44,367 research outputs found

    Time-Aware Probabilistic Knowledge Graphs

    Get PDF
    The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model

    Ranking Archived Documents for Structured Queries on Semantic Layers

    Full text link
    Archived collections of documents (like newspaper and web archives) serve as important information sources in a variety of disciplines, including Digital Humanities, Historical Science, and Journalism. However, the absence of efficient and meaningful exploration methods still remains a major hurdle in the way of turning them into usable sources of information. A semantic layer is an RDF graph that describes metadata and semantic information about a collection of archived documents, which in turn can be queried through a semantic query language (SPARQL). This allows running advanced queries by combining metadata of the documents (like publication date) and content-based semantic information (like entities mentioned in the documents). However, the results returned by such structured queries can be numerous and moreover they all equally match the query. In this paper, we deal with this problem and formalize the task of "ranking archived documents for structured queries on semantic layers". Then, we propose two ranking models for the problem at hand which jointly consider: i) the relativeness of documents to entities, ii) the timeliness of documents, and iii) the temporal relations among the entities. The experimental results on a new evaluation dataset show the effectiveness of the proposed models and allow us to understand their limitation

    Empirical Evaluation of Abstract Argumentation: Supporting the Need for Bipolar and Probabilistic Approaches

    Get PDF
    In dialogical argumentation it is often assumed that the involved parties always correctly identify the intended statements posited by each other, realize all of the associated relations, conform to the three acceptability states (accepted, rejected, undecided), adjust their views when new and correct information comes in, and that a framework handling only attack relations is sufficient to represent their opinions. Although it is natural to make these assumptions as a starting point for further research, removing them or even acknowledging that such removal should happen is more challenging for some of these concepts than for others. Probabilistic argumentation is one of the approaches that can be harnessed for more accurate user modelling. The epistemic approach allows us to represent how much a given argument is believed by a given person, offering us the possibility to express more than just three agreement states. It is equipped with a wide range of postulates, including those that do not make any restrictions concerning how initial arguments should be viewed, thus potentially being more adequate for handling beliefs of the people that have not fully disclosed their opinions in comparison to Dung's semantics. The constellation approach can be used to represent the views of different people concerning the structure of the framework we are dealing with, including cases in which not all relations are acknowledged or when they are seen differently than intended. Finally, bipolar argumentation frameworks can be used to express both positive and negative relations between arguments. In this paper we describe the results of an experiment in which participants judged dialogues in terms of agreement and structure. We compare our findings with the aforementioned assumptions as well as with the constellation and epistemic approaches to probabilistic argumentation and bipolar argumentation

    Generating and Sampling Orbits for Lifted Probabilistic Inference

    Get PDF
    A key goal in the design of probabilistic inference algorithms is identifying and exploiting properties of the distribution that make inference tractable. Lifted inference algorithms identify symmetry as a property that enables efficient inference and seek to scale with the degree of symmetry of a probability model. A limitation of existing exact lifted inference techniques is that they do not apply to non-relational representations like factor graphs. In this work we provide the first example of an exact lifted inference algorithm for arbitrary discrete factor graphs. In addition we describe a lifted Markov-Chain Monte-Carlo algorithm that provably mixes rapidly in the degree of symmetry of the distribution
    • …
    corecore