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Abstract

The management and planning of public transport, urban planning and Marketing decision making
are everyday activities and they are influenced by the mobility of people. So the problem we face
is that to make a good urban planning, management of transport networks and even marketing
strategies, we need to know the mobility patterns of people. For this, there are several sources such
as surveys, census data, among others. The sources of information for urban areas are varied, but
not complete. It is in this context that we want this project of dissertation to be a more complete
source of mobility intentions, as much as it will present a more intuitive way than the existing
sources.

Previously sources of information that might reflect the patterns that we want to get were not
abundant.

Now, alongside the growth of information on the Internet, coupled with a greater use of social
networks, there are several sources of knowledge capable of extracting this data set so that the
information might have value to the user. Thus, with this dissertation, we intend to extract infor-
mation from these sources, filter and treat it so that we may obtain an amount of knowledge about
the activities of mobility. We intend to report the obtained results in the form of an intuitive and
user friendly web interface.

This document is itself an information source and it is the result of a study of related work in
the area of the information extraction and current techniques. In this document we also describe
the solution implemented.

We evaluated a random sample of messages from Twitter to be classified as containing mobility
activities or not and the results were a precision of 82.7 % and a recall of 62 %. It means that our
priority was to improve precision than recall. In other words, we preferred to be correct in the
messages that we classify as mobility rather than getting almost all the mobility messages, thus
we improved our algorithm in that way.

The greatest motivation for this dissertation is exactly the fact that it aims to contribute to a
better planning and actual decisions for our country.
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Resumo

A gestão e planeamento dos transportes públicos, o planeamento urbano e a tomada de decisões
de Marketing são actividades do quotidiano e que são influenciados pela mobilidade das pessoas.
Assim, o problema com que nos deparamos é que, para que seja possível fazer um bom planea-
mento urbano, planeamento e gestão de redes de transportes e mesmo estratégias de marketing,
precisamos de conhecer padrões de mobilidade das pessoas. Para tal existem diversas fontes como
inquéritos, dados de censos, entre outros. Ou seja, as fontes de informação, para áreas urbanas são
variadas, mas não completas. É nesse âmbito que pretendo que o projecto desta dissertação seja
mais uma fonte de padrões ou intenções de mobilidade, de uma forma muito mais intuitiva do que
as fontes actualmente existentes.

Antigamente fontes de informação que pudessem reflectir os padrões e intenções que pretende-
mos obter não eram abundantes.

Actualmente, com o crescimento de informação na Internet, aliado ao uso mais intenso das
Redes Sociais, há diversas fontes passíveis de extracção do conhecimento desse conjunto de da-
dos para que a informação possa ter valor para o utilizador. Deste modo, com esta dissertação,
pretende-se extrair informação dessas fontes, filtra-la e trata-la de modo a que possamos obter con-
hecimento sobre as actividades de mobilidade das pessoas. Pretendemos comunicar os resultados
sob a forma de uma interface web intuitiva e user friendly.

Este documento assume-se, assim, como uma fonte de documentação de toda a pesquisa efec-
tuada sobre o tema e trabalhos relacionados na área da extracção de informação, bem como das
técnicas actuais. A metodologia e solução implementada.

Foi avaliada uma amostra aleatória de mensagens do Twitter para ser classificada como con-
tendo actividades de mobilidade ou não, e os resultados obtidos foram de uma precisão de 82,7
% e um Recall de 62 %. Isso significa que a nossa prioridade foi melhorar a precisão ao invés
de Recall. Por outras palavras, preferimos ser corretos nas mensagens que classificamos como a
mobilidade ao invés de tentar obter praticamente todas as mensagens de mobilidade e perder em
termos de precisão.

A maior motivação deste trabalho é exactamente o facto de ser uma dissertação que visa con-
tribuir para um melhor planeamento e decisões actuais e do nosso país.
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“We are what we repeatedly do.
Excellence, therefore, is not an act but a habit.”

Aristotle
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Chapter 1

Introduction

This first section aims at introducing the scope, problem and goals of this dissertation, as also to

describe the outline of this document. It is expected that you should be able to understand the sci-

entific appeal of this research work as well as the issues arising. The scope or the knowledge areas

to be explored in this work, the potential application fields will be also identified in this chapter.

How is this project expected to advance in the current state of the start? What are the practical

expected outcomes of the results produced? These are issues we expect to address throughout this

dissertation.

1.1 Scope

In few years, the Internet has consolidated itself as a very powerful platform that has changed

the way we do business, and the way we communicate. The Internet, as no other communication

medium, has given globalized dimension to the world. Internet has become the Universal source

of information for millions of people, at home, at school, at work, everywhere [Gro08].

Therefore, nowadays, it is very common that people share in different social networks their

needs, activities, preferences as much as other stuff. That is why the extraction of information from

the Internet started to grow a lot, so that we can get and learn with the big amount of available

information.

Nowadays Knowledge Extraction and Data Mining are two areas of great interest and it is very

important to use the available information to help decision making. Nowadays the information

presented in the social media could be very useful, because if we understood the frequency that

people travel from one place to another, for example to work, we could obtain a comparison

between the time that usually people go to work from one city to another. This way we developed

an application that can be very useful for urban planning, planning of transport networks and even

for planning marketing strategies.

Actually we face a problem to make a good urban planning, management of transport network

planning and even marketing strategies. That is why we need to know patterns or intentions of
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mobility. And how is this done? There are several sources such as surveys, census data [EST02],

for example. Information sources for urban areas are varied, but not complete.

The social mobility as a result of new rhythms and lifestyles that cities have provided in the

contemporary world, appears in Matosinhos, for high mobility indices generated for reasons other

than work or education in favor of leisure and shopping. These new phenomena emerging mobil-

ity in segments such as women and the elderly, give rise to new challenges regarding the urban

planning and transport, as they represent movements more irregular, heterogeneous and diver-

sified. Thus require solutions more individualized integrated policies and more complex legal

regulations, which unequivocally managing traffic alone cannot solve [Tel04].

This dissertation tackles this kind of problems by adding the information of the mobility of

people gathered by extracting important information from the great amount of information lost in

the social media. We hope that this information can help the responsible institutions to solve the

problems of urban planning and public transportation.

The expected output of this work is a web interface in which one can see the main activities

related with mobility, from the classes identified, in each region of Portugal. Thus, the mobility

patterns identified will be very useful to the definition of the strategies already mentioned.

1.2 Problem

Previously sources of information that might reflect the patterns of mobility were not abundant.

That is the problem we are facing: the lack of information about mobility activities.

Now, with the increase of information on the Internet, coupled with greater use of social net-

works, there are several sources of knowledge capable of extracting this data set so that the infor-

mation might have value to the user. This extraction process is called Information Retrieval.

To extract information about mobility activities there are several microblogs where people

write about their experiences and intentions. Microblogs "allow users to exchange small elements

of content such as short sentences, individual images, or video links" [Kap11].

We choose Twitter as our source of information data and we face the problem of how to

develop a system that can process all the messages from Twitter, and automatically classify them

as mobility activities or not and then show the identified classes of mobility activities in a map.

Starting from this point it is possible to identify more issues related with the problem identified.

It is intended that the information to search should be in Portuguese and to do it that way

we should be able to know the most common verbs related to mobility and the prepositions and

connectors that are usually prior to the activities related to mobility.

From Twitter it is expected that we can face some difficulties as for example:

• The location of the messages.

• Small percentage of messages in Portuguese in the whole messages.

• Existence of negative and conditional sentences to be taken into count in the algorithm.

2



Introduction

1.3 Goals

With the development of this dissertation we intent to reach the following goals:

So the first goal is to extract the messages from Twitter. The next is to preprocess the messages

in order to automatically transform it into correct and workable text. The third main goal is to filter

the messages that really match the classes of mobility and test the results to improve the algorithm.

The last main goal is to communicate the results in an intuitive interface, so that the user can

make decisions based on that. That way the results are shown on a map, so that the end user can

see, for each type of mobility activities, their predominance in Portugal, without the need to look

to a boring list or something else. This assumes crucial importance because the information is

essentially space-temporal.

The fact that this project will help in the daily decision making and the challenge to try to filter

the information in a way that makes it useful, those are the bigger motivations of this dissertation.

In fact, the motivation in application terms is exactly the great potential of this application for

the studied areas, such as urban planning, management of transport networks planning and even

planning marketing strategies.

1.4 Methodological Approach and Expected Contributions

The system that fits this dissertation is divided into three main modules that followed our approach.

The module of the information extraction from Twitter, then the module to preprocess the mes-

sages and implement rules and algorithms to identify the mobility activities and the module of the

interface to communicate the results obtained in a map.

Another module and important part of the solution implemented are the results and metrics that

evaluate the classification system, such as, precision and recall that are the fraction of retrieved

instances that are relevant, and the fraction of relevant instances that are retrieved, respectively.

The information retrieval area is an area with a lot of research nowadays. There are several

projects related with mobility, but with this dissertation we want to add useful information ex-

tracted from microblogs about mobility in Portuguese to the sources that the Portuguese public

transports, marketing and urban planning use to make some decisions.

That way, our contribution is a system of information extraction that automatically identifies

mobility activities in microblogs (we did the system based on Twitter, but it could be used another

microblog with the used database schema, with only a few changes in the preprocessing module

of the messages).

The database schema will be detailed further in Chapter 5.

We do not only expect to develop an information extraction system but also a map interface to

communicate the results in an easier way to the end user.

3
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1.5 Document Structure

This document is structured in seven main chapters, being this first one the introduction.

Chapter 2 comprises the background and related work for this dissertation. So, for each one,

we will divide in sources of information data from social media, techniques to extract and classify

information and visualization of the results.

From Twitter, the chosen source of information, it will be presented its business model, user

statics, political impact and how to interact with the API. Chapter 3 will comprise all the infor-

mation about Twitter, because it is important to understand the chosen microblog.

Before explaining the algorithms used and the methodology followed, the problem will be

modeled in parts and explained the important terms to understand the algorithms followed for the

implementation of the system. It comprises Chapter 4.

Chapter 5 deals with the methodology used for the implemented solution that includes the

process, technologies, implementation decisions, tools and algorithms.

Then chapter 6 will contain the main results of the system developed. As an information

extraction system it is fundamental to analyze the precision and recall to try to make it better with

the rules implemented in the system.

The last chapter contains the main conclusions and conttibutions of this research, the future

perspectives and work. It also has an analysis of the proposed goals. That last part is really

important as we can explain how this work can be extended. Another important point in the

conclusions chapter is review and identify the good practices did and the things that we should

improve if this thesis only started from now on.

4



Chapter 2

Literature Review

In this chapter we describe the background in information extraction area and mobility information

as it represents what is needed to know and learn for this dissertation. Additionally related works

will be presented in the same area, as they tried to solve the focused problem or similar ones in a

way that can help us. To do this, for each part, it will be presented the sources of information data

from social media, techniques to extract and classify information and visualization of mobility

results.

2.1 Background

In the following subsections of this section are described the matters that are important to have

present and to learn in order to respond to the proposed goals. Firstly it will be explained the defi-

nition of Microblogging and discussed the sources of information data, followed by the techniques

to preprocess the messages and to extract and identify patterns of mobility activities.

2.1.1 Microblogging

Microblogging is a relatively new form of communication in which users can describe their current

status in short posts distributed by instant messages, mobile phones, email or the Web. Finin et

al [FT07] found that people use microblogging to talk about their daily activities and to seek or

share information. The microblogging tools provide a light-weight, easy form of communication

that enables users to broadcast and share information about their activities, opinions and status.

Microblogging tools facilitate easily sharing status messages either publicly or within a social

network.

So, there are several tools and applications for microblogging, such as, Twitter, Tumblr, Face-

book status, and many others that are not so popular.

5
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2.1.2 Sources of Data

Starting from the top, various types of social network services (SNS) on the Internet have been

fastly growing during the last decade. ICQ and Messenger introduced the concept of having

internet connection based on friends and allowed real time chats (messages). But these kinds

of applications were merely reflection of the social connections of the users’ daily lives. So these

applications do not provide information about friends of friends and it is not available via an API

that allows a developer to use the shared data.

Nowadays some of the most popular social network services are Facebook, Twitter, Google

Plus, among others.

Facebook is a website that allows its members to share information and connect to new friends

by their existing friends. This feature is very powerful in the sense that a group of mutual friends

can be identified before a user accepts a new person as a friend. For a user, a friend of a friend

would be preferred over an unknown person. This nature of expanding the relationships on Face-

book provides a sense of security.

On the other hand, Twitter, adopts a different philosophy about expanding the network. In

Twitter the concept is about having followers, subscribing to other users without their approvals

as followers. This asymmetrical relationship encourages announcements of messages to a massive

amount of other users. In addition, Twitter limits the number of characters per message to a

maximum of 140 characters.

These services provide application programming interfaces (APIs) that allow external users to

access their databases via codes. From Twitter it is possible to get all the messages in real time and

all the information about the user, such as his name, picture and location. In Facebook the basic

information of a user it is not available for a developer [Dev12] which represents a huge limitation

for us to choose this social network.

Table 2.1 summarizes the nature of each major Social Network.

Table 2.1: Summary of Social Network Services

SNS Main Base Relationship Structure API Empashis
Messenger/ICQ Desktop Mutual No Chatting
Facebook Website/Mobile App Mutual Yes Social Utility
Twitter Website/Mobile App Asymmetrical Yes Short Messages

In terms of Market Share, Facebook leads by a huge amount, followed next by Twitter, as

we can see in the Table 2.2. The provided information is stated according to ComScore, from

November 2011 [Eld11].

And what about Internet users by language? It is expected that Portuguese is not often used.

In the next illustrations we can see the percentage of Portuguese (represented by the color purple)

among the users ( 2.1) [Sta10] and websites ( 2.2) [W3T12].

It is possible to see that only English, Chinese, Spanish and Japanese have more percentage

than Portuguese.

6
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Table 2.2: Social Networks Market Share

Worldwide Unique Visitors Percentage
Facebook.com 792,999,000 55.1 %
Twitter.com 167,903,000 11.7 %
LinkedIn.com 94,823,000 6.6 %
Google+ 66,756,000 4.6 %
MySpace 61,037,000 4.2 %
Others 255,539,000 17.8 %
Total 1,438,877,000 100 %

Figure 2.1: Internet users by language

Web-based social networking services make it possible to connect people who share interests

and activities across political, economic, and geographical borders [Lip07]. Through e-mail and

instant messaging, online communities are created where a gift economy and reciprocal altruism

are encouraged through cooperation. Information is particularly suited to gift economy, as infor-

mation is a non-rival good and can be gifted at practically no cost. It is here where the context of

this dissertation fits [Hey07].

Facebook and other social networking tools are increasingly the object of scholarly research.

Scholars in many fields have begun to investigate the impact of social networking websites, inves-

tigating how such websites may play into issues of identity, privacy,[Acq05] social capital, youth

culture, and education [Boy08].

Several websites are beginning to tap into the power of the social networking model for phi-

lanthropy. Such models provide a means for connecting otherwise fragmented industries and

small organizations without the resources to reach a broader audience with interested users[Sil07].

Social networks are providing a different way for individuals to communicate digitally. These

communities of hypertexts allow for the sharing of information and ideas, an old concept placed
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Figure 2.2: Website content languages

in a digital environment.

2.1.2.1 Growing of each Social Network

Social networking accounted for nearly 1 in every 5 minutes spent online globally in October

2011, ranking as the most engaging online activity worldwide. Social networking sites now reach

82 % of the world’s Internet population age 15 and older that accessed the Internet from a home

or a work computer, representing 1.2 billion users around the globe.

In October, Facebook reached more than half (55 percent) of the world’s global audience and

accounted for 1 in every 7 minutes spent online around the world and 3 in every 4 minutes in social

networking.

In recent years, micro blogging has taken hold as a popular social networking activity on a

global scale. In October, Twitter reached 1 in 10 Internet users worldwide, growing 59 percent in

the past year. Other popular micro blogging destinations seeing rapid adoption include Chinese

website Sina Weibo, with its audience growing 181 percent in the past year to rank as the tenth

largest social network in October. Tumblr, which ranked twelfth worldwide in audience size, grew

172 % in the past year.

Although young users age 15-24 still represent the most highly-engaged segment of social net-

workers, with an average of 8 hours per visitor spent in the category in October, social networking

is catching on among older age segments across the globe. In fact, people aged 55 and older rep-

resented the fastest-growing age segment in global social networking usage, with the penetration

of social networks in the segment increasing nearly 10 percentage points since July 2010 to 80

percent in October 2011.

In the U.S.A., 64 percent of smartphones users accessed social networking sites at least once

in October 2011, with 2 in 5 smartphones owners connecting via social networking nearly every
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day. In the EU 45 percent of smartphones owners accessed social networks on their mobile devices

during the month, with nearly 1 in 4 doing so on a near daily basis.

comScore [Rad11] reports that the widespread adoption of social networking highlights the

global appeal of this online activity. Of the 43 markets individually, 41 markets saw at least 85

percent of their respective online populations visit social networking sites in October 2011.

Analysis of the most highly engaged global social networking markets revealed that Israel led

all countries with visitors spending an average of more than 11 hours on social networking sites

during the month. This information is detailed in the following Table 2.3.

Table 2.3: Top 10 Global Markets by Average Social Networking Hours per Visitor, October 2011

Country Average Hours per Visitor Spent on Social Networking Sites
Israel 11.1
Argentina 10.7
Russia 10.4
Turkey 10.2
Chile 9.8
Philippines 8.7
Colombia 8.5
Peru 8.3
Venezuela 7.9
Canada 7.7
Worldwide 5.7

In the next subsections it will be explained the techniques to identify patterns of mobility or

activity.

2.1.3 Text Mining and Information Extraction

Text mining concerns looking for patterns in unstructured text. The related task of Information

Extraction (IE) is about locating specific items in natural-language documents. The problem of text

mining, i.e. discovering useful knowledge from unstructured or semi-structured text, is attracting

increasing attention.

KDD and IE are both topics of significant recent interest. KDD considers the application of sta-

tistical and machine-learning methods to discover novel relationships in large relational databases.

IE concerns locating specific pieces of data in natural-language documents, thereby extracting

structured information from free texts.

Traditional data mining assumes that the information to be “mined” is already in the form of

a relational database. Unfortunately, for many applications like this one, electronic information

is only available in the form of free natural-language documents rather than structured databases

and that is what is called Text Mining. Since IE addresses the problem of transforming a corpus of

textual documents into a more structured database, the database constructed by an IE module can

be provided to the KDD module for further mining of knowledge as illustrated in the next Figure

2.3. Information extraction can play an obvious role in text mining and needs a preprocessing
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step where text is normalized and inconsistencies are treated, like I will explain later as illustrated

[NM04].

It is possible to select different approaches and methods for accomplishing goals. This is a very

important step, because there is no best approach for all Text Mining cases. The best approach

depends on the nature of the dataset [Jia01].

Figure 2.3: Proccess of Data Mining to identify Patterns

2.1.4 Text Refining and Knowledge Distillation

Text mining can be visualized as consisting of two phases: Text refining that transforms free-form

text documents into a chosen intermediate form, and knowledge distillation that deduces patterns

or knowledge from the intermediate form. Intermediate form (IF) can be semi-structured such

as the conceptual graph representation, or structured such as the relational data representation.

Intermediate form can be document-based wherein each entity represents a document, or con-

cept based wherein each entity represents an object or concept of interests in a specific domain.

Mining a document-based IF deduces patterns and relationship across documents. Document clus-

tering/visualization and categorization are examples of mining from a document-based IF. Mining

a concept-based IF derives pattern and relationship across objects or concepts. Data mining oper-

ations, such as predictive modeling and associative discovery, fall into this category. A document-

based IF can be transformed into a concept-based IF by realigning or extracting the relevant infor-

mation according to the objects of interests in a specific domain. It follows that document-based

IF is usually domain-independent and concept-based IF is domain-dependent [Vin10].

Knowledge distillation can then be performed on the company database (company-based IF)

to derive company-related knowledge.

Dictionaries and list should be used as auxiliary tools to classify the dataset. In the end the

algorithm implemented has to be evaluated by some metrics as it will be possible to see in a further

section.
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Figure 2.4: A text mining framework

So, there are many different measures for evaluating the performance of information retrieval

systems. The measures require a collection of messages and a query. All the common measures,

such as precision, recall, fall-out and f-measure, assume a ground truth notion of relevancy: every

message is known to be either relevant or non-relevant to a particular query. This ground truth

notion is achieved by identifying each message as relevant or not, without using the algorithm

implemented, but only taking in account the logic.

2.1.5 Preprocessing for Text Mining

Actually we face the problem of processing very large data sets, which are normal for text mining

systems. An essential requirement for the data model is the reduction of very high dimensional

data into low dimensional data, without the loss of important data. Furthermore, it should reduce

the noise of the data [Bus11].

2.1.5.1 Morphological Analyses

The first step in text-preprocessing is the morphological analyses. It is divided into some subcat-

egories: tokenisation, stemming and recognition of ending of records. However, like in all other

analysis steps require the different methods of information retrieval only some of the described

techniques. Dimension reduction sometimes are not required. It depends on the output that we

want.
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Morphology is a part of linguistics which deals with the words. It deals with the smallest,

useful unit of a document. Firstly, information retrieval requires the words. Furthermore, the

stemming of words increases the recall and precision of the information retrieval. The term recall

describes the proportion of all relevant documents in a data set that are retrieved by the information

retrieval system. The term precision describes the proportion of relevant documents in the data set

returned to the user. [MKS99]

2.1.5.2 Tokenisation

The first step of Morphological Analyses is the tokenisation. The aim of the tokenisation is the

exploration of the words in a sentence. Textual data is only a block of characters at the beginning.

All following processes in information retrieval require the words of the data set. This may sound

trivial as the text is already stored in machine-readable formats. But some problems are still

left, like the removal of punctuation marks. Other characters like brackets or hyphens require a

processing as well. That way tokenizer can cater for consistency in the documents. Other problems

are abbreviations and acronyms which have to be transformed into a standard form [BVA02].

A tokenizer is not always required, it heavily depends on the following processing steps used

and how powerful those methods are. We will present some potencial process steps that can follow

the Tokenisation in the next sections.

2.1.5.3 Stemming

Stemming is a technique for the reduction of words into their root [All03].

Many words in English and Portuguese can be reduced to their base form or stem e.g. "agreed",

"agreeing", "disagree", "agreement" and "disagreement" belong to "agree". Also in Portuguese,

acordado, concordando, discordar, acordo and discordância belong to concordar.

English stemming seems to be a resolved problem. And what about the steps for Portuguese

stemming? It is important to study that as the messages that we want to crawl are in Portuguese.

So, it consists in 8 steps summarized in the Figure 2.5 [OH01].

Each step has a set of rules and only one rule in each step can be applied (it should be the

longest possible suffix to be removed first).

The result of the removal may lead to an incorrect root. However, these stems do not have to

be a problem for the stemming process, if these words are not used for human interaction. The

stem is still useful, because all other inflections of the root are transformed into the same stem.

Case sensitive systems could have problems when making a comparison between a word in capital

letters and another with the same meaning in lower case, so first it should reduce all the messages

to the lower case form. [Pai94]

There are some difficulties applying Stemming such as dealing with exceptions forms, homo-

graphs and irregular verbs.
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Figure 2.5: The steps for Stemming Portuguese Language

2.1.5.4 String Matching

Another useful step is String Matching. String matching consists in finding one, or more generally,

all the occurrences of a string. There are 2 different variants of String Matching: Exact String

Matching, where words are matched when one word is contained in the other in the exact same

form (i.e. teach in teaching), and Inexact String Matching that searches for approximate patterns

between words [CL04].

This technique is very useful because it comprises finding approximate patterns on strings,

obtaining a set of words, and then comparing them to dictionary valid words.

2.1.5.5 Spam Filtering and Meaning Obfuscation

Now we will present a summary of some common techniques that are not always used in text

mining. It depends on which kind of information are we treating, but, sometimes, they are really

useful, for example, in short messages with a lot of abbreviations.

Spam Filtering consists of substitutions of different characters with others. This is very im-

portant because we know that in social media people write with spelling mistakes, words without

some letters to make them shorter. This allows us to discover the real word (a word present in the

dictionary), so that we can make the post understandable [SWB06].
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It is very common to find posts in social media with spelling mistakes that make it more diffi-

cult to learn the mobility activities that we are trying to find. The technique Meaning Obfuscation

involves knowledge about the context in a given expression, in order to detect if the user literally

means the word or not [JAG08].

Tests using a collection of 1.4 billion of words and sentences extracted from British National

Corpus, have conducted to obtaining results showing some notion of similarity between words and

different contexts. So this way we can test if a word is in context or out of context.

2.1.6 Classifiers

"Classifier systems are a kind of rule-based systems with general mechanisms for

processing rules in parallel, for adaptive generation of new rules, and for testing the

effectiveness of existing rules. These mechanisms make possible performance and

learning without the “brittleness” characteristic of most expert systems in AI."

Holland et al., Induction, 1986

Machine learning is synonymous with advanced computing and a growing body of work exists

on the use of such techniques to solve real-world problems [Bul04].

Machine learning, a branch of artificial intelligence, is a scientific subject concerned with the

design and development of algorithms that allow computers to evolve behaviors based on empirical

data, such as from sensor data or databases. The major focus of machine learning research is to

automatically learn to recognize complex patterns and make intelligent decisions based on data.

Machine learning algorithms can be organized into a taxonomy based on the desired outcome

of the algorithm [Mit97b].

• Supervised learning generates a function that maps inputs to desired outputs (also called

labels, because they are often provided by human experts labeling the training examples).

For example, in a classification problem, the learner approximates a function mapping a

vector into classes by looking at input-output examples of the function;

• Unsupervised learning models a set of inputs, like clustering;

• Semi-supervised learning combines both labeled and unlabeled examples to generate an

appropriate function or classifier;

• Reinforcement learning learns how to act given an observation of the world. Every action

has some impact in the environment, and the environment provides feedback in the form of

rewards that guides the learning algorithm;

• Transduction tries to predict new outputs on specific and fixed (test) cases from observed,

specific (training) cases;

• Learning to learn learns its own inductive bias based on previous experience.
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Training sets are finite and the future is uncertain, learning theory usually does not yield guar-

antees of the performance of algorithms. Instead, probabilistic bounds on the performance are

quite common.

There are many algorithms for machine learning as we can see but it will only be defined in a

summarized way the most common ones [Bri02]:

• Decision tree learning [Mit97a] uses a decision tree as a predictive model which maps

observations about an item to conclusions about the item’s target value;

• Association rule learning [Ma98] is a method for discovering interesting relations among

variables in large databases.

• Support vector machines (SVMs) [Fle09] are a set of related supervised learning methods

used for classification and regression. Given a set of training examples, each marked as

belonging to one of two categories, an SVM training algorithm builds a model that predicts

whether a new example falls into one category or the other.

• Cluster analysis [TS06] is the assignment of a set of observations into subsets (so called

clusters) so that observations in the same cluster are similar in some sense, while observa-

tions in different clusters are dissimilar. Clustering is a method of unsupervised learning.

• Bayesian network [NFK07] is a probabilistic graphical model that represents a set of ran-

dom variables and their conditional independencies via a directed acyclic graph (DAG).

For example, a Bayesian network could represent the probabilistic relationships between

diseases and symptoms. Given symptoms, the network can be used to compute the proba-

bilities of the presence of various diseases.

2.1.7 Visualization

Data presentation can be beautiful, elegant and descriptive. There is a variety of conventional

ways to visualize data – tables, histograms, pie charts and bar graphs are being used every day, in

every project and on every possible occasion.

Several topic maps engines provide visualizations of topic maps. Most of them display lists or

indexes from which it is possible to select a topic and see related information. This representation

is very convenient when users’ needs are clearly identified [Gra03].

Directly related with the mapping visualization, it is the actual technology, the library d3.js for

Javascript.

D3 allows you to bind arbitrary data to a Document Object Model (DOM), and then apply

data-driven transformations to the document. For example, you can use D3 to generate an HTML

table from an array of numbers. Or, use the same data to create an interactive SVG bar chart with

smooth transitions and interaction.

D3 is not a monolithic framework that seeks to provide every conceivable feature. Instead, D3

solves the crux of the problem: efficient manipulation of documents based on data. This avoids
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proprietary representation and affords extraordinary flexibility, exposing the full capabilities of

web standards such as CSS3, HTML5 and SVG. With minimal overhead, D3 is extremely fast,

supporting large datasets and dynamic behaviors for interaction and animation. D3’s functional

style allows code reuse through a diverse collection of components and plugins. 1

2.2 Related Work

In this section it will be exposed the projects already done related with each area of review of this

thesis. So we will start with the most important related projects found using mobility in social

media.

2.2.1 Detecting Mobility in Social Media

2.2.1.1 GeoEventMaps: News Event Detection and Geospatial Plotting

Event analysis is a core Natural Language Processing task that focuses on the automatic identifi-

cation and classification of various event types in text. In this project, linguistic techniques were

investigated for detecting pre-defined event types in a news stream (e.g., an RSS feed). In con-

junction, a geo-tagging technique was developed to assign geographical coordinates to specific

event types. These geo-footprints facilitated the map-based representation and visualization of

news story events (using the Google Maps API). The scope of news events explored was confined

to a particular domain, e.g. crimes - murders, attacks, robberies etc. The resulting news event

mapping web service provided users with a quick and easy way to determine, for example, crime

black spots in certain geographical regions. This was the system developed by Mastersone et al

[CM12] that, as well as the proposed in this dissertation has the identification and classification of

some events and then the visualization map to provide the information to the end-user in an easier

way.

2.2.1.2 Finding influentials based on the temporal order of information adoption in twitter

In this work, Lee et al [LKP10] proposed a novel method finding influentials by considering both

the link structure and the temporal order of information adoption in Twitter.

Another related project is the "Determinants of mobility intentions in the Seoul Metropolitan

Region" [Han11] as it is possible to analyze the mobility intentions of another region.

2.2.2 Information Extraction

Information extraction (IE) is the task of automatically extracting structured information from

unstructured and/or semi-structured machine-readable documents. Recent activities in multimedia

document processing like automatic annotation and content extraction out of images/audio/video

1http://d3js.org/
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could be seen as information extraction. The next research represents the works did in this area in

other contexts.

2.2.2.1 Twitter Sentiment

The first context is to find sentiments and it is quite important as a further improvement of our

dissertation is to add the sentiment related to each mobility activity found and represent it with

different color marks in the map.

So, TwitterSentiment 2 is a platform that uses a machine learning approach for sentiment

detection. The classifier, developed by Go et al. at the Stanford University in an academic project,

is very well described in a paper [GB09]. Basically, Go et al. import a training set by searching for

’:)’ and ’:(’. The first result is treated as a positive sample and the latter one as negative sample.

Using diferent machine learning algorithms like Naive Bayes, Maximum Entropy and SVM, they

achieved an accuracy of more than 80

Figure 2.6 shows a screenshot of the interface, and Figure 2.7 a screenshot of the result list.

The salmon-colored entries indicate negative sentiments, while the green ones indicate positive

sentiments.

Figure 2.6: Twitter Sentiment interface

2.2.2.2 Minimising Travellers’ Spending Money on Public Transport

Neal Lathia et al, [Lat11] based on the fact that people spend more than they should in the moment

of buying the best fare for a public transport ticket, propose to address the incorrect purchases by

leveraging the huge volumes of data that travelers create as they move about in the city provided, to

each of them, personalized ticket recommendations based on their estimated future travel patterns.

In this work, they concluded that applying data mining techniques to public transport data has the

potential to provide travelers with substantial savings.

2http://twittersentiment.appspot.com/
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Figure 2.7: Result list of Twitter Sentiment application

2.2.2.3 Goal detection in football by using Support Vector Machines for classification

In this paper, Ancona et al presented a technique for detecting goals during a football match

by using images acquired by a single camera placed externally to the field. The method does

not require the modification neither of the ball nor of the goalmouth. Due to the attitude of the

camera with respect to football ground, the system can be thought of as an electronic linesman,

which helps the referee in establishing the occurrence of a goal during a football match. The

occurrence of the event is established detecting the ball and comparing its position with respect

to the location of the goalpost in the image. The ball detection technique relies on a supervised

learning scheme called Support Vector Machines for classification. The examples used for training

are appropriately filtered version of views of the object to be detected, previously stored in form

of image patterns [ACB+01].

2.2.2.4 Extracting Clustered Urban Mobility And Activities From Georeferenced Mobile
Phone Datasets

In this research, Yuan et al [YR09] focused on extracting clustered human mobility and activi-

ties based on a mobile phone dataset from northeast China. There have been several studies on

modeling urban dynamic patterns from mobile connection datasets, but their research focused on

extracting the implications of various clustering patterns, as well as relating these patterns to the

distribution of urban infrastructures. That way the results would be very useful in updating envi-

ronmental, urban and transportation policies. Moreover, the results can be used as informants of

human activity including long-term choices such as where to live and short-term choices such as

daily activity scheduling.
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2.2.2.5 Activity-aware map: identifying human daily activity pattern using mobile phone
data

This research work tackles the same problem as this dissertation. They tried to help urban plan-

ning and transportation management by developing an activity awareness map to identify human

daily activities in order to understand dynamics of human mobility. Besides geographic space,

they characterized mobility in a profile-based space (activity-awareness map) that describes most

probable activity associated with a specific area of space.

Based on a large mobile phone data of nearly one million records of the users in the central

Metro-Boston area, it was found a strong correlation in daily activity patterns within the group of

people who share a common work area profile. In addition, within the group itself, the similarity

in activity patterns decreases as their work places become apart [PHDL+10].

2.2.2.6 Twitteuro

Twitteuro tracks the popularity and trends of the Euro 2012 teams and players in the Twittersphere.

Twitteuro processes in real-time all the tweets that contain the Euro2012 hash tag and identifies

mentions to teams and individual players. It assumes that the popularity of a team or a player

is proportional to the number of tweet mentions. Thus, the more tweets containing the team or

the player name, the higher their popularity. To help to compare the popularity of the teams and

players they developed an interactive visualization. The circles with the national flags and players

photos represent the Euro 2012 teams and players. The circles are sized by the Twitteuro popu-

larity score. Twitteuro also displays opinion trends about the Euro 2012 competition in general,

about a specific team or even about an individual player. It also presents the latest tweets collected

by Twitteuro in real-time, for a given visualization context.

This project, still being done in SAPO LABS, is related with this dissertation as they use

twitter as a source for collecting information and they have developed an intuitive interface to

show the results gathered. In the detailed information about a player it is possible to see a graphic

that shows the number of tweets about that player per day. It is easy to understand that the high

points represent an important action of a player like a goal or a red card for example. It would be

interesting that the system could determine the reason of those high points using the tweets of that

period [PLT+12].

In the next images we can see the main interface of the developed system (Figure 2.8) and the

detailed information where it is possible to see the detailed information referring to Portuguese

player, Cristiano Ronaldo (Figure 2.9).

2.2.3 Visualization

Here we can find the "World Map" that is a free program developed by the Center for Geographic

Analysis at Harvard University [Uni10]. World Map is designed to enable creation, visualization,

and exploration of geographically referenced information. In other words, you can build some
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Figure 2.8: Twitteuro Main Interface

Figure 2.9: Cristiano Ronaldo detailed information

great mapped data visualizations on the service, as the given example showing the Japan’s 2011

disasters in the Figure 2.10.
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Figure 2.10: Japan’s 2011 Disasters

2.2.3.1 Google WorldMap visualization

A geomap 3 is a map of a country, continent, or a region map, with colors and values assigned to

specific regions. Values are displayed as a color scale, and you can specify optional hover text for

regions. The map is rendered in the browser using an embedded Flash player. Note that the map

is not scrollable or draggable, but can be configured to allow zooming.

Figure 2.11: Google WorldMap visualization

3https://developers.google.com/chart/interactive/docs/gallery/geomap
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2.2.3.2 We Feel Fine

This project represents in an intuitive way the exploration of human emotions on a global scale.

The system searches the world’s newly posted blog entries for occurrences of the phrases "I feel"

and "I am feeling". When it finds such a phrase, it records the full sentence, up to the period, and

identifies the "feeling" expressed in that sentence (e.g. sad, happy, depressed, etc.). Because blogs

are structured in largely standard ways, the age, gender, and geographical location of the author

can often be extracted and saved along with the sentence, as can the local weather conditions at the

time the sentence was written. All of this information is saved. Using a series of playful interfaces,

the feelings can be searched and sorted across a number of demographic slices, offering responses

to specific questions like: Do women feel fat more often than men? The interface to this data

is a self-organizing particle system, where each particle represents a single feeling posted by a

single individual. The particles’ properties – color, size, shape, opacity – indicate the nature of the

feeling inside, and any particle can be clicked to reveal the full sentence it contains. This is quite

a complete system where you can also see the metrics that display the most representative traits of

the sample population along different axes. For example, Figure 2.12 displays the geographical

breakdown of the sample population. The particles move to the point on the world map that

corresponds to the geographical location of their author. The particles with unknown location

form a giant question mark [KH11].

Figure 2.12: We Feel Fine - World Map visualization

2.2.4 Previous Related Projects at FEUP

This has been a subject of study in other previous thesis at FEUP, in a different way.
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The first, by Sara Carvalho, aimed to identify messages with traffic information on twitter by

implementing a Suport Vector Machine for message classification [Car10].

The objective of her study addressed the identification of messages that are relevant to the

traffic characterization problem in a continuous flow of messages open to any subject. The focus

was the capture of the user generated messages; in opposition to the messages broadcast by official

sources like news agencies and traffic reporting agencies.

Roel Nelles’ point is already closer to this thesis. Also by collecting information from Twitter,

he developed an interface that shows the times comparison for two countries for limited activities

at each country in the word [Nel11].

His goals were related to compare the daily routines of people from different cultures (coun-

tries). He searched for some words and compared the time of the messages posting. In his disser-

tation it is not shown any metrics to evalutate the obtained results.

Our dissertation, having this knowledge as a basis, extract from Twitter messages in Por-

tuguese the activities found in messages that contain expressions that implies mobility. We don’t

want to compare habits but to classify the types of mobility and the predominance in our country.

An important point was the metrics evaluated to improve the performance of the developed system

by understanding what was failing and adding some specific cases.

The Figure 2.13 represents the interface of the work made by Roel Nelles - Activity World

Map.

Figure 2.13: Roel Nelles - Activity World Map
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2.3 Most Relevant Topics

This chapter is one of the most important, because it represents the study of existing techniques

to collect information from social media, as to normalize them and to make it understandable

because people write with spelling mistakes in social media in order to make the sentences shorter

and faster to write.

Here we studied and found related projects in some parts. Ones that helped us most, other

that made part of a structured review and let us understand how they developed their systems.

Thus, as a working tool was primarily used: the work of Roel that we had access to the source

code to understand how to interact with the Twitter API and the type of filters used to select the

desired returned messages. The interface developed by him was a starting point for the one that

we developed, based on Google Geomap.

The "Work Activity Map-Aware" project, that aims to help urban planning and management

of public transport as a common point with this thesis was also one of the most important related

works in terms of architecture background. Other techniques presented and the classifiers were

very important to know how the whole process works and to help us to model the architecture for

the system implemented by us.

The Tokenisation to divide the messages and the String Matching were techniques that we

used.

In Chapter 5 it will be presented the methodology for the implemented solution and the archi-

tecture of the system.
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Chapter 3

Twitter: The Chosen Microblog

From Twitter, the chosen source of data, it will be presented its business model, user statics,

political impact and how to interact with the API. This chapter will comprise all the information

about Twitter, because it is important to understand the chosen microblog.

The choice for the Twitter service was made because of the public databases that could be

accessed trough an API and because of the short messages that makes people center their intentions

on the activities that they want to share.

Twitter is a popular social network website which only asks one question: ‘What’s happen-

ing?’, which represents what we want to know, the activities that people do (we will search for the

ones related with mobility). The answer is limited to 140 characters which is also good because

it pretends that people focus on the action instead of writing a descriptive text. Figure 3.1 shows

a screenshot of the current Twitter User Interface. Status updates can be sent via a web browser,

SMS, e-mail or third party applications and are displayed on the users’ profile.

In sum, Twitter is an online social networking and micro blogging service that enables its users

to send and read text-based posts of up to 140 characters, known as "tweets".

Figure 3.1: Twitter’s User Interface

3.1 Followers

Twitter implemented a concept of so-called followers. If a certain user updates his/her status, all

followers are informed of the new status. This is achieved by adding the new entry to their personal

Twitter overview page (Figure 3.2).
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Figure 3.2: Personal Twitter Overview Page

One can follow every other user unless this user has set the profile as ‘private’. In this case, an

initial request for approval has to be sent first.

3.2 Business Model

Like several other popular social network sites, Twitter struggles to find a valid business model

which actually generates revenue. Twitter itself confirms this on their web page:

"Twitter has many appealing opportunities for generating revenue but we are hold-

ing off on implementation for now because we don’t want to distract ourselves from

the more important work at hand which is to create a compelling service and great

user experience for millions of people around the world. While our business model is

in a research phase, we spend more money than we make." 1

To finance the service Twitter relies heavily on investors and has thus generated a total funding

of 155 Million dollars. According to the Financial Times, the investors valued the site with 1

Billion dollars in 2009 [Tim09].

In that time Twitter made a new attempt to find a new business model. They introduced so-

called ‘Promoted Tweets’.

Promoted Tweets are ordinary Tweets purchased by advertisers who want to reach a wider

group of users or to spark engagement from their existing followers. Promoted Tweets are clearly

labeled as Promoted when an advertiser is paying for their placement on Twitter. In every other

1https://twitter.com/about
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respect, Promoted Tweets act just like regular Tweets and can be retweeted, replied to, favorites

and more. All Promoted Tweets are first displayed as regular Tweets to the timelines of people

following an account. The advertisers can then promote those Tweets to spark additional conver-

sation. 2

With this type of approach they get the revenues of the companies that want to advertise using

the Twitter service.

3.3 Spam

Like every successful communication platform, Twitter is prone to Spam. On their Company Blog
3, the Twitter operators define spam "as a variety of different behaviors that range from insidious to

annoying". This includes aggressive following/ unfollowing, links to phishing/malware sites and

the classical unsolicited advertisements. Twitter fights hard to avoid spam as good as possible. For

example, every user profile has a dedicated ‘report for spam’ button. According to the operators,

they managed to bring down the Spam level to 1-2% as we can see in the figure 3.3.

Figure 3.3: Percentage of spammy tweets posted per day is way down

3.4 Usage Statistics

In October 2006, Biz Stone, Evan Williams, Dorsey, and other members of Odeo formed Obvious

Corporation and acquired Odeo and all of its assets from the investors and shareholders.

The tipping point for Twitter’s popularity was the 2007 South by Southwest (SXSW) festival.

During the event, Twitter usage increased from 20,000 tweets per day to 60,000 [Dou12]. More

2https://support.twitter.com/articles/142101-promoted-tweets
3http://blog.twitter.com/2010/03/state-of-twitter-spam.html
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specifically, Twitter’s website attracted a total of 44.5 million unique visitors worldwide in June,

2009, according to comScore [Sch09]. The service, then, rapidly gained worldwide popularity,

with over 300 million users as of 2011, generating over 300 million tweets and handling over 1.6

billion search queries per day [Twi11].

This micro blogging network [LA07], has experienced a burst of popularity in recent months

leading to a huge user-base, consisting of several hundreds of millions of users who actively par-

ticipate in the creation and propagation of content.

In the Figure 3.4 it is possible to see the growth of the Twitter service [KLPM10] from May

2009 to May 2010.

Figure 3.4: Twitter’s Growth

With 20 million of its visitors coming from the U.S.A., Twitter’s audience is now 55 percent

international. ComScore now counts it as the No. 52 largest site in the world (bigger than ESPN,

just shy of the BBC and Craigslist). These estimates only account for traffic to Twitter.com. Since

more than half of Twitter users do not even go to the Website, and instead use Twitter apps to

consume and publish Tweets, Twitter’s total audience is even larger. But comScore provides a

consistent measure of its growth.

Asur and Huberman [AH10] demonstrated how social media, in particular Twitter, can be used

to predict real-world outcomes. The study focuses on the prediction of box-office revenues for out-

coming movies. In the end they conclude that a simple model that senses tweets on a particular

topic can outperform some market-based predictors, therefore proving the forecasting power of

social media.

The main reasons for choosing this social media were the fact that one has a shorter maximum

of characters so that, instead of writing a long text, it makes one focus on the activity or the content

one wants to share. The fact that it is possible to have access to the time, location of the messages

(if available) or the local of the user, that is not private it is also very important.
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Even though the use of Portuguese is quite low, it is possible to get the messages by Por-

tuguese users and select only messages written in Portuguese, as the dictionary filters the potential

messages containing expressions in Portuguese.

3.5 Geographical Distribution

Java et al [JSFT07] carried out a detailed analysis of Twitter in the year 2007, being one of the

first scientific papers to deal with this topic. They performed a detailed geographical analysis. The

results show that Twitter is mostly used in the United States (especially East Coast), in Europe

and Asia (mainly Japan). Twitter is adopted the most in the cities of Tokyo, New York and San

Francisco. The following figure visualizes the geographical distribution.

Figure 3.5: Geographical Distribution of Twitter Users

3.6 Twitter API

The Twitter platform offers access to that corpus of data, via our APIs. Each API represents a facet

of Twitter, and allows developers to build upon and extend their applications in new and creative

ways. It is important to note that the Twitter APIs are constantly evolving, and developing on the

Twitter Platform is not a one-off event.

29



Twitter: The Chosen Microblog

Twitter for Websites (TfW) 4 is a suite of products that enables websites to easily integrate

Twitter. TfW is ideal for site developers looking to quickly and easily integrate very basic Twitter

functions.

The Search API 5 designed for products looking to allow a user to query for Twitter content.

This may include finding a set of tweets with specific keywords, finding tweets referencing a

specific user, or finding tweets from a particular user.

The REST API 6 enables developers to access some of the core primitives of Twitter including

timelines, status updates, and user information.

And finally, the most important for us, the Streaming API 7 is the real-time sample of the

Twitter Firehose. This API is for those developers with data intensive needs. Streaming API

allows for large quantities of keywords to be specified and tracked, retrieving geo-tagged tweets

from a certain region, or have the public statuses of a user set returned.

The usage of the API is free of charge, it only requires an active Twitter account and it is used

by a wide range of third-party twitter applications, like this one.

4https://dev.twitter.com/twitter-for-websites
5https://dev.twitter.com/docs/using-search
6https://dev.twitter.com/docs/api
7https://dev.twitter.com/docs/streaming-apis
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Chapter 4

Problem Modeling

As we said in the Literature Review chapter, Microblogs are a relatively new form of communica-

tion in which users can describe their current status in short posts distributed by instant messages,

mobile phones, email or the Web and there are several tools and applications for microblogging,

such as, Twitter, Tumblr, Facebook status, and many others.

As it was already explained too, the microblog crawled was the Twitter, known by its limit

for 140 characters in the status update messages. But is this system extensible to use another

microblogs (if the database that contains the initial messages has the same schema) as data source

if it is needed in the future? And what are the needed changes to extend that?

Figure 4.1: Microblogs

The answer to the previous question is "Yes", the system developed is extensible if the schema

of the database is the same. The preprocessing module would have some differences because

Twitter has its own particularities, like the hastags that have to be removed, for example. Basically

it would be needed to study the particularities of the other microblog and see if it important to

implement some other preprocessing for special characters that has a specific mean for that service.
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In the end it is expected to have another database with the mobility activities messages, as well

as the type of that mobility and the place of the user that has posted.

In this context other problems are arising:

• How to identify location?

• How to identify activity?

These are specific problems that will be explained how they were reached in the respective

modules of the implementation in the next chapter.

But, what are mobility activities and places precisely? It is fundamental to have it clear, so

that the implementation would be coherent.

4.1 Mobility Activities vs Places

Activity is usually related to movement when we are talking about mobility. So, it implies a

dislocation from being static to be in movement. By definition a mobility activity has an initial

and end time and the subtraction of the end time and the initial is the duration of the activity. Not

only the time, but also the place has to change between initial and final time. To be considered

a mobility activity the final location has to be different from the initial, so that it represents a

dislocation.

The three following expressions summarize the conditions for being in a presence of a mobility

activity.

• duration = t f − ti

• moving⇒ location(t f ) 6= location(ti)

• static⇒ location(t f ) = location(ti)

Figure 4.2: Activity Definition

This way, it is easier to understand, for example, that the sentence Estou em casa that means "I

am at home" does not implies movement, so that, it is not considered for our algorithm. It is also

clear that the sentence Estou a ir para em casa that means "I am going home" has an underlying
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mobility activity. These sentences are just two examples to show the differences between being an

activity or not. Obviously, if it is not only one person but more than one it represents the same.

Therefore it must be defined a dictionary of expressions that contains the Portuguese verbs

that mean mobility and the prepositions related to places to follow the verb. With these verbs

and prepositions conjugated in different grammatical subjects we get a lot of potential mobility

messages. With regular expressions it is possible to find the chosen expressions in all the message

(does not matter if people refer mobility in the beginning or in the end of the message).

By analyzing the results it is possible to see that, sometimes, we refer to going to another

place but on the Web, like Vou para o facebook... that are not real mobility. It is fundamental to

have another list of "unreal mobilities", so that we can improve the precision of our classification

system. The conditional and negative sentences were also object of consideration to improve the

system.

In the Figure 5.4 of the next chapter of the Implemented Approach it is possible to see the

dictionary used to filter the mobility activities expressions - section Filtering.

4.2 Problem Phases

As we have already described in the Literature Review chapter, this dissertation project is based

in three different main phases, that will be detailed next.

Figure 4.3: Development Phases

4.2.1 Collecting Data

The first phase comprises the data collection from the chosen microblog, via Twitter API. In this

phase it was made an experience using the Streaming API from Twitter that allows us to have

access to Twitter’s global stream of Tweet data. The retrieved information from the Streaming

API has the coordinates of the place where the message has been posted.
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4.2.2 Getting Usefull Information from Tweets

It is in this section that the expressions about mobility will filter the dataset with all the messages

got from Twitter. Then the messages are preprocessed and treated in order to find the activity and

the place of the user (by his/her profile location).

4.2.3 Interface

The interface consists on the visualization module that is independent from the techniques used

for classification of the messages. The messages retrieved by the system implemented are saved

into a new database, as well as other important information necessary to plot in the Portugal Map,

like the location of the retrieved messages - In the next chapter it will be explained in detail the

schema of this database and it will be explained the implementation of the Web interface.
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Chapter 5

Implemented Approach

This chapter contains the solution that we proposed divided into different phases of its develop-

ment as we saw in the prior chapter where the problem was modeled.

For each phase it is important to understand the techniques involved and how to achieve the

expected results, as well as with which tools it was achieved.

This chapter aims to give the reader an overview of the way that the presented problem was

solved and how the proposed goals were reached. Thus we will present the architecture of the

system and then explain the implementation decisions

5.1 Architecture

Figure 5.1 represents the architecture of the system projected.

Figure 5.1: System Architecture
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The first steps of the development of this dissertation were in order to get a good set of data.

To achieve that we wanted to compare the information presented in the tweets that SAPO LABS

has been crawling since five years ago, with the results of the Streaming API from the Twitter API.

It is important to refer that SAPO LABS does not crawl all the tweets from the microblog

service, but they choose and follow Portuguese users. It is also important to refer that the access

is not only to the messages but also the id of the user, creation date of the post and replies.

So we made a prototype experiment in PHP and Javascript to obtain, in real time, the mes-

sages from twitter that have the geolocation (the messages that are sent with the presence of the

coordinates from the place where they were sent from). It means that it should only be showed

and saved in a MySQL Database messages that people allow Twitter to get the coordinates of the

post placement. This has the obvious advantage of knowing exactly the coordinates of the place

where the message has been posted. That way we do not need to use the information from the user

profile.

The Streaming API gives us the opportunity of limiting the locations that will be crawled by

making multiple boxes evolving the expected locations and its limitations. If we want to involve

Portugal we should make many little boxes, otherwise some parts are not covered or to cover every

part of Portugal we have to cover some parts of Spain. It should be made something like this:

Figure 5.2: Multiple Boxes envolving tweets from Portugal

On the other hand, the number of mobility messages is much bigger in the first option (using

the SAPO LABS database messages from the last five years), even if we left the server running

several weeks. Another disadvantage of using the Streaming API is that the number of tweets

that are not in Portuguese is quite big. So, after filtering by the expressions that we defined in the

previous chapter as representing mobility activities, the results are just few.

So, we decided to use the tweets from SAPO Labs.

5.2 Initial Database

In the figure you can see the schema of the initial database from where we got the attribute "text"

containing the messages from Twitter statuses updates.
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Figure 5.3: Schemma of Initial Database

5.3 Filtering

To implement the filtering module, we studied and searched for the verbs and prepositions more

related with mobility. Obviously not all those verbs mean that after them there will be a mobility

activity. That is a further process, to try to find with a good precision the ones that are followed by

mobility activities and the ones that are not. In the next table we present the list of the combinations

made to identify mobility activities (for better notion about which are and which are not mobility

activities please go back to Chapter 4 - Section Mobility Activities vs Places).

Figure 5.4: List of expressions to identify mobility activities
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Tfigure 5.5 summarizes the input and the output of this module.

Figure 5.5: Input and Output of the second phase - Mobility Messages

Then, to be sure that the expressions from the list given will match the content of the messages,

we converted both to lowercase, so there will be no problems because, for example, Porto and

porto does not match. The removal of the punctuation is also needed because if we try to match,

for example, casa with casa. that is not the same and it does not match. Without the punctuation it

will match as we want. Because if the word casa is the last of the message or sentence it is usually

followed by punctuation that means nothing to us in terms of information extraction.

5.4 Preprocessing

In fact, text mining is arguably so dependent on the various preprocessing techniques that infer

or extract structured representations from raw unstructured data sources. A large variety of text

mining preprocessing techniques exist. In some way all attempt to structure documents. In this

research work we cleaned the data like "hastags" and "@", because we are using Twitter messages

and these characters would represent correct matchings into invalid ones. This is a quite important

step and it would be good to implement more techniques such as stemming to reduce all the words

to its root. Repetition of letters to express a more effusive idea, activity or emotion may represent

also an obstacle.

5.5 Information Extraction

In this part it is supposed to use the set of messages that result from the filtering of the initial

dataset, and treat the messages to obtain the activity and the local.
In order to do that, we separated the words from each considered message in an array, so that

each word should be presented in each position of the array by the order of it in the sentence.

The potential activity is the following word of the expression filtered excluding prepositions and

demonstratives or possessives determiners. To avoid that, we have created a "StopWords" list with

those words listed. As it is possible to see in the Figure 5.6 if there is no other than stopwords after

the expression filtered, the sentence is discarded. Here it is important to identify the conditional

and negative sentences, so that, they would be excluded too, in order not to identify false activities.

The "StopWords" list used is presented below.
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Figure 5.6: Identifying activity algorithm

If the message and the activity were saved, then we should class them as one of the three

identified types of mobility activities: Leisure, Travel and Work.

5.6 Categorization

So, in order to classify the mobility as Leisure, Travel and Work, some checks need to be verified.

First, with the help of the SCRIBE library 1, provided from Twitter API to connect from Java

to Twitter public databases, it is created the OAuthService object to get the access Token. That

way it is possible to sign a request to the Twitter API to get the user location from the userID that

posted the message.

In case of the activity identified in the previous module as part of a list of Portuguese cities,

then we verify if the place is the same of the location of the user. If it is not, we classify the

message as "Work". The comparison of the cities is made by using the Google service that we can

give an address or city and it is devolved the geographic coordinates.

In case of the other kind of mobilities, the activity found has to be part of one of the other two

lists - Work or Leisure.

It is important to refer that the lists were made after study of the activities in each category.

1https://github.com/fernandezpablo85/scribe-java/wiki/getting-started
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Table 5.1: List of the StopWords

o a os as
ao à aos às

para um uma uns
umas duns dumas dum
duma num numa nuns
numas de em por
pelo pela pelos pelas
no na nos nas
do da dos das

este estes esta estas
esse esses essa essas

aquele aqueles aquela aquelas
meu meus minha minhas

5.7 Interface

The results are saved into a new database that contains the text, type and place of the retrieved

messages. In Figure 5.7 we can see the schema of the resultant database.

Figure 5.7: Schemma of the Database cointaining the results obtained

In order to read data from the database, the scripting language PHP was used and, to develop

the web interface, JavaScript was used to make the page more dynamic and more user friendly.

The map is a GeoMap element from Google.

In Figure 5.8 it is possible to see an example of the implemented interface that works as a

communication of the results.

By drawing the map of Portugal and by plotting graphs[WDSC07], the data is shown in a clear

way and it is easy to understand.
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Figure 5.8: Visualization Map implemented
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Chapter 6

Results

6.1 Test Methodology

This chapter presents the results of the system implemented and described in the previous chapters.

The results will be presented according to the evaluation metrics used to evaluate information

retrieval systems.

Manyard et al [MP06] say that there are several well-established metrics for evaluation of

traditional information extraction systems. We aim to measure how good the IE system is at

discovering all the mentions of these instances, and whether the correct class has been assigned to

each mention.

King proposed that the metrics should [Kin03]:

• reach their highest value for perfect quality;

• reach their lowest value for worst possible quality;

• be monotonic;

• be clear and intuitive;

• correlate well with human judgment;

• be reliable and exhibit as little variance as possible;

• be cheap to set up and apply;

• be automatic.

The traditional evaluated metrics are Precision, Recall and F-measure. These metrics have a

very long-standing tradition in the field of Information Extraction.

Precision measures how many itens that the system identified were actually correct. In other

words, it represents the probability that a retrieved document is relevant.
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Recall measures how many of the items that should have been identified actually were identi-

fied, regardless of how many spurious identifications were made. The higher the Recall rate, the

better the system is at not missing correct items.

F-measure is often used in conjunction with Precision and Recall, as a weighted average of

the two. If the weight is set to 0.5 (which is usually the case), Precision and Recall are deemed

equally important. If Precision (P) and Recall (R) are to be given equal weights, then we can use

the next equation to calculate de F-measure:

F1 =
P∗R

0.5∗ (P+R)
(6.1)

The F1-measure combines precision and recall as the harmonic mean (Figure 6.1):

Figure 6.1: Relation Between Precision and Recall

In a classification task, the precision for a class is the number of true positives (TP) (number of

items correctly labeled as belonging to the positive class) divided by the total number of elements

labeled as belonging to the positive class (sum of true positives (TP) and false positives (FP),
which are items incorrectly labeled as belonging to the class). Recall in this context is defined as

the number of true positives (TP) divided by the total number of elements that actually belong to

the positive class (sum of true positives and false negatives (FN), which are items which were not

labeled as belonging to the positive class but should have been).

Now we are able to define the Precision (P), Recall (R) and True Negative Rate (TNR), based

on the true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN):

P =
T P

T P+FP
(6.2)

R =
T P

T P+FN
(6.3)
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T NR =
T N

T N +FP
(6.4)

A precision score of 1.0 for a class means that every item labeled as belonging to that class

does indeed belong to the class (but says nothing about the number of items from the class that

were not labeled correctly) whereas a recall of 1.0 means that every item from the same class

was labeled as belonging to that class (but says nothing about how many other items were also

incorrectly labeled as belonging to the same class).

6.2 Evaluation

In this section we evaluated a random sample of messages from Twitter to be classified as contain-

ing mobility activities or not.

Firstly it is important to refer that we crawled approximately 1 million messages from Twitter

to find which ones are related to mobility activities. So we used a random sample of 600 messages
from where it was seen:

• 81 were true positives (TP);

• 17 were false positives (FP);

• 452 were true negatives (TN);

• 50 were false negatives (FN);

Based on this "ground truth" it was possible to calculate the metrics presented to evaluate our

system.

P =
81

81+17
= 82.7% (6.5)

R =
81

81+50
= 62% (6.6)

T NR =
452

452+17
= 96.4% (6.7)

And the F-measure that combines both precision and recall it is calculated like this, for this

sample:
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F1 =
0.827∗0.62

0.5∗ (0.827+0.62)
= 70% (6.8)

In Figure 6.2 it possible to see a graphic that shows these values. But what do they mean?

Our priority was to improve precision than recall. It means that we preferred to be correct in the

messages that we classify as mobility rather than getting almost all the mobility messages, thus

we improved our algorithm in that way.

Figure 6.2: Metrics IE Evaluation

Some of the wrong messages we have got (False Positives) were due some references related

to mobility are references to virtual mobility, such as Facebook or Twitter as the most common -

sometimes people writes, for example, Vou para o facebook that means "I’m going to facebook"

and does not represent a mobility situation even if it is written with a verb and preposition that

indicates that. We added exceptions to the most common of this kind of situations.

Another interesting manual analysis of the results we got is that, even without the time of the

publication we can guess some big events, by a lot of mobilities, for example, for Dublin (Porto

and Braga played the final of the UEFA EUROPA CUP in Dublin last year in May), followed by

a lot of people going to Dusseldorf (Homens da Luta represented Portugal in the Eurovision Song

Contest in Dusseldorf later that month).

In the next chapter we will make an overall analysis and reflection about the work done during

entire dissertation and specify the real contribution of this research work, as so future improve-

ments or directions could be made or applied to extend and improve the system implemented.
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Chapter 7

Conclusions and Future Work

During this dissertation we have analyzed the problem of lack of mobility information in order to

help public transport companies, marketing strategies and urban planning.

Because nowadays we have a lot of information in social media, we really should then use it to

something more than just share with each other and in the end not use it. For that reason, no doubt

that the Text Mining area is growing as an essential method of knowledge discovery from general

and business documents. In this particular case, Information Extraction helped us to develop a

system that finds mobility activities in microblogs and communicate the obtained results in an

intuitive interface that shows the main places where some categories of mobility activities prevail.

The map visualization has been also an object of big research and improvements. We all know

that trying to find related content can also be difficult, depending on what data one is looking

for. But data visualizations can make that entire much easier, allowing one to see the concepts

that someone is learning about in a more interesting, and often more useful way. This transforms

the knowledge extracted much more easily to understand and interact for the end-users of the

developed system.

Adding to the big interest on information extraction, with smartphones always connected to

the Internet and with GPS systems, it is much easier for the microblog services to identify the

location of the majority of the messages posts, giving us the opportunity to know exactly that

location which makes this an area of higher mobility commitment and development.

Our intentions to reach the expected goals were successful. We were able to develop a system

to extract mobility activities information from Twitter in a way that we were capable of commu-

nicating the results by an interface web. Thus, the algorithm can still be improved in terms of

precision, so that all the information retrieved should be mobility information. But that is not

shown in the map, because before that we tried to categorize the mobility activity found into a

class of mobility predefined by lists of the most common activities (work, leisure or travel).

The fact that this project could help in nowadays’ decision making and the challenge to over-

come the unstructured text and the multilanguage were such important factors of motivation. To

sum up what motivated us most in this project is the fact that its applicability could become very

useful in our daily lives.
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There are still some interesting add-ons that could be implemented to the work already done.

Those improvements could be:

• Categorize the identified activities using a non-supervisioned cluster algorithm to group the

activities by similarities;

• Detect sentiment in the mobility messages identified, in order to add the positive, negative or

neutral feeling represented by the color of the identified mark in the visualization map. This

could be done using the library Sentilex-PT 1 that is a sentiment lexicon for the Portuguese

language, made up of 7,014 lemmas, and 82,347 inflected forms. SentiLex-PT is especially

useful for opinion mining applications involving Portuguese, in particular for detecting and

classifying sentiments and opinions targeting human entities.

Therefore we can conclude that, despite the work already done and results achieved, the margin

of progression is high and the future is encouraging for projects that will be developed in the

mobility information extraction systems field.

1http://dmir.inesc-id.pt/project/SentiLex-PT02inE nglish
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