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Abstract

Many service systems are appointment-driven. In such systems,
customers make an appointment and join an external queue (also re-
ferred to as the “waiting list”). At the appointed date, the customer
arrives at the service facility, joins an internal queue and receives ser-
vice during a service session. After service, the customer leaves the
system. Important measures of interest include the size of the wait-
ing list, the waiting time at the service facility and server overtime.
These performance measures may support strategic decision making
concerning server capacity (e.g. how often, when and for how long
should a server be online). We develop a new model to assess these
performance measures. The model is a combination of a vacation
queueing system and an appointment system.

Keywords: Appointment system, Vacation model, Overtime, Wait-
ing list, Queueing system

1 Introduction

In appointment-driven systems (ADS), service is administered only during
predefined service sessions (e.g. during the opening hours of a doctors office).
When making an appointment, a customer is assigned an appointment date

1



(at some future service session) and joins a waiting list. At the appointment
date, the customer leaves the waiting list and enters the service facility (e.g.
a doctors office). At the service facility the customer once more joins a queue
(e.g. the waiting room at the doctors office), receives service and leaves the
system. ADS may be found in healthcare, legal services, administration and
many other service systems.

It is clear that an ADS is in fact a combination of two distinct queueing
systems. In a first queueing system, customers arrive at the queue (i.e. the
waiting list) when making an appointment. At the appointment date the cus-
tomer is removed from the waiting list and enters a second queueing system.
In this second queueing system, the customer joins the queue at the service
facility, receives the actual service and leaves the ADS. In the remainder of
this article we will refer to both queueing systems as the appointment mak-
ing queueing system (AMQ) and the service facility queueing system (SFQ)
respectively. Both queueing systems require a rather distinct modeling ap-
proach. The AMQ can be considered as a vacation model while the SFQ is
modeled as a so-called appointment system (AS). Building on the findings in
both the literature on vacation models and the literature on AS, we combine
the AMQ and SFQ to create a single model which allows the study of ADS.
We will refer to this combined model as the appointment-driven queueing
system (ADQ). Using the ADQ, we assess: (1) the time a customer spends
in the waiting list; (2) the time a customer spends waiting at the treatment
facility (this does not include the processing time itself); (3) The probability
of a server to work overtime; (4) The amount of overtime a server performs.
These performance measures can easily be implemented in an optimization
procedure to support strategic decisions concerning server capacity (e.g. how
often, when and for how long should a server be online).

The contributions of this article are twofold: (1) we present a new va-
cation model to model the AMQ; (2) we present a new model (the ADQ)
to study an ADS and obtain several, strategically important performance
measures. The remainder of this article is organized as follows. Section 2
gives a detailed problem description. Section 3 and 4 discuss the AMQ and
SFQ respectively. In section 5 both models are combined to create the ADQ.
Section 6 concludes.
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2 Problem description

In this section we provide a detailed description of the dynamics at work at
the ADS. First we define the problem setting. Next, we formally describe the
basic concepts of the ADS. Finally we provide a traditional queueing analysis
(based on the availability concept) and demonstrate that such an approach
is unable to accurately assess the performance measures of an ADS.

2.1 Problem setting

We use a simple example to illustrate the problem setting. Imagine a doctor’s
office in which a single doctor sees patients every Thursday evening and every
Friday afternoon. The doctor’s office has opening hours from 6 PM until
8 PM on Thursday and from 2 PM until 6 PM on Friday. During these
service sessions a maximum number of patients may be treated. Assume
that on Thursday a maximum of 4 patients receives service. On Friday 8
patients may be served. Patients themselves call to make an appointment
and are scheduled for service at the first service session in which the maximum
number of patients has not yet been reached. For instance, suppose that on
Monday 12 patients are already waiting for service. These patients will all be
treated at the upcoming service sessions on Thursday and Friday. Assume
that an additional patient arrives on Monday evening. The first service
session in which there is still room available is on Thursday of the upcoming
week. As such, we schedule this extra patient accordingly. We illustrate this
procedure in Figure 1.
The making of an appointment indicates the arrival of a patient at the system.
Until arrival at the doctor’s office on the scheduled date, patients wait in an
external queue (e.g. at home). We refer to this queue as the “waiting list”.
At the beginning of a service session, a number of patients is removed from
the waiting list and is allowed to enter the doctor’s office. At the doctor’s
office, patients are kept in the waiting room and are treated in order of
arrival (FCFS). Patients leave the system after service completion. Often,
the doctor has to work overtime in order to service all patients present in the
waiting-room. Further assume that:

• When making an appointment, patients are assigned the first available
time slot.
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Figure 1: Scheduling of an appointment

• Patients always show up on the appointed service session and they
arrive on time.

• No unscheduled patients show up.

• All patients that arrive at the service session are served by the doctor
(i.e. no balking occurs).

• The doctor provides service even if only a single patient has made an
appointment during a given service session.

Most of these assumptions may easily be relaxed and serve only the purpose
of maintaining transparency of the upcoming discourse.

In such a system, several strategically important performance measures
may be assessed: (1) the time a customer spends in the waiting list; (2)
the time a customer spends waiting at the treatment facility (this does not
include the processing time itself); (3) The probability of a server to work
overtime; (4) The amount of overtime a server performs. These performance
measures can be used to determine the optimal frequency of service sessions
(e.g. how often and when should a doctor see patients) as well as the optimal
length of these service sessions (e.g. how much time should be spent servicing
patients during a specific service session).
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Figure 2: The service process at an ADS

2.2 Problem definition

The service process at a ADS is a succession of service sessions during which
customers are served at a single server. Each service session i (for the re-
mainder of this text, index i is defined as i ∈ {1, 2, . . .}) is fully characterized
by: (1) the maximum number of customers ki allowed to receive service; (2)
the length of the service session Tsi

; (3) the intersession time Isi
(i.e. the

time between the end of service session i and the start of service session
i + 1; during which service at the service facility is unavailable). Figure 2
illustrates the service process at the ADS. We assume recurring cycles to be
present in the succession of service sessions (e.g. a doctor receiving patients
every Thursday evening and every Friday afternoon). A cycle of service ses-
sions has length T and contains J service sessions j (for the remainder of
this text, index j is defined as j ∈ {1, . . . , J}). Remark that, due to the
cyclic nature of the service process, a service session of type j +(iJ) is also a
service session of type j. In addition, each service session i may be associated
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Figure 3: Succession of service cycles

with a vacation i of deterministic length Ti = Tsi
+ Isi

. We illustrate these
dynamics in Figure 3. In this article, we model the deterministic vacation
length using an Erlang distribution of sufficient phases. Each phase of the
Erlang distribution is exponentially distributed with rate υi and

1

υi

=
Ti

V
, (1)

where V is some number sufficiently large as to minimize the variance of the
resulting Erlang distribution of parameters V and υi.

Whenever a customer makes an appointment, an arrival at the system
takes place. The time between two successive appointments is assumed to be
exponentially distributed with mean 1/λ and squared coefficient of variation
C2

a = 1. The interarrival times of individual customers are assumed to be
i.i.d. Remark that the assumption of exponentially distributed interarrival
times has only a limited impact on the precision of the model while it has
been shown by Palm (1943) and Khinchin (1960) that the sum of a large
numbers of independent renewal processes (i.e. the arrival processes of the
different customers) will tend to a Poisson process. In addition, Lariviere and
Van Mieghem (2004) show that the assumption of exponential interarrival
times is reasonable in many service systems.

At the beginning of a service session i, a maximum number of customers
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ki is removed from the waiting list. These customers are served during service
session i. The arrival of these customers at the service facility itself is man-
aged by the AS. In our model we adopt a simple AS in which all customers
are assumed to be present at the service facility at the start of the service
session (this AS is also referred to as the block appointment rule). Remark
however that other AS can easily be implemented in the ADS. Once at the
service facility, customers receive the actual service. Let 1/µ and σ2

s denote
the mean and the variance of the service time respectively. The squared co-
efficient of variation of the service times is given by C2

s = σ2
sµ

2. In addition,
the service times of individual customers are assumed to be i.i.d.

In this article, we use the gamma distribution to model the service times of
the customers at the service facility. The gamma distribution is characterized
by a shape parameter α and a scale parameter θ. The mean and variance of
the gamma distribution are given by

1

µ
= αθ, (2)

σ2
s = αθ2. (3)

Remark that other distributions may also be implemented in the ADS. For
our purposes however, we use the gamma distribution while it provides a
simple and transparent framework to model a general class of practical set-
tings. The following set of features further motivates the use of the gamma
distribution:

• The convolution of i i.i.d. gamma distributions of parameters α and θ
results in a gamma distribution of parameters iα and θ.

• The gamma distribution may be used to match the first two moments
of any continuous distribution in the [0,∞) interval.

• The truncated mean of the gamma distribution may easily be obtained
(this feature is particularly useful to compute overtime performance
measures).

2.3 Traditional queueing approximation

In order to demonstrate that traditional queueing models do not suffice to
accurately model an ADS, we provide the following example. The example
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builds on the setting discussed in section 2.1. Assume that on average 8
patients make an appointment at the doctor’s office every week (i.e. patients
arrive at a rate of λ = 1/1,260 per minute during a service cycle of length
T = 10, 080 minutes). While 12 patients are allowed to receive service in a
single service cycle, the utilization rate of the doctor’s office may be expressed
as follows

ρ = λ
J∑

j=1

Tj

kj

. (4)

Remark that all parameters are expressed in minutes unless mentioned oth-
erwise. In our example ρ = 2/3. Further assume the service times to follow a
gamma distribution of parameters α = 1.5 and θ = 20. The mean and vari-
ance of the service times amount to 1/µ = 30 minutes and σ2

s = 600 minutes
respectively. The squared coefficient of variation is given by C2

s = 2/3.
These are the input parameters required to assess a traditional queueing

model. Such queueing models however, assume service to take place in a time
continuum (i.e. 24 hours per day, 7 days per week). In our problem setting
service is not a seamless concatenation of events, but is divided into separate,
predefined service sessions. Therefore we need to rescale (i.e. inflate) the ser-
vice process in order to fit a time continuum. We use the availability concept
in order to rescale all service times (for a detailed account on the concept
of availability see Lambrecht et al. (1998), Hopp and Spearman (2000) and
Creemers and Lambrecht (2007)). The availability A of a workstation serves
as a rescaling factor. The availability of a workstation is computed as the
fraction of time that is available for service:

A =
J∑

j=1

Tsj

Tj

. (5)

In our example the availability of the doctor’s office is given by A = 1/28.
Using the availability concept we obtain the average rescaled, effective service
time

1

µe

=
1

Aµ
. (6)

With respect to the variance of the effective service times, one has

σ2
se

=
σ2

s

A2
. (7)

Reverting to our example, 1/µe = 840 minutes and σs2
e

= 470, 400. The
squared coefficient of variation C2

s is unaffected by the rescaling process.
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Table 1: Simulation results of performance measures at the ADS

E [WAMQ] E [WSFQ] πo
1/µo

4,281.3099 106.8222 0.1852 9.4721

We have defined all parameters required to approximate the total ex-
pected waiting time of a patient (i.e. the time from the making of an ap-
pointment until the start of service). We assess the total expected waiting
time using the well-known Kingman equation (Kingman 1962)

E [W ] =

(
C2

a + C2
s

2

)(
ρ

1− ρ

)
1

µe

. (8)

Using the Kingman equation, the total expected waiting time in the system
amounts to 1,400 minutes (0.9722 days).

These results were validated using a simulation study. We constructed
a simulation model that simulates the queueing behavior of patients as is
observed in reality. The service and interarrival time distributions mentioned
earlier were used to draw i.i.d. service and interarrival times of patients.
Service takes place each Thursday from 6 PM until 8 PM and on Friday
from 2 PM until 6 PM. Patients are allowed to make appointments at any
time. If they make an appointment, they enter a queue outside the doctor’s
office (i.e. the waiting list). At the beginning of each service session, a
number of patients is removed from the waiting list and is allowed to enter
the doctor’s office (on Thursday a maximum of 4 patients are selected while
on Friday 8 patients are allowed). Before returning home, the doctor always
treats all patients present in the doctor’s office, even if this means that he
has to work overtime. After treatment, patients leave the system.

Using the simulation, we keep track of: (1) E [WAMQ], the waiting time of
a patient at the waiting list; (2) E [WSFQ], the waiting time of a patient at the
service facility itself; (3) πo (j) the probability of the doctor to work overtime
during a service session j as well as πo, the overall probability of the doctor to
work overtime; (4) 1/µo(j), the average amount of overtime performed during
a service session j as well as 1/µo, the overall expected overtime performed.
We summarize the results of the simulation in Table 1. One may observe
that the total expected waiting time of a patient (including the time spent
in the waiting list as well as the time spent at the doctor’s office) amounts
to 4,388 minutes (3.0473 days). This result differs significantly from the
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result obtained using traditional queueing models. In addition, traditional
queueing models are unable to assess performance measures associated with
server overtime. It is clear that a new methodology is required to accurately
assess the dynamics at work in an ADS.

3 Appointment making queueing system

In this section we develop the AMQ. First we provide a brief overview on
literature of vacation models. Next we give a problem definition and finally
we present the model itself.

3.1 Vacation model literature review

Over the past decades, queueing systems with server vacations have received
a lot of attention in queueing literature. Vacation models observe the queue-
ing behavior of systems in which the server takes a vacation (i.e. becomes
unavailable) when certain conditions are met. Whenever a server leaves on
a vacation, arriving customers are stored in the queue. Once the server re-
turns, service begins once more. A wide variety of vacation models exists.
For a general overview we refer to Doshi (1986) and Takagi (1988). A more
recent yet less general survey can be found in Fiems (2004) and Vishnevskii
and Semenova (2006).
The policy deciding on when the server leaves on a vacation is called a service
discipline. Vacation models may operate under different service disciplines
or combinations thereof. The most important disciplines reported in liter-
ature are listed below (refer to Fuhrman and Cooper (1985), Fiems (2004)
and Vishnevskii and Semenova (2006)):

• Exhaustive service. The server leaves on a vacation if and only if all
customers in the queue have been served.

• Gated service. The server serves only those customers that were present
in the queue at the beginning of the current service session.

• k-limited service. The server serves customers in a queue until either
k customers have been served or the queue becomes empty. For large
k, the vacation model behaves as if operating under exhaustive service.
Often k is assumed to equal unity (Takagi 1991).
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Figure 4: Illustration of the queuing process in a single service session under
different service disciplines

• Time-limited service. Time-limited systems initialize a timer at the
beginning of a service service session. Whenever the timer expires
or when no more customers are present in the queue, a vacation is
initiated.

Figure 4 provides an illustration of these service disciplines.
With respect to the vacation itself, numerous possibilities arise. Vacation
models may have single vacations or multiple vacations. Multiple vacation
models assume that when the server returns from a vacation to find the queue
not empty, the vacation period ends; otherwise a new vacation is initiated
(this process repeats itself until the server finds at least one customer in the
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queue upon returning from vacation). Single vacation models on the other
hand presume that when the server returns from a vacation, the vacation
period ends, irrespective of the status of the queue (i.e. it is possible for
a server to become “idle”). The vacation length depends on the vacation
policy applied (Kleinrock (1975) and Tijms (2003)). We limit ourselves to
the T -policy in which the server is activated T time units after the server
left on vacation. Under a T -policy, vacations are often assumed to have an
exponential duration (see for instance Gray et al. (2000)).
A wide variety of possible combinations of service and arrival distributions
have been presented in literature. Most vacation models assume a Poisson
arrival process and general service times (Stidham 2002). However, some
research has also been performed on Markovian arrivals (MAP) and batch
arrivals (BMAP). Models featuring such arrival processes have been proposed
by Niu et al. (2003) among others. Bulk service has been considered by
Katayama and Kobayashi (2003).

3.2 Problem definition

The AMQ consists of a single queue and a single virtual server which instan-
taneously can serve any number of customers (i.e. bulk service). The virtual
server acts as a device to allocate customers to service sessions (consequently,
no processing time is required). At the start of a service session i, a maximum
of ki customers is served at the virtual server of the AMQ. After service, a
vacation is initiated. This vacation has a deterministic length equal to the
difference between the start of the current service session and the start of the
next (i.e. a vacation i has length Ti = Tsi

+Isi
). During the vacation, arrivals

are allowed to occur with rate λ. At the start of the next service session, the
virtual server returns from vacation, instantaneously serves another batch of
customers and once more leaves on a vacation of deterministic length.

The AMQ may be modeled as a bulk service vacation model featuring:
(1) a gated, k-limited service discipline (also referred to as a G-limited ser-
vice discipline (de Souzae Silva et al. 1995)); (2) vacations of deterministic
length; (3) multiple vacations; (4) state-dependent values of k as well as
state-dependent vacation lengths. To the best of our knowledge, no such
model exists in published literature.

Due to their analytical intractability, models featuring limited service
disciplines (k-limited and time-limited service disciplines) are only scarcely
dealt with (de Souzae Silva et al. (1995) and Borst et al. (1995)). Most

12



of the relevant studies present approximative results or impose restrictive
assumptions on either the maximum value of k or the distribution of arrivals,
services and/or vacation lengths (refer to Leung and Eisenberg (1990), de
Souzae Silva et al. (1995), Rubin and Wu (1995) and Katayama (2001)).
There exists no research on vacation models in which k depends on the state
of the system.

With respect to vacation length, general and phase-type distributions
have been considered in literature (refer to Takagi (1994)). For those relevant
models reported (Yijun and Quanlin (1996) and Shin and Pearce (1998)), the
length of state-dependent vacations depends on the number of customers in
the system at the beginning of a vacation. The AMQ however, requires the
vacation length to depend on the current time in the system (i.e. a vacation
is initiated at the start of a service session). No research on vacation models
featuring time-dependent vacations is currently available.

3.3 The AMQ model

We model the AMQ using a continuous-time Markov chain (CTMC) X =
{X (t) : t ≥ 0}. The CTMC X is a threedimensional stochastic process whose
statespace can be represented by triplets (Q, j, v), where:

• Q; Q ∈ {0, 1, 2, . . .} represents the number of customers in queue,

• j; j ∈ {1, 2, . . . , J} represents the vacation type,

• v; v ∈ {1, 2, . . . , (V + 1)} represents the phase of the vacation process.

For each queue size Q and each vacation type j we have V states in which
either an arrival takes place (thereby incrementing the queue size Q) or a va-
cation phase is finished (indicating that the end of the vacation approaches).
After finishing the final vacation phase (i.e. vacation phase V ) of a vacation
of type j, one ends up in a state in which the vacation process is at phase
(V + 1). At that point, the vacation of type j is finished. As such, the server
returns from vacation instantaneously serves up to kϕ (where ϕ = j + 1 if
j < J and ϕ = 1 if j = J) customers and leaves on a vacation once more. No
arrivals are allowed to occur during the infinitesimal amount of time during
which the system remains in this state. Instead, a transition takes place to-
wards a state in which: (1) the queue size Q is reduced by a maximum of kϕ

customers; (2) the vacation phase v is reset at 1; (3) the vacation type j is
set equal to ϕ. We can define the set of feasible state transitions as follows:
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• Upon arrival of a customer (with rate λ), one moves from state (Q, j, v)
to state (Q + 1, j, v) if v ≤ V .

• Upon finishing a vacation phase v at a vacation j (with rate υj), one
moves from state (Q, j, v) to state (Q, j, v + 1) if v ≤ V .

• Upon finishing a vacation of type j, one moves from state (Q, j, V + 1)
to state (max(0, Q− kϕ), ϕ, 1) (with infinitesimal rate ω).

Using these state transitions, we can construct the infinitesimal generator Q
that is associated with the CTMC X. The infinitesimal generator Q is given
by

Q =



L̂ F 0 0 0 · · ·
B L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
0 0 0 B L · · ·
· · · · · · · · · · · · · · · . . .


,

where 0 is a matrix of appropriate size containing only zeros and where L̂, L,
F and B are the respective “local”, “forward” and “backward” transition rate
matrices. An outline of these matrices is provided below (s and t represent
the queue size at the departure and arrival state respectively)

L̂ =

s/t 0 1 · · · Qc − 2 Qc − 1

0 L̂∗ F∗ · · · 0 0
1 B∗

s,t L∗ · · · 0 0

· · · · · · · · · · · · · · · · · · ,
Qc − 2 B∗

s,t B∗
s,t · · · L∗ F∗

Qc − 1 B∗
s,t B∗

s,t · · · B∗
s,t L∗

L =

s/t iQc iQc + 1 · · · 2iQc − 2 2iQc − 1
iQc L∗ F∗ · · · 0 0

iQc + 1 B∗
s,t L∗ · · · 0 0

· · · · · · · · · · · · · · · · · · ,
2iQc − 2 B∗

s,t B∗
s,t · · · L∗ F∗

2iQc − 1 B∗
s,t B∗

s,t · · · B∗
s,t L∗

F =

s/t iQc iQc + 1 · · · 2iQc − 2 2iQc − 1
(i− 1)Qc 0 0 · · · 0 0

(i− 1)Qc + 1 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · ,

(i− 1)Qc + Qc − 2 0 0 · · · 0 0
(i− 1)Qc + Qc − 1 F∗ 0 · · · 0 0
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B =

s/t (i− 1)Qc (i− 1)Qc + 1 · · · (i− 1)Qc + Qc − 2 (i− 1)Qc + Qc − 1
iQc B∗

s,t B∗
s,t · · · B∗

s,t B∗
s,t

iQc + 1 B∗
s,t B∗

s,t · · · B∗
s,t B∗

s,t

· · · · · · · · · · · · · · · · · · ,
2iQc − 2 B∗

s,t B∗
s,t · · · B∗

s,t B∗
s,t

2iQc − 1 B∗
s,t B∗

s,t · · · B∗
s,t B∗

s,t

where Qc = max(kj); ∀j ∈ {1, 2, . . . , J}. Qc is also referred to as the
critical queue size and indicates the maximum decrease of queue size when
performing a backward transition (i.e. no more than Qc customers may be
removed from the queue at the end of any vacation j; j ∈ {1, 2, . . . , J}). The
matrices L̂∗, L∗, F∗ and B∗

s,t are given by (u and w represents the vacation
type of the departure and arrival state respectively)

L̂∗ =

u/w 1 2 · · · J − 1 J
1 Υu Ωs,t,w · · · 0 0
2 0 Υu · · · 0 0
· · · · · · · · · · · · · · · · · · ,

J − 1 0 0 · · · Υu Ωs,t,w

J Ωs,t,w 0 · · · 0 Υu

L∗ =

u/w 1 2 · · · J − 1 J
1 Υu 0 · · · 0 0
2 0 Υu · · · 0 0
· · · · · · · · · · · · · · · · · · ,

J − 1 0 0 · · · Υu 0
J 0 0 · · · 0 Υu

F∗ =

u/w 1 2 · · · J − 1 J
1 Λ 0 · · · 0 0
2 0 Λ · · · 0 0
· · · · · · · · · · · · · · · · · · ,

J − 1 0 0 · · · Λ 0
J 0 0 · · · 0 Λ

B∗
s,t =

u/w 1 2 · · · J − 1 J
1 0 Ωs,t,w · · · 0 0
2 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · .

J − 1 0 0 · · · 0 Ωs,t,w

J Ωs,t,w 0 · · · 0 0

The matrices Υu, Λ and Ωs,t,w are the characterizing matrices of the infinites-
imal generator Q. They are presented below

Υu =

v 1 2 · · · V V + 1
1 −λ− υu υu · · · 0 0
2 0 −λ− υu · · · 0 0
· · · · · · · · · · · · · · · · · · ,
V 0 0 · · · −λ− υu υu

V + 1 0 0 · · · 0 −ω
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Λ =

v 1 2 · · · V V + 1
1 λ 0 · · · 0 0
2 0 λ · · · 0 0
· · · · · · · · · · · · · · · · · · ,
V 0 0 · · · λ 0

V + 1 0 0 · · · 0 0

Ωs,t,w =

v 1 2 · · · V V + 1
1 0 0 · · · 0 0
2 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · ,
V 0 0 · · · 0 0

V + 1 ωδs,t,w 0 · · · 0 0

where δs,t,w may be defined as

δs,t,w =


1 if (s− t) = kw; ∀t > 0,
1 if s ≤ kw; ∀t = 0,
0 otherwise.

(9)

One can observe that the infinitesimal generator Q is endowed with a
special repetitive structure. This repetitive structure may be exploited when
deriving the stationary distribution π of the corresponding CTMC X. To
obtain π we adopt matrix analytical techniques or matrix analytical method-
ology (MAM). MAM has been studied for several decades and has attracted
the attention of many researchers in the queueing field. For an overview of
literature and an introduction to MAM, refer to Latouche and Ramaswami
(1999), Riska (2002), Osogami (2005) and Bini et al. (2006) among others.
In short, MAM allows the (numerically) exact analysis of a wide variety
of queueing systems featuring some repetitive structure (more specifically,
M/G/1, GI/M/1 and quasi-birth-death (QBD) processes). The AMQ may
be considered a QBD process and may be solved using the techniques that
apply for M/G/1 as well as GI/M/1 processes. Obtaining the stationary
distribution of a QBD process involves the computation of an auxilliary ma-
trix R. R may be obtained as the solution of the quadratic equation (Riska
and Smirni 2002)

F + R · L + R2 ·B = 0. (10)

The stationary distribution π may be obtained by solving the following sys-
tem of linear equations (Riska and Smirni 2002)[

π(0), π(1)
]
·
[

e L� F

(I−R)−1 · e B� L + R ·B

]
= [1,0] , (11)

and through the recursive relationship

π(i) = π(1) ·Ri−1; ∀i ≥ 1. (12)
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where:

• π(Q) is the vector of stationary probabilities associated with a queue
size Q (i.e. given a queue size Q, π(Q) holds the stationary distribution
of states (Q, j, v); j ∈ {1, 2, . . . , J} ; v ∈ {1, 2, . . . , V + 1}).

• I is an identity matrix of appropriate dimension.

• e is a vector of ones of appropriate size.

The symbol � indicates that an arbitrary column of the corresponding matrix
may be discarded (while a column was added to represent the normalization
condition).

Let π (Q, j, v) denote the probability of having Q customers in queue at
a vacation of type j at vacation phase v. We use π (Q, j, v) to determine: (1)
the stationary distribution πSFQ,j (Q) of the number of customers in queue
at the start of a service session of type j; (2) the stationary distribution
πAMQ,j (Q) of the number of customers in queue during a vacation of type j.

The number of customers in queue at the start of a service session ϕ
is associated with the stationary probability of states (Q, j, V + 1). After
rescaling these stationary probabilities, we obtain

πSFQ,ϕ (Q) =
π (Q, j, V + 1)

∞∑
Q=0

π (Q, j, V + 1)
. (13)

In fact, πSFQ,ϕ (Q) may be used to determine the probability of having
min(Q, kj) customers at the SFQ during a service session of type ϕ.

The number of customers in queue during a vacation of type j is asso-
ciated with the stationary distribution of states (Q, j, v) ; v ∈ {1, 2, . . . , V }.
After rescaling we obtain

πAMQ,j (Q) =
V∑

v=1

π (Q, j, v)
∞∑

Q=0

V∑
v∗=1

π (Q, j, v∗)
. (14)

Using πAMQ,j (Q) we can compute the average number of customers in queue
at the AMQ during a vacation of type j

QAMQ,j =
∞∑

Q=0

QπAMQ,j (Q) . (15)
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The probability of finding oneself at a vacation of type j equals

pj =
Tj

J∑
j=1

Tj

. (16)

As such, the average number of customers in queue at the AMQ equals

QAMQ =
J∑

j=1

pjQAMQ,j. (17)

Using Little’s law, we can compute the expected waiting time of a customer
at the AMQ

E [WAMQ] =
QAMQ

λ
. (18)

4 Service facility queueing system

In this section we develop the SFQ. We provide a short overview of literature
on AS. Next we define the problem. A final subsection presents the model
itself.

4.1 Appointment system literature review

AS have been studied extensively during the past 50 years. Excellent overviews
of literature may be found with Mondschein and Weintraub (2003) and
Cayirli and Veral (2003). In short, AS deal with the operational issue of
scheduling a number of customers as to optimize some measure of perfor-
mance (e.g. customer waiting time, staff overtime, . . . ). In the most simple
case, all customers arrive punctually at their appointment dates and receive
service at a single server workstation. Complexity is introduced in the form
of so-called environmental variables. An extensive overview of such envi-
ronmental variables is provided in Cayirli and Veral (2003). Examples of
environmental variables include customer unpunctuality, the number of cus-
tomer classes, the number of servers, . . . .

In AS literature, customers are either scheduled using some appointment
scheduling rule (ASR) or a procedure is developed to determine the (opti-
mal) arrival times of customers at the service facility (examples of the latter
category may be found with Weiss (1990), Liao et al. (1993), Wang (1997),
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Figure 5: Appointment scheduling rules

Vanden Bosch and Dietz (2000) and Vanden Bosch and Dietz (2001) among
others). With respect to ASR, comprehensive comparisons of various ASR
are available with Ho and Lau (1992), Ho and Lau (1999) and Mondschein
and Weintraub (2003). In the remainder of this work, we will focus only on
ASR.
ASR can be described in terms of:

• block size (nil); indicating the number of customers scheduled in block
l during service session i,

• initial block size (ni1); indicating the number of customers given an
appointment date at the start of service session i,

• appointment interval (ail); indicating the interval between two succes-
sive appointments during service session i.

Remark that all but a few AS reported in literature study a single service
session. Vanden Bosch & Dietz (2000 and 2001) are one of the few exceptions
to study an AS spanning over multiple service sessions. Each service session
i of length Tsi

is divided in a number of blocks B; ts and te indicating the
start of the first and the end of the last block respectively. At the beginning
of each block b; b ∈ {1, 2, . . . , B}, a number of customers nb is scheduled to
arrive. Figure 5 provides further insight. Many ASR start a service session
with an initial block of a few customers (who serve as a buffer to minimize
server idle time in the occasion of customers arriving late or failing to show
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up) and constant appointment intervals. When ni1 = 2, nil = 1, ail = 1/µ,
the ASR is referred to as the Bailey-Welch rule. Another popular ASR is the
block appointment rule in which all customers are assigned to arrive in the
initial block (thereby minimizing server idle time but effectively maximizing
customer waiting time). Notwithstanding their simplicity, the Bailey-Welch
and block appointment rule are well-known and widely implemented in prac-
tice.

4.2 Problem definition

In this article, we model the SFQ as an AS using the block appointment
rule. We assume no environmental variables to be in effect. As such, all
customers are present at the start of their assigned service session. Service
starts at the beginning of a service session and continues uninterruptedly
until all customers have been served. Under such a policy, customer waiting
time is maximized while server idle time is minimized.

The SFQ models the service process of customers at a single service ses-
sion. While the service process is stochastic, there exists a probability that
overtime has to be performed. Overtime is the time a server has to work
in excess of a certain time capacity Oj in order to serve all customers at a
service session of type j. We define Oj as follows

Oj =
kj

µ
. (19)

In the literature on AS, the concept of overtime is regularly encountered.
However, AS are generally limited to the study of a single service session.
Research relating to overtime in a more general setting (i.e. a queueing sys-
tem) is rather rare. Bitran and Tirupati (1991) are one of the few researchers
to study the subject in the context of a traditional queueing system. Their
results however, remain limited to approximations and are focussed on sys-
tems that are not appointment-driven.

4.3 The SFQ model

The SFQ models the service process of M customers at a service session j.
The measures of interest are: (1) the expected waiting time of an individual
customer at the SFQ (this does not include processing itself); (2) the proba-
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bility of the server to perform overtime; (3) the expected amount of overtime
performed.

The expected waiting time of an individual customer at the SFQ (given a
service session of type j and a number of customers to be served M) is given
by

E [WSFQ,j,M ] =
M − 1

2µ
. (20)

In order to compute πo (j, M) (i.e. the probability that the server performs
overtime at a vacation of type j when M customers require service) we require
the distribution of the total service time at service session j. The service
processes of M individual customers are assumed to follow i.i.d. gamma
distributions of parameters α and θ. While the service process of the M
customers occurs uninterruptedly, the total service time distribution is the
convolution of M i.i.d. gamma distributions of parameters α and θ. The
probability density function (pdf) of the gamma distribution is given by

f (x, α, θ) = xα−1 e
−x
θ

Γ (α) θα
. (21)

The Laplace transform of f (x, α, θ) is easily obtained (where z is the image
of x)

L{f (x, α, θ)} = θ−α
(
z +

1

θ

)−α

. (22)

The convolution (f ∗ f) (x, α, θ) is given by

L{(f ∗ f) (x, α, θ)} =

[
θ−α

(
z +

1

θ

)−α
]2

. (23)

The inverse Laplace transform yields

(f ∗ f) (x, α, θ) = x2α−1 e
−x
θ

Γ (2α) θ2α
. (24)

Analogously, one can show that the convolution of M gamma distributions
of parameter α and θ may be defined as

f (x, Mα, θ) = xMα−1 e
−x
θ

Γ (Mα) θMα
. (25)
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Which corresponds to the pdf of a gamma distribution of parameters Mα
and θ (i.e. the distribution of the total service time of M customers). The
cumulative distribution function (cdf) is given by

F (x, Mα, θ) =
γ (Mα, x/θ)

Γ (Mα)
. (26)

Where γ represents the incomplete gamma function. Using the cdf of the
total service time, we obtain the probability of the server to perform overtime
at a service session of type j when M customers require service

πo (j, M) = 1− F (Oj, Mα, θ) . (27)

The expected amount of overtime performed at a service session of type
j with M customers requiring service, is determined using the truncated dis-
tribution of f (x, Mα, θ). More specifically, the expected amount of overtime
equals

1

µo (j, M)
=

∞∫
Oj

(x−Oj) f (x, Mα, θ) dx. (28)

Which can be simplified to the following closed form formula

1

µo (j, M)
=

[−Ojγ (Mα, Oj/θ)] +
[
OMα

j

(
Oj

θ

)−Mα
θ1−Mαγ (1 + Mα, Oj/θ)

]
Γ (Mα)

.

(29)

5 Appointment driven queueing system

In this section we combine both the AMQ and the SFQ to create a single
model, the ADQ, that is able to study an ADS. A first section presents the
ADQ model. In a second section we return to the numerical example first
presented in section 2.1 and solve it using the ADQ model.

5.1 The ADQ model

From the AMQ we have obtained πSFQ,j (M), the distribution of the number
of customers in queue at the start of a service session of type j. We can use
this distribution to determine the probability of having to serve M patients

22



at a service session j. In turn, this information can be used at the SFQ to
obtain the measures of interest (average customer waiting time at the service
facility, probability of server overtime and the expected amount of overtime
performed). Using the stationary distribution πSFQ,j (M) as a weighing fac-
tor for the results obtained at the SFQ corresponding to M customers served
at a service session j, we obtain general results at the ADQ.

Define E [WSFQ,j], the average waiting time of a customer at the service
facility during a service session of type j. E [WSFQ,j] may be obtained as
follows

E [WSFQ,j] =

(
kj−1∑
M=0

πSFQ,j (M) E [WSFQ,j,M ]

)
+

+

(
E
[
WSFQ,j,kj

] ∞∑
M=kj

πSFQ,j (M)

)
.

(30)

In addition, the average number of customers present at the start of a service
session of type j may be defined as

QSFQ,j =

kj−1∑
M=0

πSFQ,j (M) M

+

kj

∞∑
M=kj

πSFQ,j (M)

 . (31)

For a given service session j, the average number of customers served will
serve as the weighing factor of the average waiting time (i.e. the results of a
service session in which a lot of customers receive service has a larger impact
on the average waiting time of a customer in overall). We obtain the average
waiting time of a customer at the service facility as follows

E [WSFQ] =
J∑

j=1

E [WSFQ,j] QSFQ,j

J∑
j∗=1

QSFQ,j∗

. (32)

With respect to the probability of the server working overtime at a service
session of type j, we have

πo (j) =

kj−1∑
M=0

πSFQ,j (M) πo (j, M)

+

πo (j, kj)
∞∑

M=kj

πSFQ,j (M)

 . (33)

While there are J service sessions in a service cycle, the probability of ran-
domly picking a service session j from the set of service sessions equals

qj =
1

J
. (34)
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Therefore the overall probability of the server to work overtime is given by

πo =
J∑

j=1

qjπo (j) . (35)

Analogously we have that the expected amount of overtime at a service
session of type j may be expressed as

1

µo (j)
=

kj−1∑
M=0

πSFQ,j (M)
1

µo (j, M)

+

 1

µo (j, kj)

∞∑
M=kj

πSFQ,j (M)

 . (36)

The overall expected amount of overtime performed at the server equals

1

µo

=
J∑

j=1

qj
1

µo (j)
. (37)

The overall expected waiting time at the AMQ is given in equation 18.
Together with equation 32, 35 and 37, all performance measures of interest
at the ADS are defined.

5.2 Numerical example

In this section we revisit the example discussed in section 2.1 and 2.3. How-
ever, at this point, we will use the ADQ as developed in the previous sections
to obtain the performance measures of interest. In order to assess the impact
(on the accuracy of the results) of approximating the deterministic vacation
times using an Erlang distribution of V phases, we perform a number of
experiments featuring different values of V . The results of the analysis are
presented in Tables 2 and 3. One can observe that the ADQ is able to provide
very accurate results when assessing strategic performance measures at the
ADS. When the vacation process is approximated by an Erlang distribution
of 200 phases the results nearly match those obtained in the simulation when
deterministic vacation lengths were used. Even an Erlang approximation of
50 phases performs well.

With respect to the server itself, one may observe that in nearly one out
five service sessions overtime is performed. The overall expected amount of
overtime encountered amounts to 9.5 minutes at a service session. These
figures are relatively surprising considering the fact that: (1) the utilization
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Table 2: Model results with varying number of vacation phases

V E [WAMQ] E [WSFQ] πo
1/µo

10 5,126.9400 105.9466 0.1979 10.0794
50 4,440.3660 106.5436 0.1882 9.5996
100 4,360.2300 106.6709 0.1868 9.5329
200 4,320.7920 106.7410 0.1861 9.4991

Table 3: Simultation results with varying number of vacation phases

V E [WAMQ] E [WSFQ] πo
1/µo

10 5,125.0903 105.9409 0.1975 10.0804
50 4,440.3269 106.5627 0.1879 9.6094
100 4,359.7361 106.6793 0.1864 9.5327
200 4,320.3242 106.7557 0.1859 9.5117
∞ 4,281.3099 106.8222 0.1852 9.4721

rate of the server only amounts to 2/3; (2) the service process of customers
features low variability (C2

s = 2/3); (3) the AS used minimizes server over-
time (all customers are present at the start of a session, customers are not
allowed to arrive late, unscheduled customers are not allowed to show up,
. . . ). These observations illustrate the importance of assessing overtime in
queueing models. Indeed, there is a pressing need for tools that are able
to detect, not only the impact, but also the levers required to minimize the
harmful effects of overtime. An optimization procedure indicating how often
a server should be online, for how long and when, is of great strategic value to
any administrator of an appointment-driven system. The performance mea-
sures obtained using the ADQ developed in this article, provide the tools to
construct such an optimization procedure.

6 Conclusion

Appointment-driven systems are widespread in services. Important strategic
performance measures in such systems include the time spent at the waiting
list, the waiting time at the service facility itself and the overtime performed
by the server. These measures of interest may support strategic decision
making concerning server capacity.
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In this article we show that traditional queueing models are unable to ac-
curately assess the performance of appointment-driven systems. The model
we develop is up to the task and offers a large amount of modeling freedom.
The model is a combination of a vacation queueing system and an appoint-
ment system. The vacation queueing system is a complex bulk service model
with a G-limited service discipline, vacations of deterministic length and var-
ious state dependencies. With respect to the appointment system, the block
appointment rule was selected to manage the arrival of customers at the
service facility (it should be remarked that other appointment systems can
easily be modeled as well, however at the price of increased model complex-
ity). Both systems are combined to create a queueing system that assesses
performance measures of the appointment-driven system. A numerical ex-
ample (and corresponding simulation validation study) shows that the model
is able to provide very accurate results.

It is clear that both a vacation model and an appointment system are
required to assess the performance of an appointment-driven system. The
study of the vacation model or the appointment system separately, would
only offer a myopic view of the problem setting. On the one hand, the vaca-
tion model is limited to the dynamics of the waiting list and remains blind to
what happens at the service facility itself. Appointment systems on the other
hand, have no input on the number of customers requiring service during a
service session. As such, appointment systems are able to optimize perfor-
mance at a single service session (i.e. local) but fail to optimize the service
process as a whole (i.e. global, over all service sessions). The model devel-
oped in this article, provides the strategic performance measures required to
perform such a global optimization. More specifically, the model allows the
development of an optimization procedure that may be used (among others)
to determine the optimal frequency of service sessions (e.g. how often and
when should a server be online) as well as the optimal length of these service
sessions (e.g. how much time should be spent servicing customers during a
specific service session).

While the presented model provides a new approach to analyze appointment-
driven systems, a considerable amount of work is left to be done. Future
extensions of the model may include: (1) the adoption of multiple servers at
the service facility; (2) a general, time-dependent arrival process using phase
type distributions; (3) the use of different appointment systems.
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