3,673 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Synchronized computational architecture for generalized bilateral control of robot arms

    Get PDF
    A master six degree of freedom Force Reflecting Hand Controller (FRHC) is available at a master site where a received image displays, in essentially real time, a remote robotic manipulator which is being controlled in the corresponding six degree freedom by command signals which are transmitted to the remote site in accordance with the movement of the FRHC at the master site. Software is user-initiated at the master site in order to establish the basic system conditions, and then a physical movement of the FRHC in Cartesean space is reflected at the master site by six absolute numbers that are sensed, translated and computed as a difference signal relative to the earlier position. The change in position is then transmitted in that differential signal form over a high speed synchronized bilateral communication channel which simultaneously returns robot-sensed response information to the master site as forces applied to the FRHC so that the FRHC reflects the feel of what is taking place at the remote site. A system wide clock rate is selected at a sufficiently high rate that the operator at the master site experiences the Force Reflecting operation in real time

    Motion Coordination Problems with Collision Avoidance for Multi-Agent Systems

    Get PDF
    This chapter studies the collision avoidance problem in the motion coordination control strategies for multi-agent systems. The proposed control strategies are decentralised, since agents have no global knowledge of the goal to achieve, knowing only the position and velocity of some agents. These control strategies allow a set of mobile agents achieve formations, formation tracking and containment. For the collision avoidance, we add a repulsive vector field of the unstable focus type to the motion coordination control strategies. We use formation graphs to represent interactions between agents. The results are presented for the front points of differential-drive mobile robots. The theoretical results are verified by numerical simulation
    corecore