1,033 research outputs found

    Performance analysis of massive multiple input multiple output for high speed railway

    Get PDF
    This paper analytically reviews the performance of massive multiple input multiple output (MIMO) system for communication in highly mobility scenarios like high speed Railways. As popularity of high speed train increasing day by day, high data rate wireless communication system for high speed train is extremely required. 5G wireless communication systems must be designed to meet the requirement of high speed broadband services at speed of around 500 km/h, which is the expected speed achievable by HSR systems, at a data rate of 180 Mbps or higher. Significant challenges of high mobility communications are fast time-varying fading, channel estimation errors, doppler diversity, carrier frequency offset, inter carrier interference, high penetration loss and fast and frequent handovers. Therefore, crucial requirement to design high mobility communication channel models or systems prevails. Recently, massive MIMO techniques have been proposed to significantly improve the performance of wireless networks for upcoming 5G technology. Massive MIMO provide high throughput and high energy efficiency in wireless communication channel. In this paper, key findings, challenges and requirements to provide high speed wireless communication onboard the high speed train is pointed out after thorough literature review. In last, future research scope to bridge the research gap by designing efficient channel model by using massive MIMO and other optimization method is mentioned

    Performance Analysis of Train Communication Systems

    Get PDF
    Trains are considered as a highly efficient transport mode which generate significant challenges in terms of their communication systems. For improved safety, to cope with the expected rapid increase in traffic, and to meet customer demands, an enhanced and reliable communication system is required for high-speed trains (HSRs). Mobile phone and laptop users would like to make use of the non-negligible time that they spend commuting but current HSR communication systems have a foreseeable end to their lifetime and a reliable, efficient, and fast communication replacement system has become essential. Encouraged by the use of existing power line networks for communication purposes, this research investigates the possibility of developing a train communication system based on the use of overhead line equipment (OLE). The ABCD transfer line model is developed to represent the transfer function of the OLE channel and is evaluated using computer simulations. The simulations of the OLE system used are based on orthogonal frequency division multiplexing as the chosen modulation scheme. Within the train, for the provision of broadband services, developing a reliable communication system which is a combination of power line communication and optical wireless communication services using visible light communication (VLC) is considered. Mathematical methods were developed for these networks to assess the overall capacities and outage probabilities of the hybrid systems. Derivation of such analytical expressions offered opportunities to investigate the impact of several system parameters on the performance of the system. To assess the possibility of improving the performance of the proposed integrated systems, their performance in the presence of different relaying protocols has been comprehensively analyzed in terms of capacity and outage probability. This thesis studied the outage probability and energy per bit consumption performance of different relaying protocols over the VLC channel. Accurate analytical expressions for the overall outage probability and energyper-bit consumption of the proposed system configurations, including the single-hop and multi-hop approaches were derived. It was found that the transfer function of the OLE channel can be represented by the two-port network model. It was also revealed that transmission over OLE is negatively affected by the speed of the train, frequency, and length of the OLE link. In train, relay-based communication systems can provide reliable connectivity to the end-user. However, choosing an optimal system configuration can enhance system performance. It was also shown that increasing relay numbers on the network contributes to the total power consumption of the system

    Performance Investigation of High-Speed Train OFDM Systems under the Geometry-Based Channel Model

    Get PDF
    The high-speed of train (HST) in combination with the high carrier frequency of HST systems leads to the severe inter carrier interference (ICI) in the HST orthogonal frequency division multiplexing (HST-OFDM) systems. To avoid the complexity in OFDM receiver design for ICI eliminations, the OFDM system parameters such as symbol duration, signal bandwidth, and the number of subcarriers should be chosen appropriately. This paper aims to propose a process of HST-OFDM system performance investigation to determine these parameters in order to enhance spectral efficiency and meet a given quality-of-service (QoS) level. The signal-to-­interference-­plus-­noise ratio (SINR) has been used as a figure of merit to analyze the system performance instead of signal-to-noise ratio (SNR) as most of recent research studies. Firstly, using the non-stationary geometry-based stochastic HST channel model, the SINR of each subcarrier has been derived for different speeds of the train, signal bandwidths, and number of subcarriers. Consequently, the system capacity has been formulated as the sum of all the single channel capacity from each sub-carrier. The constraints on designing HST-OFDM system parameters have been thoughtfully analyzed using the obtained expressions of SINR and capacity. Finally, by analyzing the numerical results, the system parameters can be found for the design of HST-OFDM systems under different speeds of train. The proposed process can be used to provide hints to predict performance of HST communication systems before doing further high cost implementations as hardware designs

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore