140 research outputs found

    Time-based Microblog Distillation

    Get PDF
    This paper presents a simple approach for identifying relevant and reliable news from the Twitter stream, as soon as they emerge. The approach is based on a near-real time systems for sentiment analysis on Twitter, implemented by Fondazione Ugo Bordoni, and properly modified in order to detect the most representative tweets in a specified time slot. This work represents a first step towards the implementation of a prototype supporting journalists in discovering and finding news on Twitter

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page

    #Precision: An Exploration of the Utility of User-Generated Metadata for the Creation of Precise Microblog Query-Expansion Systems

    Get PDF
    Twitter research provides a unique opportunity to answer fundamental questions regarding the best methods for the large-scale retrieval of extremely sparse documents. This study examines the utility of user-generated metadata expansion candidate terms for the creation of precise microblog search engines. Several search engines were created utilizing different genres of candidate expansion terms, confidence thresholds, and document parameters to explore this issue. This study demonstrates that user-generated metadata has utility for the precise retrieval of terse queries with high levels of associated conversation, such as movie awards or current events, but performs poorly on textually rich queries with lower levels of perceived conversation.Master of Science in Information Scienc

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    PREDICTION IN SOCIAL MEDIA FOR MONITORING AND RECOMMENDATION

    Get PDF
    Social media including blogs and microblogs provide a rich window into user online activity. Monitoring social media datasets can be expensive due to the scale and inherent noise in such data streams. Monitoring and prediction can provide significant benefit for many applications including brand monitoring and making recommendations. Consider a focal topic and posts on multiple blog channels on this topic. Being able to target a few potentially influential blog channels which will contain relevant posts is valuable. Once these channels have been identified, a user can proactively join the conversation themselves to encourage positive word-of-mouth and to mitigate negative word-of-mouth. Links between different blog channels, and retweets and mentions between different microblog users, are a proxy of information flow and influence. When trying to monitor where information will flow and who will be influenced by a focal user, it is valuable to predict future links, retweets and mentions. Predictions of users who will post on a focal topic or who will be influenced by a focal user can yield valuable recommendations. In this thesis we address the problem of prediction in social media to select social media channels for monitoring and recommendation. Our analysis focuses on individual authors and linkers. We address a series of prediction problems including future author prediction problem and future link prediction problem in the blogosphere, as well as prediction in microblogs such as twitter. For the future author prediction in the blogosphere, where there are network properties and content properties, we develop prediction methods inspired by information retrieval approaches that use historical posts in the blog channel for prediction. We also train a ranking support vector machine (SVM) to solve the problem, considering both network properties and content properties. We identify a number of features which have impact on prediction accuracy. For the future link prediction in the blogosphere, we compare multiple link prediction methods, and show that our proposed solution which combines the network properties of the blog with content properties does better than methods which examine network properties or content properties in isolation. Most of the previous work has only looked at either one or the other. For the prediction in microblogs, where there are follower network, retweet network, and mention network, we propose a prediction model to utilize the hybrid network for prediction. In this model, we define a potential function that reflects the likelihood of a candidate user having a specific type of link to a focal user in the future and identify an optimization problem by the principle of maximum likelihood to determine the parameters in the model. We propose different approximate approaches based on the prediction model. Our approaches are demonstrated to outperform the baseline methods which only consider one network or utilize hybrid networks in a naive way. The prediction model can be applied to other similar problems where hybrid networks exist

    A Survey of Graph Neural Networks for Social Recommender Systems

    Full text link
    Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.Comment: GitHub repository with the curated list of papers: https://github.com/claws-lab/awesome-GNN-social-recsy

    Automatic extraction of mobility activities in microblogs

    Get PDF
    Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Sentiment analysis and real-time microblog search

    Get PDF
    This thesis sets out to examine the role played by sentiment in real-time microblog search. The recent prominence of the real-time web is proving both challenging and disruptive for a number of areas of research, notably information retrieval and web data mining. User-generated content on the real-time web is perhaps best epitomised by content on microblogging platforms, such as Twitter. Given the substantial quantity of microblog posts that may be relevant to a user query at a given point in time, automated methods are required to enable users to sift through this information. As an area of research reaching maturity, sentiment analysis offers a promising direction for modelling the text content in microblog streams. In this thesis we review the real-time web as a new area of focus for sentiment analysis, with a specific focus on microblogging. We propose a system and method for evaluating the effect of sentiment on perceived search quality in real-time microblog search scenarios. Initially we provide an evaluation of sentiment analysis using supervised learning for classi- fying the short, informal content in microblog posts. We then evaluate our sentiment-based filtering system for microblog search in a user study with simulated real-time scenarios. Lastly, we conduct real-time user studies for the live broadcast of the popular television programme, the X Factor, and for the Leaders Debate during the Irish General Election. We find that we are able to satisfactorily classify positive, negative and neutral sentiment in microblog posts. We also find a significant role played by sentiment in many microblog search scenarios, observing some detrimental effects in filtering out certain sentiment types. We make a series of observations regarding associations between document-level sentiment and user feedback, including associations with user profile attributes, and users’ prior topic sentiment

    Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models

    Full text link
    Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.Comment: 15 pages, 4 figures, accepted by ACM CCS 2022, Best Paper Nominatio

    PARADE: Passage Representation Aggregation for Document Reranking

    Get PDF
    We present PARADE, an end-to-end Transformer-based model that considers document-level context for document reranking. PARADE leverages passage-level relevance representations to predict a document relevance score, overcoming the limitations of previous approaches that perform inference on passages independently. Experiments on two ad-hoc retrieval benchmarks demonstrate PARADE's effectiveness over such methods. We conduct extensive analyses on PARADE's efficiency, highlighting several strategies for improving it. When combined with knowledge distillation, a PARADE model with 72\% fewer parameters achieves effectiveness competitive with previous approaches using BERT-Base. Our code is available at \url{https://github.com/canjiali/PARADE}
    corecore