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Abstract
A swarm of anonymous oblivious mobile robots, operating in deterministic Look-Compute-Move
cycles, is confined within a circular track. All robots agree on the clockwise direction (chirality),
they are activated by an adversarial semi-synchronous scheduler (SSYNCH), and an active robot
always reaches the destination point it computes (rigidity). Robots have limited visibility: each
robot can see only the points on the circle that have an angular distance strictly smaller than a
constant ϑ from the robot’s current location, where 0 < ϑ ≤ π (angles are expressed in radians).

We study the Gathering problem for such a swarm of robots: that is, all robots are initially in
distinct locations on the circle, and their task is to reach the same point on the circle in a finite
number of turns, regardless of the way they are activated by the scheduler. Note that, due to the
anonymity of the robots, this task is impossible if the initial configuration is rotationally symmetric;
hence, we have to make the assumption that the initial configuration be rotationally asymmetric.

We prove that, if ϑ = π (i.e., each robot can see the entire circle except its antipodal point), there
is a distributed algorithm that solves the Gathering problem for swarms of any size. By contrast,
we also prove that, if ϑ ≤ π/2, no distributed algorithm solves the Gathering problem, regardless
of the size of the swarm, even under the assumption that the initial configuration is rotationally
asymmetric and the visibility graph of the robots is connected.

The latter impossibility result relies on a probabilistic technique based on random perturbations,
which is novel in the context of anonymous mobile robots. Such a technique is of independent
interest, and immediately applies to other Pattern-Formation problems.
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1 Introduction

Background

One of the most popular models for distributed mobile robotics is the Look-Compute-Move
(LCM) one [17, 18]. In this model, a Euclidean space, usually the real plane R2, is inhabited
by a “swarm” of punctiform and autonomous computational entities, the robots. Each robot,
upon activation, takes a snapshot of the space (Look), uses this snapshot to compute its
destination (Compute), and then reaches its destination point (Move).

The activation pattern of the robots is controlled by an external scheduler. At one end
of the synchrony spectrum, there is the fully-synchronous scheduler (FSYNCH): in this
case, time is divided into discrete units (the turns). At each turn, the entire swarm is
activated, and all robots synchronously execute one LCM cycle. At the other end, there is
the asynchronous scheduler (ASYNCH), where robot activations are independent, and LCM
cycles are not synchronized. Somewhere halfway, there is the semi-synchronous scheduler
(SSYNCH), which activates an arbitrary subset of robots at each turn, with the restriction
of activating each robot infinitely often.

A common assumption in the context of mobile robots is the lack of persistent memory: a
robot does not remember anything about past activations (obliviousness). Other assumptions
are anonymity, where robots do not have visible and distinguishable identifying features, and
silence, where robots do not have explicit communication primitives (such as lights [14]).

Obliviousness, anonymity, and silence are practical, useful, and desirable properties: an
algorithm for oblivious robots is inherently resilient to transient memory failures; one for
anonymous robots is ideal in privacy-sensitive contexts; an algorithm for silent robots works
even in scenarios where communication is jammed or unfeasible (e.g., hostile environments
or underwater deployment).

The purpose of such an ensemble of weak robots is to reach a common goal in a coordinated
way. Interestingly, it has been shown that mobile robots can solve an extensive set of
problems [18], ranging from forming patterns [8, 19, 21, 28, 30] to simulating a powerful
Turing-complete movable entity [12].

Among all tasks, a particularly relevant one is Gathering [1, 4, 5, 9, 13, 15, 25, 26]: in
finite time, all robots have to reach the same point and stop there. Initial works assumed
robots to see the entire space (full visibility). However, a more realistic assumption [3, 24] is
that a robot be able to see only a portion of the space (limited visibility).

In this paper, we study the Gathering problem for a swarm of oblivious robots with
limited visibility constrained to move within a circle: each robot can see only the points on
the circle that have an angular distance strictly smaller than a certain visibility range ϑ. We
assume that robots have no agreement on common coordinates apart from sharing the same
notion of clockwise direction on the circle.

From a practical perspective, the restriction of moving along a predetermined path arises
in wide variety of scenarios: railway lines, roads, tunnels, waterways, etc. We argue that,
among all topologically equivalent curves, the circle is the most meaningful to study: a
solution for it readily extends to all other closed curves.

From a theoretical perspective, confining the swarm on a circle (hence, a non-simply
connected space) rules out all the strategies typically used for robots in the plane, such as
moving toward the center of the visible set of robots (an example is in [2]). Moreover, robots
cannot use any asymmetries in the environment to identify a gathering point: this makes
the circle the most challenging setting for Gathering (and in general, for any problem where
symmetry breaking helps).
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Apart from [16], which examined the problem of scattering on a circle (reaching a
final configuration where the robots are uniformly spaced out), no other works studied the
computational power of oblivious robots when confined to curves: this is rather surprising,
considering the copious existing literature on oblivious robots [17, 18]. To the best of our
knowledge, the present paper is the first to investigate the Gathering problem for oblivious,
silent, and anonymous robots on a circle with limited visibility (some works investigated the
Gathering problem in a ring graph, which is a discretization of the circle [6, 7, 11, 22, 23]).

Our contributions

We consider a swarm of n oblivious, anonymous, and silent robots that start at distinct
locations on a circle. Robots do not agree on a common system of coordinates, but they do
share the same handedness (i.e., they have a common notion of clockwise direction). When a
robot decides to move, it reaches its destination point (robots are rigid). Moreover, robots
have no information on the swarm’s size, n. Each robot can see only the points on the circle
that have an angular distance strictly smaller than a certain visibility range ϑ. We must
assume that the initial configuration is rotationally asymmetric, otherwise the scheduler may
activate robots in a such a way as to preserve the rotational symmetry, and Gathering cannot
be achieved.

After giving all the necessary definitions and some preliminary results (Section 2), our
first contribution is to show that there is no distributed algorithm that solves the Gathering
problem in SSYNCH when ϑ ≤ π/2, i.e., each robot is only able to see at most half of the
circle (Section 3). Surprisingly, this holds even if the initial configuration is rotationally
asymmetric, the visibility graph of the swarm (i.e., the graph of intervisibility between robots)
is connected, and all robots know n.

Our proof uses a novel technique based on random perturbations, of which we offer
an intuitive probabilistic argument, as well as a formal and more elementary proof by
derandomization. We show that, for any given distributed algorithm, either there exists an
asymmetric configuration of robots that can evolve into a symmetric one within one time
unit (in SSYNCH), or there is an asymmetric configuration where no robot can move. In
either case, Gathering is impossible.

We stress that our result has a profound meaning, since it shows that, when ϑ ≤ π/2,
any distributed algorithm, including the ones that do not aim to solve Gathering, has an
initial asymmetric configuration that either repeats forever or evolves into a symmetric
configuration in one step. This implies a novel impossibility result for geometric Pattern
Formation on circles: even when robots start from an asymmetric configuration, they cannot
form a target asymmetric pattern. This is in striking contrast with the unlimited-visibility
setting, where, even under the ASYNCH scheduler, from any asymmetric configuration any
pattern is formable [18].

To the best of our knowledge, this the first impossibility proof for oblivious robots that
neither relies on invariants induced by symmetries (e.g., [21, 29]) nor on the disconnection
of the visibility graph (e.g., [12, 31]). Due to the above, we think that our technique is of
independent interest, and its core ideas could be applied to other settings, as well.

On the possibility side, we show that, if ϑ = π (i.e., each robot can see the entire circle
except its antipodal point), there is a distributed algorithm that solves the Gathering problem
in SSYNCH for swarms of any size (Section 4). The algorithm’s strategy is to attempt to
elect a unique leader and form a multiplicity point, where all robots will subsequently gather.
The main challenge is that, since a robot ignores whether its antipodal point is occupied by
another robot or not (robots do not know n), there may be an ambiguity on who is the true
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leader. Several robots may believe to be the leader, but this also comes with the awareness of
the possibility of being wrong: these “undecided” robots will make some adjustment moves,
which eventually result in a configuration where one robot is absolutely certain of being the
true leader. The leader will then form a multiplicity point by moving to another robot, and
finally all other robots will join them.

2 Model definition and preliminaries

Measuring angles

Let C ⊂ R2 be a circle, and let a and b be points of C. The angular distance between a
and b (with respect to C) is the measure of the angle subtended at the center of C by the
shorter arc with endpoints a and b. It follows that the angular distance between two points
is a real number in the interval [0, π], where angles are expressed in radians. Two points of
C are antipodal of each other if their angular distance is π. The α-neighborhood of a point
q ∈ C is the set of points of C whose angular distance from q is strictly smaller than α. The
(π/2)-neighborhood of q is also called the open semicircle centered at q.

Furthermore, if a and b are distinct points of C, we define cw(a, b) as the measure of the
clockwise angle ∠acb, where c is the center of C. Note that the order of the two arguments
matters, and so for instance cw(a, b) + cw(b, a) = 2π. We also define cw(a, a) = 0 for every a.

Rotational symmetry

Let S be a finite multiset of points on a circle C. We say that S is rotationally symmetric
if there is a non-identical rotation around the center of C that leaves S unchanged (also
preserving multiplicities). If S is not rotationally symmetric, it is said to be rotationally
asymmetric.

Angle sequences

Let S be a multiset of n points on a circle C, and let p ∈ S. Let p1, p2, . . . , pn be the
points of S taken in clockwise order starting from p = p1 (coincident elements of S are
ordered arbitrarily). We define the angle sequence of p (with respect to S) as the n-tuple
(cw(p1, p2), cw(p2, p3), . . . , cw(pn, p1)). The case where all the elements of S are coincident
is an exception, and in this case the angle sequence of the ith point of S, with 1 ≤ i ≤ n, is
defined as the n-tuple (0, 0, . . . , 0, 0, 2π, 0, 0, . . . , 0, 0), where the term 2π appears in the ith
position. Note that, with this convention, the sum of the elements of any angle sequence is
always 2π.

The following is an easy observation.

I Proposition 2.1. A non-empty multiset of points on a circle is rotationally asymmetric if
and only if all its points have distinct angle sequences. J

Mobile robots

Our model of mobile robots is among the standard ones defined in [17, 18]. A swarm of n > 1
robots is located on a circle C ⊂ R2, where each robot is a computational unit that occupies a
point of C (which may change over time) and operates in deterministic Look-Compute-Move
cycles.

Time is discretized and subdivided into units, and at each time unit an adversarial
(semi-synchronous) scheduler decides which robots are active and which are inactive. An
inactive robot remains idle for that time unit, whereas an active robot takes a snapshot of
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its surroundings, consisting of an arc B ⊆ C and a list of points of B that are currently
occupied by robots, it computes a destination point in B as a function of the snapshot, and
it instantly moves to the destination point. The only restriction to the scheduler is that no
robot should remain inactive for infinitely many consecutive time units.

Robots may have full visibility, in which case the arc B defining a snapshot coincides
with the entire circle C, or they may have limited visibility, in which case the arc B consists
of the ϑ-neighborhood of the current position of the robot taking the snapshot, where ϑ is a
positive constant called the visibility range of the robots.

Furthermore, each robot has its own local coordinate system, meaning that each snapshot
it takes of an arc B ⊆ C is actually a roto-translated copy of B and the positions of the
robots within B. Such a copy of B has its midpoint at the origin of the coordinate system
(this corresponds to the location of the robot taking the snapshot) and its endpoints have
non-negative x coordinate and the same y coordinate.

Robots are also capable of weak multiplicity detection, meaning that the snapshots they
take contain some information on how many robots occupy each location. Specifically, a
robot can tell if a point in a snapshot contains no robots, exactly one robot, or more than
one robot: no information on the precise number of robots is given if this number is greater
than one. A point occupied by more than one robot is also called a multiplicity point.

In order to simplify our notation, when no confusion arises, we will often identify a robot
with its position on the circle. So, we may improperly refer to a robot as a point p ∈ C or to
a swarm of robots as a set S ⊂ C.

Gathering

A distributed algorithm is a function that maps a snapshot to a point within the snapshot
itself. A robot executes a distributed algorithm A if, whenever it is activated and takes a
snapshot Q, it moves to the destination point corresponding to A(Q). In other words, at
each time unit, an active robot chooses its destination point deterministically within its
visibility range, based solely on the snapshot it currently has.

We stress that, as a consequence of the previous definitions, the robots in this model are
oblivious (i.e., they have no memory of past observations), anonymous (i.e., a robot only
identifies other robots by their positions in its local coordinate system, and not for instance
by their IDs), silent (i.e., they cannot send messages to one another), deterministic (i.e.,
they cannot flip coins), rigid (i.e., they always reach the destination points they compute),
they have chirality (i.e., they all agree on the clockwise direction on the circle), and they
have no knowledge of n (i.e., a robot can only see other robots within its visibility range,
and it does not know whether there are further robots outside of it).

We say that a distributed algorithm A solves the Gathering problem under condition P if,
whenever all the n > 1 robots of a swarm located on a circle execute A, they eventually reach
a configuration where all robots are in the same point of the circle and no robot ever moves
again, provided that their initial configuration satisfies condition P , and regardless of the
activation choices of the adversarial scheduler. Equivalently, we say that A is a Gathering
algorithm under condition P .

We remark that all the robots in the swarm must execute the same algorithm A (i.e.,
robots are uniform), and the algorithm has to work for swarms of any size n > 1, where n is
not a parameter of A. Also note that the robots’ positions should not simply converge to
the same limit, but they must actually become coincident in a finite number of time units
for Gathering to be achieved (albeit there is no bound on the number of time units this
process may take). Such a distinction will be important for the design of a correct Gathering
algorithm in Section 4, while our impossibility proof of Section 3 shows that robots cannot
even converge to a point, and much less gather.
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Initial conditions

There are several meaningful options concerning our choice of the initial condition P for
the Gathering problem. A typical assumption is that the n robots be initially located in n
distinct points of the circle: while not strictly necessary, this is a common requirement for
the Gathering problem (e.g., [4, 15, 28]).

Another assumption that we may make is that the visibility graph of the robots be initially
connected. By “visibility graph” we mean the graph whose nodes are the n robots, where
there is an edge between two robots if and only if they are mutually visible, i.e., if their angular
distance is less than ϑ. This assumption is another common one (e.g., [2, 3, 10, 20, 27])
and, although not strictly necessary, it is justified by the intuition that different connected
components of the visibility graph may never become aware of each other, and therefore may
fail to gather. We will make this assumption in Section 3 to strengthen our impossibility
result, and we will not need to explicitly make it in Section 4, because it will come as a
consequence of other assumptions.

An important mandatory condition is that the multiset of the robots’ positions on the
circle should be rotationally asymmetric, due to the following.

I Proposition 2.2. Let S be any rotationally symmetric multiset of n > 1 points on a
circle. There is no Gathering algorithm under the initial condition that the multiset of robots’
positions is S. J

Since the robots are oblivious, this condition should hold true not only at the beginning,
but at all times during the execution of a Gathering algorithm: the robots should never
“accidentally” form a rotationally symmetric multiset, or they will be unable to gather.

I Corollary 2.3. Throughout the execution of any Gathering algorithm, the robots’ positions
must always form a rotationally asymmetric multiset. J

3 Impossibility of Gathering for ϑ ≤ π/2

Outline

In this section we prove that, if each robot can see at most an open semicircle (i.e., ϑ ≤
π/2), then no distributed algorithm solves the Gathering problem, even under some strong
assumptions on the initial configuration, and even if the robots know the size of the swarm.

Our technique is essentially probabilistic, and it starts by defining a set of perturbations
of a regular configuration. Then, by analyzing the behavior of a generic distributed algorithm
on all perturbations of a swarm that satisfy some initial conditions, we will show that
the algorithm either (i) allows the construction of a rotationally asymmetric configuration
that can evolve into a rotationally symmetric one (under a semi-synchronous scheduler) or
(ii) leaves the configuration unchanged forever. In both cases, the algorithm does not solve
the Gathering problem on some configurations.

Perturbations

For the rest of this section, we will denote by C the unit circle centered at the origin. A
finite set S ⊂ C is regular if (1, 0) ∈ S and all points of S have the same angle sequence.
Hence, for every positive integer n, there is a unique regular set of size n: for n ≥ 3, this is
the set of vertices of the regular n-gon centered at the origin and having a vertex in (1, 0).

Let S be the regular set of size n, and let p1, p2, . . . , pn be the points of S taken
in clockwise order, starting from p1 = (1, 0). Let ε ∈ R with 0 < ε < 2π/n, and let
γ = (γ1, γ2, . . . , γn) ∈ [0, 1]n ⊂ Rn. The ε-perturbation of S with coefficients γ is the set
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S′ ⊂ C of size n such that, for all 1 ≤ i ≤ n, there is a (unique) point p′
i ∈ S′ with

cw(pi, p
′
i) = γi · ε, called the perturbed copy of pi. So, any ε-perturbation of S is obtained by

rotating each point of S clockwise around the origin by an angle in [0, ε].
Furthermore, for 1 ≤ i ≤ n, we say that two coefficient n-tuples γ = (γ1, γ2, . . . , γn) and

γ′ = (γ′
1, γ

′
2, . . . , γ

′
n) are i-related if and only if they differ at most by their ith terms, i.e.,

for all j 6= i, we have γj = γ′
j . Note that the i-relation is an equivalence relation on [0, 1]n.

With the previous paragraph’s notation, we say that the set of all ε-perturbations of S whose
coefficients are in a same equivalence class of the i-relation is a bundle of ε-perturbations of
pi. Intuitively, a bundle of ε-perturbations of pi is obtained by first fixing a perturbation of
all points of S except pi, and then perturbing pi in all possible ways.

Size of the swarm

We will prove that Gathering is impossible for any given visibility range ϑ ≤ π/2, provided
that the size of the swarm n is appropriate. Specifically, we say that a positive integer n is
compatible with ϑ if three conditions hold on the regular set S of size n:
1. For every p ∈ S, the open semicircle centered at p contains exactly half of the points of S.
2. No two points of S have an angular distance of exactly ϑ.
3. There are two distinct points of S whose angular distance is smaller than ϑ.

We can show that there are arbitrarily large such integers:

I Proposition 3.1. For any ϑ ≤ π/2, there are arbitrarily large integers compatible with ϑ.
J

Choice of ε

For every integer n compatible with ϑ, we define a positive number εϑ,n, which will be
used to construct perturbations of the regular set S of size n. We set εϑ,n = δ/2, where
δ = min{|ϑ− 2πa/n| | a ∈ N, 0 ≤ a ≤ n}.

Since n is compatible with ϑ, it easily follows that εϑ,n > 0. Also, δ is at most half the
angular distance between two consecutive points of S, and therefore εϑ,n ≤ π/2n. Moreover,
our choice of εϑ,n has some other desirable properties:

I Proposition 3.2. Let n be an integer compatible with ϑ ≤ π/2, let S be the regular set of
size n, and let S′ be an εϑ,n-perturbation of S. If p ∈ S, and p′ ∈ S′ is the perturbed copy of
p, the following hold:
1. The ϑ-neighborhood of p contains a point q ∈ S if and only if the ϑ-neighborhood of p′

contains the perturbed copy of q in S′.
2. The open semicircle D centered at p contains exactly half of the points of S′, which are

the perturbed copies of the points of S contained in D.
3. If D′ is the open semicircle centered at p′, then S′ ∩D = S′ ∩D′, and hence D′ contains

exactly half of the points of S′. J

I Corollary 3.3. Let n be an integer compatible with ϑ ≤ π/2, and let S′ be an εϑ,n-
perturbation of the regular set S of size n. If two swarms of robots form S and S′ respectively,
their visibility graphs are isomorphic. J
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Combining configurations

Next we will describe a way of combining two configurations of robots into a new one that
takes an open semicircle from each. This operation will be used to construct configurations
of robots where a given distributed algorithm fails to make the robots gather.

Let S1 and S2 be two subsets of C, and let D be an open semicircle. The D-combination
of S1 and S2 is defined as the set (S1 ∩D) ∪ ρ(S2 ∩D), where ρ is the rotation by π around
the origin. In other words, this operation takes S1, discards the points that do not lie in D,
and replaces them with the points of S2 that lie in D, by mapping them to their antipodal
points.

Preliminary lemmas

We are now ready to give our first two lemmas, which deal with swarms forming perturbations
of a regular configuration, and analyze the distributed algorithms that make robots move in
some ways. The first lemma states that, if an algorithm makes a robot move to a point not
currently occupied by another robot, then the algorithm cannot solve the Gathering problem.

I Lemma 3.4. Let A be a distributed algorithm, let n be compatible with ϑ ≤ π/2, and
consider a swarm of robots that forms an εϑ,n-perturbation S′ of the regular set of size n.
If there is a robot that, executing A, moves to a point not in S′, then A does not solve the
Gathering problem, even under the condition that the swarm initially forms a rotationally
asymmetric set of n distinct points with a connected visibility graph.

Proof (sketch). Assume that, if a robot located in p′ ∈ S′ executes A, it moves to a point
q /∈ S′. Let S′′ = (S′ \ {p′}) ∪ {q}, and let Q be the D-combination of S′ and S′′, where
D is the open semicircle centered at p′. Consider a swarm initially forming Q, which is a
rotationally asymmetric set of n distinct points with a connected visibility graph. If the
scheduler activates only the robot in p′, the configuration becomes rotationally symmetric.
So, by Corollary 2.3, A is not a Gathering algorithm. J

The second lemma states that, if a distributed algorithm makes a robot r move on top
of another robot r′, and there is a perturbation of r such that the same algorithm makes r
move on top of the same robot r′, then the algorithm does not solve the Gathering problem.

I Lemma 3.5. Let A be a distributed algorithm, let n be compatible with ϑ ≤ π/2, let S
be the regular set of size n, and let S′ and S′′ be two distinct sets in the same bundle of
εϑ,n-perturbations of p ∈ S, where p′ ∈ S′ and p′′ ∈ S′′ are the perturbed copies of p. Assume
that, if a swarm of robots forms S′ and the robot in p′ executes A, it moves to another robot,
located in q ∈ S′. Also assume that, if a swarm of robots forms S′′ and the robot in p′′

executes A, it moves to the same point q. Then, A does not solve the Gathering problem,
even under the condition that the swarm initially forms a rotationally asymmetric set of n
distinct points with a connected visibility graph.

Proof (sketch). Let D be the open semicircle centered at p, and let Q be the D-combination
of S′ and S′′. Consider a swarm initially forming Q, which is a rotationally asymmetric set
of n distinct points with a connected visibility graph. Suppose the scheduler activates only
two robots: the one in p′ and the one in the point antipodal to p′′. After these two robots
have executed A, the swarm’s configuration becomes rotationally symmetric. J
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Probabilistic argument

Our concluding argument goes as follows. Suppose for a contradiction that there is a
Gathering algorithm A for some ϑ ≤ π/2. Let n be an arbitrarily large integer compatible
with ϑ, and let S be the regular set of size n. We will derive a contradiction by studying
the behavior of A on the swarms forming the εϑ,n-perturbations of S. Specifically, let p1,
p2, . . . , pn be the points of S taken in clockwise order, starting from p1 = (1, 0). Suppose
that a swarm of n robots forms some εϑ,n-perturbation of S, with robot ri occupying the
perturbed copy of pi, and let all robots execute algorithm A.

Let us first restrict ourselves to a bundle P of εϑ,n-perturbations of some pi ∈ S, and let
us analyze the possible behaviors of the robot ri. Recall that, by definition of bundle, the
perturbations in P have fixed coefficients for all the points of S except pi, and perturb pi

in every possible way, by varying the coefficient γi ∈ [0, 1]. Observe that, by Lemma 3.4, A
should never make ri move to some unoccupied location, or A would not be a Gathering
algorithm. Also, if two or more perturbations in the bundle P made ri move to the same
robot, then A would not be a Gathering algorithm, due to Lemma 3.5. However, by the
pigeonhole principle, if n perturbations in P made ri move to some other robot, then at
least two of them would make it move to the same robot. It follows that at most n − 1
perturbations in P can make ri move at all. So, all perturbations in P except a finite number
of them must make ri stay still.

Now, let us pick an εϑ,n-perturbation of S by choosing its coefficients γ ∈ [0, 1]n uniformly
at random. Let us also define n random variables Xi : [0, 1]n → {0, 1}, with 1 ≤ i ≤ n, such
that Xi(γ) = 0 if and only if algorithm A makes the robot ri stay still when the swarm’s
configuration is the εϑ,n-perturbation of S defined by the coefficients γ. By the above
argument, for every bundle P of εϑ,n-perturbations of pi, we have Pr[Xi(γ) = 1 | γ ∈ P ] = 0.
Then, integrating Xi(γ) over [0, 1]n, we obtain Pr[Xi = 1] = 0.

Hence, the probability that A will make the robot ri stay still when the swarm’s configu-
ration is picked at random among all εϑ,n-perturbations of S is 1. Since this is true of all
robots separately, it is also true of all robots collectively, by the inclusion-exclusion principle.
In other words, with probability 1, on a random εϑ,n-perturbation of S, no robot will be
able to move, and therefore the robots will be unable to gather. Moreover, with probability
1, a random εϑ,n-perturbation of S is rotationally asymmetric. As a consequence, there is
at least one initial configuration (actually, a great deal of configurations) where the swarm
forms a rotationally asymmetric set of n distinct points with a connected visibility graph,
and where no robot is able to move. We conclude that A cannot be a Gathering algorithm,
even under such strong conditions.

Technical hindrances

The probabilistic proof we outlined above is sound for the most part, but unfortunately
making it rigorous is a delicate matter. The problem is that, in order for Xi to be a random
variable, it has to be a measurable function. For this to be true, the set of coefficients
corresponding to perturbations where algorithm A makes the robot ri stay still should be
a measurable subset of [0, 1]n. In turn, this requires some assumptions on the nature of A,
whereas we only defined A as a generic function mapping a snapshot to a point.

However, since the function A actually implements an algorithm, which typically is a
finite sequence of operations that are well-behaved in an analytic sense, most reasonable
assumptions on A would rule out the pathological non-measurable cases, and would therefore
make Xi a properly defined random variable, allowing the rest of the proof to go through.
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Nonetheless, we choose to adopt a different approach, which is both less technical and
more general in scope. Indeed, we will give a “derandomized” version of the above proof,
which will not deal with probability spaces and random variables, and will not require a
more restrictive re-definition of which functions are computable by mobile robots.

Derandomization

Next we will show how to complete the previous argument without the use of probability.
Note that we do not need to prove that a random perturbation causes all robots to stay
still with probability 1: we merely have to show that there is at least one perturbation with
such a property. This is significantly easier, and is achieved by the next lemma, where Xi no
longer denotes a random variable but simply a set of coefficients.

I Lemma 3.6. Let m,n ∈ N+, and let X1, X2, . . . , Xn be subsets of the unit hypercube
[0, 1]n ⊂ Rn such that every line parallel to the ith coordinate axis intersects Xi in less than
m points, for all 1 ≤ i ≤ n. Then, there is a point in [0, 1]n whose n coordinates are all
distinct that does not lie in any of the sets X1, X2, . . . , Xn. J

We can now prove the main result of this section.

I Theorem 3.7. If ϑ ≤ π/2, and for arbitrarily large n, there is no Gathering algorithm
under the condition that the swarm initially forms a rotationally asymmetric set of n distinct
points with a connected visibility graph.

Proof. Let n be an arbitrarily large integer compatible with ϑ, which exists due to Propo-
sition 3.1. Note that all εϑ,n-perturbations of the regular set of size S have a connected
visibility graph, by Corollary 3.3. As before, we assume for a contradiction that A is a
Gathering algorithm, and we consider a swarm of size n where all robots execute A, and each
robot ri is initially located in the perturbed copy of point pi ∈ S, for some εϑ,n-perturbation
of S.

For 1 ≤ i ≤ n, let Xi ⊆ [0, 1]n be the set of coefficients corresponding to perturbations
where algorithm A causes ri to make a non-null movement. As we already proved, due to
Lemmas 3.4 and 3.5, in each bundle of εϑ,n-perturbations of pi, at most n− 1 perturbations
cause ri to move. Rephrased in geometric terms, every line in Rn parallel to the ith coordinate
axis intersects Xi in less than n points.

So, the sets X1, X2, . . . , Xn satisfy the hypotheses of Lemma 3.6 with m = n. As
a consequence, there exists γ = (γ1, γ2, . . . , γn) ∈ [0, 1]n, where the coefficients γi are all
distinct, such that, in the perturbation corresponding to γ, algorithm A causes all robots to
stay still, and therefore does not allow them to gather.

It remains to check that the perturbation S′ corresponding to γ is rotationally asymmetric.
Let p1, p2, . . . , pn be the points of S in clockwise order, and let p′

i ∈ S′ be the perturbed copy
of pi, for 1 ≤ i ≤ n. Suppose for a contradiction that S′ has a k-fold rotational symmetry
with k > 1, implying that the angular distance between p′

1 and p′
n/k+1 is α = 2π/k. Note that

α is also the angular distance between p1 and pn/k+1. Moreover, by definition of perturbation,
α = cw(p1, pn/k+1) − cw(p1, p

′
1) + cw(pn/k+1, p

′
n/k+1) = 2π/k − γ1 · εϑ,n + γn/k+1 · εϑ,n. It

follows that γ1 = γn/k+1, which contradicts the fact that the coefficients γi are all distinct
(indeed, k ≥ 2 implies that 1 < n/k + 1 ≤ n). J

We remark that, throughout the proofs of Lemmas 3.4 and 3.5 and Theorem 3.7, only
swarms of the same size n appear, and so our impossibility result holds even when n is fixed.
It follows that Gathering is impossible even if all robots know the size of the swarm.
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4 Gathering algorithm for ϑ = π

Overview

In this section we give a Gathering algorithm for robots that can see the entire circle except
their antipodal point (i.e., ϑ = π), under the condition that the initial configuration is a
rotationally asymmetric set with no multiplicity points.

First we will describe a simple Gathering algorithm for robots with full visibility, which
already provides some useful ideas: elect a leader, form a unique multiplicity point, and
gather there. We will then extend the same ideas to the limited-visibility case with ϑ = π.
There are some difficulties arising from the fact that not all robots will necessarily agree
on the same leader, because they may have different views of the rest of the swarm. For
instance, two antipodal robots will not see each other, and, if the configuration is rotationally
asymmetric, they will get two non-isometric snapshots, which perhaps will cause them to
elect two different leaders.

We will show how to cope with these difficulties. Essentially, based on what a robot r
knows, there are only two possibilities on who the “true” leader may be, depending on whether
there is a robot antipodal to r or not. If r happens to be elected leader in both scenarios, then
r has no doubt of being the leader, and therefore behaves as in the full-visibility algorithm,
creating a multiplicity point. In most cases, however, no robot will be so fortunate, but
the swarm will still have to make some sort of progress toward gathering. So, the robots
that see themselves as possible leaders (but could be wrong) make some preparatory moves
that will ideally “strengthen their leadership” in the next turns. We will argue that, after a
finite number of turns, one robot will become aware of being the leader and will create a
multiplicity point, even under a semi-synchronous scheduler.

The design and analysis of our Gathering algorithm are further complicated by some
undesirable special cases, where two distinct multiplicity points end up being created, or the
multiplicity point is antipodal to some robot, and therefore invisible to it.

Full visibility and leader election

We will describe a simple Gathering algorithm for the scenario where robots have full visibility.
Let S be a rotationally asymmetric finite set of points on a circle. Recall from Proposi-

tion 2.1 that all points of S have distinct angle sequences, and therefore there is a unique
point p ∈ S with the lexicographically smallest angle sequence: p is called the head of S.

The Gathering algorithm uses the fact that all robots agree on where the head of the
swarm is, and the robot located at the head is elected the leader. The algorithm makes the
leader move clockwise to the next robot, while all other robots wait. As soon as there is a
multiplicity point, the closest robot in the clockwise direction moves counterclockwise to the
multiplicity point. The process continues until all robots have gathered.

Note that this algorithm also works in ASYNCH and with non-rigid robots (i.e., robots
that can be stopped by an adversary before reaching their destination). Indeed, as the leader
moves toward the next robot, its angle sequence remains the lexicographically smallest, and
so it remains the leader. After a multiplicity point has been created, only one robot is allowed
to move at any time, and therefore no other multiplicity points are accidentally formed.

Undecided leaders and cognizant leader

Let us now consider a swarm of robots with visibility range ϑ = π forming a rotationally
asymmetric set S of n distinct points. We say that the true leader of the swarm is the robot
located at the head of S.
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For each robot r, we define the visible configuration V (r) as the set of robots that are
visible to r, and the ghost configuration as G(r) = V (r) ∪ {r′}, with r′ antipodal to r. Note
that exactly one between V (r) and G(r) is isometric to the “real” configuration S, and
therefore at least one between V (r) and G(r) is rotationally asymmetric.

The visible head v(r) is defined as follows: if V (r) is rotationally asymmetric, v(r) is the
head of V (r); otherwise, v(r) is the head of G(r). The ghost head g(r) is defined similarly: if
G(r) is rotationally asymmetric, g(r) is the head of G(r); otherwise, g(r) is the head of V (r).
Note that the true leader of the swarm must be v(r) or g(r).

If v(r) 6= g(r), and either r = v(r) or r = g(r), then r is said to be an undecided leader :
a robot that is possibly the true leader, but does not know for sure. If r = v(r) = g(r), then
r is a cognizant leader : a robot that is aware of being the true leader of the swarm.

I Proposition 4.1. In a rotationally asymmetric swarm with no multiplicity points, the true
leader is either an undecided or a cognizant leader, and no robot other than the true leader
can be a cognizant leader. J

Point-addition lemma

The following lemma has important implications for the design of our algorithm.

I Lemma 4.2. Let S be a finite non-empty set of points on a circle C, and let S′ = S ∪ {p},
where p ∈ C \ S. Assume that S and S′ are rotationally asymmetric, and let h ∈ S be the
head of S and h′ ∈ S′ be the head of S′. Then, either h = h′ or cw(h, p) > 2 · cw(h′, p). J

I Corollary 4.3. In a rotationally asymmetric swarm with no multiplicity points, a robot r
is a cognizant leader if and only if r = g(r). J

Gathering algorithm

Our Gathering algorithm for ϑ = π is illustrated in Listing 1. A robot r executing the
algorithm first checks if the current configuration falls under some special cases (which will
be discussed later), and then it attempts to determine the true leader of the swarm. By
Corollary 4.3, checking if r = g(r) is equivalent to checking if r is a cognizant leader. In this
case, by Proposition 4.1, r is the true leader, and hence it behaves like in the full-visibility
algorithm: it moves clockwise to the next robot, s (rule 3: see Figure 1a).

If r is not a cognizant leader, it checks if it is at least an undecided leader: r = v(r). In
this case, r cannot commit itself to moving to s, because several robots may be undecided
leaders, and this would create more than one multiplicity point. Instead, r attempts to
“strengthen its leadership” by moving halfway toward s (rule 4.c: see Figure 1d): this ensures
that, in the next turn, r will have a lexicographically smaller angle sequence than it currently
has (unless, of course, s moves as well).

Another goal of r is to be able to see the entire swarm in the next turns. Therefore, if
the midpoint of r and s happens to be antipodal to some robot q, then r moves a bit further
past the midpoint (rule 4.b: see Figure 1c). This way, r will be sure to see q in the next turn
(unless, of course, q moves as well).

An exception to the above is when g(r) is antipodal to r, and s has an antipodal robot
s′. In this situation, if r had an antipodal robot r′, then r′ would be the true leader, which
would then either form a multiplicity point with s′ (if r′ is activated) or would become visible
to r (if r is activated but not r′). However, if r′ does not exist, then r is the true leader,
but r may never find out: it may keep approaching s without ever reaching it, and there
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Listing 1 Gathering algorithm for ϑ = π.
The algor i thm i s executed by a g ene r i c robot r .
Input : V (r) , the s e t o f po in t s occupied by robots v i s i b l e to r

( expres sed in r ’ s coo rd ina te system ) , with weak mu l t i p l i c i t y .
Output : a d e s t i n a t i on po int f o r r .

Let s ∈ V (r) be such that cw(r, s) > 0 i s minimum , i f i t e x i s t s
(s i s the v i s i b l e robot c l o s e s t to r in the c l o ckw i s e d i r e c t i o n ) .

Let V ′(r) be the s e t o f a l l the po in t s in V (r) ( without mu l t i p l i c i t y )
p lus t h e i r ant ipoda l po in t s .

Let δ be the sma l l e s t cw(a, b) > 0 with a, b ∈ V ′(r) .

1. I f r s e e s some mu l t i p l i c i t y points , then :
1.a. I f r s e e s a unique mu l t i p l i c i t y point , then r moves to i t .
1.b. I f r s e e s two mu l t i p l i c i t y po in t s a and b with cw(a, b) > cw(b, a) ,

then r moves to a .
2. Else , i f r s e e s no other robots , then r moves c l o ckw i s e by π/2 .
3. Else , i f r = g(r) , then r moves to s .
4. Else , i f r = v(r) , then :

4.a. I f g(r) i s ant ipoda l to r , and s has an ant ipoda l robot ,
then r moves c l o ckw i s e by cw(r, s) + δ/3 .

4.b. Else , i f the re i s a po int m ∈ V ′(r) such that cw(r,m) = cw(r, s)/2 ,
then r moves c l o ckw i s e by cw(r, s)/2 + δ/7 .

4.c. Else , r moves c l o ckw i s e by cw(r, s)/2 .
5. Else , r does not move .

may always be a ghost head antipodal to r. For this reason, if r detects this configuration, it
moves slightly past s (rule 4.a: see Figure 1b): this way, s will be the new leader, and it will
not be in the same undesirable configuration, because r will not have an antipodal robot.

Note that, when describing rule 4.a and rule 4.b, we mentioned some undefined “small”
distances. According to Listing 1, these are respectively δ/3 and δ/7. In turn, δ is defined as
the smallest angular distance between two points in V ′(r), where V ′(r) is the set of all the
points in V (r) plus their antipodal points. It is easy to see that all robots that are activated
at the same time compute isometric sets V ′, and therefore they implicitly agree on the value
of δ. The reason why the specific values δ/3 and δ/7 have been chosen will become apparent
in the proof of correctness of the algorithm (refer to the full version for details).

Finally, let us discuss the special cases, all of which arise when some multiplicity points
have been created (due to a cognizant leader moving to some other robot). If only one
multiplicity point is visible to r, then r simply moves to it, as in the full-visibility algorithm
(rule 1.a). In some exceptional circumstances, two multiplicity points a and b may be created,
but we will prove that a and b will not be antipodal to each other, and there will never be a
third multiplicity point. In this case, there is an implicit order between a and b on which
all robots agree, and so they will all move to the same multiplicity point, say a (rule 1.b).
The last special case is when all robots have gathered in a point, except a single robot r
located in the antipodal point. r detects this situation because it sees no robots other than
itself (and its current location is not a multiplicity point). So, r just moves to another visible
point, say, the one forming a clockwise angle of π/2 with r (rule 2). This ensures that r will
see the multiplicity point on its next turn.
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Figure 1 Examples of some of the rules of the Gathering algorithm in Listing 1. Black dots
indicate robots that are visible to r. A white dot indicates the point antipodal to r, which may or
may not be occupied by a robot.

Correctness

In the following, we will assume that all robots in a swarm of size n > 1 execute the algorithm
in Listing 1 starting from a rotationally asymmetric initial configuration with no multiplicity
points. We will prove that, no matter how the adversarial semi-synchronous scheduler
activates them, all robots will eventually gather in a point and no longer move.

We say that, in a given configuration S, a robot r is able to apply rule j if, assuming that
r is activated when the swarm forms S, r executes rule j (and no other rule).

I Lemma 4.4. Assume that the swarm forms a rotationally asymmetric configuration with
no multiplicity points, and let ` be the true leader. Then:
1. No robot is able to apply rule 1 or rule 2.
2. At most one robot is able to apply rule 3: the true leader `.
3. At most one robot is able to apply rule 4.a: the true leader ` (if there is no robot antipodal

to `) or the robot antipodal to `.
4. A robot r 6= ` is able to apply rule 4 only if π/2 < cw(r, `) ≤ π, and only if there is a

robot antipodal to r. J

Due to Lemma 4.4, if the swarm forms a rotationally asymmetric configuration with no
multiplicity points, we say that a robot is able to move if it is able to apply rule 3 or rule 4:
indeed, these are the only rules that result in a non-null movement.
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I Lemma 4.5. In any rotationally asymmetric configuration with no multiplicity points, at
most two robots are able to move, and the true leader is always able to move. J

I Lemma 4.6. If the swarm has a unique multiplicity point, then all robots eventually gather
and no longer move. J

I Lemma 4.7. Assume that the swarm forms a rotationally asymmetric configuration with
no multiplicity points, and let r and r′ be two robots that are able to move. Then:
1. If r is activated and executes rule 3, and r′ is not activated, then r does not move to r′.
2. If r is activated and executes rule 4, then it moves by an angular distance strictly smaller

than π, and its destination point is not in V ′(r), as defined in Listing 1.
3. If both r and r′ are activated and execute rule 4.b or rule 4.c, then r and r′ are not

antipodal of each other, and their destination points are not antipodal of each other. J

I Lemma 4.8. If the swarm forms a rotationally asymmetric configuration with no multi-
plicity points and an active robot executes rule 3 or rule 4.a, then all robots eventually gather
in a point and no longer move. J

I Lemma 4.9. Assume that, at time t, the swarm forms a rotationally asymmetric configu-
ration with no multiplicity points, and all the robots that move at time t execute rule 4.b or
rule 4.c. Then, at time t+ 1, the swarm still forms a rotationally asymmetric configuration
with no multiplicity points. J

I Lemma 4.10. Assume that, at time t, the swarm forms a rotationally asymmetric config-
uration with no multiplicity points. If, at all times t′ ≥ t, no robot other than the true leader
moves, then all robots eventually gather in a point and no longer move. J

We are now ready to prove the main result of this section.

I Theorem 4.11. If ϑ = π, there is a Gathering algorithm under the condition that the
swarm initially forms a rotationally asymmetric configuration with no multiplicity points.

Proof. We will prove that the distributed algorithm in Listing 1 solves the Gathering problem
under the condition that the swarm initially forms a rotationally asymmetric configuration
with no multiplicity points. By the first statement of Lemma 4.4, whenever the swarm
forms a rotationally asymmetric configuration with no multiplicity points, any robot that is
activated and moves executes either rule 3, or rule 4.a, or rule 4.b, or rule 4.c. In the first
two cases, we conclude by Lemma 4.8. In the latter two cases, by Lemma 4.9, the resulting
configuration is still rotationally asymmetric and with no multiplicity points. By inductively
repeating this argument, we may assume, without loss of generality, that the swarm forms a
rotationally asymmetric configuration with no multiplicity points at all times, and all robots
that are activated and move execute rule 4.b or rule 4.c.

By Lemma 4.5, at a generic time t, at least one robot r and at most one robot r′ 6= r are
allowed to move. The semi-synchronous scheduler will activate each of them infinitely often,
so let t′ ≥ t be the first time this happens. Assume that one robot, say r′, is not activated
at time t′, and therefore r is. Then, r does not have an antipodal robot at time t′ + 1, due
to the second statement of Lemma 4.7. Similarly, if both r and r′ are activated at time t′,
none of them has an antipodal robot at time t′ + 1, by the second and third statements of
Lemma 4.7.

In summary, if a robot is activated and moves at a generic time t, it no longer has
antipodal robots at any time after t. Since the robots are finitely many, eventually, say after
time t′′, only robots without an antipodal robot will move. However, by the fourth statement
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of Lemma 4.4, a robot that moves must have an antipodal robot, unless it is the current
true leader. So, at all times after t′′, no robot other than the current true leader will move.
Therefore, Lemma 4.10 allows us to conclude. J
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