402 research outputs found

    Multichannel Speech Separation and Enhancement Using the Convolutive Transfer Function

    Get PDF
    This paper addresses the problem of speech separation and enhancement from multichannel convolutive and noisy mixtures, \emph{assuming known mixing filters}. We propose to perform the speech separation and enhancement task in the short-time Fourier transform domain, using the convolutive transfer function (CTF) approximation. Compared to time-domain filters, CTF has much less taps, consequently it has less near-common zeros among channels and less computational complexity. The work proposes three speech-source recovery methods, namely: i) the multichannel inverse filtering method, i.e. the multiple input/output inverse theorem (MINT), is exploited in the CTF domain, and for the multi-source case, ii) a beamforming-like multichannel inverse filtering method applying single source MINT and using power minimization, which is suitable whenever the source CTFs are not all known, and iii) a constrained Lasso method, where the sources are recovered by minimizing the â„“1\ell_1-norm to impose their spectral sparsity, with the constraint that the â„“2\ell_2-norm fitting cost, between the microphone signals and the mixing model involving the unknown source signals, is less than a tolerance. The noise can be reduced by setting a tolerance onto the noise power. Experiments under various acoustic conditions are carried out to evaluate the three proposed methods. The comparison between them as well as with the baseline methods is presented.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    Implementation and evaluation of a dual-sensor time-adaptive EM algorithm for signal enhancement

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1991This thesis describes the implementation and evaluation of an adaptive time-domain algorithm for signal enhancement from multiple-sensor observations. The algorithm is first derived as a noncausal time-domain algorithm, then converted into a causal, recursive form. A more computationally efficient gradient-based parameter estimation step is also presented. The results of several experiments using synthetic data are shown. These experiments first illustrate that the algorithm works on data meeting all the assumptions made by the algorithm, then provide a basis for comparing the performance of the algorithm against the performance of a noncausal frequency-domain algorithm solving the same problem. Finally, an evaluation is made of the performance of the simpler gradient-based parameter estimation step

    Multichannel Online Dereverberation based on Spectral Magnitude Inverse Filtering

    Full text link
    This paper addresses the problem of multichannel online dereverberation. The proposed method is carried out in the short-time Fourier transform (STFT) domain, and for each frequency band independently. In the STFT domain, the time-domain room impulse response is approximately represented by the convolutive transfer function (CTF). The multichannel CTFs are adaptively identified based on the cross-relation method, and using the recursive least square criterion. Instead of the complex-valued CTF convolution model, we use a nonnegative convolution model between the STFT magnitude of the source signal and the CTF magnitude, which is just a coarse approximation of the former model, but is shown to be more robust against the CTF perturbations. Based on this nonnegative model, we propose an online STFT magnitude inverse filtering method. The inverse filters of the CTF magnitude are formulated based on the multiple-input/output inverse theorem (MINT), and adaptively estimated based on the gradient descent criterion. Finally, the inverse filtering is applied to the STFT magnitude of the microphone signals, obtaining an estimate of the STFT magnitude of the source signal. Experiments regarding both speech enhancement and automatic speech recognition are conducted, which demonstrate that the proposed method can effectively suppress reverberation, even for the difficult case of a moving speaker.Comment: Paper submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing. IEEE Signal Processing Letters, 201

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research Contract N00014-90-J-1544Charles S. Draper Laboratory Contract DL-H-404158Rockwell Corporation Doctoral FellowshipU.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-90-J-1109The Federative Republic of Brazil ScholarshipLockheed Sanders, Inc.National Science Foundation Grant MIP 87-14969AT&T Bell Laboratories Doctoral ProgramBell Northern Research Ltd.Defense Advanced Research Projects Agency Contract N00014-87-K-0825IBM CorporationSloan FoundationU.S. Air Force - Office of Scientific Research FellowshipU.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034National Science Foundation Graduate FellowshipCanada, Natural Science and Engineering Research Council ScholarshipU.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034Texas Instruments, Inc

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Speech Modeling and Robust Estimation for Diagnosis of Parkinson’s Disease

    Get PDF
    • …
    corecore