9 research outputs found

    List of R.V. Book's publications

    Get PDF

    Reset machines

    Get PDF
    AbstractA reset tape has one read-write head which moves only left-to-right except that the head can be reset once to the left end and the tape rescanned; a multiple-reset machine has reset tapes as auxiliary storage and a one-way input tape. Linear time is no more powerful than real time for nondeterministic multiple-reset machines and so the family MULTI-RESET of languages accepted in real time by nondeterministic multiple-reset machines is closed under linear erasing. MULTI-RESET is closed under Kleene. It can be characterized as the smallest family of languages containing the regular sets and closed under intersection and linear-erasing homomorphic duplication or as the smallest intersection-closed semiAFL containing COPY = {ww | w in {a, b}∗}. A circular tape is read full-sweep from left-to-right only and then reset to the left, any number of times; a nonwriting circular tape cannot be altered after the first sweep. For nondeterministic machines operating in real time, multiple reset tapes, circular tapes or nonwriting circular tapes have the same power. Languages in MULTI-RESET can be accepted in real time by nondeterministic machines using only three reset tapes or using only one reset tape and one nonwriting circular tape

    Effective guessing has unlikely consequences

    Get PDF
    Funding: EPSRC Grant number EP/P015638/1.A classic result of Paul, Pippenger, Szemeredi and Trotter states that DTIME(n) ⊊ NTIME(n). The natural question then arises: could the inclusion DTIME(t (n)) ⊆ NTIME(n) hold for some superlinear time-constructible function t (n)? If such a function t (n) does exist, then there also exist effective nondeterministic guessing strategies to speed up deterministic computations. In this work, we prove limitations on the effectiveness of nondeterministic guessing to speed up deterministic computations by showing that the existence of effective nondeterministic guessing strategies would have unlikely consequences. In particular, we show that if a subpolynomial amount of nondeterministic guessing could be used to speed up deterministic computation by a polynomial factor, then P ⊊ NTIME(n). Furthermore, even achieving a logarithmic speedup at the cost of making every step nondeterministic would show that SAT ∈ NTIME(n) under appropriate encodings. Of possibly independent interest, under such encodings we also show that SAT can be decided in O(n log n) steps on a nondeterministic multitape Turing machine, improving on the well-known O(n(log n)c) bound for some constant but undetermined exponent c ≥ 1.Publisher PDFPeer reviewe

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Time- and tape-bounded turing acceptors and AFLs

    Full text link
    corecore