151 research outputs found

    Improving Flood Detection and Monitoring through Remote Sensing

    Get PDF
    As climate-change- and human-induced floods inflict increasing costs upon the planet, both in terms of lives and environmental damage, flood monitoring tools derived from remote sensing platforms have undergone improvements in their performance and capabilities in terms of spectral, spatial and temporal extents and resolutions. Such improvements raise new challenges connected to data analysis and interpretation, in terms of, e.g., effectively discerning the presence of floodwaters in different land-cover types and environmental conditions or refining the accuracy of detection algorithms. In this sense, high expectations are placed on new methods that integrate information obtained from multiple techniques, platforms, sensors, bands and acquisition times. Moreover, the assessment of such techniques strongly benefits from collaboration with hydrological and/or hydraulic modeling of the evolution of flood events. The aim of this Special Issue is to provide an overview of recent advancements in the state of the art of flood monitoring methods and techniques derived from remotely sensed data

    Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and hurricane harvey as a test case

    Get PDF
    This paper presents an automatic algorithm for mapping floods. Its main characteristic is that it can detect not only inundated bare soils, but also floodwater in urban areas. The synthetic aperture radar (SAR) observations of the flood that hit the city of Houston (Texas) following the landfall of Hurricane Harvey in 2017 are used to apply and validate the algorithm. The latter consists of a two-step approach that first uses the SAR data to identify buildings and then takes advantage of the Interferometric SAR coherence feature to detect the presence of floodwater in urbanized areas. The preliminary detection of buildings is a pre-requisite for focusing the analysis on the most risk-prone areas. Data provided by the Sentinel-1 mission acquired in both Strip Map and Interferometric Wide Swath modes were used, with a geometric resolution of 5 m and 20 m, respectively. Furthermore, the coherence-based algorithm takes full advantage of the Sentinel-1 mission's six-day repeat cycle, thereby providing an unprecedented possibility to develop an automatic, high-frequency algorithm for detecting floodwater in urban areas. The results for the Houston case study have been qualitatively evaluated through very-high-resolution optical images acquired almost simultaneously with SAR, crowdsourcing points derived by photointerpretation from Digital Globe and Federal Emergency Management Agency's (FEMA) inundation model over the area. For the first time the comparison with independent data shows that the proposed approach can map flooded urban areas with high accuracy using SAR data from the Sentinel-1 satellite mission

    Flood mapping in vegetated areas using an unsupervised clustering approach on Sentinel-1 and-2 imagery

    Get PDF
    The European Space Agency's Sentinel-1 constellation provides timely and freely available dual-polarized C-band Synthetic Aperture Radar (SAR) imagery. The launch of these and other SAR sensors has boosted the field of SAR-based flood mapping. However, flood mapping in vegetated areas remains a topic under investigation, as backscatter is the result of a complex mixture of backscattering mechanisms and strongly depends on the wave and vegetation characteristics. In this paper, we present an unsupervised object-based clustering framework capable of mapping flooding in the presence and absence of flooded vegetation based on freely and globally available data only. Based on a SAR image pair, the region of interest is segmented into objects, which are converted to a SAR-optical feature space and clustered using K-means. These clusters are then classified based on automatically determined thresholds, and the resulting classification is refined by means of several region growing post-processing steps. The final outcome discriminates between dry land, permanent water, open flooding, and flooded vegetation. Forested areas, which might hide flooding, are indicated as well. The framework is presented based on four case studies, of which two contain flooded vegetation. For the optimal parameter combination, three-class F1 scores between 0.76 and 0.91 are obtained depending on the case, and the pixel- and object-based thresholding benchmarks are outperformed. Furthermore, this framework allows an easy integration of additional data sources when these become available

    Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications

    Get PDF
    This paper provides an overview of the opportunities that image analysts, archaeologists and conservation scientists currently have to use space-borne Synthetic Aperture Radar (SAR) imagery for prospection of cultural landscapes and investigation of environmental, land surface and anthropogenic processes that can alter the condition of heritage assets. The benefits of the recent developments in SAR satellite sensors towards higher resolution (up to less than 1 m) and shorter revisiting times (up to a few days) are discussed in relation to established techniques using the two key SAR parameters – amplitude and phase. Selected case studies from Middle East to South America illustrate how SAR can be effectively used to detect subtle archaeological features in modern landscapes, monitor historic sites and assess damage in areas of conflict. These examples form the basis to highlight the current trends in archaeological remote sensing based on space-borne SAR data in the era of the European Space Agency's Sentinel-1 constellation and on-demand high resolution space missions such as TerraSAR-X

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschäftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur Unterstützung humanitärer Einsätze. Die jährlich zunehmende Zahl an vertriebenen oder geflüchteten Menschen stellt sowohl Aufnahmeländer als auch humanitäre Organisationen vor große Herausforderungen, da sie oft mit unübersichtlichen Verhältnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von Flüchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlässliche Angaben über Anzahl und Aufenthaltsort der Geflüchteten und ihrer natürlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, während bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfügen gerade Radarsatelliten über Eigenschaften, die hilfreich für humanitäre Einsätze sein können, allen voran ihre Unabhängigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in Krisenfällen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur Unterstützung humanitärer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen für ausgewählte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche Ansprüche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und räumlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von Flüchtlingslagern zur Abschätzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von Flüchtlingslagern aufgezeigt. Darüber hinaus werden existierende oder erprobte Ansätze für die Anwendung im humanitären Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von Flüchtlingslagern, zur Ermittlung von Schäden an Gebäuden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende Abläufe oder Arbeitsroutinen in der humanitären Hilfe anhand technisch vergleichsweise einfacher Ansätze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestützte Kartierung von entlegenen Gebieten zur Unterstützung von Impfkampagnen, die Identifizierung von Veränderungen in Flüchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und Komplexitätsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten für die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstützen. Darüber hinaus wird in dieser Arbeit deutlich, dass Radardaten für humanitäre Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von Oberflächen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, Größe oder Höhe, sind sie optischen Daten überlegen und daher für viele Anwendungsbereiche im Kontext humanitärer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukünftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und Einsatzkräften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein für eine langfristige Integration von Radardaten in operationelle Abläufe dienen, um humanitäre Arbeit zu unterstützen und eine wirksame Hilfe für Menschen in Not ermöglichen

    Mapping the surface water storage variation in densely impounded semi-arid NE Brazil with satellite remote sensing approach

    Get PDF
    Surface water bodies provide vital support to the society and fundamentally affect ecosystems in various manners. Precise knowledge of the spatial extent of surface water bodies (e.g. reservoirs) as well as of the quantity of water they store is necessary for efficient water deployment and understanding of the local hydrology. Remote sensing provides broad opportunities for surface water mapping. The main objectives of this thesis are: 1) delineating surface water area of partly vegetated water bodies only from remote sensing data without field data input; 2) obtaining the surface water storage, and 3) analyzing its spatio-temporal variations for northeastern (NE) Brazil as a representative for a densely dammed semi-arid region. At first, I investigated the potential of digital elevation models (DEMs) generated from TanDEM-X data, which were acquired during the low water level stage, for reservoirs’ bathymetry derivation. I found that the accuracy of such DEMs can reach one meter, both in the absolute and relative respects. It has shown that DEMs derived from TanDEM-X data have great potentials for representing the reservoirs’ bathymetry of temporally dried-out reservoirs. Subsequently, I targeted at developing a method for mapping the water surface beneath canopy independent of field data for further delineation of the effective water surface. Instead of the commonly used backscattering coefficients, I investigated the capability of the Gray-Level Co-Occurrence Matrix (GLCM) texture index to distinguish different types of Radar backscattering taking place in (partly) vegetated reservoirs. This experiment demonstrated that different types of backscattering at the vegetated water surface show distinct statistical characteristics on GLCM variance derived from TerraSAR-X satellite time series data. Furthermore, with the threshold established based on the statistics of the sub-populations dominated by different types of backscattering, the vegetated water surfaces were effectively mapped, and the effective water surface areas were further delineated with an accuracy of 77% to 95%. ii Based on the investigation of the DEMs generated from TanDEM-X data, I derived the formerly unknown bathymetry for 2 105 reservoirs of various sizes in four representative regions of an overall area of 10 000 km2. The spatial distributions of surface water storage capacities in the four regions were subsequently extracted from the combination of the reservoir bathymetry and the water surface extents provided by RapidEye satellite time series. Furthermore, the spatio-temporal variations of surface water storage were derived for the four representative regions on an annual basis in the period of 2009-2017. This study showed that 1) The density of reservoirs in NE Brazil amounts to 0.04-0.23 reservoirs per km2, the corresponding water surface and surface water storage are 1.18-4.13 ha/km2 and 0.01-0.04 hm3 m/km², respectively; 2) On the spatial unit of 5×5 km2, the surface water storage in the region constantly decreased due to a prolonged drought with a rate of 105 m3/year from 2009 to 2017, with a slight increase from 2016 to 2017 in a few reservoirs; 3) Local precipitation deficit controls the variation of the overall surface water storage in the region. In this thesis I demonstrated the great potential of the great potential of SAR and optical satellite time series data for hydrological applications. The method I developed for delineating the effective water extent from the vegetated reservoirs has shown high potential transferability for other similar regions. The data gaps of bathymetry and surface waters storage capacity were filled for 2 105 reservoirs in NE Brazil. The results of the spatio-temporal variations of surface water storage in four representative regions from 2009-2016 can support future water management and improve hydrological prediction in NE Brazil
    corecore