12,307 research outputs found

    Queueing models for token and slotted ring networks

    Get PDF
    Currently the end-to-end delay characteristics of very high speed local area networks are not well understood. The transmission speed of computer networks is increasing, and local area networks especially are finding increasing use in real time systems. Ring networks operation is generally well understood for both token rings and slotted rings. There is, however, a severe lack of queueing models for high layer operation. There are several factors which contribute to the processing delay of a packet, as opposed to the transmission delay, e.g., packet priority, its length, the user load, the processor load, the use of priority preemption, the use of preemption at packet reception, the number of processors, the number of protocol processing layers, the speed of each processor, and queue length limitations. Currently existing medium access queueing models are extended by adding modeling techniques which will handle exhaustive limited service both with and without priority traffic, and modeling capabilities are extended into the upper layers of the OSI model. Some of the model are parameterized solution methods, since it is shown that certain models do not exist as parameterized solutions, but rather as solution methods

    Analysis of exhaustive limited service for token ring networks

    Get PDF
    Token ring operation is well-understood in the cases of exhaustive, gated, gated limited, and ordinary cyclic service. There is no current data, however, on queueing models for the exhaustive limited service type. This service type differs from the others in that there is a preset maximum (omega) on the number of packets which may be transmitted per token reception, and packets which arrive after token reception may still be transmitted if the preset packet limit has not been reached. Exhaustive limited service is important since it closely approximates a timed token service discipline (the approximation becomes exact if packet lengths are constant). A method for deriving the z-transforms of the distributions of the number of packets present at both token departure and token arrival for a system using exhaustive limited service is presented. This allows for the derivation of a formula for mean queueing delay and queue lengths. The method is theoretically applicable to any omega. Fortunately, as the value of omega becomes large (typically values on the order of omega = 8 are considered large), the exhaustive limited service discipline closely approximates an exhaustive service discipline

    Queueing models for appointment-driven systems.

    Get PDF
    Many service systems are appointment-driven. In such systems, customers make an appointment and join an external queue(also referred to as the “waiting list”). At the appointed date, the customer arrives at the service facility, joins an internal queue and receives service during a service session. After service, the customer leaves the system. Important measures of interest include the size of the waiting list, the waiting time at the service facility and server overtime. These performance measures may support strategic decisionmaking concerning server capacity (e.g. how often, when and for how long should a server be online). We develop an ew model to assess these performance measures. The model is a combination of a vacation queueing system and an appointment system.Queueing system; Appointment system; Vacation model; Overtime; Waiting list;

    Heavy-traffic analysis of k-limited polling systems

    Get PDF
    In this paper we study a two-queue polling model with zero switch-over times and kk-limited service (serve at most kik_i customers during one visit period to queue ii, i=1,2i=1,2) in each queue. The arrival processes at the two queues are Poisson, and the service times are exponentially distributed. By increasing the arrival intensities until one of the queues becomes critically loaded, we derive exact heavy-traffic limits for the joint queue-length distribution using a singular-perturbation technique. It turns out that the number of customers in the stable queue has the same distribution as the number of customers in a vacation system with Erlang-k2k_2 distributed vacations. The queue-length distribution of the critically loaded queue, after applying an appropriate scaling, is exponentially distributed. Finally, we show that the two queue-length processes are independent in heavy traffic

    Stochastic decomposition in discrete-time queues with generalized vacations and applications

    Get PDF
    For several specific queueing models with a vacation policy, the stationary system occupancy at the beginning of a rantdom slot is distributed as the sum of two independent random variables. One of these variables is the stationary number of customers in an equivalent queueing system with no vacations. For models in continuous time with Poissonian arrivals, this result is well-known, and referred to as stochastic decomposition, with proof provided by Fuhrmann and Cooper. For models in discrete time, this result received less attention, with no proof available to date. In this paper, we first establish a proof of the decomposition result in discrete time. When compared to the proof in continuous time, conditions for the proof in discrete time are somewhat more general. Second, we explore four different examples: non-preemptive proirity systems, slot-bound priority systems, polling systems, and fiber delay line (FDL) buffer systems. The first two examples are known results from literature that are given here as an illustration. The third is a new example, and the last one (FDL buffer systems) shows new results. It is shown that in some cases the queueing analysis can be considerably simplified using this property

    Asymptotic behavior of the loss probability for an M/G/1/N queue with vacations

    Full text link
    In this paper, asymptotic properties of the loss probability are considered for an M/G/1/N queue with server vacations and exhaustive service discipline, denoted by an M/G/1/N -(V, E)-queue. Exact asymptotic rates of the loss probability are obtained for the cases in which the traffic intensity is smaller than, equal to and greater than one, respectively. When the vacation time is zero, the model considered degenerates to the standard M/G/1/N queue. For this standard queueing model, our analysis provides new or extended asymptotic results for the loss probability. In terms of the duality relationship between the M/G/1/N and GI/M/1/N queues, we also provide asymptotic properties for the standard GI/M/1/N model

    Iterative approximation of k-limited polling systems

    Get PDF
    The present paper deals with the problem of calculating queue length distributions in a polling model with (exhaustive) k-limited service under the assumption of general arrival, service and setup distributions. The interest for this model is fueled by an application in the field of logistics. Knowledge of the queue length distributions is needed to operate the system properly. The multi-queue polling system is decomposed into single-queue vacation systems with k-limited service and state-dependent vacations, for which the vacation distributions are computed in an iterative approximate manner. These vacation models are analyzed via matrix-analytic techniques. The accuracy of the approximation scheme is verified by means of an extensive simulation study. The developed approximation turns out be accurate, robust and computationally efficient
    corecore