2,152 research outputs found

    Expand Energy Over Distance Via Sensor-based Radio Frequency Identification(RFID) Technology

    Get PDF
    Although coexistent, we have persistent in progressing the technology (constructing a wireless- communication technology ) for better enrichments in time ahead, We want draw to your attention to wireless biosensors because the development of Wireless Biosensor is essential for our studies and practical knowledge (or application) in different area like medical diagnostic, research, defence and ecological monitoring etc, it’s enormously complex and careful detection for application (like food detection, humidity, bacteria growth etc). Our motive is to focus on Expand Communication Performance or Range. Apparently, measure Resonance frequency and Quality factor(Q- factor) rather than sensing system. Display the specific resonance frequency in which the extensible system will execute this is significant throughout the manufacturing development to the function of communication and gauging the High-Quality factor(Q-factor) for robust system procedure. Further how to expand RFID Distance Read Range and a major task to integrate RFID into biosensors for construction of wireless biosensors. In the market different types of battery-free wireless biosensors (like magnetoelastic biosensors, acoustic wave-based biosensors, self-powered biosensors, and potentiostat biosensors) are available but our emphasis is on RFID-based biosensors because it is cost- effective and companionable with mass production and probable with variant configuration in the upcoming time

    Miniature Resistance Measurement Device for Structural Health Monitoring of Reinforced Concrete Infrastructure

    Full text link
    A vast amount of civil infrastructure is constructed using reinforced concrete, which can be susceptible to corrosion, posing significant risks. Corrosion of reinforced concrete has various causes, with chloride ingress known to be a major contributor. Monitoring this chloride ingress would allow for preventative maintenance to be less intrusive at a lower cost. Currently, chloride sensing methods are bulky and expensive, leaving the majority of concrete infrastructures unmonitored. This paper presents the design and fabrication of a miniature, low-cost device that can be embedded into concrete at various locations and depths. The device measures localized concrete resistance, correlating to the chloride ingress in the concrete using equations listed in this paper, and calculated results from two experiments are presented. The device benefits from a four-probe architecture, injecting a fixed frequency AC waveform across its outer electrodes within the cement block. Voltage across the internal electrodes is measured with a microcontroller and converted to a resistance value, communicated serially to an external computer. A final test showcases the ability of the device for three-dimensional mass deployment

    Evaluation of the harmonic impedance of Frydlant (Line 53) power network

    Get PDF
    The harmonic impedance of the power system is an important quantity, which describes the behaviour of the power system with the existence of different frequencies beside the fundamental. The harmonic study belongs to the most difficult part of the electrical measurements and calculations even by using computer software. The main problem accompanying the calculating methods is to obtain the exact data of the electrical network parameters or to know the exact operational status of the system. In this paper the harmonic impedance of Frydlant (line 53, 22~kV in Czech Republic) power network was calculated by using a very specialized software and suitable for solving such calculations called "NetCalc. version 3.0" [1]

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    The Design, Simulation and Implementation of Inductively Powered Sensor Systems: New Applications, Design Methodologies and a Unique Coil Topology

    Get PDF
    Three case studies have been presented for new applications of inductive energy and data transfer (iEDT)-sensor systems. The first application is a condensation detection system for the windshield of an automobile. The developed iEDT-sensor prototype provides a low cost alternative for wireless dew point measurements which involves no wired connections and so can be easily replaced when the windshield is damaged. The second application involves an iEDT-sensor prototype developed wirelessly query the flow rate in a pipe. For the third application, measurement results were performed for a wireless implant system. The application involves a Wireless Sensor (WS), implanted under the dura mater, which was to be used for long term cortical measurement and stimulation with a very high resolution. A suite of tools provided two independent methods of simulating the coil self resonance, quality factor, coupling and self inductance as well as the overall system efficiency. The inductance and coupling were verified within 10% error compared to measurement results and the resonance, quality factor and efficiency to within 30% error. An accurate simulation of the efficiency was predicated by an accurate simulation of the quality factor at the operating frequency. A series of scripts were also developed to automate the construction of the coil geometry, the simulation control and the compilation of the simulation results. These scripts offered the ability to quickly analyze variations in implementation and their affect on the system parameters and efficiency. For the third application, a new and unique topology for the iEDT-sensor system was presented which resulted in three redundant and independent implant coils each capable of simultaneously delivering power to the sensor electronics. This phased array topology has never before been examined for iEDT-systems as far as is known by the author. The new topology demonstrated a similar efficiency when compared to a single implant coil system of the same dimensions and a similar quality factor. Upon implantation, simulations demonstrated that the expected loss in efficiency should be limited to 10%. SAR-value simulations showed that the ISM frequencies at or below 13.56MHz would be in compliance with FCC regulations. The coupling and self inductance measurements for the phased array coil system were confirmed within 10% error compared to the simulations and the quality factor, self-resonance and efficiency were also shown to be accurate to within 20%. The simulated maximum efficiency of the phased array system was, however, substantially lower than the analytically calculated efficiency due to parasitic effects. The outlook for the work is as follows. The scripts should be expanded to include inductors with magnetic cores in order to allow for high power and low frequency applications as well as 3-D simulations in order to allow for more complex geometries. It should also be possible to increase the efficiency per unit area of the phased array coil system by minimizing the parasitic impedance thereby leading to an efficiency per unit area that is greater than that of a single coil system. The result would be a higher efficiency system, especially important for high power applications. This type of phased array coil approach could also be employed in the coil system of the Wireless Power Supply in order to create large areas which could efficiently supply mobile wireless devices with power

    Adaptive impedance matching circuit for narrowband power line communication

    Get PDF
    The noise level and impedance mismatch are still the main concerns in the narrowband power line communication (NB-PLC) technology. The low voltage power line network has impedances that are time and location variant. So it is difficult to achieve maximum power transfer all the time. Thus two new adaptive impedance matching circuits are proposed for NB-PLC. These methodologies are derived from the RLC and LCRC circuit model to achieve simpler configuration and higher matching resolution
    • …
    corecore