; McFarland 1969; Fowler et al., 

1982; Townes et al, 1984; Cavaletti et al, 1987; Fowler and Porlier 1987; Regard et al, 

1989) and problem solving or troubleshooting faulty equipment became more 

challenging as the trek ascended. Nevertheless, eighty two sleep studies from the 

Nepal data collection were usable and, although a full data set would have been 

preferred, we think that this is a large enough number of studies to ensure meaningful 

outcomes for the research. 

 

Our findings that Stage 1 NREM sleep is increased with increasing altitude is in 

agreement with all previous findings but most studies have reported a marked 

reduction in, or even absence of slow wave sleep following acute exposure, but 

returning to near normal after three to four weeks at high altitude. We found that slow 

wave sleep persisted at high altitude, with all subjects maintaining some SWS, but it 
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was significantly reduced from 3500m.  Differences in our findings and those of 

previous studies are most likely due to the differing protocols. Most investigations of 

high altitude sleep have been performed on subjects who have been acutely exposed 

to high altitude whereas in our research sleep studies were performed on either the 

first or second night of exposure to each new, higher altitude after the subjects had 

spent many hours trekking to reach that altitude. Our research, therefore investigated 

the effects on sleep of acute exposure to a series of ascending altitudes with 4-8 hours 

of vigorous exercise between each new altitude. The subjects trekked over rough 

paths and, as altitude increased, the degree of difficulty of the trekking increased 

proportionally to increasing hypobaric hypoxia. 

 

One other study (Salvaggio et al, 1998) had a similar protocol to ours in that the five 

subjects trekked from 2800m to 5000m over six days in the Nepal Himalaya. 

However, in this group of five trekkers, SWS was absent in four subjects in the first 

week at 5000m. This discrepancy between the two studies is perhaps best explained 

by the length of time the subjects took to reach 5000m. Salvaggio’s group trekked to 

5000m in half the time that was taken by our group. Therefore the discrepancy 

between the two groups is most likely due to the rapid ascent undertaken by 

Salvaggio’s group.  

 

The effects of acute exercise on sleep architecture have been found in some studies to 

be small increases in total sleep time, Stage 2 NREM and slow wave sleep and small 

reductions in REM sleep (109-111). We suspect that exercise did not have a major effect 

on the sleep architecture in our subjects, particularly as there were no significant 

differences in the sleep architecture of those studied on the first night at the new 
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altitude (after a day’s trekking) and those studied on the second night following a day 

with only incidental exercise. 

 

The underlying physiological change of high altitude is hypobaric hypoxia, but this is 

known to be a poor stimulus to arousal. Studies in humans have found that hypoxia 

failed to cause arousal (Berthon-Jones and Sullivan 1982 and 1984) in subjects with 

oxyhemoglobin saturations as low as 80%. In our study the mean and minimum 

oxyhemoglobin levels during sleep were near or below 80% in most of our subjects 

during sleep at altitudes higher than 3900m.  A number of experimental studies in rats 

subjected to sustained hypoxia have shown major disruption of normal sleep patterns 

with a particular reduction of REM sleep (Megirian et al, 1980; Ryan et al, 1983; 

Ryan and Megirian, 1982;  Pappenheimer, 1984). We did not find this effect on REM 

sleep but our findings of increased Stage 1 and reduced slow wave sleep were similar. 

The obvious mechanism for reducing sleep times is hypoxia. There are at least two 

different mechanisms that could underly this effect. The first is the induction of 

arousal by carotid chemoreceptor afferents.  Acute animal experiments show that 

hypoxia induces arousal from NREM sleep at higher saturation levels than in REM 

sleep (Phillipson et al., 1978).  Thus, animals can stay in REM sleep without arousal 

at lower levels of arterial oxyhemoglobin saturation than they can in NREM sleep. 

This could be the explanation for the clear reduction of SWS at the two highest 

altitudes in our study, but more subtle change in REM sleep. However, the hypothesis 

that the sleep structure is changed by hypoxia induced arousals is not easily supported 

by our findings.  Subjects seemed to maintain contiguous epochs of sleep even when 

there was periodic breathing and more importantly, there was no clear relationship 

between the occurrence of periodic breathing and the reduction of SWS. Thus, the 
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reduction in SWS occurred in subjects independently of the occurrence of periodic 

breathing, despite the fact that periodic breathing did cause an increase in the total 

number of arousals (see Chapter 4).   

 

Stage 1 NREM sleep is the lightest sleep stage and normally contributes less than 5% 

of total sleep time. This finding of increased Stage 1 sleep is consistent with all other 

findings in research into sleep at high altitude. Increased Stage 1 NREM is thought to 

contribute to complaints of poor sleep quality by those who travel to high altitude 

locations because Stage 1 NREM sleep is the lightest sleep stage, and is also called 

“transitional sleep” to indicate that it is not quite sleep but rather a drowsy 

wakefulness.  

 

The increase in Stage 1 sleep is most likely due to the large number of arousals that 

occur in this sleep stage with increasing altitude. In Stage 1 sleep at 3500m the 

percentage of periodic breathing events that were associated with arousal from sleep 

was 37% but by the time 5000m was reached 59% of the periodic breathing events 

caused arousal. Thus it appears that the increased amounts of Stage 1 NREM sleep are 

directly linked to the increasing frequency of arousals that occur in this sleep stage. 

Sleep was not able to deepen into Stages 2, 3 and 4 due to the repetitive brief 

awakenings that occurred in Stage 1 NREM sleep. 

 

In patients with the obstructive sleep apnea syndrome (OSAS), sleep fragmentation 

results from the repetitive upper airway obstructions (Sullivan and Issa 1985) and this 

fragmentation appears to affect sleep architecture in a similar way as the sleep 

fragmentation present in high altitude newcomers. Slow wave sleep is reduced in 
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patients with OSAS; the mechanism of this reduction in SWS is not known but it is 

thought that the repetitive arousals from sleep prevent the consolidation of sleep with 

resulting increase in Stage 1 NREM sleep and reduction in Stage 3 and 4 NREM 

sleep. In our study arousals were much more common in Stage 1 due to the more 

frequent central apneas and hypopneas of periodic breathing e.g. at 5000m the arousal 

index due to periodic breathing was 86/hour in Stage 1while in slow wave sleep the 

PB AI was less than half this amount. At 3500m, in Stage 1, arousals due to PB were 

frequent i.e. ~60/hour but were fewer than 5/hour at the same altitude in SWS. Thus, 

with increasing altitude slow wave sleep becomes more disrupted by periodic 

breathing; as the arousal index increases the amount of slow wave sleep decreases. As 

altitude increased SWS was decreased while Stage 1 sleep increased; this change in 

the lightest and deepest stages of NREM sleep appear to be directly linked to 

increasing arousals due to periodic breathing. 

 

Increased arousals also occurred in Stage 2 NREM and in REM sleep as altitude 

increased but did not appear to be similarly related to decreased amounts of these 

sleep stages. 

 

Although our studies showed a clear effect of altitude on sleep architecture, with the 

most obvious effect being increased Stage 1 NREM sleep, the studies of Ryan and 

Megirian, (1982 and 1983) of hypoxia on sleep in rats showed a proportionately larger 

effect of hypoxia. There was a major reduction of REM.  Because of this animal data, 

we had thought we would see a much larger effect of high altitude on sleep structure. 

However, in their study of hypoxia in the sleep of rats, lower levels of oxyhemoglobin 

saturation levels were reached as the rats breathed 10% oxygen. It is also likely that 
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acclimatisation to the high altitude that occurs during the time of the trek would have 

had a role in potentially reducing the effects of hypoxia. More recent data have 

suggested that the impact of hypoxia on sleep architecture may be mediated through 

changes in CO2 levels. Lovering et al (2003),  have shown in a cat model that changes 

in sleep architecture, and specifically reductions in REM sleep, that are associated 

with hypoxia are absent when supplemental CO2 is given to reverse hypoxia-driven 

hypocapnia; in this study hypocapnia also reduced REM sleep in normoxic 

conditions.  Lovering also suggests that hypocapnia, rather than hypoxia, is 

responsible for the increased sleep fragmentation that occurs with increasing altitude.  

 

Hypocapnia causes increased/more alkaline pH, which may affect sleep, but there are 

no data available. The administration of acetazolamide, a carbonic anhydrase 

inhibitor, is often used at high altitude to improve sleep quality and reduce periodic 

breathing (Nicholson et al, 1988; Hackett et al., 1987); it is thought that this effect is 

due to improved oxygen saturation brought about by respiratory stimulation but 

acetazolamide also induces a bicarbonate diuresis with resultant metabolic acidosis 

and it may be this acidification that improves sleep quality.  

 

While there are currently no data available in regards to changes in pH that are 

specifically associated with sleep at high altitude, it is likely that hypocapnia 

associated with increments in altitude has been at least partially compensated for by 

changes in the bicarbonate system by the time subjects underwent sleep studies. 

Fourteen of our subjects had arterial blood gas analysis at each new altitude and these 

data demonstrated progressive hypocapnia along with worsening hypoxia as altitude 
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increased. Alterations in sleep architecture may be the result of hypoxia, hypocapnia 

or other changes that we did not measure. 

 

 Future studies comparing the effects of a rapid ascent to high altitude to this slower 

change that occurs in real-life trekking would be needed to determine what if any role 

acclimatisation would have played. The roles played by hypoxia and hypocapnia need 

further investigation as it appears that hypocapnia is an important disruptive influence 

on sleep at high altitude. The role of pH, which becomes more alkaline with increased 

altitude may also have a major role in sleep disruption at high altitude. 

 

Conclusion 

This research studied sleep under real-life conditions of trekking to increasing 

altitudes over ten to eleven days. Our results showed significant changes in sleep 

architecture; particularly to Stage 1 and slow wave sleep with little change to Stage 2, 

REM or total sleep time. The magnitude of the effect on sleep at high altitude was far 

less than would be predicted from experimental studies in animals and likely 

represents a range of acclimatisations that occur during a slowly progressive increase 

in altitude.  
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CHAPTER 4 

BREATHING DURING SLEEP AT HIGH ALTITUDE 

 

4.1 Introduction 

It has been known for centuries that breathing during sleep at high altitude is 

abnormal; anecdotal reports of pauses in breathing during sleep and waking, gasping 

for air, have been commonly reported since man first wrote about ascents to high 

altitudes by those who normally resided at or near sea level.  

 
Well known reports of periodic breathing at high altitude from the nineteenth century 

are those of the English physicist Tyndall (1860) a keen alpinist, and Egli-Sinclair 

(1891) a physician and mountaineer. They reported breathing of the “Stokes 

character” which was later to be called Cheyne-Stokes breathing after the two Irish 

physicians who described it in separate publications in 1818 and 1854.  

 

Breathing during sleep at high altitude was first recorded by Angelo Mosso, a 

professor of physiology at the University of Turin, Italy in 1898 at an altitude of 4559 

metres in the Italian Alps. He used a bar that rested on the chest and connected to a 

smoked cylinder onto which respiratory movement was recorded. Despite this clear 

recording of periodic breathing Mosso did not think that ventilation was increased at 

high altitude; he believed, like others at this time, that there was no increase in 

ventilation and he attributed the reduced alveolar PCO2 to carbon dioxide being 

extracted from the blood because of the low barometric pressure at high altitude. 



 
 
 Chapter 4 Breathing During Sleep at High Altitude   

 
 

177

It was to be many years before the cause of periodic breathing was linked to increased 

ventilation and its resulting hypocapnia.  

 

Douglas and Haldane (1909) conducted simple but ingenious experiments to 

investigate the control of breathing in relation to pO2 and pCO2 (described in detail on 

pages 69-71 of this thesis). Through voluntary hyperventilation in awake subjects 

breathing either air or air enriched with oxygen, and the use of soda lime in the 

breathing circuit, they were able to make conclusions about the mechanism of 

periodic breathing and the interplay of pO2 and pCO2. 

 

Since these early experiments by Douglas and Haldane, others have examined 

breathing under conditions of hypoxia during sleep (Berssenbrugge et al, 1983 & 

1984; Reite et al, 1975; Miller and Horvath, 1977; Normand et al, 1990; Salvaggio et 

al, 1998 and others) either in simulated or actual high altitude. It has been confirmed 

that periodic breathing is very common during sleep at high altitude, but not 

ubiquitous. 

 

The cause of periodic breathing during sleep at high altitude is hyperventilation-

induced hypocapnia (West et al, 1986; Ghazanshahi and Khoo, 1993). As altitude 

increases barometric pressure falls, inducing hypobaric hypoxia. The physiological 

response to hypoxia is hyperventilation, mediated by the peripheral chemoreceptors, 

which optimises the available oxygen and aims to maintain the arterial oxygen levels 

as close to normal as possible. A side effect of this hypobaric hypoxia induced 

hyperventilation is hypocapnia. During sleep the arterial carbon dioxide level falls to 
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below the apneic threshold (Skatrud and Dempsey 1983, Dempsey et al. 2004) i.e. the 

stimulation to breathe is lost due to higher pH in the area of the central 

chemoreceptor. During this centrally mediated apnea arterial oxygen level falls, CO2 

levels rise and pH falls thus stimulating a return to ventilation. However, breathing 

restarts in several large breaths which have the effect of again driving the CO2 to 

below the apnea threshold; thus the cycle is repeated.  

 

Loop gain theory has been used to explain periodic breathing (Khoo et al, 1982). 

According to this theory, two factors are necessary for self sustained oscillatory 

behaviour in a control system, such as that which controls breathing. In such a system 

a “disturbance”, e.g. a change in alveolar ventilation due to a factor such as a sigh or 

change in body position is followed by a “corrective action” which tends to suppress 

the disturbance. In the case of a sigh, alveolar ventilation is increased and the 

corrective action is a lowering of the pCO2 which tends to reduce ventilation by its 

action on the chemoreceptors; this constitutes negative feedback. In order for 

oscillatory behaviour to be sustained the first requirement is that the magnitude of the 

corrective action must exceed the original disturbance. The ratio of the magnitude of 

the disturbance in relation to the magnitude of the corrective action is known as loop 

gain. The second requirement needed for sustained oscillatory behaviour is that the 

corrective action be presented 180º out of phase with the disturbance, so that what 

would otherwise inhibit ventilation now augments it. This sustained oscillatory 

behaviour occurs when the loop gain exceeds unity at a phase difference of 180º. 

Loop gain theory predicts that the higher the loop gain, the more likely it is that 

periodic breathing will occur. Hypobaric hypoxia, present at high altitude, increases 
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the loop gain through its action on the chemoreceptors. Predicting who will develop 

periodic breathing should thus be a simple matter of testing each individual’s 

ventilatory response to hypoxia; the brisker an individual’s response to hypoxia the 

higher the loop gain and the more likely it is that the individual will develop periodic 

breathing at high altitude. 

 

Studies at high altitude (Lahiri et al, 1983; Severinghaus et al, 1966) have found that 

high altitude natives have a blunted ventilatory response to hypoxia and do not have 

periodic breathing during sleep. Another study (Matsuyama et al, 1989) found that 

there was a significant correlation between the hypoxic and the hypercapnic 

ventilatory responses measured at sea level and the development of periodic breathing 

in lowlanders studied at 7170m.  

The development of periodic breathing during sleep at high altitude is believed to be 

more likely in those individuals with steeper ventilatory responses to hypoxia and 

hypercapnia (Lahiri et al. 1983, White et al.1987, Matsuyama et al. 1989) i.e. 

individuals with a higher loop gain, and therefore brisker ventilatory responses 

hypoxia and hypercapnia, are more likely to develop prolonged breathing instability 

(periodic breathing) during sleep (Khoo et al. 1982). 

 

Periodic breathing is common during sleep at altitudes above 3000m (Reite et al, 

1975; Miller and Horvath, 1977; Berssenbrugge et al, 1983 and 1984; Finnegan et al, 

1984; Selvamurthy et al, 1986; Nicholson et al, 1988; Goldenberg, 1988; Normand et 

al, 1990; Anholm et al, 1992; Mizuno et al, 1993; Salvaggio et al, 1998; Zielinski et 

al, 2000; Mizuno et al, 2005) but not everyone develops periodic breathing (PB). It is 
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believed by some high altitude physiologists that an individual’s ventilatory response 

to hypoxia and hypercapnia determines if PB will develop (Lahiri et al, 1983; West et 

al, 1986; Matsuyama et al, 1989) i.e. those with more marked ventilatory responses to 

hypoxia will tolerate less hypoxia before arousal from sleep and a return of 

ventilation. This theory has not been proved. Studies into sleep and breathing at high 

altitude have found that not all PB apneas result in arousal from sleep despite marked 

falls in oxygen (Khoo and Berry 1996). 

 

Women are thought to have greater ventilatory responses than men to hypoxia and 

hypercapnia, due to the effects of ovarian hormones on receptor mediated 

mechanisms at both the peripheral and central sites (Bayliss et al. 1987, Brodeur et al. 

1986, Hannhart et al. 1989, Regensteiner et al. 1989, Tatsumi et al. 1997). 

Progesterone increases carotid body sensitivity and estradiol raises central nervous 

system translation of the carotid body signal into increased ventilation (Hannhart et al. 

1990, Hannhart et al.1989). Furthermore, estradiol is needed to induce progesterone 

receptors (Brodeur et al. 1986). Therefore gender may influence ventilatory responses 

to the hypoxia of high altitude, with men and women developing periodic breathing in 

differing amounts. The effects of menstrual phase effects on ventilatory responses to 

hypoxia and hypercapnia have proved difficult to demonstrate, with some studies 

finding increased HVR during the luteal phase (higher progesterone) compared to the 

follicular phase (Schoene et al. 1981, Takano 1984, White et al. 1983) and some other 

studies finding HVR unchanged (Dombovy et al. 1987, Regensteiner et al. 1990, 

Beidlman et al. 1999). Similarly, studies that made repeated measures of the 

ventilatory response to hypercapnia (HCVR) throughout the menstrual cycle, also had 
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differing results i.e. finding that HCVR was increased during the luteal compared to 

the follicular (Jurkowski et al.1981, Schoene et al. 1981, Dombovy et al. 1987, Dutton 

et al. 1989, Edwards et al. 1996, Williams and Krahenbuhl 1997) while others found 

no change (Takano et al. 1981, White et al.1983, Regensteiner et al. 1990, Beidleman 

et al. 1999, Takano 1988).  

 

It has been suggested that PB helps to keep sleeping oxygen saturation higher during 

sleep because of the repetitive hyperpneas that follow pauses in breathing (West et al 

1986; Ghazanshahi & Khoo 1993) This theory is not supported, however by other 

studies which found that the sleeping oxygen saturation was not higher during 

periodic breathing at high altitude (Mizuno et al 1993; Normand et al 1990). 

 

Sleep-induced hypoventilation, which has no detrimental effects on the sleeping SaO2 

in normal, healthy individuals at sea level, has a profound effect at high altitude with 

the sleeping SaO2 being considerably lower than awake levels, the severity being 

proportional to altitude.  

 

This chapter reports the findings from investigations of breathing during sleep in 

nineteen subjects from sleep studies performed at sea level and at each of the five high 

altitudes in the Himalaya. This chapter also examines the relationship between 

ventilatory responses to hypoxia and hypercapnia, measured at sea level, and the 

development of periodic breathing at high altitude. 
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4.2 Hypothesis and Aims 

Breathing during sleep at high altitude is known to be uneven, with periodic breathing 

being present in many people. High altitude natives have been found to have a blunted 

ventilatory response to hypoxia and less periodic breathing than lowlanders who 

ascend to high altitudes. Loop gain theory predicts that the higher the loop gain the 

more likely it is that periodic breathing (sustained respiratory oscillation) will occur 

and that a brisk ventilatory response to hypoxia would predispose towards an 

increased loop gain. 

 

Ventilatory response to hypoxia and hypercapnia may have an effect on breathing 

during sleep at high altitude and the development of periodic breathing is thought to 

be related to a steep hypoxic ventilatory response which would drive increased 

ventilation and result in low arterial CO2, promoting central apnea with sleep onset.  

 

Women are believed to have steeper ventilatory responses than men due to the effects 

of ovarian hormones and thus may be more likely to develop periodic breathing at 

high altitude. 

 

Therefore, the aims of this Chapter were to examine the effects of incremental 

increases in altitude on breathing during sleep over a period of ten to eleven days’ 

trekking in the Nepal Himalaya. A further aim was to determine the relationship, if 

any, of breathing during sleep at high altitude and the individual subject’s ventilatory 
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responses to hypoxia and hypercapnia measured at sea level with particular interest in 

whether gender influenced the development of periodic breathing. 

 
In particular the aims were: 

1) to determine the changes in breathing during sleep and the interaction between 

periodic breathing, sleep stage and arousal from sleep; 

2) to determine whether sea level ventilatory responses to hypoxia and hypercapnia 

affect breathing during sleep, sleeping oxygen saturation and morning arterial blood 

gases and whether gender affected these developments;  

3) to determine whether periodic breathing has an effect on the sleeping oxygen 

saturation and morning arterial blood gases; 

4) to determine whether gender affects the development of periodic breathing during 

sleep, the sleeping oxygen saturation and morning arterial blood gases; and 

5) to determine whether previously reported changes to breathing during sleep at high 

altitude were present in this large group of subjects. 
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4.3 Methods 

  4.3.1 Subjects 

Nineteen healthy, non-smoking, sea-level dwelling subjects were recruited from 

friends and colleagues. There were ten male and nine female subjects aged between 

twenty and fifty-two years of age (mean 34.1 ± 9 years); the mean body mass index 

(BMI) was 23.4 ± 2.8 kgs/m2 (range 17.5 - 27.4kgs/m2).  

 

All the female subjects were pre-menopausal and none was taking oral contraceptives. 

Two subjects (#5 and #19) had asthma; one (#5) was taking Flixotide bd and Ventolin 

prn the other (#19) was taking Ventolin prn. Both asthmatic subjects had been stable 

for 4-6 months before departure to Nepal and remained free of exacerbations to 

asthma during the trek. 

   

  4.3.2 Ventilatory Response Testing 

   4.3.2.1 Measurements 

Ventilatory response tests were conducted using a computer controlled, closed loop, 

biased flow circuit as described in Chapter 2. The ventilatory response testing 

apparatus and the software used to analyse the ventilatory responses were designed by 

Dr Michael Berthon-Jones. The circuit is comprised of a fixed speed blower 

(50L/minute), a bypassable soda lime absorber and a six litre flow through bag. The 

bag was encased within a sealed box connected to a Fleisch no. 3 pneumotachograph 

which was coupled to a differential pressure transducer (model DP-45 Validyne, 

Northridge, CA, USA). The subject’s end tidal pCO2 (PETCO2) was controlled by the 

computer software, which adjusted the proportion of flow passing through the soda 
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lime absorber, or added CO2 from a medical cylinder supply to the circuit, according 

to the PETCO2 of the preceding breath. Arterial SaO2 was lowered rapidly by adding 

N2 to the circuit. 

 
Each subject’s PETCO2 was measured at the mouthpiece using an infrared CO2 

analyser (Hewlett-Packard, Waltham, MA, USA). SaO2 and heart rate were measured 

using a pulse oximeter with a finger probe, set in fast response mode (model 3700e, 

Ohmeda, Boulder, CO, USA). The concentration of inspired oxygen (FiO2) was 

measured at the mouthpiece by a fast response paramagnetic oxygen analyser (Datex, 

Helsinki, Finland) and displayed continuously to the operator. 

 

Tidal volume (VT) inspiratory and expiratory times (Ti and Te respectively), 

respiratory frequency (Freq) and breath-by-breath minute ventilation (VI) were 

calculated from the flow signal produced by the pneumotachograph. Mean values for 

SaO2 were calculated and PETCO2 was measured for each breath. All data were 

digitally stored and processed using a computer with a 12 bit analog-to-digital 

converter sampling at 125Hz. 

 

   4.3.2.2 Protocol 

All ventilatory response tests were conducted in the afternoon, between 13:00 and 

16:00 hours. All subjects had abstained from caffeine and other stimulants for the 

previous 12 hours. Tests were conducted with subjects sitting upright, wearing a nose 

clip and breathing via a mouthpiece attached to the ventilatory response circuit. 

Female subjects were tested during the follicular and again in the luteal phase of their 

menstrual cycles. Menstrual cycles were confirmed by analysis of venous blood for 
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follicle stimulating hormone (FSH), luteinising hormone (LH), oestradiol and 

progesterone. These blood tests were performed by the Department of Endocrinology 

at Royal Prince Alfred Hospital, and the Institute of Clinical Pathology and Medical 

Research at Westmead Hospital. Normal ranges are displayed in Table 4.3.2.2 and the 

hormonal peaks and troughs of each hormone across the menstrual cycle in Figure 

4.3.2.2. 

 

Table 4.3.1 Reference ranges for female hormones across the menstrual cycle. 
 
Phase of the  Luteinising 

Hormone 
Oestradiol Progesterone Follicle 

stimulating 
hormone IU/L 

Menstrual  pmol/L nmol/L 
cycle IU/L 
     
Follicular      3 - 20        2 - 15        <980   0.5 – 4.5 

     
Mid-cycle       9 - 26      22 - 105   430 - 1300 

     
Luteal      1 - 12     0.6 - 19   130 - 900        >15 

 
The peak time for estradiol in the menstrual cycle is just before ovulation, while 
progesterone, a known respiratory stimulant, peaks during the luteal phase. 
 
 
Figure 4.3.1 Hormonal changes in the menstrual cycle 
 

 
Changes in female hormones during the menstrual cycle. Estradiol rises during the 
follicular phase and peaks just before ovulation. The peak for progesterone occurs 
after  ovulation. Progesterone is a known respiratory stimulant. 
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Ventilatory response testing equipment and procedures are explained fully in Chapter 

2. Each study consisted of three stages. Initially a five minute control period was 

recorded, where the subject breathed air via a mouth piece with CO2 extracted from 

the circuit by soda lime absorption and O2 added to maintain 21%. The subject’s mean 

PETCO2 mmHg was noted during that time. In the second (hypoxic) stage of the study, 

the subject’s SaO2 percentage was lowered to 80% over 90-120 seconds by the 

addition to the circuit of nitrogen at 8% per minute; PETCO2 was maintained at the 

control value throughout this stage. When SaO2 reached 80% the test was ended. In 

the third stage of the study the subject removed the mouthpiece and nose clip and 

breathed room air for ten minutes while SaO2 was continually monitored. 

 

The next study (hypercapnic hypoxia) was conducted in a similar manner to the 

hypoxic study; with the mouthpiece being inserted and the subject breathing room air 

for five minutes. The subject’s mean PETCO2 was noted and the target was set on the 

computer for the PETCO2 to reach 8mmHg above this control value. The subject’s 

PETCO2 was increased (by injecting a bolus of CO2 into the circuit) until it was 8-

9mmHg above the control value. When this PETCO2 value was reached the subject’s 

SaO2 was lowered to 80% over 90-120 seconds in the same method as the hypoxic 

study. The test was ended when the SaO2 reached 80%. The mouthpiece and nose clip 

were removed and the subject breathed room air for ten minutes while SaO2 is 

monitored. 

 

The final study (hyperoxic hypercapnic) was conducted with the mouthpiece re-

inserted and the subject breathing room air for 5 minutes. The PETCO2 was noted. The 
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system was filled with oxygen by emptying and filling the circuit with pure oxygen 

from the cylinder and a bolus of CO2 was injected into the circuit. The subject was 

then asked to take three deep breaths to facilitate mixing of the CO2 throughout the 

circuit and within the airways and then resume normal breathing through the 

mouthpiece. The soda lime was bypassed and the subject re-breathed expired air. The 

test was continued until the PETCO2 reached 60-65mmHg or for 4 minutes. The 

mouthpiece and nose clip were then removed and the subject breathed normally for 

ten minutes while SaO2 was monitored. 

 

   4.3.2.3 Analysis 

Data was continuously acquired during testing. For each breath, a number of variables  

were collected during the test by the software and stored for later analysis. The 

filtered flow signal, the PETCO2 and the SaO2 signals were recorded onto an IBM 

compatible AT computer with a 12-bit A/D converter sampling at 125Hz. Software 

controlling the ventilatory response circuit was written in Column Oriented Language 

(COL), designed by Dr Michael Berthon-Jones at the University of Sydney. Data 

recorded in COL was converted to ASCII format and then imported into Microsoft 

Office Excel 2003, creating a spreadsheet of data for each individual test. Minute 

ventilation was then calculated by adding the inspiratory and expiratory tidal volumes 

and halving the product. Minute ventilation (in litres/minute) plotted against the SaO2 

or PETCO2 to give the slope of that change. All ventilatory responses to hypoxia and 

hypercapnia are reported as the slope of the change in ventilation plotted against 

change in SaO2 or PETCO2. The hypoxic tests are reported as the change in ventilation 

in litres per minute per percentage change in the oxygen saturation i.e. L/min/%. The 
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hyperoxic hypercapnic tests are reported as change in ventilation in litres per minute 

per change in the end tidal CO2 pressure i.e. L/min/mmHg. 

 

  4.3.3 Measurements of Breathing during Sleep 

All sleep studies were recorded using Compumedics (Melbourne, Australia) S series 

at sea level in the sleep laboratory (eleven subjects) and portable systems PS1 or PS2 

in the subject’s home (eight subjects) at sea level and in the Himalaya. Sleep 

parameters that were recorded are described in detail in Chapter 3. The following 

table gives approximate barometric pressures and inspired oxygen at sea level and 

five high altitudes. 

 

Table 4.3.4 Barometric pressures and inspired oxygen at sea level and high   
         altitudes. 

 
Altitude in 
metres 

Barometric 
pressure 
mmHg 

Inspired pO2 
mmHg 

 
0 

 
760 

 
149 

 
1000 

 
679 

 
132 

 
2000 

 
604 

 
117 

 
3000 

 
537 

 
103 

 
4000 

 
475 

 
90 

 
5000 

 
420 

 
78 

 
The barometric pressure decreases as altitude increases with resulting decreases in 
the partial pressures of the atmospheric gases. The partial pressure of inspired 
oxygen is shown in relation to sea level and increasing altitude. 
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Breathing during sleep was recorded at sea level, 1400m, 3500m, 3900m, 4200m and 

5000m.  The respiratory inductive plethysmography (RIP) bands were placed around 

the chest at the level of the nipples, and around the abdomen at the level of the 

umbilicus. RIP bands were adjusted to ensure good breathing movement signals; RIP 

was recorded at a sampling rate of 25Hz. The nasal cannula (Salter™ 1606) was 

placed in the nares and taped to the cheeks to ensure all night recording.  The cannula 

was connected to the recording equipment via 2 metres of oxygen tubing and airflow 

was recorded at a sampling rate of 25Hz. Oxyhemoglobin saturation was recorded at 

1Hz with a finger probe and oximeter built into the recording equipment. The finger 

probes used were fold over infra-red sensors and were secured in position, with the 

infra-red light at the base of the fingernail, by surgical tape. The finger probe was 

connected via a cable to the recording equipment. 

 

Morning arterial blood gases were collected and analysed in the morning after sleep 

studies, before food or fluid intake, in fourteen subjects (#1-14, 8 male, 6 female). 

 

  4.3.4 Arterial Blood Gases: Equipment and Procedure 

Fourteen subjects had arterial blood collected for analysis of pO2, pCO2 and pH. 

Blood was collected in the morning from the radial artery within an hour of waking 

from the overnight sleep study. The blood gas analysis was performed at sea level and 

at each of the five altitudes in Nepal. Blood was drawn from the radial artery using 

2mL syringe and 25 gauge needle. 
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The equipment used was i STAT (I-STAT Corporation, East Windsor, NJ, USA), a 

portable hand-held unit designed to analyse and provide data on human blood. The 

unit uses cartridges and a very small amount of blood. The unit runs on two 9v lithium 

batteries and weighs 515 grams. The i STAT analyser was electronically calibrated 

each morning before running a batch of three or four samples. The i STAT blood gas 

analyser, syringes and needles were placed in the subject’s sleeping bag for 20-30 

minutes to warm the equipment to close to body temperature; this was a 

recommendation from the manufacturer’s of the equipment to ensure accurate blood 

gas analysis. The blood gas results were printed onto a paper strip and also stored in 

the i STAT analyser. 

There was no failure in the collection or analysis of blood gases. 

All used i STAT cartridges, needles and syringes were disposed of into a metal 

container with a lid and were brought back to Sydney for disposal. 

 

  4.3.5 Sleep Studies: Equipment and Procedure 

The equipment used to record sleep and breathing was the Compumedics S Series, 

PS1 or PS2 (equipment described in detail in Chapter 3). 

 

Recording was started when the subject retired to sleep for the night and was ended 

when the subject awoke the next morning. 

 

  4.3.6 Polysomnography: Scoring Respiratory Events 

Respiratory event scoring was performed visually, after sleep stage scoring, using two 

and five minute epochs of recordings. Airflow was measured on the nasal flow signal, 
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breathing movement was measured on the chest and abdominal RIP and oximetry 

from the finger probe and oximeter built into the recording equipment. 

 

  4.3.7 Definitions of Respiratory Events 

Respiratory scoring was in accordance with the criteria of the American Academy of 

Sleep Medicine Task Force (1999) in which:  

Apnea is defined as an absence of airflow lasting for ≥10 seconds using a valid 

measure of breathing during sleep. In this study nasal flow via a cannula and pressure 

transducer was used as the valid measure of flow. 

 

Hypopnea is defined as an amplitude reduction in airflow of ≥ 50% or a detectable 

reduction of airflow that is associated with either oxygen desaturation of ≥ 3% and/or 

arousal from sleep. 

 

Central apnea is defined as cessation of airflow and respiratory effort lasting for ≥10 

seconds. In this study respiratory effort was measured by respiratory inductive 

plethysmography. 

 

Central hypopnea is defined as reduction of airflow and respiratory effort ≥ 50% 

lasting for ≥10 seconds. 

 

Periodic breathing is defined as a series of three or more central apneas or hypopneas 

with each apnea or hypopnea terminating in three or four hyperpneic breaths. In this 

research, periodic breathing was scored only in non rapid eye movement sleep. 
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Central apneas and hypopneas occurring in rapid eye movement (REM) sleep did not 

occur in a periodic breathing pattern; these REM events occurred predominantly in 

phasic REM, in which disordered breathing is a normal occurrence and results in 

isolated central apneas and hypoventilation (Guilleminault, 1978). During disordered 

breathing in phasic REM at sea level in healthy people oxygen desaturation does not 

occur Guilleminault, 1978). However, at high altitude under conditions of hypobaric 

hypoxia, disordered breathing results in oxygen desaturation and sometimes arousal 

from sleep. These respiratory events in REM were called central apneas and 

hypopneas (Figure 4.4.3b) and lasted from 10-25 seconds; oxygen desaturation was 

usually associated with these events and this desaturation increased with increasing 

altitude. Arousal from sleep occurred in fewer than half these events.  

Obstructive apnea is defined as cessation of airflow for ≥10 seconds in the presence of 

unchanged or increased respiratory effort.  

Obstructive hypopnea is defined as the reduction of airflow ≥10 seconds in the 

presence of unchanged or increased respiratory effort. 

An apnea/hypopnea index (AHI) was calculated for obstructive, periodic breathing 

and central events thus: 

Number of respiratory events X 60/number of minutes of sleep.  

The numbers derived were called the obstructive AHI, periodic breathing (NREM) 

AHI and central (REM) AHI. 
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4.3.8 Analysis of Respiratory Events 

The respiratory events were analysed for the group as a whole at sea level and at each 

altitude. The respiratory events were also analysed according to gender, age, presence 

or absence of PB, and sea level ventilatory response to hypoxia and hypercapnia. 

 

Arousal following apneas or hypopneas may increase ventilation during the 

hyperpneic phase of PB (Khoo et al, 1996), therefore the relationship between the 

AI/AHI ratio and sleeping oxygen saturation (mean and minimum) and the AI/AHI 

ratio and morning arterial blood gases were analysed. 

The subjects who developed PB were compared, at altitudes 3500m and higher, to 

those who did not develop PB to detect differences in the mean and minimum 

sleeping oxygen saturation, morning arterial blood gases and the AI/AHI ratio. 

 

Two sleep study recordings at 3500m were unusable because of equipment failure and 

one had no SaO2 data, therefore sixteen sleep studies were analysed for sleeping 

oxygen saturation at this altitude. One sleep study recording at 3900m had no SaO2 

data, therefore eighteen sleep studies were analysed for SaO2. One sleep study at 

4200m was unusable and four had no SaO2 data, therefore fourteen sleep studies were 

analysed for SaO2 at this altitude. Nineteen sleep studies were analysed for breathing 

and SaO2 at 5000m. 
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4.3.9 Statistical Analysis 

Each breathing parameter was analysed to determine the effects of increasing altitude  
 
using a linear mixed-effects model. Breathing parameters were examined to determine  
 
the relationship between altitude and the development of periodic breathing, sleeping  
 
oxygen saturation, arterial blood gases and ventilatory responses to hypoxia and  

hypercapnia. 

 

The effects of gender and age on these relationships were examined using non-

parametric correlations i.e. Spearman’s correlation and Mann-Whitney rank-sum test. 

 

Regression analysis was also performed to determine any relationship between 

periodic breathing, ventilatory responses, sleeping oxygen saturation and arterial 

blood gases. Each breathing parameter was compared with its sea level value using 

paired t tests. The alpha was set at 0.05.  

 

All results shown in the text are given as mean values ± SD unless otherwise stated. 

 

4.4 Results 

  4.4.1 Subject Characteristics 

Nineteen subjects were studied. Demographic details are shown in Table 3.4.01; ten 

subjects were male, nine female; mean age (± standard deviation) was 34.1 ± 9.3 

years for nineteen subjects, 34.9 ± 10.4 years for male subjects and 33.2 ± 8.3 years 

for female subjects.. 
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 Mean body mass index (BMI) was 23.4 ± 2.8 kg/m2  for the nineteen subjects, 24.1 ± 

2.8kg/m2 for male subjects and 22.5 ± 2.8kg/m2  for females. 

All subjects were healthy, sea level-dwelling individuals who had not been to altitudes 

above 1000m for the twelve months before this research was conducted. 

 

  4.4.2 Arterial Blood Gases 

In fourteen subjects arterial blood gas analyses were performed at each altitude.  All 

arterial blood gases were normal, as expected, at sea level in these healthy subjects  

with mean pO2 95.3 ± 6.6 mmHg, pCO2 41.9 ± 3 mmHg and pH 7.40 ± 0.03 (Figure 

4.4.2, Table 4.4.2).  

 

There was a marked change in arterial blood gases compared to sea level at even the 

lowest altitude of 1400m. There was a profound decrease in the pO2 at 1400m to 76.9 

± 5.5 mmHg (p < 0.001) with pCO2 also decreasing significantly to 39.0 ± 3.1mmHg 

(p 0.02) and pH rising to 7.42 ± 0.02 (p = 0.04). 

 

These changes in arterial blood gases continued with increasing altitude; at 3500m the 

pO2 was 54.2  ± 8.5 mmHg (p < 0.0001), the pCO2 32.4 3 mmHg (p < 0.0001) and the 

pH 7.44 ± 0.03 (p = 0.002). At 3900m the pO2 was 53.1 ± 6.6 mmHg (p < 0.0001), 

pCO2 29.3 ± 3.6 mmHg (p < 0.0001) and the pH 7.45 ± 0.03 (p = 0.0003). At 4200m 

the  pO2 was 50.4 ± 9 mmHg (p < 0.0001), the pCO2 was 29.6 ± 2.4 mmHg (p < 

0.0001) and the pH was 7.44 ± 0.02 (p = 0.0003). At 5000m the pO2 was 46.8 ± 7.7 

mmHg (p < 0.0001), the pCO2 was 26.8 ± 3.5 mmHg (p < 0.0001) and the pH was 

7.44  ± 0.04 (p = 0.006). 
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Figure 4.4.2 Arterial blood gases at sea level and high altitudes. 
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Arterial pO2, pCO2 and pH at sea Level ,1400, 3500, 
3900, 4200 and 5000 metres in the Nepal Himalaya

PaO2 95.3 76.9 54.2 53.1 50.4 46.8

PaCO2 41.8 38.98 32.4 29.3 26.6 26.8

pH 7.4 7.42 7.44 7.45 7.44 7.44

1 2 3 4 5 6

 
 
The effects of increasing altitude became apparent at even the lowest elevation i.e. 
1400 meters, with marked decreases in pO2, pCO2 and the pH becoming more 
alkaline. This clearly demonstrates the challenges to the ventilatory system at high 
altitude. 
 
Table 4.4.2 Arterial blood gases at sea level and high altitudes 
 

 0 m 1400 m 3500 m 3900 m 4200 m 5000 m 

77 ± 6‡ 54 ± 9‡ 53 ± 7‡ 50 ± 9‡ 47 ± 8‡ 95 ± 7 pO2  
mmHg 

32 ± 3‡ 29 ± 4‡ 30 ± 2‡ 27 ± 4‡ 42 ± 3 39 ± 3* pCO2 
mmHg 

7.44 ± 0.03† 7.45 ± 0.02‡ 7.44 ± 0.02‡ 7.44 ± 0.04‡ pH 7.39 ± 0.03 7.42 ± 0.02* 

 
Results of morning arterial blood gases at sea level and at the five high altitude 
locations. There were significant effects on pO2, pCO2 and pH at even the lowest 
altitude in Nepal: subjects became increasingly hypoxic, hypocapnic and alkalotic as 
altitude increased. *p < 0.05,        †p < 0.01,        ‡p < 0.001 
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  4.4.3 Respiratory event type at sea level and high altitude 

At sea level, as expected in these normal individuals, there was no periodic breathing 

(PB) in any subject. Occasional central apneas is a common occurrence in healthy 

individuals during phasic rapid eye movement (REM) sleep and, in our group of 

subjects, three females (#5, #6, #15) had two or three central apneas during phasic 

REM sleep at sea level resulting in central REM apnea/hypopnea index (AHI) of 

0.7/hour, 0.8/hour and 1/hour.  

 

At the first and lowest altitude studied in Nepal (Kathmandu at 1400m) two subjects 

(#12 and #15) developed periodic breathing in non rapid eye movement (NREM) 

sleep with PB AHI of 27.5/hour and 14.5/hour; the average NREM PB AHI for the 

whole group was 3.3 ± 6.6/hour. One of these subjects was male and the other, 

female.  

 

As altitude increased so did the NREM PB AHI, with five subjects out of seventeen 

developing periodic breathing at 3500m during NREM sleep. These five subjects had 

an average AHI of 46 ± 13/hour while the eleven subjects without PB (AHI < 

20/hour) had an average of 8 ± 6/hour. At the next altitude, 3900m, eleven subjects 

out of nineteen developed  PB and seven did not. The group with PB had an average 

AHI of 45 ± 24/hour while those subjects without PB had an average AHI of 3 ± 

4/hour.  

Not surprisingly, by the two highest altitudes PB AHI had increased markedly. At 

4200m eleven of the eighteen subjects had PB AHI average of 73 ± 43/hour while 

seven subjects had an average AHI of 8 ± 8/hour. Most subjects had developed PB by 
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the time 5000m was reached with an average AHI of 85 ± 45/hour while only four 

subjects (all of whom were female) did not have PB, having an average AHI of 3 ± 

3/hour. 

 

Central apneas and hypopneas in REM sleep also increased with increasing altitude. 

At sea level three female subjects had central apneas in phasic REM with the average 

for this group 0.8 ± 0.2/hour. The remaining sixteen subjects had no central events in 

REM sleep. The number of subjects with central REM events increased even at the 

lowest altitude of 1400m but the AHI remained below 20/hour for the nineteen 

subjects, with an average for the group of 4 ± 4/hour. At the next altitude i.e. 3500m, 

eight subjects now had central REM events with AHI > 20/hour, the average AHI for 

this group being 29 ± 10/hour. However another nine subjects had few central REM 

events with an average of 8 ± 5/ hour. The average AHI for the whole group of 

nineteen subjects at 3500m was 20 ± 16/ hour.  

 

Central REM events continued to increase with increasing altitude so that by 3900m 

eleven of the nineteen subjects had an average AHI of 42 ± 21/hour and eight with an 

average AHI of 11 ± 6/hour. The whole group average was 30 ± 25/hour. 

 

This did not increase significantly at the next altitude i.e. 4200m, with eleven of the 

eighteen subjects having a central REM AHI average of 41 ± 15/hour, seven subjects 

with low levels of central REM events with an average AHI of 7 ± 7/hour. The 

average AHI for the group of eighteen subjects was 32 ± 26/hour. 
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The number of subjects with high central REM AHI did not increase at 5000m, with 

eleven out of seventeen subjects having an average AHI of 53 ± 30/hour while five 

subjects had an average AHI of 13 ± 4/hour. The average for the whole group of 

seventeen subjects was 43 ± 39/hour. 

 

There was a minor degree of upper airway obstruction in the subjects at sea level, 

particularly in REM sleep, with ten of the nineteen subjects having an obstructive 

AHI in REM sleep of  ≥ 5/hour (ranging from 5 – 30/hour). This group of ten subjects 

had an average REM obstructive AHI of 12 ± 8/hour with the group as a whole 

having an average obstructive AHI of 7 ± 6/hour in REM sleep. Upper airway 

obstruction was at much lower levels in NREM sleep with only two subjects having 

an AHI ≥ 5/hour (17/hour and 6/hour in these two subjects) and the average for the 

whole group was 3 ± 5/hour.   

 

This minor upper airway obstruction was significantly decreased from the lowest 

altitude; the obstructive AHI fell at 1400m to 1 ± 3/hour in NREM sleep (p < 0.01) 

and 10 ± 5/hour in REM sleep (p < 0.01). This continued to decrease significantly 

with increasing altitude with an average AHI in NREM of 1 ± 3/hour at 1400m and 

then to below 1/hour at 3900m, 4200m and 5000m (p  < 0.001). A similar pattern 

occurred with the obstructive AHI in REM sleep, falling significantly at 1400m to 3 ± 

5/hour (p < 0.001), and then to ≤1/hour at 3500m, 3900m, 4200m and 5000m (p < 

0.001). 
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Figure 4.4.3a Respiratory Event Types at Sea level and Altitude: Obstructive 
Hypopnea 
 

 

There was a mild degree of upper airway obstruction in some subjects at sea level. 
This two minute epoch of sleep is an example of an obstructive hypopnea in Stage 2 
NREM sleep in subject #13. Breathing was monitored with respiratory inductive 
plethysmography (RIP) bands around the chest (THOR RES) and abdomen (ABDO 
RES). Airflow was monitored using oxygen cannula and pressure transducer (NASAL 
FLOW). Flow limitation is seen on the flow signal. 
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Figure 4.4.3b Respiratory Event Type High Altitude: Central Hypopneas 
  in REM Sleep at 5000m. 
 
 

 

During phasic REM at 5000m central hypopneas occurred and were associated with 
decreases in oxyhemoglobin saturation from a low base line level (low 70s). Heart 
rate variations (seen on pulse rate (PR) , signal) appear to be in response to phasic 
events in REM sleep. 
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Figure 4.4.3c. Respiratory Event Type at High Altitude: Central Apneas 
  (Periodic Breathing) in NREM Sleep at 5000m 
 

 
 
Periodic breathing during Stage 2 NREM sleep at 5000m demonstrates the profound 
oxyhemoglobin desaturations/resaturations that typically occur in periodic breathing. 
Of particular interest is the lack of cortical arousal associated with over half of these 
central apneas, and autonomic arousal (pulse rate increases with apnea termination). 
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Figure 4.4.3.d. Detail of central apneas of periodic breathing 
 

 
 
 
Two minute epoch with 30 second detail from the same epoch. 
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4.4.4 Sleeping Oxygen Saturation with increasing Altitude 

The subjects all had normal SaO2 during sleep at sea level, as expected, with the mean 

SaO2 for the group of nineteen subjects being 97 ± 2% and the minimum SaO2 91 ± 

3%. (Table 4.4.4a) 

 

During sleep at each higher altitude the SaO2 became progressively lower with 

significant reductions in both the mean and minimum from 1400m (p ≤ 0.001 at all 

altitudes ≥1400m). At the lowest altitude during the trek (i.e.1400m) the mean SaO2 

was 95 ± 2% and the minimum 87 ± 4% (Table 4.4.4b), at 3500m the mean SaO2 was 

84 ± 5 % and minimum 71 ± 7% (Table 4.4.4c), at 3900m the mean was 80 ± 9% and 

the minimum 68 ± 10% (Table 4.4.4d), at 4200m the mean was 80 ± 8% and the 

minimum 69 ± 8% (Table 4.4.4e) and at 5000m the mean was 74 ± 8% and the 

minimum 64 ± 7%. 

Figure 4.4.4 The ventilatory response to hypoxia 
 
 
 

 

 

 

 

 

 
As altitude increases, the pressure of inspired oxygen decreases and hypoxia results. 
The ventilatory response to hypoxia is increased ventilation. This graph demonstrates 
the increase in ventilation in response to decreased oxyhemoglobin saturation. 
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Table 4.4.4a Mean and minimum sleep oxyhemoglobin saturation (SaO2), 
  apnea/hypopnea indices (AHI) for central and obstructive events 
  in NREM and REM sleep at sea level in nineteen subjects. 
 
Subject Mean 

sleeping 
SaO2 % 

Minimum 
sleeping  
SaO2 % 

NREM  
Periodic  
breathing  
AHI 

REM  
central 
 AHI 

NREM 
obstructive  
AHI 

REM  
obstructive  
AHI 

1 98 96 0 0 0 0 
2 96 89 0 0 3.4 0 

3 97 90 0 0 1.4 6.2 
4 96 92 0 0 2 8.2 
5 97 87 0 0.8 2.9 3.3 
6 99 94 0 0.7 0 0.7 
7 97 92 0 0 0 0 
8 96 92 0 0 3.2 29.7 
9 97 93 0 0.2 0.2 10.2 
10 96 94 0 0 0.7 0 
11 95 81 0 0 16.8 19.7 
12 98 92 0 0.9 1.1 0.9 
13 97 91 0 0 3.6 0 
14 97 93 0 0 5.8 18.2 
15 98 92 0 1 0.5 6.1 
16 100 94 0 0 0 0.9 
17 98 91 0 0 0 11.6 
18 93 89 0 0 0.3 9.6 
19 97 90 0 0 1.8 4.9 
Means 
± SD 

97 ± 2 91 ± 3 0 ± 0 0.1 ± 0.3 2.3 ± 3.9  6.9 ± 8.2 

 
The mean sleeping oxygen saturation at sea level was ≥93% in all subjects while four 
subjects desaturated to <90% due to obstructive hypopneas.  There was no periodic 
breathing at sea level but there was a minor degree of upper airway obstruction, 
particularly in REM sleep. 
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Table 4.4.4b Mean and minimum sleep oxyhemoglobin saturation (SaO2), 
           apnea/hypopnea indices (AHI) for central and obstructive events 
           in NREM and REM sleep at 1400m in nineteen subjects. 
 
Subject Mean 

sleeping 
SaO2 % 

Minimum 
sleeping  
SaO2 % 

NREM  
Periodic  
breathing  
AHI 

REM  
central 
 AHI 

NREM 
obstructive  
AHI 

REM  
obstructive  
AHI 

1 96 91 1.7 0 0 0 
2 94 89 2.5 0.5 2.3 0 

3 95 87 5.3 7.2 1.2 0 
4 90 84 0.6 3.3 1.4 3.3 
5 94 89 5.5 15.8 0.5 0.8 
6 94 86 0.7 3 0 0 
7 96 92 0.3 5.6 0 0 
8 95 89 0.6 8.7 0 0 
9 96 90 2.4 1.4 0.3 1.4 
10 96 89 0.3 8.1 0 0 
11 96 89 3.4 4.6 2.1 4.6 
12 94 89 27.5 10.9 0 0 
13 93 75 0 0 0 0 
14 93 81 0 0 12.2 0 
15 95 86 14.5 4.1 0.5 2.6 
16 96 87 0 1.9 0.4 2.4 
17 96 90 0 1.6 0.4 12.4 
18 93 88 0 0 1.1 3 
19 94 85 0.5 2 4.2 19.7 
Means 
± SD 

95 ± 2 87 ± 4 3 ± 7 4  ± 7 1 ± 3  3 ± 3 

 
The mean and minimum oxygen saturations were reduced during sleep at 1400m. 
Central apneas and hypopneas occurred in several subjects with two subjects 
developing a minor degree of periodic breathing. The mean obstructive 
apnea/hypopnea index was halved from sea level values. 
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Table 4.4.4c Mean and minimum sleep oxyhemoglobin saturation (SaO2), 
           apnea/hypopnea indices (AHI) for central and obstructive events 
           in NREM and REM sleep in sixteen subjects at 3500m. 
 
Subject Mean 

sleeping 
SaO2 % 

Minimum 
sleeping  
SaO2 % 

NREM  
Periodic  
breathing  
AHI 

REM  
central 
 AHI 

NREM 
obstructive  
AHI 

REM  
obstructive  
AHI 

1       
2 82 73 47.3 4.3 0 0 

3   14.4 10.8 1.3 4.5 
4 86 81 8 2.2 0 0 
5 84 72 17 9.5 0 0 
6 72 64 3.4 4.9 0 0 
7 81 73 4.9 3 0 0 
8 72 53 10.2 24 0.2 0 
9 87 74 18 29.8 0 0 
10 86 64 0.9 27.6 0.2 0 
11 88 78 68.2 32.7 0 0 
12       
13 87 78 35.7 18.5 0 0 
14 88 76 33.8 28.3 0 0 
15 88 73 40.8 51.5 0.5 0 
16 81 67 0.6 6.4 0.4 0 
17 86 74 1.2 21.8 0.8 0 
18 85 73 12.2 12.7 0 13.3 
19 83 86 9.2 20 1.3 5.8 
Means 
± SD 

84 ± 5 71 ± 7 19 ± 19 18 ± 13 0.3 ± 0.4  1 ± 4 

 
The mean and minimum sleeping oxygen saturations at 3500m were significantly 
reduced in association with increasing altitude. Periodic breathing now appeared in 
five subjects while obstructive events were now almost abolished. 
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Table 4.4.4d Mean and minimum sleep oxyhemoglobin saturation (SaO2), 
           apnea/hypopnea indices (AHI) for central and obstructive events 
           in NREM and REM sleep in eighteen subjects at 3900m. 
 
Subject Mean 

sleeping 
SaO2 % 

Minimum 
sleeping  
SaO2 % 

NREM  
Periodic  
breathing  
AHI 

REM  
central 
 AHI 

NREM 
obstructive  
AHI 

REM  
obstructive  
AHI 

1 81 75 36.3 31.7 0 0 
2 83 78 83.9 25.6 0 0 

3 81 72 2.2 8.6 2.2 15.6 
4 77 70 19.5 5.3 0.2 1.2 
5 83 71 24.3 77.6 0.6 0 
6 53 50 3.1 13.9 0 0 
7 78 68 4 19.6 0 0 
8 65 42 0 0.6 1 6.8 
9 83 68 26.1 35.5 0.7 0 
10 83 58 24.4 53.4 0 0 
11   33.5 15.6 0 0 
12 87 78 48.3 37.7 0 0 
13 84 70 29.1 11.5 0 0 
14 81 59 54.5 19 0.7 0 
15 85 71 77.1 78.1 0.2 0 
16 89 75 1.1 15 0 2.1 
17 85 68 1.3 24.4 0.2 0.5 
18 84 75 11.7 25.9 1 3.6 
19 84 71 27.2 54.1 1.9 5.1 
Means 
± SD 

80 ± 9 64 ± 7 27 ± 25 29 ± 22 0.5 ± 1  2 ± 4 

 
The mean and minimum sleeping oxygen saturations at 3900m continued to be 
decreased in association with increasing altitude. Periodic breathing now had 
developed in twelve subjects with the same subjects also demonstrating central 
apneas and hypopneas in REM sleep. Obstructive apneas and hypopneas continued to 
occur only rarely. 
 
 
 
 
 
 
 



 
 
 Chapter 4 Breathing During Sleep at High Altitude   

 
 

210

Table 4.4.4e Mean and minimum sleep oxyhemoglobin saturation (SaO2), 
           in fourteen subjects and apnea/hypopnea indices (AHI) for  
           central and obstructive events in NREM and REM sleep in  
           eighteen subjects at 4200m 
 
Subject Mean 

sleeping 
SaO2 % 

Minimum 
sleeping  
SaO2 % 

NREM  
Periodic  
breathing  
AHI 

REM  
central 
 AHI 

NREM 
obstructive  
AHI 

REM  
obstructive  
AHI 

1 80 72 88.9 55.8 0 0 
2 79 72 141.7 25.8 30 0 

3 81 72 17.6 12.2 3.3 10.9 
4       
5 77 70 12.5 3.6 0.3 0 
6 54 50 132.3 42.9 0 0 
7   0 0.8 0 0 
8   1 3.2 0 0 
9   2.1 20.2 0.3 2 
10   45.9 12.2 0 0.7 
11 86 76 39.5 33.7 0 0 
12 86 73 96 59 0 0 
13 86 76 29.3 18.4 0.4 5 
14 82 65 96.5 0 0.4 5 
15 85 71 83.8 68.7 0 0 
16 80 71 5.3 29.6 0 0 
17 80 66 15.6 34.3 0 0 
18 85 73 22 44 0.2 0 
19 84 73 26.5 32 4.2 3 
Means 
± SD 

80 ± 8 69 ± 8 48 ± 46 28 ± 21 0.5 ± 1  1 ± 3 

 
Oxygen saturation data was lost in five subjects at 4200m due to equipment failure 
but both values continued to decrease in association with increased altitude. Most 
subjects’ mean SaO2 remained ≥80% and the minimum >70% while three subjects 
had minimum SaO2 ≤ 66%. Obstructive events occurred rarely. 
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Table 4.4.4f Mean and minimum sleep oxyhemoglobin saturation (SaO2), 
          apnea/hypopnea indices (AHI) for central and obstructive 
          events in NREM and REM sleep at 5000m in nineteen subjects. 
 
Subject Mean 

sleeping 
SaO2 % 

Minimum 
sleeping  
SaO2 % 

NREM  
Periodic  
breathing  
AHI 

REM  
central 
 AHI 

NREM 
obstructive  
AHI 

REM  
obstructive  
AHI 

1 69 62 129.9 67.3 0.9 0 
2 76 70 148.6  0  

3 77 70 27 11.5 1.8 0 
4 76 69 25.3 10.3 0.2 0 
5 68 62 40.5 54.5 0 0 
6 51 50 30 0 1.9 0 
7 70 56 1.1 23.3 0 0 
8 59 50 8.2 28.6 0 0 
9 80 70 3.5 18.9 0 0.7 
10 70 62 21.2  0  
11 82 67 94.3 42.6 0 0 
12 79 64 127 14.1 0 0 
13 80 65 101.2 102.9 0 0 
14 81 67 37.5 40 1.2 1.8 
15 75 63 148.7 111 0 0 
16 81 70 0.8 10 0 0 
17 71 58 58.7 52 0 0 
18 80 70 85.4 28.4 0 0 
19 79 70 79.2 30.6 1.8 18.9 
Means 
± SD 

74 ± 8 64 ± 8 60 ± 53 38 ± 32 0.4 ± 1  1 ± 4 

 
The mean sleeping oxygen saturation remained >80% in most subjects with a wider 
range occurring in the minimum SaO2 and values in four subjects <60% while most 
maintained a minimum SaO2 >70%. Periodic breathing occurred in fifteen subjects 
with a wide range of severity. Obstructive events occurred rarely at this altitude. 
Subject #2 had no REM sleep. 
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  4.4.5 Breathing during sleep and sleeping oxygen saturation in  
           subjects with and without periodic breathing. 

There was a wide range of periodic breathing apneas/hypopneas in the group, with 

some subjects having very high levels of periodic breathing (PB) from 3500m and 

higher; for example six subjects had PB AHI from 34-77/hour at 3900m while six 

subjects, who were deemed to have developed PB because their PB apnea/hypopnea 

index (AHI) was ≥ 20/hour at 3900m, had AHI of closer to 20/hour. At each altitude 

there were several subjects who did not have any PB (i.e. AHI < 5/hour). Thus the 

degree and range of PB was widely varied in these subjects. However, sixteen of the 

subjects developed PB at one or more altitudes during the trek. (Tables 4.4.4a – 3f).  

 

Two subjects developed a minor degree of PB at 1400m with PB apnea/hypopnea 

indices (AHI) of 27.5/hour and 14.5/hour, therefore the sleeping mean and minimum 

oxygen saturation were compared in subjects with PB and those without at 3500m and 

higher.  

 

 The incidence and severity of periodic breathing increased with increasing altitude 

with five subjects developing PB at 3500m (mean AHI 45 ± 14/hour), twelve at 3900 

(AHI 40 ±  21/hour), eleven at 4200m (AHI 73 ± 43/hour) and fifteen at 5000m (AHI 

77 ±  46/hour). At each altitude there were some subjects who did not have periodic 

breathing but there were three subjects who did not develop PB at any altitude, while 

a further one subject developed PB only at 5000m. The mean AHI of the twelve 

subjects without PB at 3500m was 8 ± 6/hour, in the eight without PB at 3900m 3 ± 

4/hour, in the ten without PB at 4200m   ± 7/hour and in the four without PB at 

5000m AHI 3 ± 3/hour.  
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There were no significant differences in the sleeping mean oxygen saturation (SaO2) 

or minimum sleeping SaO2 in those subjects with or without PB (p ≥ 0.1). 

 

Figure 4.4.5a Mean Sleeping Oxygen Saturation in Subjects with and without 
  Periodic Breathing 
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There were no significant differences between the sleeping mean  
oxygen saturations at any altitude in subjects who developed periodic breathing  
and those who did not. 
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Figure 4.4.5b Minimum Sleeping Oxygen Saturation in subjects with and  
  without Periodic Breathing 
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There were no significant differences in the minimum sleeping oxygen saturations at 
any altitude in those subjects who developed periodic breathing and those who did 
not. 
 

  4.4.6 Breathing during sleep and sleeping oxygen saturation in  
           male and female subjects. 

The majority of subjects who did not develop significant periodic breathing were 

female. Eight out of the ten male subjects had a mean PB AHI, for all altitudes of 

3500m and higher, of 20/hour, while only two of the nine female subjects had similar 

mean PB AHI. Conversely, seven of the nine female subjects had low mean PB AHI 

for ≥ 3500m,  i.e. ≤ 17/hour while only two of the ten male subjects had a similarly 

low mean AHI. Periodic breathing parameters were significantly different in the nine 

female and ten male subjects at three altitudes (Figure 4.4.6b): 3500m, 4200m and 

5000m.  
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The periodic breathing apnea/hypopnea index (PB AHI) was higher in males at 

3500m: the female PB AHI was 10.8 ± 3.1/hour and the male 28.6 ± 21.6/hour, (p = 

0.05). The PB AHI was higher in males at 5000m: the female PB AHI was 34.7 ± 

47.1 and the male 84.9 ± 44.9, (p = 0.03). 

 

The arousal index (AI) associated with termination of PB apneas and hypopnea (PB 

AI) was also higher in male subjects at 3500m and 5000m. The female PB AI at 

3500m was 3 ± 3/hour and the male 14 ± 10/hour (p = 0.005). The female PB AI at 

5000m was 15 ± 17/hour and the male 35 ± 20/hour (p = 0.03). 

 

When the sleeping oxygen saturations were compared between the male and female 

subjects at each altitude, significant differences were found in the minimum SaO2 at  

3500m, 4200m and 5000m (Figures 4.4.6b-c). At 3500m the female minimum SaO2 

was 68 ± 7% and the male 75 ± 5% (p = 0.05); at 4200m the female minimum SaO2 

was 65 ± 9% and the male 72 ± 3% (p = 0.03) and at 5000m the female minimum 

SaO2 was 60 ± 7% and the male 67 ± 3% (p = 0.01). 

 

The mean sleeping SaO2 was lower in female subjects at only one altitude i.e.5000m, 

with the female mean SaO2 70 ± 10% and male 78 ± 4% (p = 0.02). 
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Figure 4.4.6a Oxyhemoglobin Saturation during Sleep at 5000m in a Subject  
with Periodic Breathing and a Subject without Periodic Breathing. 

   
REM

MOV AWK

3
4

1
2

 
Arousal 

 
 

SaO2

100

40  
Respiratory Events 
Cn.A
Ob.A
Mx.A
Hyp
Uns

+5
+5
+5
+5
+5

 
 
 

REM
MOV AWK

3
4

1
2

 
 
Arousal 

 
 

SaO2

100

40  
Respiratory Events 
Cn.A
Ob.A
Mx.A
Hyp
Uns

+5
+5
+5
+5
+5

 

Sleep reports on two subjects at 5000m. Both subjects were 23 year old females. One 
subject had a periodic breathing (PB) apnea/hypopnea index of 149/hour while the 
other subject had no PB. The mean oxyhemoglobin saturations were similar in the 
two despite profound desaturations/resaturations that occurred with PB. 
(CnA=central apnea, Uns=central hypopnea) Both subjects are in lateral positions & 
sleeping flat with one pillow..
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Figure 4.4.6b Periodic Breathing in Male and Female Subjects. 
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Periodic breathing occurred more in male subjects at every altitude 
but the apnea/hypopnea indices were significantly higher in male subjects only at  
3500m (p = 0.05) and 5000m (p = 0.03). 
 
 
Figure 4.4.6c Mean Sleeping Oxygen Saturation in Male versus Female  
                        Subjects. 
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The mean sleeping oxygen saturation was significantly lower in 
female subjects only at 5000m (p = 0.02). 
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Figure 4.4.6d Minimum Sleeping Oxygen Saturation in Male and Female  
                       Subjects. 
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Female subjects desaturated during sleep more than male subjects  
at the three altitudes, with the minimum SaO2 being significantly lower in females 
at 3500m (p = 0.05), 4200m (p = 0.03) and at 5000m (p = 0.01). 
 

 

  4.4.7 Male and female arterial blood gases 

There were very few differences between the male and female arterial blood gases, 

either at sea level or high altitude. The pCO2 of the female subjects were significantly 

lower at sea level than male i.e. the mean female pCO2 was 40 ± 3.2mmHg versus 

43.3 ± 2.1mmHg in the male subjects (p = 0.04). At 4200m the pO2 was lower in the 

female subjects compared to the male subjects i.e. pO2  44.7 ± 2.7 mmHg for females 

versus 54.6 ± 9.8 mmHg for males (p = 0.03). There was a trend towards a lower pO2 

in females at 5000m, 42.5 ± 7 mmHg versus 50 ± 6.8 mmHg in males (p = 0.07) with 

no other differences in any blood gas parameter at any altitude. 
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Figure 4.4.7a Arterial pO2 in Male (8) and Female (6) Subjects 
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There were no significant differences between male and female subjects’ 
arterial oxygen measurements except at 4200m, where the male pO2 was significantly 
higher than female pO2 (p = 0.03). 
 

Figure 4.4.7b Arterial pCO2 in Male (8) and Female (6) Subjects. 
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The arterial carbon dioxide measurement was significantly different  
in male and female subjects only at sea level (p = 0.04). 
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Figure 4.4.7c Arterial pH in Male (8) and Female (6) Subjects. 
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There were no significant differences in the arterial pH of male subjects 
 compared to female subjects at any altitude. 

 

  4.4.8 Arterial Blood Gases in Subjects with and without Periodic 
           Breathing 

The arterial blood gas analysis in subjects who developed periodic breathing and 

those who didn’t were not significantly different at any altitude. (Figure 4.4.8a-c). 

However, there was a trend towards a more alkaline pH at 3900m in subjects with 

periodic breathing compared to subjects without periodic breathing i.e. 7.45 ± 0.02 in 

PB and 7.42 ± 0.03 in non PB subjects (p = 0.07).  
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Figure 4.4.8a Morning Arterial pO2 in Periodic Breathing and non Periodic 
  Breathing 
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There were no significant differences at any altitude in the arterial oxygen 
measurements in those subjects who developed periodic breathing compared to those 
who did not develop periodic breathing. 
 
 
Figure 4.4.8b Morning Arterial pCO2 in PB and non PB  
 

Arterial PCO2 in Subjects with and without 
Periodic Breathing

0

5

10

15

20

25

30

35

40

 3500m                  3900m                 4200m                 5000m

m
m

H
g

 P B

  no n
   P B

 
 
There were no significant differences at any altitude in the arterial carbon  
dioxide measurements in those subjects who developed periodic breathing compared 
to those who did not develop periodic breathing. 
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Figure 4.4.8c Morning Arterial pH in PB and non PB. 
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There were no significant differences at any altitude in the arterial pH 
 measurements in those subjects who developed periodic breathing compared to those  
who did not develop periodic breathing. 
 

 

  4.4.9 Ventilatory Responses at Sea Level 

There was a wide range of ventilatory responses to hypoxia and hypercapnia in the 

nineteen subjects tested at sea level (Figure 4.4.10a).  

 

Most subjects had HVR in the range of 0 - 0.7L/min/% but one subject had a very 

steep HVR of 1.85L/min/%. The mean HVR for the nineteen subjects was 0.018 ± 

0.53.   

The hypercapnic HVR was below 1.4 L/min/% in most of the subjects, but one 

subject had a much steeper hypercapnic HVR of 3.5L/min/%. The mean for the group 

was 0.31 ± 0.97.   
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The hypercapnic (hyperoxic) ventilatory response (HCVR) was had a much wider 

range than either HVR of hypercapnic HVR. The lowest response was 0.07L/min/% 

and the highest, 4.23L/min/mmHg with five subjects having steep responses (> 3.5), 

four subjects having responses in the 1.5 – 2.3L/min/% range and the remaining ten 

subjects in the lower response range of 0 – 1.5L/min/%. The mean for the group of 

nineteen subjects was 1.92 ± 1.48L/min/%. Figures 4.4.9a-c demonstrate the slopes of 

each of the three ventilatory response tests in one subject. 

 

Figure 4.4.9a Slope of Ventilatory Response to Eucapnic Hypoxia in One Subject 
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An example of the plot used to calculate the ventilatory response 
to hypoxia in one subject. The change in ventilation, measured in litres per minute 
is plotted against the percentage oxygen saturation. As oxygen saturation falls,  
minute ventilation increases and the slope of this change is calculated using linear  
regression analysis.  
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Figure 4.4.9b Slope of Ventilatory Response to Hypercapnic Hypoxia in One 
  Subject 
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An example of the plot used to calculate the ventilatory response 
to hypercapnic hypoxia in one subject. The change in ventilation, measured in  
litres per minute, is plotted against the percentage oxygen saturation.  
As oxygen saturation falls, minute ventilation increases and the slope of  
this change is calculated using linear regression analysis. 
 
Figure 4.4.9c Slope of Hypercapnic (Hyperoxic) Ventilatory Response in One 
  Subject 
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An example of the plot used to calculate the ventilatory response 
to hypercapnia (hyperoxic) in one subject. The change in ventilation, measured  
in litres per minute, is plotted against the end tidal carbon dioxide.  
As end tidal carbon dioxide increases, minute ventilation increases and the slope  
of this change is calculated using linear regression analysis.  
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  4.4.10 Ventilatory Responses to Hypoxia and Hypercapnia:  
   Relationship to Periodic Breathing during Sleep. 

There was a wide range of ventilatory responses (VR) to hypoxia and hypercapnia in 

the group of nineteen subjects (see section 4.4.9). In some cases these VR 

measurements were related to the development of periodic breathing or central REM 

events but these findings were not consistent and there were few significant 

relationships present.  

 

Figures 4.4.10a-b display the ventilatory responses of each subject and the amount of 

periodic breathing at the four highest altitudes.  

 

There was a significant relationship between the hypercapnic HVR and the NREM 

sleep periodic breathing apnea/hypopnea index (AHI) at 3500m, (correlation = 0.58, 

r2 = 0.33, p = 0.01). There was also a significant relationship between the eucapnic 

HVR and the REM sleep central AHI at 1400m (correlation = 0.625, r2 = 0.391, p = 

0.003) and at 3900m (correlation = 0.61, r2 = 0.37, p = 0.005). (Figures 4.4.10c-q) 

 

When the group was split into those who had periodic breathing at all altitudes of 

3500m and higher (mean PB AHI 47 ± 18/hour, n = 10) and those who had low levels 

of PB at one or two altitudes only (mean PB AHI 6 ± 4/hour, n = 6) and the 

ventilatory responses compared, it was found that the HVR was significantly higher in 

the group with PB at all altitudes of 3500m and higher (p = 0.05). There were no 

differences in the hypercapnic HVR or in the HCVR when this test was applied to 

these VRs.  
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There were no other significant correlations or relationships between ventilatory 

responses and periodic breathing index in NREM sleep at any altitude; nor were there 

any correlations or relationships between the REM sleep central AHI at any altitude 

and any VR.  

 

Although there were very few significant statistical relationships between ventilatory 

responses measured at sea level and the degree of periodic breathing at high altitudes, 

it is interesting to view the data after separating the subjects into groups according to 

each one’s ventilatory response to eucapnic hypoxia (HVR), hypercapnic HVR and to 

hypercapnia alone (HCVR). The subjects were split into groups to observe the degree 

of periodic breathing at each altitude viewed in relationship to the steepness of each 

subject’s VR. Tables 4.4.10a-h subjects with high HVR (n = 5) had higher mean 

periodic breathing apnea/hypopnea index (AHI) than subjects with flat HVR (n = 9) at 

all altitudes. Similarly, subjects with high HCVR (n = 5) had much higher AHI than 

subjects with low HCVR (n = 5). There was not such a noticeable difference in 

subjects with high (n = 10) and low (n = 9) hypercapnic HVR but the wide variation 

in the severity of periodic breathing is reflected in high standard deviations. 
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Figure 4.4.10a  
 

Ventilatory Responses to Hypoxia and Hypercapnia 
in Nineteen Subjects tested at Sea Level
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There was a wide range of ventilatory responses in the nineteen subjects, 
with the hypoxic ventilatory response ranging from 0 – 1.85L/min/%, the hypercapnic 
hypoxic ventilatory response ranging from 0.01 – 3.46 L/min/% and the hyperoxic  
hypercapnic ventilatory response ranging from 0.07 – 4.23L/min/mmHg. 
 
 
Figure 4.4.10b  
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There was a wide range of periodic breathing apnea/hypopnea indices (PB AHI) 
In the nineteen subjects with some subjects having very low levels of PB, others had 
high levels at every altitude, while others had high levels at one or two altitudes only. 
There does not seem to be relationships between ventilatory responses to hypoxia or 
hypercapnia and the extent of PB at high altitudes.  
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Tables 4.4.10a-c Subjects with high, medium and low hypercapnic (hyperoxic)  
                 ventilatory responses (HCVR), and the periodic breathing  
                 apnea/hypopneas indices (PB AHI) at the four highest altitudes. 

 
High HCVR (> 3)       Medium HCVR (1 - 2.3) 
 
Subject 3500m 3900m 4200m 5000m  Subject 3500m 3900m 4200m 5000m 

 
 5 

 
17 

 
24 

 
13 

 
41 

  
1 

 
 

 
36 

 
89 

 
130 

  
12  

 
48 

 
96 

 
127 

  
2 

 
47 

 
84 

 
142 

 
149 

 
13 

 
36 

 
29 

 
29 

 
101 

  
3 

 
14 

 
2 

 
18 

 
27 

  
14 

 
34 

 
55 

 
97 

 
38 

  
9 

 
18 

 
26 

 
2 

 
4 

  
16 

 
1 

 
1 

 
5 

 
1 

  
11 

 
68 

 
34 

 
40 

 
94 

Mean 
± SD 22 ± 16 31± 21 48± 45 62 ± 51 

 
15 41 77 84 149 

       
17 

 
1 

 
1 

 
16 

 
59 

   
Low  

     
HCVR 

        
(≤ 0.7) 

    
18 

 
12 

 
12 

 
22 

 
85 

Subject 3500m 3900m 4200m 5000m   
9 1 27 27 79 

4 8 20  25 
 Mean 

± SD 
 

25± 24 
 

33± 30 
 

49± 46 
 

86± 51 
 
6 3 3 132 30 

      

7 5 4 0 
 
1 

      

 
8 10 0 1 8 

      

 
10 

 
1 24 46 21 

      

Mean 
± SD 

 
5 ± 4 

 
10±11 

 
38±56 

 
17±12 

      

 
 
Although there were no statistical relationships between the ventilatory responses to 
hypercapnia without hypoxia (HCVR), when viewed in groups that were divided 
according to the steepness of their HCVR, it can be seen that most subjects with a 
steeper HCVR (>1)  had more periodic breathing than those subjects with lower 
HCVR (< 0.7). One subject with a low HCVR had very high levels of periodic 
breathing at 4200m only while most subjects in this group had PB AHI levels of  less 
than 25/hour. Subjects who had high PB AHI levels at most altitudes were in the 
groups with HCVR >1. 
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Table 4.4.10d Subjects with high hypercapnic hypoxic ventilatory responses and  
                        the periodic breathing apnea/hypopneas indices (PB AHI) at the  
                        four highest altitudes. 

 
High Hypercapnic Hypoxic VR (> 0.5) 
 

 
Subject 

 
3500m 

 
3900m 

 
4200m 

 
5000m

 
3 

 
14 

 
2 

 
18 

 
27 

 
5 

 
17 

 
24 

 
13 

 
41 

 
11 

 
68 

 
34 

 
40 

 
94 

 
12 

  
48 

 
96 

 
127 

 
14 

 
34 

 
55 

 
97 

 
38 

 
15 

 
41 

 
77 

 
84 

 
149 

 
16 

 
1 

 
1 

 
5 

 
1 

 
17 

 
1 

 
1 

 
16 

 
59 

 
18 

 
12 

 
12 

 
22 

 
85 

 
19 

 
1 

 
27 

 
27 

 
79 

Mean 
± SD 

 
21± 23 

 
28 ± 26 

 
42 ± 36 

 
70± 46

 
 
There was a wide range of periodic breathing apnea/hypopnea indices (PB AHI)  
in the subjects who were grouped according to a their steeper ventilatory  
responses to hypercapnic hypoxia; several subjects who had steeper VR to  
hypercapnic hypoxia had quite low levels of PB while others in this group had 
 very high levels of PB. 
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Table 4.4.10e Subjects with low hypercapnic hypoxic ventilatory responses and  
                        the periodic breathing apnea/hypopneas indices (PB AHI) at the  
                        four highest altitudes. 
 

 
Subject 

 
3500m 

 
3900m 

 
4200m 

 
5000m 

 
1 

 
 

 
36 

 
89 

 
130 

 
2 

 
47 

 
84 

 
142 

 
149 

 
4 

 
8 

 
20 

 
 

 
25 

 
6 

 
3 

 
3 

 
132 

 
30 

 
7 

 
5 

 
4 

 
0 

 
1 

 
8 

 
10 

 
0 

 
1 

 
8 

 
9 

 
18 

 
26 

 
2 

 
4 

 
10 

 
1 

 
24 

 
46 

 
21 

 
13 

 
36 

 
29 

 
29 

 
101 

 
Mean ± 
SD 

 
16±17 

 
25± 25 

 
55± 59 

 
52±58   

 
 

Subjects who were assigned to the lower ventilatory responses to 
hypercapnic hypoxia group also had a wide range of periodic breathing,  
with some subjects in this group having very little PB at any altitude while 
others had very high levels of PB. Although the mean PB AHI was similar 
in this group to the subjects with steeper hypercapnic HVR,  
there is wider range of PB and this is reflected by in the standard deviations,  
which are very similar to, or higher than the means.  
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Table 4.4.10 f-h Subjects with high, low and flat hypoxic ventilatory responses
     (HVR) and the periodic breathing apnea/hypopneas indices 
      (PB AHI) at the four highest altitudes. 
 
Hypoxic Ventilatory Response ≥ 0.5 (high HVR) 
Subject 3500m 3900m 4200m 5000m 

 
5 

 
  17 

 
24 

 
13 

 
41 

 
11 

 
  68 

 
34 

 
40 

 
94 

 
12 

 
 

 
48 

 
96 

 
127 

 
15 

 
41 

 
77 

 
84 

 
149 

 
19 

 
9 

 
27 

 
27 

 
79 

 
Mean 
± SD 

 
34 ± 27 

 
42± 22 

 
52± 36 

 
98± 42 

 
Subjects who were assigned to the high hypoxic ventilatory response group had a 
wide range of periodic breathing apnea/hypopnea indices (PB AHI) but most subjects 
had high levels of PB at each altitude. The variation of the severity of PB is reflected  
in the high standard deviations. 
 
Hypoxic Ventilatory Response 0 – 0.07 (Flat HVR) 
Subject 3500m 3900m 4200m 5000m 
 
4 

 
  8 

 
20 

 
 

 
25 

 
7 

 
  5 

 
4 

 
0 

 
1 

 
9 

 
18 

 
26 

 
2 

 
4 

 
13 

 
36 

 
29 

 
29 

 
101 

 
14 

 
34 

 
55 

 
97 

 
38 

 
Mean 
± SD 

 
20 ± 14 

 
27± 18 

 
32± 45 

 
34± 41 

 
Subjects who were assigned to the flat hypoxic ventilatory response group had a wide 
range of periodic breathing apnea/hypopnea indices (PB AHI), with most subjects in 
this group having low to moderate levels of PB and two having high levels of PB at 
each altitude. This wide range is reflected in the standard deviations being very 
similar to or higher than the means.  
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Hypoxic ventilatory response 0.12-0.29 (Low HVR) 
 
 
Subject 

 
3500m 

 
3900m 

 
4200m 

 
5000m 

 
1 

 
 

 
36 

 
89 

 
130 

 
2 

 
47 

 
84 

 
142 

 
149 

 
3 

 
14 

 
2 

 
18 

 
27 

 
6 

 
3 

 
3 

 
132 

 
30 

 
8 
 

 
10 

 
0 

 
1 

 
8 

 
10 

 
1 

 
24 

 
46 

 
21 

 
16 
 

 
1 

 
1 

 
5 

 
1 

 
17 

 
1 

 
1 

 
16 

 
59 

 
18 

 
12 

 
12 

 
22 

 
85 

 
Mean 
± SD 

 
11 ± 15 

 
18± 28 

 
52± 55 

 
57± 54 

 
Subjects who were assigned to the lower hypoxic ventilatory response group also had 
a wide range of periodic breathing apnea/hypopnea indices (PB AHI) but most were 
in the lower range. Two subjects in this group had high PB increasing with altitude 
but most had low levels of PB. One subject had very high PB only at the second 
highest altitude while two others had moderately high PB only at the highest altitude. 
This wide range is reflected in the standard deviations being similar to or higher than 
the means. 
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Figures 4.4.10c-g Ventilatory Responses to Eucapnic Hypoxia and Periodic 
         Breathing Indices at High Altitudes. 
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The subjects’ ventilatory responses to eucapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 1400m. There was no significant 
relationship found (correlation = 0.29). 
 
 
  4.4.10 d 

Periodic Breathing AHI at 3500m and
 Eucapnic Hypoxic VR

y = 0.0024x + 0.2711
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The subjects’ ventilatory responses to eucapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 3500m. There was no significant 
relationship found (correlation = 0.1). 
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  4.4.10 e 

Periodic Breathing AHI at 3900m and
 Eucapnic Hypoxic VR

y = 0.0022x + 0.2651
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The subjects’ ventilatory responses to eucapnic hypoxia  
were plotted against the periodic breathing apnea/hypopnea indices  
at 3900m. There was no significant relationship found (correlation = 0.14). 
 
 
 
  4.4.10 f 

Periodic Breathing AHI at 4200m and
 Eucapnic Hypoxic VR 

y = -2E-05x + 0.3412
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The subjects’ ventilatory responses to eucapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 4200m. There was no significant 
relationship found (correlation = -0.003). 
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  4.4.10 g 
Periodic Breathing AHI at 5000m and 

Eucapnic Hypoxic VR

y = 0.0013x + 0.2359
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The subjects’ ventilatory responses to eucapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 5000m. There was no significant 
relationship found (correlation = 0.29). 

 
 
 
Figures 4.4.10h-l Hypercapnic Hypoxic Ventilatory Responses and Periodic 
        Breathing Indices at High Altitude 
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The subjects’ ventilatory responses to hypercapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 1400m. There was no significant 
relationship found (correlation = 0.19). 
 
 
 
 
 
 
 



 
 
 Chapter 4 Breathing During Sleep at High Altitude   

 
 

236

 
 
  4.4.10 i 

Periodic Breathing AHI at 3500m and 
Hypercapnic Hypoxic VR 

y = 13.304x + 0.1709
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The subjects’ ventilatory responses to hypercapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 3500m. There was a significant 
relationship found (correlation = 0.58, p = 0.01). 
 
 
 4.4.10 j 

Periodic Breathing AHI at 3900m and 
Hypercapnic Hypoxic VR 

y = 4.7573x + 0.5312
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The subjects’ ventilatory responses to hypercapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 3900m. There was no significant 
relationship found (correlation = 0.14). 
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  4.4.10 k 
Periodic Breathing AHI at 4200 and 

Hypercapnic Hypoxic VR 

y = -0.638x + 0.6916
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The subjects’ ventilatory responses to hypercapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 4200m. There was no significant 
relationship found (correlation = -0.01). 
 
 
 
 
  4.4.10 l 

Periodic Breathing AHI at 5000m and 
Hypercapnic Hypoxic VR
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The subjects’ ventilatory responses to hypercapnic hypoxia were plotted against the 
periodic breathing apnea/hypopnea indices at 5000m. There was no significant 
relationship found (correlation = 0.28). 
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Figures 4.4.10m-q Hypercapnic (Hyperoxic) Ventilatory Responses and Periodic 

4.4.10 m 

          Breathing Indices at High Altitude 
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he subjects’ ventilatory responses to (hyperoxic )hypercapnia were plotted against 

4.4.10 n 

T
the periodic breathing apnea/hypopnea indices at 1400m. There was no significant 
relationship found (correlation = 0.25). 
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he subjects’ ventilatory responses to (hyperoxic)hypercapnia were plotted against 

4.4.10 o 

T
the periodic breathing apnea/hypopnea indices at 3500m. There was no significant 
relationship found (correlation = 0.25). 
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Periodic Breathing AHI at 3900m and 
Hyperoxic Hypercapnic VR

y = 0.0122x + 1.6901

0

1

2

3

4

5

0 20 40 60 80 100
Periodic Breathing AHI

HC
VR

 
 

he subjects’ ventilatory responses to (hyperoxic) hypercapnia were plotted against 

  4.4.10 p 

T
the periodic breathing apnea/hypopnea indices at 3900m. There was no significant 
relationship found (correlation = 0.21). 
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he subjects’ ventilatory responses to (hyperoxic) hypercapnia were plotted against 

4.4.10 q 

T
the periodic breathing apnea/hypopnea indices at 4200m. There was no significant 
relationship found (correlation = -0.003). 
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Periodic Breathing AHI at 5000m and 
Hyperoxic Hypercapnic VR
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he subjects’ ventilatory responses to (hyperoxic) hypercapnia were plotted against 

  4.4.11 Ventilatory Responses to Hypoxia and Hypercapnia, 

here were few relationships found between ventilatory responses and the sleeping 

oxygen saturation or arterial blood gases.  

 

When analysing the relationship between ventilatory responses (VR) to hypoxia and 

hypercapnia and the sleeping mean and minimum oxygen saturation (SaO2) positive 

relationships were found between the mean SaO2 at 3900m and the eucapnic hypoxic 

VR (correlation = 0.46, p = 0.05) and the hypercapnic hypoxic VR (correlation = 

0.52, p = 0.02). 

 

There were no other significant relationships between any ventilatory responses and 

sleeping SaO2 at any altitude. 

 

Figure 4.4.11a Relationship between the Ventilatory Responses to Eucapnic 

T
the periodic breathing apnea/hypopnea indices at 5000m. There was no significant 
relationship found (correlation = 0.28). 
 
 
 
    Sleeping Oxygen Saturation and Arterial Blood 
    Gases. 
 
 
T
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   Hypoxia and Sleeping Oxygen at 3900m. 
 

HVR and Mean sleeping oxygen saturation at 3900m 
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The ventilatory responses to eucapnic hypoxia tested at sea level in nineteen subjects 

Figure 4.4.11b  Relationship between the Ventilatory Responses to Hypercapnic 

was plotted against the mean  sleeping oxygen saturation. A positive relationship was 
found only at 3900m with the correlation 0.46 (p = 0.05). 
 

   Hypoxia and Sleeping Oxygen at 3900m. 
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The ventilatory responses to hypercapnic hypoxia, tested at sea level in nineteen 

 

 

subjects, was plotted against the mean sleeping oxygen saturations. A positive 
relationship was found only at 3900m with the correlation 0.52 (p = 0.02). 
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There were few relationships between arterial blood gases and ventilatory responses. 

There was no significant relationship between eucapnic hypoxic ventilatory response 

(HVR), the hypercapnic HVR or the hyperoxic hypercapnic ventilatory response 

(HCVR) and arterial pO2 at any altitude.  

 

However, ventilatory responses to hypoxia and hypercapnia did appear to have a 

downwards effect on arterial carbon dioxide levels with consequent alkalosis, 

demonstrated by a higher pH. There were significant negative relationships between 

the eucapnic hypoxic VR and the hypercapnic hypoxic VR and arterial pCO2 at two 

altitudes: eucapnic HVR and arterial pCO2 were negatively correlated at 1400m (-

0.57, p = 0.03) and the hypercapnic HVR and the arterial pCO2 were negatively 

correlated at 4200m  

(-0.55, p= 0 .04).  

 

There was a trend towards a significantly negative correlation between the eucapnic 

HVR and the arterial CO2 at 3500m (-0.52, p = 0.06). There was also a trend towards 

a significantly negative relationship between the hyperoxic hypercapnic VR (HCVR) 

and arterial pCO2 at 4200m (correlation = -0.51, p = 0.06). 
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Figure 4.4.11c Ventilatory Responses to Eucapnic Hypoxia and Arterial 
   Carbon Dioxide at 1400m. 
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The ventilatory responses to eucapnic hypoxia, tested at sea level in nineteen subjects, 
were plotted against the arterial carbon dioxide measurements. A significantly 
negative relationship was found at 1400m (-0.57, p = 0.03). 
 
 
Figure 4.4.11d Ventilatory Responses to Eucapnic Hypoxia and Arterial 
   Carbon Dioxide at 3500m. 
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The ventilatory responses to eucapnic hypoxia, tested at sea level in nineteen subjects, 
were plotted against the arterial carbon dioxide measurements. A significantly 
negative relationship was found at 3500m (-0.52, p = 0.06). 
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Figure 4.4.11 e Ventilatory Responses to Hypercapnic Hypoxia and Arterial 
    Carbon Dioxide at 4200m. 
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The ventilatory responses to eucapnic hypoxia, tested at sea level in nineteen subjects, 
were plotted against the arterial carbon dioxide measurements. A significantly 
negative relationship was found at 4200m (-0.55, p = 0.04). 
 

 

Figure 4.4.11 f Ventilatory Responses to Hypercapnic (Hyperoxic) and Arterial 
    Carbon Dioxide at 4200m. 
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The ventilatory responses to eucapnic hypoxia, tested at sea level in nineteen subjects, 
were plotted against the arterial carbon dioxide measurements. A significantly 
negative relationship was found at 4200m (-0.51, p = 0.06). 
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There were positive relationships between eucapnic HVR and arterial pH at 1400m 

(correlation = 0.52, p = 0.06), 3500m (correlation = 0.67, p = 0.008) and 4200m 

(correlation = 0.52, p = 0.06), Figures 4.4.11g-i. 

 

There were positive relationships between the hypercapnic HVR and the arterial pH at 

1400m (correlation = 0.57, p = 0.03) and at 3500m (correlation = 0.71, p = 0.004), 

Figures 4.4.11j-k. 

 

Figure 4.4.11 g Ventilatory Responses to Eucapnic Hypoxia (HRV) and Arterial 
    pH at 1400m. 
 

Eucapnic Hypoxic Ventilatory Responses 
and Arterial pH at 1400m

y = 11.497x - 85.018

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

7.36 7.38 7.4 7.42 7.44 7.46pH

Eu
ca

pn
ic

H
VR

 
 
The eucapnic response to hypoxia, tested at sea level, in nineteen subjects had a 
positive relationship with the arterial pH at 1400m. (correlation = 0.52, p = 0.06). 
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Figure 4.4.11 h Ventilatory Responses to Eucapnic Hypoxia (HRV) and Arterial 
    pH at 3500m. 
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The eucapnic response to hypoxia, tested at sea level, in nineteen subjects had a 
positive relationship with the arterial pH at 3500m. (correlation = 0.67, p = 0.008). 
 

 

Figure 4.4.11 i Ventilatory Responses to Eucapnic Hypoxia (HRV) and Arterial 
    pH at 4200m. 
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The eucapnic response to hypoxia, tested at sea level, in nineteen subjects had a 
positive relationship with the arterial pH at 4200m. (correlation = 0.52, p = 0.06). 
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Figure 4.4.11 j Ventilatory responses to Hypercapnic Hypoxia and Arterial 
    pH at 1400m 
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The hypercapnic response to hypoxia, tested at sea level, in nineteen subjects had a 
positive relationship with the arterial pH at 1400m. (correlation = 0.57, p = 0.03). 
 
  

Figure 4.4.11 k Ventilatory responses to Hypercapnic Hypoxia and Arterial 
    pH at 3500m. 
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The hypercapnic response to hypoxia, tested at sea level, in nineteen subjects had a 
positive relationship with the arterial pH at 3500m. (correlation = 0.71, p = 0.004). 
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 Periodic Breathing Apneas/ 
             Hypopneas, and their associated Arousal, with Sleep 
             Oxygen Saturation. 

 
as and hypopneas resulted in arousal 

a index (PB AHI) to give the ratio of PB 

pneas/hypopneas to PB arousal from sleep. 

 any correlations between the 

B AI/AHI ratio and sleeping mean or minimum SaO2. 

 

   4.4.12 Relationship between
 
 
 

Fewer than half the periodic breathing (PB) apne

from sleep. This was expressed as the equation: 

PB arousal index (PB AI)/PB apnea/hypopne

a

 

 Arousal from sleep following apnea or hypopnea may increase ventilation during the 

hyperpneic phase of the PB cycle and hence increase oxygen saturation. However, 

there were no significant relationships between the PB AI/PB AHI ratio and sleeping 

mean or minimum SaO2 at any altitude; nor were there

P
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periodic breathing, changes in arterial blood 

ases and sleeping oxygen saturation.  

spiratory 

ontrol system that was presented to the subjects during their time in Nepal. 

bject variability in some 

ubjects, with PB developing at one or two altitudes only.  

 

4.5 Discussion 

This research examined the effects of high altitude on breathing during sleep and the 

effects on sleeping oxygen saturation and morning arterial blood gases. It also 

examined the relationship between the sea level ventilatory responses to hypoxia and 

hypercapnia and the development of 

g

 

Results of blood gas analyses demonstrate the profound effect that increasing altitude 

had on the pO2 and pCO2, with the mean pO2 falling from 95mmHg at sea level to 

below 80mmHg at even the lowest altitude of 1400m, thence to below 56mmHg for 

the next three altitudes and below 50mmHg at 5000m. The pCO2 was similarly 

affected by even the lowest altitude, falling from a sea level mean of 42mmHg to 

39mmHg, thence to the low 30s until 5000m, where it fell to 27mmHg. These results 

demonstrate the hypoxic effects of high altitude and the challenge to the re

c

 

The most important finding from this research was that periodic breathing developed 

in the majority of our subjects with a wide variability in the amount of periodic 

breathing in the nineteen subjects. There was also intra-su

s

 

The dominant feature of breathing during sleep at high altitude was the development 

of periodic breathing. Most subjects developed periodic breathing at one or more 
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n three other subjects) 

hile some deemed to have PB had an AHI closer to 20/hour.  

dic breathing at high 

ltitude by performing ventilatory response testing at sea level.  

altitudes but three subjects did not develop periodic breathing at any altitude (AHI < 

10/hour) with one subject having very low levels of PB (highest AHI 20/hour at 

5000m, mean for all altitudes 10/hour). There was a wide individual variability in the 

periodic breathing apnea/hypopnea indices (PB AHI). PB was deemed to be present 

when the PB AHI was 20/hour or higher. Some subjects had very high PB AHI (e.g. 

149/hour at 5000m in two subjects and from 101 – 130/hour i

w

 

Ventilatory responses to hypoxia and hypercapnia, tested at sea level before the trek 

to high altitude, had very little relationship to the development of periodic breathing 

with the exception of a positive relationship between eucapnic HVR and the PB AHI 

at 3500m. When the subjects with PB at 3500m and higher (mean AHI 47/hour) were 

compared to those with low levels of PB (mean 6/hour) a significant difference was 

found in their HVR. Steeper HVR has been found in previous studies to be associated 

with PB at high altitude (Lahiri, 1983) so it was not surprising that the subjects with 

consistent and high levels of PB had a higher HVR than those who had low levels of 

PB. Thus it may be possible to predict who will develop perio

a

 

There were no relationships between ventilatory responses and arterial pO2 or sleeping 

SaO2. The relationships that were found between VR and arterial blood gases were 

exclusively those of pCO2 and pH i.e. lower pCO2 and higher/more alkaline pH were 

correlated with each of the sea level ventilatory response tests at several altitudes. 
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 incomplete sets of studies at several altitudes being most 

ronounced at 5000m where only thirteen of nineteen studies were analysable due to 

This reflects an increase in ventilation driving down the CO2, with subsequent 

alkalosis, but not a higher pO2.  

The main shortcoming of this research was that, due to equipment availability, sleep 

studies were performed on either the first or second night at each new altitude which 

may have allowed a degree of acclimatisation to occur in those subjects who were 

studied on the second night. There were also a number of failures of the equipment, 

particularly at the highest altitude, where subjects slept while sleep was no longer 

being recorded. Although these studies were not used in the analysis, the missing 

sleep data have meant

p

short recording times.  

 

The underlying physiological change at high altitude is hypobaric hypoxia. In turn the 

mechanism underlying the development of periodic breathing during sleep is alveolar 

hyperventilation, caused by hypoxia, and leading to a fall in PCO2 approaching or 

falling below the apneic threshold resulting in central hypopneas or apneas during 

sleep. With breathing cessation or reduction the arterial pO2 falls, pCO2  rises and 

hyperventilation is triggered; thus the cycle continues with repetitive apneas and/or 

hypopneas followed by hyperpnea. The hyperpneic part of the central apneic or 

hypopneic event consists of three to four breaths of high tidal volume in which the 

pO2  rises and pCO2 falls to near awake levels and it is thought that this helps to keep 

the pO2 higher in those people who experience periodic breathing when asleep at high 

altitude. It has been suggested by  West et al (1986) that periodic breathing during 

sleep at high altitude, with the severe desaturation that occurs, would be detrimental to 
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ncrease in SaO2 after the 

yperpneic phase of the PB cycle, thus producing a mean SaO2 that does not differ 

success at high altitude but this theory is not supported by the work of Ghazanshahi & 

Khoo (1993) who found in research using a computer model of respiratory gas 

exchange that periodic breathing with “2-4 large breaths that alternate with apnea 

produce the highest arterial oxygenation levels”.  Other studies conducted on human 

subjects at high altitude have not supported a link between either higher or lower 

mean SaO2 in periodic breathing (Salvaggio et al., 1998; Normand et al., 1990) 

finding that the oxyhemoglobin saturation of periodic breathers was similar to those 

who did not develop periodic breathing. We did not find a difference in either the 

mean or minimum sleeping SaO2 between periodic and non periodic breathers at high 

altitude; nor did we find any significant differences in the morning arterial blood 

gases between subjects with and without periodic breathing. The severe oxygen 

desaturation that occurs during PB is offset by the marked i

h

from subjects who maintain steady ventilation during sleep. 

 

Respiratory events in REM sleep were quite different from PB, which was present 

almost exclusively in NREM sleep; these REM respiratory events occurred 

predominantly in phasic REM in which rapid eye movements, muscle twitches and 

disordered breathing normally occur. These REM events were called central 

hypopneas and apneas in this research; they did not occur in any pattern but tended to 

be of irregular length, unlike PB, and were associated with oxygen desaturation but 

not always arousal. Central hypopneas and apneas are common in phasic REM sleep 

and are associated with a degree of hypoventilation but, at sea level and in healthy 

individuals, are not associated with oxygen desaturation. At high altitude under 
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ntral hypopneas and 

pneas) would be expected to be associated with desaturation. In this research oxygen 

conditions of hypobaria these events lead to marked desaturation because of the 

position on the steeper part of the oxygen-dissociation curve present. These REM 

events occurred as frequently in subjects who had PB in NREM as those without PB 

in NREM. They seem to be simply a function of normal phasic REM phenomenon 

that result in marked desaturation due to the position on the steeper part of the 

oxygen-hemoglobin dissociation curve where oxygen readily dissociates from 

hemoglobin; at an altitude of 3500m the mean pO2 of our subjects was 54 ± 8.5mmHg 

and this continued to fall with increasing altitude until by 5000m the mean pO2 was 

46.8 ±7.7mmHg. When the arterial pO2 is below 60mmHg, oxygen dissociates more 

readily from hemoglobin so the REM sleep respiratory events (ce

a

desaturation often exceeded 10% at altitudes 3500m and higher.  

 

There was a minor degree of upper airway obstruction in several of the subjects, with 

obstructive apnea/hypopnea indices in sixteen subjects of 3-16/hour (mean 2.2 ± 

3.8/hour) in NREM sleep and in twelve subjects with AHI 3-30/hour (mean 6.9 ± 

6.1/hour) in REM sleep. This upper airway obstruction, and its related arousal from 

sleep, had virtually disappeared by 3500m; with a mean AHI 1.3 ± 2.8/hour in 

NREM, 1.3 ± 3.4/hour in REM, and remaining at these low levels for the rest of the 

trek.  There was a reciprocal relationship between the obstructive AHI and the central 

(REM) and PB (NREM) AHI whereby as the obstructive AHI fell, the central/PB AHI 

rose with increasing altitude. This finding, that upper airway obstruction during sleep 

was resolved with increasing altitude, is in direct contrast to previous findings in 

which induced hypocapnic hypoxic periodic breathing produced upper airway 
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mmHg to 32 ± 3mmHg at 3500m and to 27 ± 4mmHg at 5000m. This 

egree of hypocapnia explains the occurrence of periodic breathing during sleep in 

ea level ventilatory responses in the male versus female 

ubjects; there were no significant differences in the VR of each gender when 

obstruction at the nadir of ventilatory drive in the PB cycle (Onal et al. 1986; Warner 

et al. 1987; Badr et al. 1997). This seeming resolution of upper airway obstruction at 

high altitude may be due to the non-linear output from the peripheral chemoreceptors, 

driving upper airway muscles harder than the diaphragm and other inspiratory 

respiratory muscles; while the development of central apneas is due to the hypocapnia 

that develops during increased ventilation at high altitude. Hypocapnia is a respiratory 

depressant and this may be the mechanism responsible for the marked decrease in 

upper airway obstruction at high altitude. Arterial pCO2 levels fell from sea level 

values of 42 ± 3

d

most subjects. 

 

The mean PB AHI in male and female subjects did not vary significantly from each 

other at altitudes 1400-4200m but more males than females developed PB at every 

altitude: at 3500m four male and one female developed PB, at 3900m eight male and 

four female subjects had PB, at 4200m seven male and three female had PB and at 

5000m all ten male and five of the female subjects developed PB. This difference in 

PB is not reflected in s

s

compared to each other. 

 

An interesting finding of our study was the marked difference between the periodic 

breathing AHI and the periodic breathing arousal index (AI); the AHI was at least 

twice the AI. This supports the findings from previous studies (Berssenbrugge et al., 
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port a bad night’s sleep due to symptoms of periodic breathing e.g. waking gasping 

id 

 in sleep at high altitude, the only 

timulus to arousal is hypoxia; there is no stimulus to arousal from lung stretch 

1983; Anholm et al., 1992; Khoo et al., 1996; Salvaggio et al., 1998) in which it was 

found that many periodic breathing cycles were not associated with arousals. This 

may go part way to explain why there were few complaints from most of our subjects 

about the quality of their sleep: despite having many hundreds of central apneas 

during a night’s sleep the subjects seemed unaware of this disruption and did not 

re

and difficulty initiating or maintaining sleep. 

 

Arousal from sleep increases ventilation at the termination of each PB cycle and this 

might improve the oxygen saturation in subjects with a higher AI/AHI ratio. We d

not find this effect however in our subjects; there was no difference in the mean or the 

minimum oxygen saturation in periodic breathers with high and low AI/AHI ratios. 

It has been demonstrated that hypoxia is a poor stimulus to arousal from sleep; 

Berthon-Jones and Sullivan (1982) found that desaturation to as low as 70% caused 

arousal only around half the time. During PB

s

receptors or upper airway receptors during PB. 

 

It has been suggested that a steeper hypoxic ventilatory response predisposes people 

to periodic breathing at high altitude (West et al, 1986). The reasoning behind this 

theory is that those with a brisker response to hypoxia would have more 

hyperventilation in response to the hypobaric conditions and this would lower the 

arterial pCO2 and induce more periodic breathing during sleep. We compared the 

three ventilatory responses (hypoxic, hypercapnic and hypercapnic/hypoxic) to the 
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 further work on the changes that occur to ventilatory responses as altitude 

creases is needed to clarify the relationship (if one exists) between VR and periodic 

arterial carbon dioxide level is driven 

wer and this results in further apnea followed by corrective hyperpnea and sustained 

s to be done in the area of high altitude periodic breathing 

to ascertain the mechanisms that contribute to its relationship with loop gain theory 

and ventilatory responses. 

periodic breathing indices for each altitude and found only one relationship i.e. 

eucapnic HVR and PB AHI at 3500m. Ventilatory responses may be altered by high 

altitude and

in

breathing. 

 

Loop gain theory (Khoo et al, 1991) predicts that those with a loop gain closer to 1, 

i.e. higher gain, are more likely to develop periodic breathing. The reasoning behind 

the theory is that, when the corrective response to a disturbance is greater than the 

disturbance, self-sustaining oscillations will occur. The disturbance in the case of high 

altitude periodic breathing is the apnea, and the corrective response is the hyperpnea; 

if the hyperpnea is greater in magnitude, the 

lo

oscillation i.e. periodic breathing. 

 

It is logical that individuals with brisker ventilatory responses will have a greater 

corrective response but, in our research we found no relationship between ventilatory 

responses measured at sea level to the degree of periodic breathing at high altitude. 

Thus, loop gain may have more parameters than apnea and the hyperpnea that 

follows. Further work need
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CHAPTER 5 

ACUTE MOUNTAIN SICKNESS AND NON-INVASIVE VENTILATION 
DURING SLEEP 
 

5.1 Introduction 

Acute Mountain Sickness (AMS) is common in those who travel from near sea level 

to altitudes higher than 2500m (Coward 1906; Hackett et al. 1976; Ward et al. 1989; 

Shukitt-Hale et al. 1991) and can be a debilitating effect of high altitude which may 

require the administration of oxygen, respiratory stimulants such as acetazolamide or 

descent to lower altitude. The symptoms of AMS include headache, nausea, loss of 

appetite, breathlessness, dizziness, fatigue, weakness and disturbed sleep (Hansen et 

al. 1991; Carson et al. 1969; Sampson et al. 1983; Shukitt-Hale et al. 1991). 

Enrichment of room air with oxygen, by the use of concentrators, is known to 

eliminate AMS and improve the general well being of people working at high altitude 

(West 1995; Luks et al. 1998; Barash et al. 2001; McElroy 2000) thus it appears that 

the hypoxemia that occurs at high altitude is responsible for the development of AMS 

symptoms. 

 

Hypobaric hypoxia, present at high altitude is likely to be the basis of AMS although 

the pathophysiologic mechanisms are poorly understood. The low barometric pressure 

at high altitude results in low inspired pO2 and hence low alveolar pO2 leading to 

oxygen deprivation.  

 

Oxygen saturation during sleep at high altitude is known to be lower than awake
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levels (West et al. 1986; Matsuyama et al. 1989) and the development of Acute 

Mountain Sickness (AMS) is related to lower oxygen saturation (SaO2) during sleep 

(Erba et al. 2004; Burgess et al. 2004). AMS sufferers often awake after a poor night’s 

sleep with a severe frontal headache. The severity of arterial oxygen desaturation 

(hypoxia) appears to be an important part of the development of AMS as the severity 

increases with increasing altitude as the arterial oxygen saturation falls. Correlations 

have been found between oxygen saturation at high altitude and AMS (Bircher et al, 

1993; Roach et al, 1998). In the study by Roach et al, climbers were studied at Base 

Camp, at 4200m, and then had AMS symptoms assessed on return from their summit 

attempts; a lower SaO2 at Base Camp correlated with subsequent AMS scores. 

 

AMS is assessed using the Lake Louise scoring system (Roach et al, 1993) that was 

developed at the Lake Louise Hypoxia Symposium in 1991 and modified at the next 

Symposium in 1993. The Lake Louise Score (LLS) assesses the presence of AMS by 

a questionnaire; a score of 0-3 is given for each of the symptoms reported with “0” for 

no symptoms and “3” for severe, debilitating symptoms. Headache must be present to 

diagnose AMS with at least one of the following symptoms: loss of appetite, nausea, 

fatigue, weakness, dizziness/light-headedness and difficulty sleeping. Clinical 

assessment determines the presence of the following: change in mental status, ataxia 

and peripheral edema. The two scores (subjective/questionnaire and clinical 

assessment) are added to derive a total score and AMS is said to be present when the 

score is ≥3 in the presence of headache. 
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AMS can be avoided by ascending gradually, resting when early symptoms develop 

and allowing time for acclimatisation. It is recommended that no more than 300m 

should be ascended in one day when the altitude is above 3000m. Physical exercise is 

known to increase the risk of AMS (Roach et el. 2000) so a further recommendation is 

to have rest days every two to three days and to sleep for two nights at each altitude 

above 3000m before further ascent. Treatment of AMS includes symptomatic relief of 

headache with ibuprofen, paracetamol, codeine and caffeine.  

 

Treatment and prevention by drugs such as acetazolamide have been shown to be 

effective. Acetazolamide causes acidosis by blocking carbonic anhydrase in the 

kidney and thus stimulates ventilation; it has been found to be an effective 

preventative when 125mgs are taken twice a day (Basnyat et al., 2003). Oxygen 

administration and descent to a lower altitude result in rapid recovery. 

 

Research has shown that oxygen enrichment of room air by use of concentrators is a 

very useful method of eliminating AMS and improving the general well being of 

people working at high altitude (West JB, 1995; Luks AM et al, 1998; Barash et al, 

2001); this comes as no surprise as AMS is due entirely to the hypoxia of high 

altitude.  

 

Continuous positive airway pressure (CPAP) and end-expiratory positive airway 

pressure (EPAP) via face and nasal masks have been used at high altitude to improve 

oxygen saturation and the symptoms of AMS (Launay 2004; Oelz, 1983; Savourey et 

al. 1999; Schoene et al. 1985). However, these techniques were applied to subjects 



 
 Chapter 5 

Acute Mountain Sickness and Non-invasive Ventilation During Sleep 
 

 

260

when awake and, as far as is known, neither CPAP nor EPAP has been used in 

sleeping subjects at high altitude. 

 

Non-invasive ventilation (NIV) has been used for long term ventilatory support since 

the polio epidemics of the 1950s (Collier and Offeldt 1954; Bach et al. 1987). Since 

the 1980s there has been a growth in the use of NIV using nasal masks; this growth is 

linked to the expansion in knowledge regarding the contribution of hypoventilation 

during sleep to the development of hypercapnic respiratory failure (Bye et al. 1990; 

Piper and Sullivan 1994; McNicholas 1997) and the successful use of NIV during 

sleep to improve daytime arterial blood gases (Bach et al. 1987; DiMarco et al. 1987; 

Ellis et al. 1987). 

 

Tidal volume is increased by the use of NIV (Schönhofer et al., 1997; Diaz et al., 

2002) due to positive pressure delivered during inspiration (inspiratory positive 

airway pressure/IPAP). During expiration airway pressure is maintained (end-

expiratory positive airway pressure/EPAP) and this is known to prevent upper airway 

collapse (Piper and Sullivan, 1994), is thought to prevent passive alveoli collapse as 

well as recruitment of microatelectatic alveoli (Covelli et al., 1982., Duncan et al., 

1987., Wayne, 1976) and has also been shown to reduce the work of breathing due to 

increased pulmonary compliance (Katz and Marks 1985., Naughton et al. 1995., 

Lenique et al. 1997).  
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5.2 Aims 

The use of NIV at high altitude has not been trialled to prevent worsening oxygen 

desaturation during sleep. The aim of this research was therefore to use NIV during 

sleep at 3800m to assess sleeping oxygen saturation and the development of Acute 

Mountain Sickness. 

 

5.3 Methods 
 

   5.3.1 Subjects 

Seven normal, healthy, non smoking sea level-dwelling subjects (three female) were 

recruited from students of the University of California, San Diego. The mean age of 

the subjects was 23.6 ± 1.5 years and mean body mass index (BMI) 22.7 ± 1.8kgs/m2.  

None of the female subjects was taking oral contraceptives. No subject had traveled to 

high altitude in the previous six months. 

 

Each subject gave informed consent and the protocol was approved by the University 

of California, San Diego Human Research Protection Program. 
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Table 5.3.1 White Mountain Subjects 
 
 
Subject Sex Age  

(years) 
  Height     
  (cms) 

    BMI    
  (kg/m2) 

1 M 23 190 26 

2 M 23 170 24 

3 M 21 184 23 

4 M 25 170 23 

5 F 23 172 20 

6 F 25 166 21 

7 F 23 164 22 

Means 
± SD 

 23.3 
± 1.4 

173.7   
± 9.6   

22.7  
± 1.97 

 
Seven subjects were studied at sea level and at the Barcroft research station  
at 3800m at White Mountain. The subjects were students from the  
University of California, San Diego and were normal, healthy volunteers. 
 
 
  5.3.2 Measurements 

Overnight sleep studies were performed at sea level in San Diego in each subject’s 

home before departure to the high altitude location (White Mountain, California, 

USA) which is 3800m above sea level.  

 
Sleep study equipment used at sea level and high altitude was the Compumedics 

(Melbourne, Australia) Siesta portable system.  

 

Parameters measured were two electro-encephalograms (EEG) consisting of central 

and occipital leads (C3/A2 and O2/A1); two (right and left) electro-oculograms 
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(EOG); submental electro-myogram (EMG); two lead electro-cardiogram (ECG); 

chest and abdominal respiratory inductive plethysmography (RIP); anterior tibialis 

EMG; body position; nasal flow and oxyhaemoglobin saturation.  

 

One subject was studied at 3800m using a limited channel device (Embletta™, 

Embla, Broomfield, CO, USA). This device measured nasal flow using oxygen 

cannula and a differential pressure transducer; respiratory movement using peizo 

bands; oxygen saturation with a finger probe and built-in oximeter. 

 

  5.3.3 Protocol and Equipment 

Sleep studies were conducted at the subjects’ homes in San Diego and on two 

consecutive nights at the high altitude location. Compumedics Siesta portable 

monitoring equipment was used to record sleep and breathing in seven subjects at sea 

level and in six subjects at 3800m. Embletta was used to measure breathing and SaO2 

in one subject at 3800m. 

 

The subjects slept two nights at 3800m and did not ascend or descend to higher or 

lower altitudes between sleep studies. 

 

On one of the nights at 3800m the subject slept while breathing room air and on the 

other with non-invasive positive pressure ventilation (NIPPV) via a face mask 

(ResMed Ultra Mirage Full Face Mask or Respironics Comfort Full Face Mask). The 

device used was the ResMed VPAP lll STA™ using spontaneous mode i.e. 

inspiration and expiration triggered by the subject. The VPAP device can deliver 
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inspiratory pressure of 4-30cms H2O and expiratory pressure of 4-20cms. These 

pressures were adjusted for subject comfort in the evening before bed time with the 

inspiratory pressures being set at 9-12cms H2O and the expiratory pressures at 4-6cms 

H2O.  

 

The order of the two sleep studies was randomised for each subject on the first night 

at 3800m by coin toss. 

 

Sleep studies were performed using the same protocol and procedure as described in 

Chapter 3. Sleep staging and respiratory scoring were the same as described in 

Chapter 3. 

 

  5.3.4 Procedure: Sleep Studies 

The procedure for sleep studies was the same as that described in Chapter 3. 

Subjects were prepared for the sleep studies in the evening before retiring to bed for 

the night and recording was commenced when the subject was ready to sleep. 

 

On the night when NIPPV was applied the mask was fitted in the evening and the 

most comfortable style of mask selected. The subject sat on a chair and breathed with 

the VPAP set on an inspiratory positive airway pressure (IPAP) of 6-12cms and the 

expiratory positive airway pressure (EPAP) of 4-6cms. The VPAP was then set to the 

most comfortable settings. The VPAP was set to spontaneous mode in which 

inspiratory pressure and expiratory pressure was triggered by the subject’s breathing. 
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When NIPPV was not applied a nasal cannula was inserted to monitor airflow. 

Recording was ended in the morning when the subject awoke. 

 

The sleep studies were downloaded from the memory card onto a laptop computer and 

then analysed to ensure adequate amount and quality of the data. The VPAP machine 

was also downloaded onto the laptop computer and this provided information on 

pressures, leak and time with mask on. 

 

  5.3.5 Procedure: Assessment of Acute Mountain Sickness 

In order to detect the presence of AMS the Lake Louise questionnaire (Roach et al. 

1993) was administered to each subject on the morning after the sleep study. There 

were two parts to the questionnaire: a self assessment and a clinical assessment (see 

appendix for complete questionnaire).  

 

The subject was asked to respond to questions about headache, appetite and sleep 

quality and to give each symptom a score from zero (no symptoms) to 3 (severe 

symptom). Headache and at least one other symptom must be present for the 

diagnosis of AMS. A score of ≥3 is diagnostic AMS. 
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  5.3.6 Sleep Stage, Arousal and Respiratory Scoring 

Sleep stages and arousals were defined and analysed as described in Chapter 3. 

Respiratory events were defined and analysed as described in Chapter 4. 

 

Some sleep studies failed during recording and therefore sleep architecture was 

examined in four subjects who had full polysomnography at sea level and two nights 

at 3800m and comparisons were made between the sea level, night without NIPPV 

and night with NIPPV. 

Respiratory variables were examined in all seven subjects to compare periodic 

breathing and oxygen saturation during nights at sea level and at 3800m with and 

without NIPPV. 

 

5.4 Results 
  5.4.1 Acute Mountain Sickness 

Our subjects developed Acute Mountain Sickness (AMS) similar to the proportions 

found in previous studies (Maggiorini et al. 1990; Kayer et al. 1993; Hackett et al. 

1976)  i.e. 57% (four of seven subjects) developed AMS after a night’s sleep at 3800m 

when not using non-invasive positive pressure ventilation (NIPPV). The other three 

subjects (43%) had no symptoms of AMS when sleeping without NIPPV. The Lake 

Louise Score in the four subjects with AMS were 4, 5, 7 and 7 while the three subjects 

who did not have AMS had Lake Louise scores 0, 0 and 0. 

 

 

 



 
 Chapter 5 

Acute Mountain Sickness and Non-invasive Ventilation During Sleep 
 

 

267

Table 5.4.1 Mean and Minimum oxyhemoglobin saturation, Lake Louise Acute
          Mountain Sickness score and order of night on which non-invasive 
          positive pressure ventilation was used at 3800m. 
 

Subject        Mean             Mean             Min.               Min.                  LLS                  LLS            NIPPV 1st or 2nd 
  (sex)            SaO2%          SaO2%          SaO2                    SaO2                  Off NIPPV     On NIPPV        night at 3800m 
                   Off NIPPV    On NIPPV    Off NIPPV   On NIPPV  

 
 
1 (m)                 76                    82                 69                 75                    4                       0                         2           
 
2 (m)                 72                    80                 63                 69                    5                       1                         1 
 
3 (m)                 73                    79                 67                 72                    7                       1                         2 
 
4 (m)                 74                    76                 59                 65                    7                       0                         1 
 
5 (f)                   80                    82                 73                 74                    0                       0                         2 
 
6 (f)                   80                   83                  74                 74                    0                       0                         1 
 
7 (f)                   82                    87                 74                 80                    0                       0                         2  
 
 
Mean            76.7 ± 3.9          81.3 ± 3.5       68.4 ± 5.8        72.7 ± 4.8            3.3 ± 3.3              0.3 ± 0.5  
± SD                                        p = 0.002                                p = 0.005                                          p = 0.04 
 
 
     
 
     

 

Due to equipment limitations the subjects used non-invasive positive pressure 
ventilation (NIPPV) either on the first or second night at 3800m and the order was 
randomised. There were no significant differences between the sleeping mean or 
minimum oxyhemoglobin saturation (SaO2) or the Lake Louise Acute Mountain 
Sickness score (LLS) between subjects who used NIPPV on the first or second night at 
high altitude. Both the mean and the minimum SaO2 were significantly higher and the 
LLS significantly lower when NIPPV was used during sleep.  
 
 
 
 
 
 
 
 
 
 
 



 
 Chapter 5 

Acute Mountain Sickness and Non-invasive Ventilation During Sleep 
 

 

268

Table 5.4.2 Mean and Minimum sleeping oxyhemoglobin saturation in subjects 
         using non-invasive positive pressure ventilation during sleep on the  
         first or second night at 3800m 
 
Subjects  
using 
NIPPV mean SaO2 min. SaO2  mean SaO2 min.SaO2 
first night       off NIPPV off NIPPV on NIPPV       on NIPPV  
   2       72       63       80        69 
 
   4       74       59                  76        65  
 
   6       80                  74       83        74 
 
Mean ± SD 75.3±4.2 65.3±7.8 79.7±3.5 69.3±4.5 
 
Subjects  
using 
NIPPV  mean SaO2 min. SaO2  mean SaO2 min.SaO2 
second night    off NIPPV off NIPPV on NIPPV       on NIPPV  
   1       76       69       82        75 
 
   3       73       67                  79        72  
 
   5       80                  73       82        74 
 
   7       82       74       87        80 
 
Mean ± SD 77.8±4.0 70.8±3.3 82.5±3.3 75.3±3.4 

                             ns                   ns                    ns                      ns  
 
 
Due to equipment limitations the subjects used non-invasive positive pressure 
ventilation (NIPPV) either on the first or second night at 3800m and the order was 
randomised. There were no significant differences between the sleeping mean or 
minimum oxyhemoglobin saturation (SaO2) between subjects who used NIPPV on the 
first or second night at high altitude. 
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5.4.2 Mean and Minimum Sleeping Oxygen Saturation with and    
         without Non-invasive Positive Pressure Ventilation at 3800m;     
         NIPPV use on the first or second night at 3800m 
 
 

The use of NIPPV during sleep at 3800m resulted in a significant improvement of 

both the mean and minimum sleeping oxygen saturation when compared to the night 

without NIPPV (p = 0.003 for mean and p = 0.02 for minimum. 

 

Three subjects used NIPPV on their first night at high altitude and four subjects used 

NIPPV on their second night at high altitude. There were no differences in the mean 

or minimum oxygen saturation in these two groups either on, or off NIPPV. 

 

Figure 5.4.2 Mean and Minimum Oxyhemoglobin Saturation during Sleep at  
         3800m with or without Non-invasive Positive Pressure Ventilation   
        (NIPPV) 
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Non-invasive positive pressure ventilation (NIPPV) was used by seven subjects during 
one of two nights sleeping at 3800m. There was a significant improvement in both the 
mean and the minimum sleeping oxyhemoglobin saturation (SaO2) when ventilation 
NIPPV was used during sleep at 3800m (p = 0.002 and 0.005 respectively). 
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5.4.3 Lake Louise Scores after a night sleeping with and without  
         non- invasive positive pressure ventilation at 3800m 

There was a significant improvement in the measure of Acute Mountain Sickness 

(Lake Louise Score) after a night of sleep using NIPPV. The LLS for the group after 

sleeping without NIPPV was 3 ± 3 (0,0,0,4,5,7,7) and after sleeping with NIPPV, 0.5 

± 0.3 (0,0,0,0,0,1,1) with NIPPV (p = 0.03). 

 
 

Figure 5.4.3 Lake Louise Score (LLS) for Acute Mountain Sickness when 
          sleeping with or without non-invasive positive pressure  
                     ventilation (NIPPV) during sleep at 3800m 
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The Lake Louise questionnaire was administered to seven subjects in the morning, 
within an hour of waking, to evaluate the presence and severity of Acute Mountain 
Sickness (AMS). The Lake Louise score (LLS) was significantly lower i.e. fewer and 
less severe AMS symptoms, after a night during which non-invasive positive pressure 
ventilation (NIPPV) was used. 
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  5.4.4 Mean and Minimum Sleeping Oxygen Saturation in 
           Subjects with and without Acute Mountain Sickness 
 
 
The four subjects who developed AMS after a night without NIPPV had significantly 

lower mean (p = 0.002) and minimum (p = 0.02) sleeping oxygen saturations than the 

three subjects who did not develop AMS after a night without NIPPV.  However, 

when using NIPPV there were no significant differences between the two groups’ 

sleeping oxygen saturations. Interestingly, the AMS group’s mean and minimum 

SaO2 ON NIPPV were not significantly different (p > 0.1) to the no-AMS group’s 

mean and minimum SaO2 OFF NIPPV. 

 
 

Figure 5.4.4 a Mean and Minimum oxyhemoglobin saturation in subjects with 
  or without Acute Mountain Sickness, during sleep at 3800m in  
  which non-invasive positive pressure ventilation was not used 
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Subjects who developed Acute Mountain Sickness (AMS) had significantly lower 
mean and minimum oxyhemoglobin saturations (SaO2) during sleep at 3800m in 
which non-invasive positive pressure ventilation (NIPPV) was not used 
 (p = 0.002 and 0.02 respectively). 
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Figure 5.4.4 b Mean and Minimum oxyhemoglobin saturation in subjects with 
  or without Acute Mountain Sickness, during sleep at 3800m in  
  which non-invasive positive pressure ventilation was used 
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There were no significant differences between the sleeping oxyhemoglobin 
saturations (SaO2) in subjects with or without Acute Mountain Sickness (AMS) 
on the night at 3800m when non-invasive positive pressure ventilation (NIPPV) 
was used during sleep. However, the mean and minimum SaO2 in AMS subjects 
when sleeping with NIPPV was similar to that of the subjects without AMS 
when sleeping without NIPPV. 
 
 

  5.4.5 Periodic Breathing during Sleep at 3800m 

Six of the subjects developed periodic breathing (PB) in NREM sleep at 3800m when 

sleeping without NIPPV. One subject did not develop PB when sleeping with NIPPV 

(PB AHI < 2/hour). There was a wide range of periodic breathing in the six subjects 

with PB, with the highest AHI being 96/hour and the lowest 24/hour (mean 42 ± 

32/hour). When NIPPV was used five subjects developed PB but the AHIs were 

lower. However this was not a significant difference (p = 0.2). The wide range in the 

PB AHI indices persisted in the five subjects with PB when using NIPPV, with the 

lowest AHI being 12/hour and the highest 53/hour (mean 24 ± 21/hour). 
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  5.4.6 Sleep Architecture at Sea Level and at 3800m on or off 
           Non-invasive Positive Pressure Ventilation 

Full polysomnography was available for analysis on only four subjects. 

Sleep architecture was disrupted on at 3800m compared to sea level and this was true 

for the nights when NIPPV was used and the nights when it was not used. 

 

Total sleep time (TST) was significantly reduced compared to sea level on the nights 

when NIPPV was not used: TST was 322 ± 89 minutes at sea level and 213 ±  74 

minutes at 3800m without NIPPV (p = 0.05). However, on the night that NIPPV was 

used, TST was not significantly different from sea level (219 ± 175 minutes).  Sleep 

efficiency was reduced at 3800m when NIPPV was used: sleep efficiency was 88 ± 

10% at sea level and only 58 ± 29% at 3800m when NIPPV was used (p = 0.05). 

Sleep efficiency when NIPPV was not used was 75 ± 23% (ns). 

 

There were also some significant changes to sleep stages at 3800m both on the nights 

when NIPPV was used and on the nights it was not used. 

 

The lightest sleep stage, Stage 1 non rapid eye movement (NREM) sleep, was 

increased significantly only on the night that NIPPV was not used: 11 ± 5 minutes of 

Stage 1 NREM sleep at sea level and 24 ± 13 minutes when NIPPV was not used (p = 

0.05). 

 

Slow wave sleep (SWS) was decreased on the nights that NIPPV was not used: 95 ± 

43 minutes of SWS at sea level and 45 ± 28 minutes when NIPPV was not used (p = 

0.05) and REM sleep was decreased both on the nights when NIPPV was used and on 
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the nights it was not used but reached significance only on the night without NIPPV; 

in fact two of the four subjects had no REM sleep when NIPPV was used and one 

subject had no REM sleep on the night when NIPPV was not used. The average REM 

sleep duration at sea level was 68 ± 39 minutes and only 18 ± 19 minutes without 

NIPPV (p = 0.03) and 22 ± 33 minutes when NIPPV was used (p = 0.06). 

 

The total arousal index (number of arousals per hour of sleep) was increased at 

3800m. At sea level the mean arousal index (AI) was 16 ± 5/hour and at 3800m when 

sleeping without NIPPV it was 36 ± 7/hour (p = 0.001) and 33 ± 14/hour when 

NIPPV was used (p = 0.03).  
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Table 5.4.6 Sleep architecture in four subjects studied at sea level and during 
         two nights  

Subject              TST              Sleep            Sleep             Stage 1          Stage 2          SWS          REM        Arousal       Periodic      
                                              Efficiency     Latency           mins.             mins.             mins.         mins.       index/hr      breathing/hr 
Sea level 
 
1                        255             94                13                 15               129                   73                51                 20               0  
 
2                        362             97                23                   3               130                 158                72                 11               0 
 
3                        429             87                12                 14               212                   84              119                 13               0 
 
4                        242             74                21                 10               142                 64                  28                 21               0 
 
Mean               322 ± 89       88 ± 10         17 ± 6              11 ± 5           153 ± 40            95 ± 43           68 ± 39            16 ± 5           0 ± 0 
± SD                                         
 
3800m off NIPPV 
 
1                        293             92                9                  31                169                  51                 43               32                33  
 
2                        237             92                4                    8                149                  60                 22               35                30 
 
3                        117             43               46                 20                 95                    3                    0               30                47 
 
4                        203             72                7                  38                 94                   65                   6               46                96 
 
Mean             213 ± 74        75 ± 23         17 ± 20           24 ± 13          127 ± 38             45 ± 28            18 ± 19         36 ± 7           52 ± 31 
± SD                                         
 
 
3800m on NIPPV   
 
1                        150             64                30                   9                  96                 30                 16                 29               26  
 
2                        429             88                26                 11                 237               112                70                 18               25 
 
3                          20             19                37                 10                  10                   0                   0                  33                0 
 
4                        276             59                 9                  37                160                  80                  0                 52                53 
 
Mean             219 ± 175        58 ± 29          26 ± 12         17  ± 14          126 ± 96            48 ± 57         22 ± 33           33  ± 14        26 ± 22 
± SD   
 
  

 
Sleep architecture was disrupted at 3800m. Total sleep time (TST) was decreased 
significantly on the nights when NIPPV was used (p = 0.05). Sleep efficiency was also 
reduced when non-invasive positive pressure ventilation (NIPPV) was used (p = 0.05). Sleep 
stages were disrupted by high altitude: 
Stage 1 NREM sleep was increased on the nights when NIPPV was not used (p = 0.05); slow 
wave sleep was reduced at 3800m when NIPPV was not used (p = 0.05); REM sleep was 
reduced significantly when NIPPV was not used at 3800m (p = 0.03) and nearly reached 
significance when NIPPV was used (p = 0,06). The total arousal index was increased at high 
altitude both with (p = 0.001) and without NIPPV (p = 0.03). 
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5.5 Discussion 

This research has demonstrated that sleeping at high altitude using a non-invasive 

positive pressure ventilator (NIPPV) improves sleeping oxygen saturation and 

alleviates or abolishes the symptoms of Acute Mountain Sickness (AMS).  

 

Sleep was disrupted at 3800m on the nights when NIPPV was used and on the nights 

it was not used. Total sleep time, sleep efficiency and slow wave sleep were reduced 

and Stage 1 NREM was increased on the nights when NIPPV was used. REM sleep 

was reduced and the total arousal index was increased on both nights at 3800m. 

 

AMS has been shown to be associated with a low mean sleeping SaO2 (Burgess et al 

2004; Erba et al 2004), therefore keeping the SaO2 higher during sleep by the use of 

NIPPV during sleep effectively prevented AMS symptoms. This research also 

demonstrated that those subjects who developed AMS benefited more from the use of 

NIPPV during sleep i.e. AMS subjects demonstrated more improvement in their SaO2 

than the subjects who did not develop AMS. The mechanism of this improvement is 

likely to be increased tidal volume by the use of inspiratory positive pressure and by 

prevention of alveolor collapse and recruitment of microatelectatic alveoli by the use 

of expiratory positive pressure. 

 

The major shortcoming of this research was that only seven subjects were studied. 

The power of the statistical analyses would be increased by studying a larger group. 

This was also an unblinded study, with no control e.g. sham NIPPV being used.   

However, the results, particularly for the AMS subjects, clearly demonstrate a strong 
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case for the use of positive pressure ventilation at high altitude to prevent and treat 

AMS. Our subjects found the mask and NIPPV uncomfortable and this may have 

affected their sleep quality; two subjects had no REM sleep while using NIPPV and 

some sleep values were reduced when NIPPV was used.  

 

AMS is very common in people who rapidly ascend to high altitude. In our subjects 

57% developed AMS with Lake Louise Scores from 4-7; this prevalence is in 

agreement with previous work on AMS e.g. Hackett et al, 1976 finding of 53% of 

trekkers at Pheriche in the Nepal Himalaya at an altitude of 4200m; Kayser et al, 

1991, at 5400m in the Nepal Himalaya; and Maggiorini et al, 1990 with 41% in the 

Alps at altitudes from 2800m to 4559m.  

 

Positive expiratory pressure has been used as a treatment and prevention for AMS in 

previous studies.  Positive end-expiratory pressure (PEEP) is known to improve gas 

exchange and increase oxyhemoglobin saturation in pulmonary edema (Wayne K S., 

1976) and at high altitude (Schoene et al, 1985; Larson, 1985) but it is also thought to 

increase the work of breathing, the risk of barotrauma, worsen concomitant cerebral 

edema by decreasing venous return (Oelz, 1983) and reduce cardiac output. The 

method used to deliver PEEP in the field at high altitude is via a tightly fitted face 

mask with a valve that allows inspiration at barometric pressure and expiration at 

increased pressure. 
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PEEP has also been used during ascent of Mont Blanc at 4810m (Launay et al., 2004), 

in hypobaric chamber experiments (Savourey et al., 1998; Savourey et al., 1999) and 

was found to reduce the incidence of AMS and improve oxyhemoglobin saturation. 

 

Continuous positive airways pressure (CPAP) was used by a group studying its effect 

at Mount Cook (3205m) in New Zealand (Davis et al., 2002). Fourteen subjects 

ascended Mt Cook rapidly; the use of a specially designed CPAP machine that 

operated at low gas flows increased oxyhemoglobin saturation and decreased the 

respiratory rate with no apparent fall in cardiac output. Unfortunately this work was 

presented as an abstract only. 

 

Non-invasive positive pressure ventilation (NIPPV) has not been used at high altitude 

to treat or prevent AMS. The mechanism by which NIPPV improves oxygen 

saturation is likely to be the increased tidal volume that is delivered by the positive 

airway pressure delivered during inspiration (IPAP) and by the prevention of passive 

collapse of the upper airway and alveoli during expiration by the delivery of a 

reduced, but still ≥4cms H2O pressure. The difference between the inspiratory and 

expiratory pressures (swing) determines the amount of increased tidal volume. In our 

subjects we titrated the pressures in the evening before retiring for the night and set 

the VPAP machine on pressures that were tolerable and comfortable. In our subjects 

these pressures were 9-10cms H2O for the IPAP setting and 4-5cms H2O for the 

EPAP settings, giving a swing of 5cms H2O. This represents a very small increase in 

tidal volume but, as can be seen from the improvement in sleeping SaO2 when NIPPV 

was used, was sufficient to markedly reduce the symptoms of AMS. These findings 
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tend to reinforce the theory that AMS is more likely to develop in those people whose 

sleeping oxygen saturation is lower (Burgess et al, 2004; Erba et al, 2004). However, 

this was a small group and further research is needed to ascertain whether NIPPV is a 

viable and effective prevention or treatment for AMS. 

 

There are several effective treatments and strategies for dealing with the development 

of symptoms of AMS. Rest is an effective strategy; two or more days spent at each 

new altitude above 3000m assists in the acclimatisation process. Oxygen 

administration rapidly resolves AMS, as does acute descent by as little as 300m but 

neither will assist acclimatisation. Medications can be used to stimulate breathing 

(e.g. acetazolamide) and treat headache (e.g. paracetamol, ibuprofen) but it is unwise 

to remain at high altitude and particularly to sleep at high altitude once AMS 

symptoms have become severe (Lake Louise Score >7) and do not respond to the 

recommended treatments and strategies. It is important to descend as quickly and as 

far as possible; this is not easily accomplished if the patient is very ill and unable to 

walk and there is no means of transportation; hence the importance of effective 

treatments available in the field. 

 

There are several treatments that have been shown to be effective in treating AMS. 

The portable hyperbaric chamber, or Gamow bag, is a zippered, rubberised canvas 

bag in which the patient can lie while an operator uses a foot pump to increase the air 

pressure inside the bag. It is an effective method of treating AMS (Kasic et al., 1989) 

but it can be a difficult task for the foot pump operator to maintain optimal pressure, 

as exercise at high altitude is quickly exhausting. 
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The results of this research into the use of positive pressure ventilation at high altitude 

support the theory that SaO2 can be improved by increasing both inspiratory airway 

pressure, thus increasing tidal volume during sleep and expiratory airway pressure 

which may work by recruitment of microatelectatic alveoli, leading to improved gas 

exchange (Wayne 1976) and the prevention of collapse of the upper airway (Sullivan 

et al, 1981). 

 

There is no published work to report NIPPV or CPAP use during sleep at high altitude 

to prevent the occurrence of AMS or treat AMS after it has developed. The findings 

from Erba et al 2004 and Burgess et al 2004, demonstrating the link between low 

nocturnal/sleeping oxyhemoglobin saturation and AMS, suggest that more research 

into the use of the above methods during sleep is needed. 

 

More research is needed in this area to ascertain the feasibility of using positive 

airways pressure devices during sleep in the field in areas of high altitude.  

 

In conclusion, this research demonstrated that the use of positive pressure ventilation, 

that delivers both positive inspiratory and expiratory pressures, during sleep at high 

altitude reduces or abolishes the symptoms of AMS. The mechanism is likely to be 

increased ventilation that maintains higher oxyhemoglobin saturation during sleep. 
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CHAPTER 6 

SUMMARY 

This research aimed to examine the effects on sleep, and breathing during sleep, of 

incremental increases in altitude from sea level to 5000m. We also aimed to determine 

the relationships, if any, between ventilatory responses to hypoxia and hypercapnia at 

sea level and the development of periodic breathing at high altitude. A further aim of 

the research was to investigate whether the use of non-invasive positive pressure 

ventilation during sleep at high altitude would improve the overnight, sleeping oxygen 

saturation and the symptoms of Acute Mountain Sickness that are known to be linked 

to a lower sleeping oxygen saturation at high altitude. 

 

The most important finding from this research was that most sleep parameters were 

largely unaffected until the two highest altitudes. Our findings that Stage 1 NREM 

sleep was increased and slow wave sleep decreased at high altitude are in agreement 

with most previous findings. Stage 1 NREM sleep was increased in both duration and 

the percentage of total sleep at all altitudes from 3500m.  Slow wave sleep was 

decreased in duration and percentage of total sleep from 3500m. However, unlike 

many previous reports of sleep at high altitude we found that total sleep time, sleep 

efficiency and REM sleep were unaffected by high altitude. These changes to Stage 1 

NREM (the lightest sleep) and slow wave sleep (the deepest sleep) may explain 

reports from previous research that subjective sleep quality is poor at high altitude. 
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We did find a reduction in total sleep time and Stage 2 NREM sleep at the lowest 

altitude in Nepal (1400m) but this is most likely due to the changes in time between 

Australia and Nepal, changes to the circadian cycle of the individual subjects and the 

effects of long distance travel immediately prior to sleep studies being performed.. 

 

A further important finding from our study was that fewer than half the central apneas 

and hypopneas occurring in NREM sleep (periodic breathing) and REM sleep were 

associated with arousal from sleep.  Although arousal from sleep due to central apneas 

and hypopneas increased significantly with increasing altitude, the total arousal index 

was similar to sea level values until the two highest altitudes. Higher total arousal 

indices were due to increasing arousal from central apneas and hypopneas, despite 

only half the central apneas and hypopneas terminating with arousal. 

 

Cortical arousal (detected on the EEG) and autonomic arousal (detected from 

increased heart rate) were not present in over half the central events despite profound 

oxygen desaturation. Hypoxia is known to be a poor stimulus to arousal and at high 

altitude; hypocapnic hypoxia is the prevailing feature. Lung stretch receptors are not 

stimulated in the central apneas of PB as there is no increased lung volume, nor are 

upper airway receptors stimulated as there is no upper airway obstruction with its 

associated increased airflow resistance. The termination of apnea by a short period of 

hyperpnea appears to be a relatively passive return to breathing (compared to 

termination of obstructive apneas) mediated by the chemoreceptors and brought about 

by the drift downwards of arterial pO2, the drift upwards of arterial pCO2 and changes 

in [H+] in the region of the central chemoreceptor. 
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Arterial blood gases sampled in fourteen of our subjects demonstrated the challenge to 

the respiratory control system by increasing altitude. The pO2 at sea level was normal 

at around 95mmHg but even at the lowest altitude in Nepal i.e. 1400m, it was 

significantly decreased to 77mmHg and was in the low 50s at 3500m 3900m and 

4200m reaching a nadir of 46mmHg by an altitude of 5000m. A brisk increase in 

ventilation resulted from this hypobaric hypoxia with the consequence being, in most 

subjects, periodic breathing during sleep. The effectiveness of the increased 

ventilation ensured that the pCO2 was driven to low levels as altitude increased. At 

sea level the pCO2 was normal at around 42mmHg but was significantly lower even at 

1400m (39mmHg) then 32mmHg at 3500m and 29mmHg at the three highest 

altitudes. This level of pCO2 obviously was below the apneic threshold for most of 

our subjects, but the pattern of periodic breathing was not consistent either in the 

group as a whole or, for some of the subjects, in the individual at the different 

altitudes during the trek. Half the subjects had PB at 3500m, increasing as altitude 

increased. Others had PB at only one altitude and it was not always the highest 

altitude that appeared to trigger PB; in some subjects the highest level of PB was at 

3900m or 4200m then returned to lower PB indices at 5000m. This probably 

represents differing acclimatisation responses. However, acclimatisation to each 

altitude was not likely to have occurred, due to the short period of time spent at each 

altitude before ascending higher.  

 

Hypoxia is known to be a poor stimulus to arousal from sleep in humans (Berthon-

Jones & Sullivan, 1982) and this was confirmed in our subjects despite profound 

oxygen desaturation to below 65% in many instances. Failure to arouse from hypoxia 
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may have been exacerbated by the progressively higher arousal indices in our 

subjects; as altitude increased so did the total arousal index (predominantly due to 

central apneas and hypopneas). This sleep fragmentation may have contributed to a 

higher arousal threshold in our subjects. Previous research has found that even one 

night of sleep fragmentation can result in depression of the arousal threshold (Bowes 

et al, 1980, Stepanski et al, 1984, 1987, 2002) so increasing hypoxia did not result in 

increased ratio of arousal:desaturation events (central apneas & hypopneas). Hypoxic 

stimulus to arousal was most likely further depressed by the hypocapnia present in our 

subjects. Hypocapnia is known to cause a considerable reduction in the ventilatory 

response to hypoxia (Rebuck & Woodley, 1970, Weil et al, 1970) and was known to 

be present in fourteen of our subjects who had morning arterial blood gas analysis and 

can be extrapolated to include the entire group of nineteen subjects. It is thus likely 

that arousal was depressed by hypocapnia in our study.  

 

The cognitive deficits present at high altitude are well known, both anecdotally and 

objectively (Tune 1964; Denison et al, 1966; McFarland 1969; Sharma et al. 1975; 

Fowler et al. 1982; Townes et al. 1984; Cavaletti et al. 1987; Fowler and Porlier 1987; 

Regard et al. 1989; Virues-Ortega et al, 2004). We assume that the high arousal index 

during sleep at high altitude may have contributed to this well known cognitive effect 

in our group of subjects. However, we did not measure cognitive function.  

 

This large group of subjects has demonstrated the wide variety of ventilatory 

responses to increasing altitude. The changes in sleep and breathing and in levels of 

arterial oxygen appear not to be fully dependent on each individual’s ventilatory 
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responses measured at sea level, as there was no relationship found between any 

parameter measured that could indicate an association in either sleep architecture, 

periodic breathing, sleeping oxygen saturation or arterial blood gases. Ventilatory 

responses are known to change during sleep at high altitude (White et al, 1987) but 

the magnitude of the change is probably not enough to explain the lack of a 

relationship between sea level ventilatory response testing performed during 

wakefulness and the development of periodic breathing, changes to sleep architecture 

or oxygen saturation during sleep. 

 

The most important finding from our research conducted at White Mountain was that 

acute mountain sickness (AMS) symptoms were abolished by the use of non-invasive 

positive pressure ventilation (NIPPV) during sleep at 3800m. We assume that the 

positive pressure delivered during inspiration increased tidal volume and that pressure 

delivered during expiration resulted in the prevention of upper airway and alveoli 

collapse, the recruitment of microatelectatic alveoli; and these effects may have 

contributed to a higher sleeping mean and minimum oxygen saturation. AMS has 

been linked to low sleeping oxygen saturation (Burgess et al, 2004 and Erba et al, 

2004) and it appears that by keeping the overnight SaO2 a few percent higher 

effectively abolished AMS symptoms. The mechanisms for this result are not well 

understood and further research is needed to ascertain the mechanisms responsible for 

improvement in AMS and sleeping SaO2. 

In conclusion, we found fewer effects on sleep than those found by previous research 

into sleep at high altitude. Sleep architecture was altered, but less so than previous 

findings and this may have been due to our protocol in which incremental changes to 
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altitude occurred over a period of ten to eleven days, with vigorous exercise in 

between each new, higher altitude. Breathing during sleep and the development of 

periodic breathing in NREM and central apneas and hypopneas in REM sleep 

demonstrated a wide variety of changes. There was also a wide variety of oxygen 

saturations during sleep. None of these variables could be correlated to ventilatory 

responses, age or gender. 
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APPENDIX 

The Lake Louise Scoring System for the Assessment of Acute Mountain Sickness. 

(Roach et al. 1993).  

Subjects are asked about the presence and severity of the following: 

Headache     0 none at all 

      1 mild headache 

      2 moderate headache 

      3 severe headache, incapacitating 

Gastrointestinal symptoms   0 good appetite 

      1 poor appetite or nausea 

      2 moderate nausea or vomiting 

      3 severe, incapacitating nausea/vomiting 

Fatigue and/or weakness   0 not tired or weak 

      1 mild fatigue/weakness 

      2 moderate fatigue/weakness 

      3 severe fatigue/weakness 

Dizziness/light headedness   0 none 

      1 mild 

      2 moderate 

      3 severe, incapacitating 
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Difficulty sleeping    0 slept as well as usual 

      1 did not sleep as well as usual 

      2 woke many times, poor night’s sleep 

      3 could not sleep at all 

Clinical assessment: subjects are observed for the presence and severity of the 

following: 

Change in mental status   0 no change 

      1 lethargy/lassitude 

      2 disorientated/confused 

      3 stupor/semi consciousness 

      4 coma 

Ataxia (heel/toe walking)   0 none 

      1 balancing manoeuvres 

      2 steps off the line 

      3 falls down 

      4 unable to stand 

Peripheral edema    0 none 

      1 one location 

      2 two or more locations 
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