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A reset tape has one read-write head which moves only left-to-right except that the 
head can be reset once to the left end and the tape rescanned; a multiple-reset machine 
has reset tapes as auxiliary storage and a one-way input tape. Linear time is no more 
powerful than real time for nondeterministic multiple-reset machines and so the family 
MULTI-RESET of languages accepted in real time by nondeterministic multiple-reset 
machines is closed under linear erasing. MULTI-RESET is closed under Rleene*. It 
can be characterized as the smallest family of languages containing the regular sets and 
closed under intersection and linear-erasing homomorphic duplication or as the smallest 
intersection-closed semiAFL containing COPY = {ww 1 w in {a, b}*}. A circular tape is 
read full-sweep from left-to-right only and then reset to the left, any number of times; 
a nonwriting circular tape cannot be altered after the first sweep. For nondeterministic 
machines operating in real time, multiple reset tapes, circular tapes or nonwriting circular 
tapes have the same power. Languages in MULTI-RESET can be accepted in real time by 
nondeterministic machines using only three reset tapes or using only one reset tape and 
one nonwriting circular tape. 

The computation of a Turing machine that is allowed to make only a bounded number 

of reversals can be described in terms of “write” and “compare” actions. Describing 

the computations of multitape reversal-bounded machines in this way shows that “last-in, 
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Automata, Languages and Programming, July 1978, Udine, Italy. An extended abstract appears in 
the Proceedings of that symposium. This research was supported in part by the National Science 
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first-out” comparisons are extremely powerful when the machine is allowed to operate 
nondeterministically and far less powerful when the deterministic mode is required [I]. 
In this paper we investigate nondeterministic Turing machine models of two other types 
of comparison: “first-in, first-out” and “shift.” The results characterize a number of 
classes of languages specified by nondeterministic Turing machines that operate in real 
time, in linear time, in polynomial time, or without time bound, and that have either a 
single storage tape or multiple storage tapes of certain types. 

The “first-in, first-out” comparison studied here is modeled by a reset tape, a tape 
with one read-write head such that the tape is one-way infinite (to the right) and the head 
moves only left-to-right except that the head can be reset once to the left end and the 
tape rescanned. We first consider nondeterministic acceptors with an input tape that is 
read in only one direction and a single resettape as auxiliary storage. The class of languages 
recognized by such machines, single-reset languages, has properties very similar to those 
of the class of linear context-free languages. While the class of linear context-free languages 
is generated by the language PAL = {zuzuR / w E (a, b}*), the class of single-reset languages 
is generated by the language COPY = {ww j w E {a, b)*}. 

A multiple-reset machine is a multitape machine with reset tapes as auxiliary storage. 
The class of arbitrary nondeterministic multiple-reset machines accept exactly the class 
of recursively enumerable sets. Hence we consider nondeterministic multiple-reset 
machines that run in real time, in linear time, and in polynomial time. We show that 
linear time is no more powerful than real time and that a language can be accepted in 
linear time by a nondeterministic multiple-reset machine if and only if it can be accepted 
in real time by a nondeterministic machine with just three reset tapes as auxiliary storage. 
The class of languages accepted in real time by nondeterministic multiple-reset machines 
will be called MULTI-RESET. 

Since the class of single-reset languages is similar in structure to the class of linear 
context-free languages, it is natural to compare the class MULTI-RESET with the class 
9 BNP of languages accepted in real time by nondeterministic reversal-bounded Turing 
machines. It is known that y&,,p is the smallest intersection-closed semi&X containing 
PAL [6] and here we see that MULTI-RESET is the smallest intersection-closed 
semiAFL containing COPY. Although the class of single-reset languages is not 
comparable to the class of linear context-free languages, the language COPY is 

in %NP so that MULTI-RESET C sBNp . We conjecture that this inclusion is 
proper. 

A language in MULTI-RESET is accepted in real time by a machine that makes a 
bounded number of “first-in, first-out” comparisons, or resets. But we show in Section 3 
that the class MULTI-RESET is closed under Kleene*-this means that (in a sense made 
precise in Sections 3 and 6) a nondeterministic machine that runs in linear time and 
makes an unbounded number of resets can be simulated by a nondeterministic machine 
that runs in real time and makes just one reset on each of its three tapes. 

Our characterization of MULTI-RESET in terms of COPY leads to an algebraic 
characterization in terms of the regular sets: MULTI-RESET is the smallest class of 
languages containing the regular sets and closed under intersection and linear-erasing 
homomorphic duplication. From this fact we show that a wide range of classes of languages 

571/19/3-4 
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specified by nondeterministic oracle machines can be characterized in terms of the 
regular sets and some variations of homomorphic duplication. 

In Section 6 we consider languages representing “unbounded” comparisons: COPY* = 
{x1x1$ .** x,x,$ ) m > 0, xi E (a, b)*} and *COPY = ((x$)~ j m > 0, x E (a, b}*). We 
provide characterizations of the semiAFLs generated by COPY * and * COPY in terms 
of machines with “reusable reset” tapes and “nonwriting circular” tapes. Further, we 
consider a language SHIFT that encodes certain sequences of pairs of strings, and 
characterize the semiAFL generated by SHIFT in terms of machines with “writing 
circular” tapes. Any language accepted in real time by a nondeterministic machine with 
reusable reset tapes or circular tapes is in fact a member of MULTI-RESET. 

Three main themes are pursued in this paper: the study of automata, particularly 
restricted Turing machines; algebraic language theory and its interface with the study 
of computability and computational complexity; the modeling of different types of 
comparisons and their uses in terms of Turing machines. These themes interact with 
each other to produce the results 

In Section 1 we review some basic concepts. The notion of single reset machines is 
developed in Section 2 and that of multiple-reset machines in Section 3. In Section 4, 
9 BNP and MULTI-RESET are compared, while homomorphic duplication and the 
relation between MULTI-RESET and other classes are studied in Section 5. Finally, 
reusable reset tapes and circular tapes are studied in Section 6. 

1 

It is assumed that the reader is familiar with the basic concepts from the theories 
of automata, computability, and formal languages. Some of the concepts that are most 
important for this paper are reviewed here and notation is established. 

For a string w, ( w 1 denotes the length of w. We use e for the empty string. The reversal 
wR of a string w is the string obtained by writing w in reverse order. For a string w, 
wr = w. 

Recall that a homomorphism (between free monoids) is a function h: Z* + A* such that 
for all X, y E Z*, h(xy) = h(x) h(y). A homomorphism h: Z* --f A* is nonerasing if 
) w ) > 0 implies ) h(w)\ > 0 and is Zength-preserving if for all w E Z*, 1 h(w)1 = ) w 1. A 
homomorphism h: Z* --f A* is linear-erasing on language L C C* if there is a constant 
k > 0 such that for all w EL with I w ) 3 k, I w j < k ) h(w)l, and is polynomial-erasing 
on language L _C .Z* if there is a constant k > 0 such that for all w EL with / w 1 > k, 
1 w / < 1 h(w)l”. A class .P of languages is closed under (nonerasing, linear-erasing, poly- 
nomial-erasing) homomorphism if for every language L E 3 and any homomorphism h 
(that is nonerasing, linear-erasing on L, polynomial-erasing on L), h(L) = {h(w) ) w EL} 
is in 9. 

For a machine M, the language accepted by M is denoted by L(M). A machine operates 
in real time if it reads a new input symbol at every step and it operates in linear time if 
there is a constant k such that any accepting computation on an input string of length n 
has at most kn steps. If f is a function, then a machine M operates in time f (n) if any 
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accepting computation on an input string of length n has at most f(n) steps. Let f be a 
function. Let NTIME(f) = (L(M) ] M is a nondeterministic Turing machine that 
operates within time f (n)> and let NP = &_r NZ’IME(nJ$ so that NP is the class of 
languages accepted in polynomial time by nondeterministic Turing machines. 

A semiAFL is a family of languages containing at least one nonempty language and 
closed under the operations of union, inverse homomorphism, nonerasing homomorphism 
and intersection with regular sets. An AFL is a semiAFL that is closed under the operations 
of concatenation and Kleene*. A full semiAFL (AFL) is a semiAFL (AFL) closed under 
arbitrary homomorphism. A principal semiAFL (AFL) with generator L is the smallest 
semiAFL (AFL) containing L. We assume that the reader has some familiarity with these 
notions and with the connections between properties of classes of languages and properties 
of certain types of machines that specify these classes. See [8,9, 131 for full developments. 

For a class of languages 2, &(5?) denotes the smallest semiAFL that contains Y 
and g(Z), the smallest AFL that contains _Lp. Similarly, &J-sP) (FJZ)) denotes the 
smallest intersection-closed semiAFL (respectively, AFL) that contains 2, and &,(_Y) 
(@n(Z)) denotes the smallest full intersection-closed semiAFL (AFL) that contains 
2. When _.Y = {L} consists of a single language, we write, e.g., d(L) for .,4’(Z). 

The class YBNP is defined as the class of languages accepted in linear time by non- 
deterministic Turing machines whose work tapes are reversal-bounded (i.e., there is a 
fixed constant that bounds the number of times a read-write head can change direction 
during any computation). It is known that a language L is in _YBNP if and only if there are 
three linear context-free languages L, , L, , L, and a nonerasing homomorphism h such 
that L = h(L, n L, n L3), and that _‘ZBNP is the smallest intersection-closed semi_ilFL 
containing {wmR j w E {a, b)*} [6]. 

When x is a real number, TX1 denotes the smallest integer that is greater than or 
equal to X, and Lx__l, the largest integer that is less than or equal to X. 

2 

In this section we study “single-reset machines” and the class of languages specified 
by these machines. A single-reset machine is a Turing machine allowed only to make a 
certain “first-in, first-out” comparison. 

A reset tape is a one-way infinite tape with one read-write head which moves only 
left-to-right and can be reset once to the left end of the tape. 

Since only one reset is allowed on a reset tape and since the read-write head moves 
only left-to-right otherwise, we may assume that the tape squares read on the second 
sweep (i.e., after the reset is performed) are erased as the head moves over them. Now 
we consider the notion of an acceptor with a single reset tape as auxiliary work tape. 

A nondeterministic single-reset machine is a nondeterministic acceptor with one input 
tape that is read in only one direction (say, from left to right), a finite-state control, and 
one reset tape as auxiliary work tape. The language accepted by a single-reset machine 
is a single-reset language. 
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We will consider only nondeterministic machines in this paper and thus we will not 
use the modifier “nondeterministic” except when emphasis is needed. 

Based on our assumptions regarding the use of the reset tape, we can assume that an 
accepting configuration of a single-reset machine is reached only when the reset tape 
is empty and the machine is in an accepting state of its finite-state control. 

The operation of a single-reset machine is analogous to that of a nondeterministic 
pushdown store acceptor whose read-write head on the pushdown store is allowed to 
make only one reversal. Recall that a language is linear context-free if and only if it is 
accepted by a pushdown store acceptor of this type and that this characterization leads 
to the following fact: a language L is linear context-free if and only if there exist homo- 
morphisms h, and h, and a regular set S such that L = {h,(w) h,(wR) ( w E S]. Let us 
compare the operation of a single-reset machine with the operation of a one-reversal push- 
down store acceptor: both machines read input and write on the storage tape until at 
some point the read-write head on the reset tape resets to the left end of the tape and the 
read-write head on the pushdown store reverses direction; after the reset is made, the 
read-write head on the reset tape reads the string on the reset tape from left to right; 
after the reversal is made, the read-write head on the pushdown store reads the string on 
the pushdown store from right to left. This informal description leads to the following 
fact, the proof of which is omitted. 

2.1. LEMMA. A language L is a single-reset language if and only if there exist homo- 
morphisms h, and h, and a regular set S such that L = {hl(w) h,(w) 1 w E S}. 

We have placed no restrictions on the running time of a single-reset machine. Lemma 
2.1 implies that the class of single-reset languages is closed under arbitrary homomorphic 
mappings. However, from the fact that the class of regular sets is closed under arbitrary 
homomorphic mappings, the characterization of Lemma 2.1 can be modified to require 
that the homomorphisms are at worst linear erasing on the regular set. This corresponds 
to requiring that single-reset machines operate in linear time. In fact, single-reset machines 
can be required to operate in real time. 

2.2. LEMMA. If M1 is a single-reset machine, then there is a single-reset machine M, 
such that M, runs in real time and L(M,) = L(M,). 

Proof. We provide only a sketch. A similar construction appears in [12]. 
If M1 does not operate in real time, then in some computation either M1 makes a series 

of writing moves on the reset tape while reading no new input symbols and this happens 
before the reset is made or M1 makes a series of reading moves on the reset tape while 
reading no new input symbols and this happens after the reset is made, or both. Call a move 
in which no input is read an “e-move.” To each string y that might be part of one written 
on the reset tape, we associate a table T, that tells whether y can be written or read during 
e-moves and, if so, which states can begin and end such a sequence of moves. The set of 
such tables, for all possible y, must be finite (since the state set is finite) and for each 
table T the set (y ( T = T,) is regular. The finite-state control of Mz can therefore 
identify each possible table T and check if, for a given y, T = T, . Instead of writing 
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a substring y on e-moves, Ma attaches at the appropriate place an encoding of T, ; 
the finite-state control of M, can later decode this during the reading phase. Similarly, 
if M2 guesses that a substring y will be read during e-moves only, it uses an encoding 
of T, instead of y; if this guess is incorrect, Mz can block during the reading phase. 
A similar idea applies to strings that are both read and written on e-moves. 1 

Notation. Let COPY = {ww 1 w E {a, b}*} and let PAL = {wwR 1 w E (a, 6}*}. 
It is easy to see that COPY is a single-reset language. Since single-reset machines are 

nondeterministic and read input in one direction, it is easy to see that the class of single- 
reset languages is closed under union, inverse homomorphism, nonerasing homomorphism 
and intersection with regular sets. This leads to the following result. 

2.3. THEOREM. The class of single-reset languages is the smallest class containing COPY 
and closed under union, inverse homomorphism, nonerasing homomorphism, and intersection 
with regular sets, that is, the class of single-reset languages is a principal semiAFL with gen- 
erator COPY. A language L is a single-reset language if and only if there exist homomorphisms 
h, and h, and a regular set R such that h, is nonerasing and L = h,(h;‘(COPY) n R). 

The proof of Theorem 2.3 is similar to the proof of the analogous characterization 
of the class of linear context-free languages as the principal semiAFL generated by 
PAL [9]. 

It is apparent that the class of single-reset languages is closed under reversal. From 
Lemma 2.1 one can show that this class is not closed under concatenation or Kleene*, 
and hence is not closed under substitution. From the definition of single-reset machines, 
one can obtain an intercalation lemma that yields the fact that {wcwcw ] w E {a, b}*} is 
not a single-reset language (or see [15]) and h ence that the class of single-reset languages 
is not closed under intersection or complementation. 

The preceding facts reveal a strong analogy between the class of single-reset languages 
and the class of linear context-free languages. However, these two classes are not com- 
parable since COPY is not a linear context-free language and PAL is not a single-reset 
language [I 51. 

Now let us consider a generalization of the class of single-reset languages. 
Let n be a positive integer and let p be a function from (l,.,., n} to (1, R}. Let L be a 

language and let h, ,..., h, be homomorphisms. The language (p; h, ,..., h,) (L) = 
{h,(w)“(l) ... h,(w)Ptn) 1 w EL) is a homomorphic replication of type p on L; it is a homo- 
morphic duplication of L if p(i) = 1 for each i. 

Consider the smallest class of languages containing the regular sets and closed under 
homomorphic replication. This class of languages is precisely the class of languages accept- 
ed by nondeterministic one-way checking-stack automata whose checking-stack head is 
reversal-bounded [12]. We shall refer to this class as gRBP . If instead of homomorphic 
replication we consider homomorphic duplication, then we have a different situation. 
The smallest class of languages containing the regular sets and closed under homomorphi- 
duplication is precisely the class of languages accepted by nondeterministic one-way 
checking-stack automata whose checking-stack head reads the checking stack in only one 
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direction and can perform a finite number (independent of the input) of resets [12]. 
We shall refer to this class as gDUP . 

Since homomorphic duplication is a restriction of homomorphic replication, it is clear 
that for any class V of languages the closure of V under homomorphic duplication is 
contained in the closure of V under homomorphic replication. In particular, -EonUP _C 
P sEP , Results in [15] show that this inclusion is proper. The class 9cUP is also the class 
of equal-matrix languages of [16]. 

Notice that COPY = (p; hi , h,) ((a, b}*) w h ere p( 1) = p(2) = 1 and h, , h, are both 
the identity homomorphism. From Lemma 2.1, we see that a language L is single-reset 
if and only if there is a regular set R and homomorphisms hi and h, such that L = 
(p; h, , h,) (R), where p(l) = p(2) = 1. Thus Poop can also be characterized as the 
closure of the class of single-reset languages under homomorphic duplication. This 
leads to the following fact. 

2.4. PROPOSITION. If 9 is a class of languages that contains all of the regular sets and 
is closed under homomorphic duplication, then every single-reset language is in 9. 

3 

Now we consider multitape machines where each auxiliary work tape is a reset tape. 
The class of languages accepted by such machines (in real time) has a simple characteriza- 
tion in terms of COPY; other properties of this class of languages are established. In 
Sections 4 and 5 we will examine the relationship of this class to a variety of other classes 
of languages that have been studied in the literature. 

A multiple-reset machine is an acceptor with a one-way input tape, finite-state control, 
and some finite number of reset tapes as auxiliary work tapes. The first result shows that 
nondeterministic multiple-reset machines are sufficiently powerful to perform any 
(effective) computation. 

3.1. THEOREM. A language is recursively enumerable if and only if it is accepted by a 
nondeterministic acceptor with a one-way input tape and two reset tapes as auxiliary storage. 

Proof. Let L, be a recursively enumerable language and let Mi be a deterministic 
one-head, one-tape Turing machine such that L(M,) = L, . From Mi construct an 
acceptor M2 with a one-way input tape and two reset tapes such that M, operates in the 
following way. On reading input string w, Mz writes the initial instantaneous description 
ID, of Ml’s computation on w on one of its tapes, say Tape 1. Then M, begins to guess 
a sequence of instantaneous descriptions of n/r, , writing the sequence on both Tape 1 
and Tape 2 separated by markers. At some point Mr_ may guess an instantaneous des- 
cription that indicates that Ml is in an accepting mode. At this point M, has a string of 
the form ID, #ID, # .** #ID, # on Tape 1 (for some t > 0) and the string ID1 # ... # 
ID, # on Tape 2, where ID,, is the initial instantaneous description of M1 on the input 
and IDr is accepting. n/r, now resets the read-write heads on both Tapes 1 and 2 and reads 
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the tapes in synchrony, checking as it does so that for 1 < i < t, IDi (on Tape 2) results 
from ID,_, (on Tape 1) under the rules of Mr . If each check succeeds, then ID, ,..., ID, 
represents an accepting computation of M, on the input w and so M, accepts w. If at 
any time a guess is judged to be incorrect, then M, halts in a nonaccepting state. Thus 
M2 is a nondeterministic multiple-reset machine and L(M,) = L(M,) = L, . Note that 
if M, operates in time!(n) then for each string w in L, there is an accepting computation 
of M, on input w with at most 2(f(l w 1) + 1)2 steps. 1 

From Theorem 3.1 we see that a class of multiple-reset machines must be restricted 
in some way if the languages accepted by the machines in the class are required to be 
recursive. Therefore we consider time-bounded multiple-reset machines, restricting 
attention in this section to the cases of real time and linear time. 

Consider a nondeterministic multiple-reset machine that operates in real time. If it 
has K reset tapes as work tapes, then the “multitape representation theorem” of [ 131 
(see Lemma 1.2 of [6] f or a simple version and informal proof) shows how to characterize 
the language accepted by that machine in terms of K single-reset languages. 

3.2. THEOREM. For every k >, 1, a language L is accepted in real time by a nondeter- 
ministic acceptor with k reset tapes as work tapes if and only if there exist k single-reset 
languages L, ,.. ., L, and a length-preserving homomorphism h such that L is the image of 
the intersection of L, ,..., L, under h, i.e., L = h(L, n .*. n L,J. 

From Theorem 3.1 and the “multitape representation theorem”, we have the following 
fact. 

3.3. THEOREM. A language L is recursively enumerable if and only if there exist two 
single-reset languages L, and L, and a homomorphism h such that h(L, n L,) = L. 

Let MULTI-RESET denote the class of languages accepted in real time by nondeter- 
ministic multiple-reset machines. 

From the representation of languages accepted in real time by multiple-reset machines 
given in Theorem 3.2, various properties of the class MULTI-RESET follow from general 
results [S, 131. S ome of these properties are summarized in the following way. 

3.4. THEOREM. The class MULTI-RESET is closed under union, intersection, inverse 
homomorphism, nonerasing homomorphism, and reversal. It is the smallest semiAFL that 
is closed under intersection and contains the language COPY. 

For certain types of multitape acceptors linear time is no more powerful than real 
time (e.g., nondeterministic Turing machines [4] and nondeterministic reversal-bounded 
machines [6]). It is natural to ask whether the class of nondeterministic multiple-reset 
machines has the same property. The answer is affirmative. 

3.5. THEOREM. If M1 is a multiple-reset machine that operates in linear time, then there 
is a multiple-reset machine M2 such that M, operates in real time and L(M,) = L(M1). 
Thus, for the class of multiple-reset machines, linear time is no more powerful than real time. 
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Proof. Let Ml be a multiple-reset machine that has k single-reset tapes as work 
tapes and that runs in time tn where t > 1. From Ml we construct a machine Ms with 
k + 4 single-reset tapes as work tapes. Each computation of M, will attempt to simulate 
an accepting computation of Ml and will use four tapes, say Tapes l-4, for “bookkeeping” 
purposes and will use k tapes, say Tapes 5-k + 4, to simulate the k tapes of Ml . 
During an accepting computation, described below, M, guesses a compressed version 
of its input string, tests whether Ml accepts it and verifies that the guessed and actual 
input are the same. 

Let p = 2t + 4. 

Phase 1. Initially, M, reads its input tape and copies this input onto Tape 1. However, 
M, stores p symbols per tape square on Tape 1 while reading one symbol per tape square 
from the input tape. Simultaneously, Me nondeterministically guesses a string, say 

4 **. b, , and stores it on each of Tapes 2, 3, and 4, writing p symbols on each tape 
square. In addition, M, guesses a distinguished position in the copies of this string on 
Tapes 3 and 4 and marks that symbol. Let us say that the marked symbol is bi . (The 
marked symbol is a guess of the middle of the computation.) After making the guess of 

4 ..a b, , the read-write heads on Tapes 2-4 are reset. During this phase there is no 
activity on Tapes 5-k + 4; the total time for this phase is /-‘r/p1 steps. 

Phase 2. Using the contents of Tape 2 (the compressed version of b, **a b,) as input, 
Mz now uses Tapes 5-k + 4 to simulate a computation of Ml . Since one tape square 
of Tape 2 contains p symbols, this simulation can be “sped up” so that the total time 
is at most rtr/pl. During this phase M, continues to read input at the rate of one 
symbol per step and to store this input on Tape 1 with p symbols being stored in each 
tape square. If the computation of Ml that is simulated is an accepting computation 
(so that Ml accepts bl .a* b,), then M, goes on to Phase 3; otherwise, M, transfers into a 
nonaccepting “dead” state. 

Phase 3. Recall that the contents of Tapes 3 and 4 are identical, both containing 
b, ... b, with p symbols per tape square and the symbol bj marked. To begin this phase, 
M, reads Tape 3 one tape square per step until the square containing the marked symbol 
is scanned. Until that square is scanned, M, continues to read from its input tape and 
store that input on Tape 1, still compressed by p. When M, scans the tape square of 
Tape 3 containing bj , then M, ceases to copy the input onto Tape 1 and begins to compare 
the remaining input with the remainder bj+l *.. b, of the “guessed” string on Tape 3. 
At that point the read-write head cf Tape I is reset and the contents of Tapes 1 and 4 
are compared one tape square per step. If the contents of Tapes 1 and 4 agree up to the 
marked symbol bj , then the actual input string has bl ..a bj as a prefix. If the contents 
of Tape 3 agrees with the remainder of the input, then the entire input string is b, *‘. b, . 
Since b, *.. b, is accepted by Ml , M, accepts. 

Clearly M, is a multiple-reset machine. Since M, was forced to read a new input 
symbol at each step, M, operates in real time. We must verify that Mz has enough time 
in an accepting computation to make the guess, simulate Ml on the guess, and check 
whether the guess is correct. 
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Assuming that 4 *a* b, is the actual input to M, , Phase 1 takes rr/pl steps and Phase 2 
takes at most rtr/Pi steps. During Phase 3 Ma must move across Tape 3 until the 
square containing bj is scanned and this action takes rj/pi steps. Then 1Ma must 
compare Tapes 1 and 4 before the remainder of the input is read. Comparing Tapes 1 
and 4 takes rj/pl steps. Thus the following inequality must be satisfied: 

It is also necessary that the jth symbol of the actual input not be read until the head on 
Tape 3 reaches the marked symbol in Phase 3, or 

rdpi + rtdpi + G/p1 <j. 
For j = LY/~_I and p = 2t + 4, these inequalities are satisfied for all but a finite 
number of input strings. 

The machine Ma is a nondeterministic multiple-reset machine that operates in real 
time such that L(M,) = L(M,). 1 

From Theorem 3.5 the following fact is immediate. 

3.6. COROLLARY. The class MULTI-RESET is closed under linear erasing. 

The fact that MULTI-RESET is closed under linear erasing, or equivalently, that 
linear time is no more powerful than real time for the class of multiple-reset machines, 
suggests that MULTI-RESET may have another interesting property. Recall that, for 
example, a language L is accepted in linear time by a nondeterministic multitape Turing 
machine if and only if L is accepted in real time by a nondeterministic Turing machine 
with just three pushdown stores as work tapes [4]. If the original linear-time machine is 
reversal-bounded, then the real time machine is also reversal-bounded [6]. The analogous 
statement about multiple reset machines is also true. 

3.1. THEOREM. Let L be a language. The following are equivalent: 

(i) L is accepted in linear time by a nondeterministic multiple-reset machine; 

(ii) L is accepted in real time by a nondeterministic machine with three single-reset 
tapes as storage tapes; 

(iii) There exist single-reset languages L, ,..., L, and a homomorphism h such that h is 
linear-erasing on L, n *** n L, and h(L, n .*. n L,) = L; 

(iv) There exist single-reset languages L, , L, , L3 and a nonerasing homomorphism h 
such that h(L, n L, n L3) = L. 

The proof of Theorem 3.7 is deferred until Section 6; Theorem 3.7 is a corollary of 
Theorem 6.5. 

Notation. Let COPY * = {x1x1$ a*- x,x,$ j m >, 0, each xi E {a, b}*}. 
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3.8. THEOREM. The class MULTI-RESET is closed under Kleene* and under e-free 
substitution. 

Proof. If MULTI-RESET is closed under Kleene*, then with the properties it 
already possesses by virtue of Theorem 3.4 MULTI-RESET is an AFL. An AFL that is 
closed under intersection is also closed under e-free substitution, so it suffices to show 
that MULTI-RESET is closed under Kleene*. 

Since MULTI-RESET is the smallest semiAFL that is closed under intersection and 
contains the language COPY, to show that MULTI-RESET is closed under Kleene* 
it is sufficient to show that the language COPY* is in MULTI-RESET [9]. 

Consider a nondeterministic acceptor M that operates in the following way. On reading 
input w E {a, b, $}*, M reads a portion ui E {a, b}* of the input and copies this onto Tape 1. 
Guessing that u, is the “first half” of a string in COPY, M reads the next portion v,~{a, b}* 
of the input and copies v1 onto Tape 2. When M encounters the first occurrence of 8, 
it copies $ onto both Tapes 1 and 2 and treats the next portion us E {a, b>* of the input 
as if it were the “first half” of a string in COPY and copies us onto Tape 1. Then M 
reads the next portion v, E {a, b}* of the input, recording v, on Tape 2 until the next 
occurrence of $ is read. Continuing in this way, M has written ui$ ~$8 .*. u,,$ on Tape 1 
and ~96 ~$3 .*. v,$ on Tape 2 when the entire input string has been read and the input 
string was u,v,$ -1. u,v,$. At this time M resets the heads of Tapes 1 and 2 and reads 
the two tapes simultaneously, attempting to match each string ui on Tape 1 with the 
corresponding vi on Tape 2. If for each i = l,..., m, M finds that ui = vi , then M 
accepts the input string. 

Clearly M is a multiple-reset machine that runs in time 2n and L(M) = COPY*. 
Since MULTI-RESET is closed under linear erasing, this means that COPY* is in 
MULTI-RESET. 1 

From Theorems 3.7 and 3.8 we see that a real time nondeterministic multiple-reset 
machine can simulate another that makes an unbounded number of independent 
“comparisons” by making only one reset on each of three tapes. 

The reader should note that all of the properties of MULTI-RESET described in this 
section with the exception of closure under Kleene* and e-free substitution are also 
properties of the class _YBNP . A direct comparison of MULTI-RESET and -EpBNP is made 
in the next section. 

4 

In this sectionwe point out some relationships between the class of single-reset languages 
and certain other classes of languages. 

Recall from Section 2 that the class of single-reset languages is the smallest (full) 
semiAFL containing the language COPY. Hence we refer to this class as &(COPY). 
Similarly the class of linear context-free languages is the smallest (full) semiAFL containing 
the language PAL, and so we refer to this class as d(PAL). 

It is known [15] that the classes &(COPY) and &‘(PAL) are not comparable since 
PAL $ &‘(COPY) and COPY 4 &(PAL). Th us we are interested in the intersection of 
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these two classes. Clearly, {u”bn ( n 3 0} is in &(PAL) n A’(COPY) and so &({&P 1 
n 3 0)) C &(PAL) n d(COPY). 

The class &({a”bn / n >, 0}) is th e c ass 1 of languages accepted by nondeterministic 
machines with a one-way input tape and auxiliary storage consisting of a single counter 
that makes at most one reversal or, equivalently in the case of counters, makes at most 
one reset. A simple “information-content” argument shows that COPY 6 &((unbn 1 
n > 0)) and so we have the following fact. 

4.1. PROPOSITION. Jiq{a"bn j n >O})$ JhqCOPY). 

We do not know whether the inclusion .X({unbn / n > 0)) _C M(COPY) n Jl(PAL) is 
proper or whether there are any context-free languages in .h’(COPY) - k!({unbn 1 
n > O}). We conjecture that both answers are “no.” 

The smallest intersection-closed semiAFL containing {uPzbn 1 n > 0) is closed under 
arbitrary homomorphic mappings [17] but not under Kleene* [I]. Thus, &?‘“,({u”b” / 
n > 0)) g %(&Y,({u”b” / n > O})). w e now show that this implies that ~(_~%‘,({a%~ / 
n > 0))) is not closed under intersection, that is, 9(JZn({unhn 1 n 3 0))) # ~,(J&‘({&” j 

n. > 0))). 
A class G9 of languages is trunsZutubZe if for every L E V and every choice of two symbols 

c, d that do not occur in any string in L, the language {cnwd” / n 3 0, w EL} is in V. 
Clearly any intersection-closed semiAFL that contains {@b” / n > O> is translatable, 

so both &‘J{unbra 1 n 2 0}) and Sn(&‘({u”b” j n > 0})) are translatable. It is known 
[2, IO] that if 9? is a semiAFL with the property that F(g) is translatable, then 9? is an 
AFL, that is, %? = 9(V). Since &‘&{unbn 1 n > 0)) # 9(d,({unblz I n 3 0})), we see that 
9-QZn({unbn / n > 0))) is not translatable. Hence, S(Jl,((u”b” 1 n > 0))) f 
%(d({@b” I n 3 O])) since the latter class is translatable and the former is not. 

From the definitions of the classes, we see that fln({u”b” 1 n > 0}) = 9#l#l(Jt’({u7zb” / 
n 3 0)). Since {unbn I n > 0} is a single-reset language and MULTI-RESET is an AFL 
closed under intersection, we see that S$J{unbn ( n 3 0)) C MULTI-RESET. Again, 
using. a simple “information-content” argument, one can show that COPY is not in 
pn({unbn 1 n >, 0}) so that 9$,((u”b” I n > 0)) # MULTI-RESET. 

4.2. PROPOSITION. ~(~,-,(W@ In 3 0))) is not trunshztuble and &ln({unbn I n > 0)) 2 
9(MJ(unbn I n >, 0))) S; Sn({u”b” I n 3 0)) g MULTI-RESET. 

How do MULTI-RESET and gB,, compare ? Since P’,‘,,v,, is the smallest intersection- 
closed semiAFL containing the language PAL, we see that PBNP C MULTI-RESET if 
and only if PAL E MULTI-RESET and that MULTI-RESET _C _YZ& if and only if 
COPY E .S?BNP . It is easy to construct a nondeterministic reversal-bounded machine that 
runs in linear time and recognizes COPY so that MULTI-RESET C gBNP . As shown 
in Section 3, MULTI-RESET is closed under Kleene* but it is conjectured in [5] that 
9 BNP is not closed under Kleene*. We conjecture that PAL $ MULTI-RESET and 
that MULTI-RESET $Z dpBNP. 

Summing up the inclusions discussed above we have the following fact. 
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4.3. PROPOSITION. MULTI-RESET C YsNP 

Recall that a language is context-free if and only if it is accepted in real time by a 
nondeterministic pushdown store acceptor. Let D be a nondeterministic pushdown 
store acceptor that runs in real time and let w be a string accepted by D. For any accepting 
computation of D on w, there is a sequence yr , yz ,..., ylWl of strings representing the 
successive pushdown store contents in this computation, and for each yi in this sequence, 
1 yt / < 1 w I. Hence a nondeterministic machine IM with two single-reset tapes as aux- 
iliary storage can simulate computations of D by first “guessing” the sequence of 
pushdown store contents and then “checking” to see if each guess of a string in the 
sequence follows from the previous string in a computation of D. Then L(M) = L(D) 
and an accepting computation of M on a string w takes at most 2 1 w I2 steps. Combining 
this argument with “compression” techniques yields the following fact. 

4.4. PROPOSITION. If L is a context-free language, then there is a nondeterministic 
machine M with two single-reset tapes as auxiliary storage szcch that L(M) = L and M 
accepts in time 9. Equivalently, for every context-free language L, there is a language 
L, E MULTI-RESET and a homomorphism h such that h(L,) = L, and for all w EL, , 

I w I G I hW12. 

Recall that a quasi-realtime language is one accepted in real time by a nondeterministic 
multitape Turing machine, and that a language L is quasi-realtime if and only if there 
exist context-free languages L, , L, , L, and a nonerasing homomorphism h such that 
h(L, IT L, n L,) = L [4]. Let 9 be the class of languages accepted by nondeterministic 
machines with some finite number of single-reset tapes as auxiliary storage and which 
operate in time n2. Clearly _!Y is closed under intersection and nonerasing homomorphism, 
so that from Proposition 4.4 we conclude that every quasi-realtime language is in 9. 

The image of the class of quasi-realtime languages under polynomial-erasing homo- 
morphism is clearly equal to the class NP of languages accepted in polynomial time by 
nondeterministic Turing machines. Thus the image of the class MULTI-RESET under 
polynomial-erasing homomorphism is the class NP. Similarly the image of the class 
MULTI-RESET under arbitrary homomorphic mappings is the class RE of recursively 
enumerable (r.e.) sets. Note that 9ehip has these same properties, i.e., the image of 
9 BA,P under polynomial-erasing homomorphism is NP and the image of 9& under 
arbitrary homomorphism is the class of r.e. sets. 

Notation. For any class %? of languages, Z&&Z) is the image of Q under polynomial- 
erasing homomorphism and A(V) is the image of Q under arbitrary homomorphic 
mappings. 

4.5. PROPOSITION. H,,,,(MULTI-RESET) = Hp0ru(9&,) = NP and fi(MULTI- 
RESET) = ff(9&,) = RE. 

It is known that the smallest intersection-closed full semiAFL containing {aW ( n > 0) 
is not closed under Kleene*. Thus in contrast with Propositions 4.1-4.3 we have the 
following fact. 
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4.6. PROPOSITION. J&({uW j n >, 0)) $ S~((UW j n 3 0)) = ~,(COPY) = 
k,(PAL) = RE. 

5 

In this section MULTI-RESET is characterized algebraically in terms of a restricted 
form of homomorphic duplication. This leads to considering classes of languages specified 
by certain types of Turing machines. 

A class V of languages is closed under nonerasing (linear-erasing, polynomial-erasing) 
homomorphic duplication if for every L E %, every n > 1, and every n homomorphisms 
h 1 ,..., h, each of which is nonerasing (respectively, linear-erasing on L, polynomial- 
erasing on L), the language (p; h, ,..., h,) (L) is in %? where p(i) = 1 for each i. 

From Proposition 2.4 and Theorem 3.4, we obtain a characterization of the class 
MULTI-RESET that is similar to the characterization of 9s,, given by Theorem 4.1 
of [3]. 

5.1. THEOREM. The class MULTI-RESET is the smallest class of languages containing 
all of the regular sets and closed under intersection and linear-erasing homomorphic duplica- 
tion. It is the smallest nonempty class that is closed under intersection, inverse homomorphism, 
intersection with regular sets, and nonerasing homomorphic duplication, that is, the class 
MULTI-RESET is the smallest semiAFL containing {e} that is closed under intersection 
and nonerasing homomorphic duplication. 

Proof. Clearly, MULTI-RESET contains all of the regular sets and is closed under 
intersection. Based on the proof of Theorem 4.1 of [3], it is easy to see that MULTI- 
RESET is closed under linear-erasing homomorphic duplication. 

Let 9 be the smallest class of languages containing all of the regular sets and closed 
under intersection and linear-erasing homomorphic duplication. From the remarks 
above, 9 5: MULTI-RESET. From Proposition 2.4 we see that every single-reset 
language is in 6;4. From Theorem 3.7 we see that every language in MULTI-RESET 
can be expressed as the nonerasing homomorphic image of three single-reset languages. 
Since _Y is closed under intersection and nonerasing homomorphism, every language in 
MULTI-RESET is in 9’. 

The other characterizations are obtained similarly, using Theorem 2.3. 1 

As was discussed in Section 4, the smallest intersection-closed full semiAFL containing 
the language COPY is the class of r.e. sets, and the closure of MULTI-RESET under 
arbitrary homomorphic mappings is the class of r.e. sets. Using this fact and Theorem 5. I, 
we obtain the following result. 

5.2. COROLLARY. The class of r.e. sets is the smallest class of languages containing the 
regular sets and closed under intersection and homomorphic duplication. It is the smallest 
nonempty class that is closed under intersection, inverse homomorphism, intersection with 
regular sets, and homomorphic duplication, that is, the class of r.e. sets is the smallest (full) 
semiAFL that is closed under intersection and homomorphic duplication. 
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Similarly, recall from Section 4 that the class NP is the smallest semiAFL containing 
COPY and closed under intersection and polynomial-erasing. This leads to the following 
result. 

5.3. COROLLARY. The class NP is the smallest class of languages containing the regular 
sets and closed under intersection and polynomial-erasing homomorphic duplication. It is 
the smallest nonempty class that is closed under intersection, inverse homomorphism, inter- 
section with regular sets, andpolynomial-erasing homomorphic duplication, that is, the class NP 
is the smallest semiAFL that is closed under intersection and polynomial-erasing homomorphic 
duplication. 

Theorem 5.1 and Corollaries 5.2 and 5.3 are similar to the results developed in [3] 

for DEPBNp and the operation of homomorphic replication. 
Now we consider “oracle” machines. 
An oracle machine is a multitape Turing machine M with a distinguished work tape, 

the query tape, and three distinguished states, qr , qyes , qno . At any step of a computation 
on an input string w, M may transfer into the state qr . From state q? M transfers into 
the state qyes if the string currently appearing on the query tape is in a given oracle set A; 
otherwise, M transfers into the state qnO; in either case the query tape is (instantly) erased. 
The set of strings accepted by M relative to the oracle set A is L(M, A) = (w 1 there 
is an accepting computation of M on input w when the oracle set is A}. 

The following “representation lemma” is established in [7]. 

5.4. LEMMA. Let M be an oracle machine that runs in time t(n) and has tape alphabet A. 
There exist homomorphic h, and h, and a language LM such that (i) for any oracle set A C A*, 
L(M, A) = h,(L, n h,l((cA u d(A* - A))*)) w ere h c and d are two symbols not in 
A, (ii) LM is accepted in linear time by a deterministic multitape Turing machine, and (iii) for 
allwELM, I w I < t(l h,(w)l). 

This lemma and Theorem 5.1 provide the basis for characterizations of several classes 
of languages specified by oracle machines. First, consider the class of languages that are 
“recursively enumerable in A.” 

For any language A, the class RE(A) of languages that are recursively enumerable in A 
is the class of all languages accepted by unrestricted oracle machines that have oracle 
set A. 

Notation. If A is a language and Z is the smallest (finite) alphabet such that A C E*, 
then let 3 = .Z* - A. If A, B C Z*, then let A 0 B = CA u dB where c, d are two 
symbols not in Z. 

5.5. THEOREM. For any language A, the class RE(A) is the smallest class of languages 
containing the regular sets and the language (A @ A)* and closed under intersection, inverse 
homomorphism, and homomorphic duplication. It is the smallest class containing (A @ A)* 
that is closed under intersection, inverse homomorphism, intersection with regular sets, and 
homomorphic duplication, that is, the class RE(A) is the smallest (full) semiAFL containing 
(A @ A)* that is closed under intersection and homomorphic duplication. 
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Proof. For any language A, let 2(A) be the smallest class of languages containing 
the regular sets and (A @ A)* and closed under intersection, inverse homomorphism, 
and homomorphic duplication. 

It is clear that RE(A) contains (A @ A)* and the regular sets and that RE(A) is closed 
under intersection, inverse homomorphism, and homomorphic duplication. Since 9(A) 
was chosen to be the smallest such class, Y(A) C RE(A). 

Consider any L E R,!?(A). F rom Lemma 5.4 we see that there exist homomorphisms 
h, and h, and a language L, such that L = h,(L,,, n h;‘((A @ A)*)) and L, is accepted 
in linear time by a deterministic multitape Turing machine. Since B(A) contains the 
regular sets and is closed under intersection and homomorphic duplication, it follows 
from Corollary 5.3 that every r.e. set is in P(A); hence, L, E 9(A). By definition, 
(A @ J)* is in 9(A) and Z’(A) is closed under inverse homomorphism so that 
h,l((A @ A)*) E Y(A). S’ mce Z’(A) is closed under intersection, L, n h;‘((A @ A)*) E 
Z(A). Since _%‘(A) is closed under homomorphic duplication, h,(L, n h;‘((A @ A)*)) E 
9(A) so that L E 3(A). Since L was taken arbitrarily from RE(,4), this shows that 
RE(A) c 2(A). 

The other characterizations follow immediately. 1 

5.6. THEOREM. For any language A the class NP(A) of languages that are nondeter- 
ministic polynomial time in A is the smallest class of languages containing (A @ A)* and 
the regular sets and closed under intersection andpolynomial-erasing homomorphic duplication. 

Theorems 5.5 and 5.6 are similar to results in [3, 71. Characterizations similar to 
those in [3, 71, but using homomorphic duplication instead of homomorphic replication, 
can be developed for the class of arithmetical sets, the class of rudimentary languages 
the class of extended rudimentary languages, the class of elementary languages, the class 
of primitive recursive languages, the class of recursive languages, and their appropriate 
relativizations. 

We conclude this section with several results describing the closure under intersection 
and homomorphic duplication of certain classes of languages. 

5.7. THEOREM. Let % be a class of languages containing the regular sets and closed 
under inverse homomorphism and marked concatenation. The class {h(L, n L,) / L, E %?, 
L, E MULTI-RESET, and h is a nonerasing homomorphism} is the smallest class containing 
all languages in %? and all regular sets and closed under intersection and linear-erasing 
homomorphic duplication. 

Sketch of the proof. The techniques needed are those used in [5]. The following 
facts lead to the proof. Let 2 = {h(L, n L,) j L, E %?, L, E MULTI-RESET, and h 
is a nonerasing homomorphism}. 

(1) If L E %? and h is a homomorphism that is linear-erasing on L, then there exist 
homomorphisms f and g with f length-preserving, and a language L, E MULTI-RESET 
such that h(L) = f (g-l(L) n L,). 
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(2) For any K 3 1 and any choice of L, ,..., L, E %, there exist a language C E V, 
single-reset languages Iw, and M, , and a homomorphism h such that h(C n MI n M,) = 

L, n 1.. n L, and h is linear-erasing on C n MI n M, . 

(3) The class ?Z is closed under intersection and linear-erasing homomorphism. 

(4) The class _Y is closed under linear-erasing homomorphic duplication. 1 

5.8. COROLLARY. Let g be a class of languages containing the regular sets and closed 
under inverse homomorphism and marked concatenation. The class (h(L, n L,) 1 L, E %7, 
L, E MULTI-RESET, and h is a homomorphism (that is polynomial-erasing on L, n L,)} 
is the smallest class containing all languages in V and all regular sets and closed under inter- 
section and homomorphic duplication (resp., polynomial-erasing homomorphic duplication). 

5.9. COROLLARY. Any semiAFL containing COPY and closed under intersection is 
closed under linear erasing. 

6 

Recall from Theorem 3.8 that MULTI-RESET is closed under Kleene*, even though 
any multiple-reset machine has only a fixed number of tapes and each tape can make only 
one reset. Since accepting a language L* given a machine for L might involve checking 
segments of the input independently and there is no bound on the number of segments, 
there should be a generalization of reset tapes (and corresponding generalization of 
COPY, the generator of MULTI-RESET) that removes the restriction to one reset 
per tape, allowing an unbounded number of “comparisons,” but which has no greater 
power when multiple tapes are allowed. 

The obvious method, in this context, for generalizing COPY is to take a Kleene* or 
marked Kleene* and this is the language COPY* = {x1x1$ *a* x,x,$ 1 m 3 0, xi ~{a, b}*}. 
If we interpret COPY as signifying “compare one pair of strings,” then COPY* signifies 
“compare many pairs of strings, independently.” The corresponding storage structure, 
as can be deduced from general principles [9], is one that acts like a reset tape between 
“initializations.” 

A reusable reset tape is a reset tape for which, in addition, the head may be repositioned 
to the left end of the tape. This action causes the entire tape to be erased, reinitializing 
it to the empty tape. 

To extend the definitions of single-reset and multiple-reset machines, one considers 
nondeterministic machines with a one-way input tape, a finite state control and reusable 
reset tapes as auxiliary storage. No bound is placed on the number of times the head on 
a reusable tape can be repositioned; an accepting configuration is reached when the work 
tapes are empty and the machine is in an accepting state. 

The following characterizations are straightforward applications of basic results in AFL 
theory. 

6.1. PROPOSITION. (1) Th e c ass o 1 fl g g an ua es accepted in real time by nondeterministic 
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machines with one reusable reset tape is precisely the semiAFL generated by COPY* (i.e., 
the smallest class of languages containing COPY* and closed under nonerasing homomorphism, 
inverse homomorphism, union, and intersection with regular sets), and the AFL generated by 
COPY. 

(2) The class of languages accepted in real time by nondeterministic machines with 
multiple reusable reset tapes is precisely the intersection-closed SemiAFLgenerated by COPY*. 

Now COPY can also be interpreted as signifying “test that two strings are equal.” 
It can therefore be generalized by a language that tests that “many strings are equal.” 

Notation. Let *COPY = ((x$)” 1 m > 0, x E {a, b}*). 
The storage structure corresponding to *COPY is a tape that can only be read and 

that is read from left to right in full sweeps. 
A circular tape has a read-write head that moves only from left to right but may be 

reset to the left end when the right end is reached; the string written on the tape during 
the first pass determines the length of tape used thereafter. If the instructions allow 
symbols on the tape to be changed then the tape is writing and otherwise it is nonwriting. 
(Thus a nonwriting circular tape is like a checking stack with restricted head movement.) 
Since the head is required to make full sweeps, an accepting configuration for a circular 
tape is reached only when the head is on the rightmost symbol of the tape contents. 

Note that a reset tape is essentially a nonwriting circular tape on which the head makes 
only two sweeps. 

6.2. PROPOSITION. (1) Th e c ass o 1 fl g g an ua es accepted in real time by nondeterministic 
machines with one nonwriting circular tape as work tape is precisely the semiAFL generated 
by *COPY. 

(2) The class of languages accepted in real time by nondeterministic machines with 
multiple nonwriting circular tapes as work tapes is precisely the intersection-closed semiAFL 
generated by *COPY. 

The analog of Proposition 6.2 for writing circular tapes uses a language in which the 
strings to be compared are overlapped in a certain way. 

.Votation. (1) For strings X, y E S* of the same length, the parallel pairing of x with 
yisastringix,y)in(S~S)*:ifx=x,...x,andy=y,.,.y,withnbO,eachx~ 
and yi in S, then (x, y) = [x1 , yJ ... [xn , y,J where [xi, yi] E S x S. 

(2) Let SHIFT = {(wl, w2> $ (w2, w3) 96 ... $ (w~_~, w,> $ I m >, 2, ZQE@, b}*, 

iwl! =-iw2i =...=jwmI}U{e}. 

6.3. PROPOSITION. (1) The class of languages accepted in real time by nondeterministic 
machines with one writing circular tape as work tape is precisely the semiAFL generated by 
SHIFT. 

(2) The class of languages accepted in real time by nondeterministic machines with 
multiple writing circular tapes as work tapes is precisely the intersection-closed semiAFL 
generated by SHIFT. 

571/19/3-s 
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As was seen in Section 3, COPY* is in MULTI-RESET; it is not difficult to see that 
*COPY and SHIFT can be accepted by nondeterministic machines, each with two reset 
tapes, that operate in linear time, so also *COPY and SHIFT are in MULTI-RESET. 
(One reset tape is not sufficient, as is discussed in [14].) Hence the classes of languages 
accepted in linear time by nondeterministic machines with multiple reusable reset tapes 
or circular tapes are in fact all equal to MULTI-RESET. Based on results in Section 5 
we see that any language in NP can be accepted in polynomial time by a nondeterministic 
machine with some number of nonwriting circular tapes, and any recursively enumerable 
set can be accepted by a nondeterministic machine with some number of nonwriting 
circular tapes (that operates without time bound). Analogous statements hold for reusable 
reset tapes and writing circular tapes. 

Use of the storage structures described above allows us to prove the result on which 
Theorem 3.7 (three single-reset tapes are sufficient for a multiple-reset machine) is 
based. The result follows once the next lemma is established. 

6.4. LEMMA. Suppose k > 1 and L, ,.. . , L, are single-reset languages. Then there is a 
nondeterministic machine with one reset tape and one nonwriting circular tape that accepts 

L, n *a* I3 L, in real time. 

Proof. For 1 < i < k let Ma be a single-reset machine accepting Li _C .Z* in real time. 
We may assume that Mi writes at most one symbol on its tape in any step. 

We will describe the operation of a nondeterministic machine M with a nonwriting 
circular tape (called Tape 1) and a reset tape (Tape 2) such that M operates in real time 
andL(M)=L,n...nL,. On its first sweep of Tape 1, M will write a string with 
2k + 4 tracks, of the following form. The first track contains a string xy where x (respec- 
tively, y) is a string from Z* compressed to 4k + 4 symbols per square, with the last 
symbol in x (respectively, y) possibly containing 6k + 6 symbols from Z (respectively, 
between 2k + 2 and 8k + 7 symbols). The string xy will be used as input to Ml ,..., Mk 
so k of the symbols from .Z within xy are marked to indicate the steps in which the single- 
reset machines make their resets. The second track on Tape 1 contains, right justified, 
a string f of the same form as x with 1 y 1 - 1 < 1 f 1 & I y I. The remaining tracks 
contain wi ,..., wak+a E Z* with I wi I = / xy I. Thus Tape 1 contains 

x Y 
% 

Wl 

where x, y, f are compressed. 
Let u be the homomorphism that “uncompresses” strings, so that, e.g., u(xy) E .Z*. 
The operation of M has five phases. 

Phase 1. To begin, M makes k sweeps of Tape 1. In the ith sweep, M checks that 

its actual input is wi and uses xy as the input to Mi, simulating Mj on u(xy) up to the 
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step in which it would reset and writing a string .zi on Tape 2 to record the string n/r, 
would write on its tape. Each zi is compressed (to correspond to the compression of xy) 
and has its last symbol to separate it from zi+r . After the Kth sweep Tape 1 is reset. 

Phase 2. In this phase M checks that the next portion of the input is w,;+r while copying 
the first two tracks of Tape 1 onto Tape 2. Tape 2 will then contain 

Both tapes are now reset. 

*l% ‘.. Bk x y. 
5 

Phase 3. Now M makes another K sweeps of Tape 1. In the ith sweep, M compares 
~~+~+i to the actual input being read and uses the end of xy (after the marker for Mi’s 
reset) and the string zi written in Phase 1 to simulate the behavior of Mi after its reset, 
checking that an accepting state is reached. Tape 1 is reset after the Kth sweep. 

Phase 4. Tape 2 now contains only 

XY _ 
x. 

M checks that the input being read is wsk+a and, when the start of x on Tape 1 is reached, 
compares that f to the x written on Tape 2, to check that x = f, Tape 1 is then reset. 

Phase 5. Finally, M makes 2K + 2 sweeps of Tape 1 and finishes reading Tape 2 
and the input, checking that wr -0. wsk+s = u(a) and that the remaining input is u(y) 
(using f and y on Tape 2). If all the comparisons and the computations of the Mi’s have 
been successful, then M accepts the input. 

Note that M makes only 4k + 4 sweeps of Tape 1. 
To see that M accepts exactly L, n .** AL, , first suppose that M accepts an input z’ 

after writing xy, 5, and wi ,..., wsk+s on Tape 1. Then v = wr ... wzlc+s u(y), and ~(3) = 

w1 *** W2k+2 (from Phase 5) and x = f (from Phase 4), so ZI = zr(xy). But from Phases 1 
and 3, each Mi accepts u(xy), so w ELM n ... AL, . Conversely, if v ELM n ..’ n L,. 
then it is possible to construct properly compressed strings x, y such that u(xy) = 71, 
~yj-l1lxlI~yy,/xyI=LIv1/4K+4J,andu(x)=w,...w,,+,withIwi/=: 
L-1 v (/4K + 4 J = / xy I. Then M can accept o by writing xy, X= x, and wr ,..., ~a~+~ 
onTape1. 1 

6.5. THEOREM. For any language L the following are equivalent. 

(1) L E MULTI-RESET. 

(2) L can be accepted in real time by a nondeterministic machine with one reset tape 
and one nonwriting circular tape. 

(3) L is the image under a nonerasing homomorphism of the intersection of a single-reset 
language and a language in the semiAFL generated by *COPY. 
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(4) L can be accepted in real time by a nondeterministic machine with three reset tapes. 

(5) L is the image under a nonerasing homomorphism of the intersection of three single- 
reset languages. 

Proof. Standard techniques can be used to show that (2) is equivalent to (3) and that 
(4) is equivalent to (5) [8, 131. Clearly (5) implies (1). If L E MULTI-RESET, then L 
is the image under a nonerasing homomorphism of the intersection of some number of 
single-reset languages, so from Lemma 6.4 and the fact that the class of languages accepted 
by the hybrid machines of (2) is closed under nonerasing homomorphism, (1) implies (2). 
To see that (3) implies (4), note that *COPY can be accepted in real time by a non- 
deterministic machine with two reset tapes, and so any language in A(*COPY) can be 
so accepted. A simple construction then shows that the class of languages described in (4) 
contains any language that is the intersection of a single-reset language and a language 
in .,Jl(*COPY). Since the class of languages in (4) is closed under nonerasing homo- 
morphism, it follows that (3) implies (4). 1 
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