492 research outputs found

    Gathering on Rings for Myopic Asynchronous Robots With Lights

    Get PDF
    We investigate gathering algorithms for asynchronous autonomous mobile robots moving in uniform ring-shaped networks. Different from most work using the Look-Compute-Move (LCM) model, we assume that robots have limited visibility and lights. That is, robots can observe nodes only within a certain fixed distance, and emit a color from a set of constant number of colors. We consider gathering algorithms depending on two parameters related to the initial configuration: M_{init}, which denotes the number of nodes between two border nodes, and O_{init}, which denotes the number of nodes hosting robots between two border nodes. In both cases, a border node is a node hosting one or more robots that cannot see other robots on at least one side. Our main contribution is to prove that, if M_{init} or O_{init} is odd, gathering is always feasible with three or four colors. The proposed algorithms do not require additional assumptions, such as knowledge of the number of robots, multiplicity detection capabilities, or the assumption of towerless initial configurations. These results demonstrate the power of lights to achieve gathering of robots with limited visibility

    Gathering over Meeting Nodes in Infinite Grid

    Full text link
    The gathering over meeting nodes problem asks the robots to gather at one of the pre-defined meeting nodes. The robots are deployed on the nodes of an anonymous two-dimensional infinite grid which has a subset of nodes marked as meeting nodes. Robots are identical, autonomous, anonymous and oblivious. They operate under an asynchronous scheduler. They do not have any agreement on a global coordinate system. All the initial configurations for which the problem is deterministically unsolvable have been characterized. A deterministic distributed algorithm has been proposed to solve the problem for the remaining configurations. The efficiency of the proposed algorithm is studied in terms of the number of moves required for gathering. A lower bound concerning the total number of moves required to solve the gathering problem has been derived

    Asynchronous Gathering in a Torus

    Get PDF
    We consider the gathering problem for asynchronous and oblivious robots that cannot communicate explicitly with each other but are endowed with visibility sensors that allow them to see the positions of the other robots. Most investigations on the gathering problem on the discrete universe are done on ring shaped networks due to the number of symmetric configurations. We extend in this paper the study of the gathering problem on torus shaped networks assuming robots endowed with local weak multiplicity detection. That is, robots cannot make the difference between nodes occupied by only one robot from those occupied by more than one robot unless it is their current node. Consequently, solutions based on creating a single multiplicity node as a landmark for the gathering cannot be used. We present in this paper a deterministic algorithm that solves the gathering problem starting from any rigid configuration on an asymmetric unoriented torus shaped network

    Optimal deterministic ring exploration with oblivious asynchronous robots

    Get PDF
    We consider the problem of exploring an anonymous unoriented ring of size nn by kk identical, oblivious, asynchronous mobile robots, that are unable to communicate, yet have the ability to sense their environment and take decisions based on their local view. Previous works in this weak scenario prove that kk must not divide nn for a deterministic solution to exist. Also, it is known that the minimum number of robots (either deterministic or probabilistic) to explore a ring of size nn is 4. An upper bound of 17 robots holds in the deterministic case while 4 probabilistic robots are sufficient. In this paper, we close the complexity gap in the deterministic setting, by proving that no deterministic exploration is feasible with less than five robots whenever the size of the ring is even, and that five robots are sufficient for any nn that is coprime with five. Our protocol completes exploration in O(n) robot moves, which is also optimal

    Optimal Probabilistic Ring Exploration by Asynchronous Oblivious Robots

    Get PDF
    We consider a team of kk identical, oblivious, asynchronous mobile robots that are able to sense (\emph{i.e.}, view) their environment, yet are unable to communicate, and evolve on a constrained path. Previous results in this weak scenario show that initial symmetry yields high lower bounds when problems are to be solved by \emph{deterministic} robots. In this paper, we initiate research on probabilistic bounds and solutions in this context, and focus on the \emph{exploration} problem of anonymous unoriented rings of any size. It is known that Θ(log⁥n)\Theta(\log n) robots are necessary and sufficient to solve the problem with kk deterministic robots, provided that kk and nn are coprime. By contrast, we show that \emph{four} identical probabilistic robots are necessary and sufficient to solve the same problem, also removing the coprime constraint. Our positive results are constructive

    Optimal torus exploration by oblivious robots

    Get PDF
    International audienceWe deal with a team of autonomous robots that are endowed with motion actuators and visibility sensors. Those robots are weak and evolve in a discrete environment. By weak, we mean that they are anonymous, uniform, unable to explicitly communicate, and oblivious. We first show that it is impossible to solve the terminating exploration of a simple torus of arbitrary size with less than 4 or 5 such robots, respectively depending on whether the algorithm is probabilistic or deterministic. Next, we propose in the SSYNC model a probabilistic solution for the terminating exploration of torus-shaped networks of size ℓ×L, where 7≀ℓ≀L, by a team of 4 such weak robots. So, this algorithm is optimal w.r.t. the number of robots

    Optimal Torus Exploration by Oblivious Robots

    Get PDF
    International audienceWe consider autonomous robots that are endowed with motion actuators and visibility sensors. The robots we consider are weak, i.e., they are anonymous, uniform, unable to explicitly communicate, and oblivious (they do not remember any of their past actions). In this paper, we propose an optimal (w.r.t. the number of robots) solution for the terminating exploration of a torus-shaped network by a team of kk such robots. In more details, we first show that it is impossible to explore a simple torus of arbitrary size with (strictly) less than four robots, even if the algorithm is probabilistic. If the algorithm is required to be deterministic, four robots are also insufficient. This negative result implies that the only way to obtain an optimal algorithm (w.r.t. the number of robots participating to the algorithm) is to make use of probabilities. Then, we propose a probabilistic algorithm that uses four robots to explore all simple tori of size ℓ×L\ell \times L, where 7≀ℓ≀L7 \leq \ell \leq L. Hence, in such tori, four robots are necessary and sufficient to solve the (probabilistic) terminating exploration. As a torus can be seen as a 2-dimensional ring, our result shows, perhaps surprisingly, that increasing the number of possible symmetries in the network (due to increasing dimensions) does not come at an extra cost w.r.t. the number of robots that are necessary to solve the problem

    Gathering on a Circle with Limited Visibility by Anonymous Oblivious Robots

    Get PDF
    A swarm of anonymous oblivious mobile robots, operating in deterministic Look-Compute-Move cycles, is confined within a circular track. All robots agree on the clockwise direction (chirality), they are activated by an adversarial semi-synchronous scheduler (SSYNCH), and an active robot always reaches the destination point it computes (rigidity). Robots have limited visibility: each robot can see only the points on the circle that have an angular distance strictly smaller than a constant ϑ from the robot’s current location, where 0 < ϑ ≀ π (angles are expressed in radians). We study the Gathering problem for such a swarm of robots: that is, all robots are initially in distinct locations on the circle, and their task is to reach the same point on the circle in a finite number of turns, regardless of the way they are activated by the scheduler. Note that, due to the anonymity of the robots, this task is impossible if the initial configuration is rotationally symmetric; hence, we have to make the assumption that the initial configuration be rotationally asymmetric. We prove that, if ϑ = π (i.e., each robot can see the entire circle except its antipodal point), there is a distributed algorithm that solves the Gathering problem for swarms of any size. By contrast, we also prove that, if ϑ ≀ π/2, no distributed algorithm solves the Gathering problem, regardless of the size of the swarm, even under the assumption that the initial configuration is rotationally asymmetric and the visibility graph of the robots is connected. The latter impossibility result relies on a probabilistic technique based on random perturbations, which is novel in the context of anonymous mobile robots. Such a technique is of independent interest, and immediately applies to other Pattern-Formation problems

    Asynchronous Gathering of Robots with Finite Memory on a Circle under Limited Visibility

    Full text link
    Consider a set of nn mobile entities, called robots, located and operating on a continuous circle, i.e., all robots are initially in distinct locations on a circle. The \textit{gathering} problem asks to design a distributed algorithm that allows the robots to assemble at a point on the circle. Robots are anonymous, identical, and homogeneous. Robots operate in a deterministic Look-Compute-Move cycle within the circular path. Robots agree on the clockwise direction. The robot's movement is rigid and they have limited visibility π\pi, i.e., each robot can only see the points of the circle which is at an angular distance strictly less than π\pi from the robot. Di Luna \textit{et al}. [DISC'2020] provided a deterministic gathering algorithm of oblivious and silent robots on a circle in semi-synchronous (\textsc{SSync}) scheduler. Buchin \textit{et al}. [IPDPS(W)'2021] showed that, under full visibility, OBLOT\mathcal{OBLOT} robot model with \textsc{SSync} scheduler is incomparable to FSTA\mathcal{FSTA} robot (robots are silent but have finite persistent memory) model with asynchronous (\textsc{ASync}) scheduler. Under limited visibility, this comparison is still unanswered. So, this work extends the work of Di Luna \textit{et al}. [DISC'2020] under \textsc{ASync} scheduler for FSTA\mathcal{FSTA} robot model
    • 

    corecore