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Abstract: The European Space Agency’s Sentinel-1 constellation provides timely and freely available
dual-polarized C-band Synthetic Aperture Radar (SAR) imagery. The launch of these and other SAR
sensors has boosted the field of SAR-based flood mapping. However, flood mapping in vegetated areas
remains a topic under investigation, as backscatter is the result of a complex mixture of backscattering
mechanisms and strongly depends on the wave and vegetation characteristics. In this paper, we present
an unsupervised object-based clustering framework capable of mapping flooding in the presence
and absence of flooded vegetation based on freely and globally available data only. Based on a SAR
image pair, the region of interest is segmented into objects, which are converted to a SAR-optical
feature space and clustered using K-means. These clusters are then classified based on automatically
determined thresholds, and the resulting classification is refined by means of several region growing
post-processing steps. The final outcome discriminates between dry land, permanent water, open
flooding, and flooded vegetation. Forested areas, which might hide flooding, are indicated as well.
The framework is presented based on four case studies, of which two contain flooded vegetation.
For the optimal parameter combination, three-class F1 scores between 0.76 and 0.91 are obtained
depending on the case, and the pixel- and object-based thresholding benchmarks are outperformed.
Furthermore, this framework allows an easy integration of additional data sources when these
become available.
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1. Introduction

Floods have been, and continue to be, the most occurring of all natural disasters, causing
substantial human and economic losses [1,2]. Moreover, their frequency, intensity, and impacts are
expected to further increase due to climate change [3]. Insights into the occurrence and dynamics of
floods are thus of paramount importance, as they contribute to emergency relief, damage assessment,
and flood forecast improvement [4–6]. Spaceborne satellites have evolved into the preferred source
of flood observations due to their synoptic view and near real-time availability. In contrast to optical
sensors, Synthetic Aperture Radar (SAR) sensors allow for observations during both day and night as
well as under cloudy conditions. Furthermore, water surfaces are generally clearly distinguishable
from the surrounding land due to their smooth character. Indeed, SAR sensors send out microwaves
to the Earth’s surface and measure the returned signal or backscatter, which depends on the roughness,
structure and dielectric properties of the surface as well as on the properties of the incoming wave [7].
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Smooth surfaces act as specular scatterers and typically appear dark on SAR imagery, while the
surrounding rougher surfaces act as surface scatterers, vegetation leads to predominantly volume
scattering and double-bounce scattering typically occurs in the presence of stemmy vegetation or
artificial structures [8].

Throughout the past decade, several SAR sensors with varying characteristics have been put
in space [9]. Especially the launch of the European Space Agency’s (ESA) Sentinel-1 constellation,
providing freely available dual-polarized C-band imagery, has boosted the development of SAR-based
flood mapping algorithms [10]. These are typically pixel-based and make use of thresholds to separate
the dark and homogeneous flood patches from their brighter surroundings, based on a single image or
image pair. Examples include automated single-scene thresholding [11,12], change detection [13–15],
and texture-based methods [16,17]. Recent advancements consider longer time series [18,19] and fuse
imagery from different sensors [20,21]. Several studies also make use of supervised machine learning
methods like random forest [19,22]. A major drawback of the latter is the lack of transferability due to
the absence of generalized training data, though initiatives like Sen1Floods11 [23] could overcome
this barrier. However, automated flood mapping algorithms mostly focus on the retrieval of open
water surfaces only. Despite their humanitarian and economic importance, floods in urban and
vegetated areas remain particularly challenging to map [24]. In urban areas, double-bounce backscatter
is the predominant backscattering mechanism. In case of flooding, this mechanism is enhanced
and an increased intensity is expected [24]. While Mason et al. [25] suggested the use of a SAR
simulator combined with a detailed digital surface model for urban flood mapping, Chini et al. [26]
and Li et al. [27] obtained promising results using inSAR coherence information.

In vegetated areas, the resulting backscatter often originates from a mixture of mechanisms and
strongly depends on both the incoming microwave and the vegetation characteristics. Polarization greatly
influences the resulting backscatter, as the sensitivity to a specific backscattering mechanism strongly
varies across polarizations. Therefore, multi-polarized imagery and deduced polarimetric parameters
provide substantive information for flood mapping in vegetated and wetland areas [28,29]. Besides the
polarization, the signal’s wavelength is one of the most important wave properties since it determines its
penetration capacity and the size of the objects with which it interacts [8]. When sufficient penetration
occurs, flooding under vegetation is expected to lead to an increased backscatter due to enhanced
double-bounce effects. Based on this reasoning, L-band radar has successfully been used to map flooding
under dense forest canopies [30] and monitor wetlands [31–33], but promising results were also obtained
with C- and X-band radar for forests under leaf-off conditions [34,35]. However, especially for the latter
two, the visibility and separability of flooded vegetation (FV) remains a topic under investigation.

Several studies have reported observed backscatter changes due to flooding beneath vegetation.
With C-band, Hess and Melack [36] observed maximum backscatter increases of 2.3 and 5.8 dB in HV
and HH polarization respectively for forest stands. Lang et al. [37] reported similar values, ranging from
1 to 5 dB, for different forest types in C-HH depending on the incidence angle. They furthermore
observed an increasing backscatter difference with decreasing incidence angles, in accordance with
previous research, except for very sharp incidence angles (23.5◦) at which the detectability dropped
sharply [37–39]. Long et al. [14] successfully mapped flooded marshland using a threshold of 7.7 dB
on a C-HH difference image, while Tsyganskaya et al. [19] observed a backscatter increase of about
2 dB for an example FV segment with C-VV and Refice et al. [40] reported a backscatter increase of
almost 5 dB in C-VV for a cluster comprising mainly flooded herbaceous vegetation. An overview of
relevant findings for C- as well as X- and L-band is given by Martinis and Rieke [41]. With respect
to separability, Voormansik et al. [35] reported a clear separability between flooded and non-flooded
forest on C-HH imagery with an incidence angle of 24◦, for leaf-off deciduous as well as coniferous
and mixed forest types. On the other hand, Martinis and Rieke [41] observed a low separability
between flooded and non-flooded deciduous dense forest on C-HH imagery with an incidence angle of
30–33◦, significantly lower than for L- and X-band. Accordingly, Brisco et al. [42] reported significant
confusion between the flooded vegetation and upland classes for C-HH, C-VV, and C-HV. However,
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when considering the HV/HH polarization ratio, the separability between these classes increased
to excellent. Furthermore, Tsyganskaya et al. [19] successfully made use of a polarization ratio to
identify FV.

A broad overview of FV classification approaches, within the context of both flood and wetland
monitoring, is provided by Tsyganskaya et al. [29]. The majority of these is supervised, which limits
their transferability and applicability for near real-time flood monitoring. Furthermore, most of
them consider single scene backscatter intensity only. While some have demonstrated the use of
interferometric coherence, both for X- [43,44] and L-band [45], the application of this information
source remains uncommon. Moreover, the use of polarimetric parameters remains rather limited,
despite promising results. For example, Brisco et al. [46] demonstrated the inclusion of polarimetric
decomposition bands in a curvelet-based change detection framework. Plank et al. [47] combined
polarimetric parameters of both quad-polarized L-band ALOS-2/PALSAR-2 and dual-polarized
Sentinel-1 C-band imagery in a Wishart classification framework. This framework is unsupervised but
requires the manual labeling of meaningful classes. Mainly the limited availability of quad-polarized
SAR imagery seems to hamper the application of polarimetry based approaches. Based on Sentinel-1
intensity data only, Tsyganskaya et al. [19] presented a supervised time series-based approach.
Depending on the case, the normalized VV intensity or VV/VH ratio were found to be the most
important features [19,48]. In a recent proof-of-concept, Refice et al. [40] have successfully combined
multi-temporal C- and L-band imagery to monitor flooding in a remote vegetated area, by using
a clustering-based approach. Olthof and Tolszczuk-Leclerc [49] developed a supervised machine
learning approach based on dual-pol RADARSAT-2 imagery, using automatically extracted training
data based on a Landsat inundation frequency product to map open water and using region growing
to include flooded vegetation. Based on X-band data, Pierdicca et al. [50] presented an object-based
region-growing approach capable of detecting flooded narrow-leaf crops, while Grimaldi et al. [51]
applied a single scene based approach making use of probability binning and historic flood information.
However, despite these and other considerable contributions, a transferable, unsupervised framework
for flood mapping in vegetated areas based on freely available data only is still lacking.

In this study, we present an unsupervised, object-based clustering framework for flood mapping.
This framework makes use of freely and globally available data only, is capable of easily fusing
different data sources and does not require training data. Based on dual-polarized SAR and optical
data, a classification into four classes, i.e., dry land, permanent water, open flood, and flooded
vegetation, is made. Moreover, forested areas possibly hiding flooding are indicated. In the remainder
of this paper, the full processing chain is described in detail. Finally, results for four case studies are
described and discussed.

2. Materials

2.1. Study Cases

In order to illustrate the accuracy and robustness of the presented methodology, results are
presented based on four study cases with varying characteristics, both in terms of flood type and
vegetation cover: the Sava River in Croatia, the White Volta River in Ghana, and River Fergus and
Shannon in Ireland. Of these, only the former two contain flooded vegetation areas. The location of
these areas is shown in Figure 1, while descriptions are given below.

The Lonsjko Polje Nature Reserve is a large wetland area located along the Sava River in Croatia.
The area is used as a retention basin to protect the surroundings from flooding in case of high
discharge. Therefore, it experiences regular and long-lasting floods. These occur especially in late
spring, due to snowmelt, but also in autumn and winter, due to intensive rain. In 2019, the area was
flooded between early May and late June. Reference data were constructed based on a cloud-free
Sentinel-2 image capturing the flood on 7 June 2019, a 0.5 m resolution aerial imagery covering the
2016 winter floods, and hydraulic knowledge (water level time series and levee location). Forest is the



Remote Sens. 2020, 12, 3611 4 of 20

dominating vegetation type, next to some wet grasslands and agricultural fields along the river and
surrounding the rural settlements. A considerable fraction of the flooding is situated in the lowland
forests. Given the canopy density during summer, this part of the flooding is expected to be invisible
on C-band SAR imagery.

Figure 1. Overview of the study cases and Synthetic Aperture Radar (SAR) data used in this study.
The imagery for the Sava (a), Volta (b), Fergus (c), and Shannon (d) regions of interest (ROIs) are
displayed in EPSG 32,633, 32,630, 32,629, and 32,629, respectively. The SAR reference and flood images
are shown as (VV,VH,VV/VH) composites, with visualization limits (−20, 0), (−25, −5) and (0, 20) dB.
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The White Volta is part of the main river system in Ghana. It emerges in Burkina Faso and
discharges into Lake Volta. In August 2018, communities in Northern and Upper East regions of
Ghana were affected by heavy and continuous seasonal rainfall. Additionally, excess water from the
Bagre Dam, located in Burkina Faso, was spilled from the 31st of August until the 10th of September.
The combination of these two events caused unprecedented flooding in many local communities along
the White Volta and continued throughout September [52]. Along the river banks, mainly shrubs
and herbaceous vegetation occur. Several patches of open forest can be found too. Furthermore,
the region of interest (ROI) also comprises several settlements and a considerable amount of agriculture.
Reference data were constructed based on a Sentinel-2 image acquired on September 19. As this image
is not fully cloud-free, six cloud-free subsets were selected. These are also indicated on Figure 1.
Several patches of flooded vegetation were identified.

In the winter of 2015–2016, the passage of Storm Desmond led to exceptionally high amounts
of rainfall in the UK and Ireland. In Ireland, this led to groundwater flooding that lasted for several
months [53]. The Copernicus Emergency Management Service (EMS) was activated and the flooding
was mapped for several areas [54]. Two areas were considered in this study, i.e., the surroundings
of Ennis and Corofin along Rivers Fergus, and the surroundings of Ballinasloe and Portumna
along River Shannon. The former was delineated by the EMS based on a COSMO-SkyMed image
acquired on 16 December 2015, while the latter was delineated based on a COSMO-SkyMed image
of 9 January 2016. These mappings were used as means of reference. The ROI along River Fergus
comprises the city of Ennis, agriculture zones and several lakes. The vegetation is mainly herbaceous
but several forest patches can be found too. The ROI along River Shannon is less forested, although
several smaller patches occur along the river. Moreover, here, mainly herbaceous vegetation occurs
alongside agriculture and several peat bogs. Based on the reference data, no flooded vegetation
is expected.

2.2. Data

The classification framework makes use of globally available, open source data sets only.
These include Sentinel-1 imagery, Sentinel-2 imagery or the Copernicus Global Land Service (CGLS)
land cover product [55], and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM). An overview of the acquisition dates or time ranges of the data sources is provided in Table 1.

Table 1. Overview of dates/date ranges for the used Sentinel-1 (S-1) and Sentinel-2 (S-2) imagery per
study area.

Study Area S-1 Ref. Image S-1 Flood Image S-2 CFC Date Range

Sava 9 May 2019 8 June 2019 17 July 2019
Volta 1 August 2018 18 September 2018 1 May–1 August 2018
Fergus 29 October 2015 16 December 2015 1 September–1 December 2016
Shannon 29 October 2015 9 January 2016 1 September–1 December 2016

For each study case, a Sentinel-1 image pair, i.e., an image acquired before and one during the
flood, was selected. Sentinel-1 provides C-band SAR imagery in two polarizations, i.e., VV and VH,
with a spatial resolution of 10 m and a repeat frequency of six to twelve days depending on the location.
In this study, the Level-1 Ground Range Detected product of Interferometric Wide swath data was
used. In order to avoid distortions due to differences in viewing angle, images of the same relative
orbit were selected. This selection was done manually in the present study, but could be automated
too [56]. For each image, the precise orbit file was applied, thermal and border noise were removed,
and a radiometric calibration to sigma0 and terrain correction were applied. Next, the images were
co-registered and speckle filtered using the Lee Sigma filter (7 × 7 window). These preprocessing steps
were performed with ESA’s SNAP software.
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In order to include information on vegetation cover, two data sources are compared.
First, Sentinel-2 imagery can provide insights on the vegetation state around the time of flooding.
However, clouds often hamper optical observations, especially in rainy periods. If no cloud-free image
can be found within the 3 month time range before the start of the flood, a cloud-free composite (CFC)
over this time range is calculated. This CFC is obtained based on the approach of Simonetti et al. [57],
by calculating the median of the image stack after cloud masking based on a classification tree.
Within this study, the Level-2A product, i.e., 10 m resolution Bottom Of Atmosphere (BOA) reflectance,
is used. Second, land cover (LC) products can provide a more general view on the vegetation state.
They are often derived from longer image time series and the data quality thus does not depend
on the presence of clouds. However, these products often have a coarser resolution and, in case of
strong seasonality, the current state of the vegetation cannot be deduced. Due to its global availability,
the CGLS land cover product was selected [55]. It has a resolution of 100 m and provides a discrete
land cover map comprising 23 classes as well as class fractions for the ten base classes: bare ground
and sparse vegetation, moss and lichens, herbaceous vegetation, shrubland, cropland, forest, built-up,
snow and ice, permanent and seasonal water).

Finally, a DEM over each ROI is considered. The hydrologically conditioned elevation, derived from
the SRTM and included in the HYDROSHEDS product [58] is used in this study.

3. Methods

The unsupervised clustering framework is summarized in Figure 2 and comprises several steps,
i.e., segmentation of the image into objects, extraction of the object feature space (FS), K-means
clustering and classification, and post-processing refinement. In this section, each of these steps is
described in detail.

S-1 GRD 
image pair

S-2 BOA 
cloud-free 
image or 
composite

Land Cover

DEM

Object 
feature space

Image objects

Feature extraction

Classified
object clusters

Final map:
DL, PW, OF, 

FV

Post-processing:
- Class specific region growing
- Region growing into low areas
- Removal of small objects

Segmentation
+ 

object refinement

K-means clustering
+

DT-based cluster 
classification

Figure 2. Overview of the methodological framework, resulting in a multi-class classification
discriminating dry land (DL), permanent water (PW), open flood (OF), and flooded vegetation (FV).

3.1. Image Segmentation Using the Quickshift Algorithm

First, image pixels are grouped into object preliminaries using the quickshift algorithm.
Quickshift is a further elaboration of mean shift, a density estimation based algorithm that finds
clusters by assigning data points to nearby density modes [59]. It is based on the assumption that
the feature space represents an empirical probability density function of the represented parameter,
and clusters (or segments) are thus represented by dense regions. Whereas mean shift makes use of
gradient descent for mode seeking, quickshift uses a kernel-based approximation. First, local density
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is estimated using a Gaussian kernel, with a size defined by the parameter ks. Given a kernel K,
the density of a pixel p is calculated as follows,

D(px) = ∑
p∈K

exp(
−0.5
ks2 [

nbands

∑
b=1

(I(px, b)− I(p, b))2 + (r(px)− r(p))2 + (c(px)− c(p))2]) (1)

where I is the image array; r and c are the row and column indices, respectively; and px is the
center pixel. Both spatial and image color distance are thus considered for the density calculation.
Next, each pixel is assigned to its nearest neighbor with a higher density. The parameter distmax

controls the maximal size of the resulting objects. All pixels that are more then distmax away from the
nearest pixel with a higher density, are assigned as a cluster (or segment) seed.

The quickshift algorithm is applied on a feature space comprising four bands, i.e., the VV and
VH bands of the SAR image pair. The two algorithm parameters ks and distmax were determined
empirically. In order to capture small scale features, these parameters are set to resp. a 7 × 7 window
and a value of 4.

Next, the resulting object preliminaries are refined iteratively. For each object, the object mean
difference with each of its neighbors is calculated for the four input bands. If for all four bands,
this difference is below a precalculated threshold, the objects are merged. The threshold is determined
as the minimum of the standard deviations of the considered object and neighbor for that specific band:

Tband = min(σobject,band, σneigh,band) (2)

Furthermore, in order to prevent the objects from becoming too irregularly shaped, a shape
constraint is added. Objects are merged only if the perimeter over rooted area is below 12. This threshold
was set on a trial-and-error basis. The object refinement constraints can thus be summarized as follows.abs(µobject,band − µneigh,band) < Tband ∀ bands

Perim√
Area

< 12
(3)

3.2. Object-Based Clustering

In order to detect the intrinsic structure of the feature space, object-based clustering is applied.
In a first phase, several clustering algorithms, including K-means, spectral clustering, and quickshift
clustering, were tested. However, given its computational speed, robustness, and good results,
the K-means algorithm was withheld.

K-means is an iterative clustering algorithm that aims to minimize the within-cluster
sum-of-squares [60]. For a predefined number of clusters k, the cluster centroids are first randomly set.
Each sample is then assigned to the nearest centroid. Lastly, updated cluster centroids are obtained by
taking the mean of the samples in that cluster. The latter two steps are repeated until a (local) minimum
of the within-cluster sum-of-squares is found. In order to circumvent the issue of local optima,
the procedure is repeated for different centroid initializations. K-means can result in a sub-optimal
cluster partitioning when the clusters are of differing size or density, or have non-globular shapes.
In unbalanced datasets, K-means tends to split up the larger clusters. This issue can be overcome by
over-clustering the dataset and combining the subclusters of larger clusters in a later phase. In order to
determine the optimal value of k and illustrate the effect of a varying k, all values between 2 and 15
were tested and compared.

In order to include information on both the flooding and the vegetation state, K-means is run
on a feature space consisting of both SAR and optical or land cover data. Several feature spaces are
tested. With respect to the SAR features, the VV and VH band of the reference and flood image can be
complemented with the ratio features, where ratio stands for the ratio in linear scale or difference in
log scale (dB) between the VV and VH polarization, and/or the increase features, i.e., the difference
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in VV/VH/ratio between the reference and flood image. The vegetation state can be represented
by the discrete land cover class, the nine land cover fractions or a selection of three or ten optical
bands. The combination of these features results in 15 feature spaces, i.e., SAR, SARlc, SARlcfrac,
SARo3, SARopt, SARincF, SARincFlc, SARincFlcfrac, SARincFo3, SARincFopt, SARwC, SARwClc,
SARwClcfrac, SARwCo3, and SARwCopt. These feature spaces consist out of different SAR and optical
subspaces, which are summarized in Table 2. For example, the feature space SARwCopt consists of the
subspaces SAR, wC and opt, or the following bands: VVref, VHref, VVflood, VHflood, Rref, Rflood, VVinc,
VHinc, Rinc, B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12. The feature space is obtained by calculating
object means for continuous bands and modes for discrete bands. Also the object standard deviations
are calculated for all bands. Each feature is scaled to zero mean and unit variance.

Table 2. Overview of feature subspaces considered for object clustering.

Feature
Subspace

Bands Band Description

SAR VVref, VHref, VVflood, VHflood VV and VH band of the reference and flood
S-1 image

wC Rref, Rflood, VVinc, VHinc, Rinc ratio (linear scale) of VV and VH band of
reference and flood S-1 image; increase of
VV, VH and R band between reference and
flood S-1 image

incF VVinc, VHinc, Rinc increase of VV, VH and R band between
reference and flood S-1 image

lc LC CGLS land cover class
lcfrac fbare, fgrass, fcrops, fshrubs, ftrees, fPW, fSW,

furban

CGLS land cover fractions for bare,
grass, crops, shrubs, trees, permanent
water, seasonal water and urban classes
(cfr. Section 2.2)

o3 B4, B8, B12 B4, B8 and B12 of S-2 image/composite
opt B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 B2, B3, B4, B5, B6, B7, B8, B9, B10, B11 and

B12 of S-2 image/composite

3.3. Cluster Classification

The final classification aims to discriminate dry land (DL), permanent water (PW), open flooding
(OF), and flooded vegetation (FV) if present. Given that K-means is not capable to correctly separate
clusters of differing sizes, over-clustering is targeted and k will be set to a value above 2. This implies
that the resulting clusters still need to be classified into one of the above-mentioned classes. Clusters are
classified based on their centroid. For the PW and OF classes, the VV and VH bands are considered
and the thresholds are obtained by means of tiled pixel-based thresholding using the KI algorithm,
as suggested by [12]. The PW and OF class are defined as follows.{

PW ⇔ VVref < TVV & VHref < TVH & VVflood < TVV & VHflood < TVH

OF ⇔ VVflood < TVV & VHflood < TVH
(4)

As mentioned before, flooding beneath vegetation is expected to increase backscatter intensity due
to enhanced double-bounce backscattering. As VV is more sensitive to double-bounce, this increase
is expected to be more pronounced in the VV band as compared to the VH band. Thus, the FV class
is characterized by an increase in both VVinc and Rinc. The thresholds are both set to a value of 3,
based on a calibration as well as reported values in literature [19,36,40]. The FV class is defined as

FV ⇔ VVinc > TVVinc & Rinc > TRinc (5)
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3.4. Post-Processing Refinement

The initial classification is further refined using contextual information. Several studies have
underlined the added value of classifying pixels or objects not only based on their spectral properties,
but also on their surroundings [16,47,61]. Context is integrated here by means of a region growing (RG)
approach, which iteratively adds neighboring objects that satisfy a preset condition to the seed region.
First, the PW, OF, and FV classes are refined. For PW and FV, the growing condition is the same as the
classification rule (cf. Section 3.3). For OF, the object mean should be below the threshold in only one
of the polarizations instead of the two. This way, objects that exhibit a slightly increased backscatter
in one of both polarizations due to e.g., wind roughening are included too. Table 3 summarizes the
growing conditions as well as the seed and source classes for PW, OF and FV. For FV for example,
only DL objects adjacent to OF or FV objects are considered.

Next, low elevation areas adjacent to the flood are considered. Densely vegetated areas can
be falsely classified as DL due to limited penetration, but can be included based on hydrologic
considerations. Objects of which more than 50% of the neighbors are flooded and whose elevation is
lower than the minimum elevation of the flooded neighbors, are included in the OF class using a RG
approach. Then, a minimal mapping unit (MMU) of 10 pixels (1000 m2) is applied. This parameter
value was set empirically and is in line with reported values [47,62]. Finally, densely forested areas
might hide flooding due to limited penetration. Therefore, objects whose land cover is closed forest
are flagged as forested areas (FA).

Table 3. RG parameters for the PW, OF, and FV classes.

Class Seed Class Source Class Growing Condition

PW PW OF/DL VVref < TVV & VHref < TVH & VVflood < TVV & VHflood < TVH
OF PW/OF/FV DL VVflood < TVV | VHflood < TVH
FV OF/FV DL VVinc > TVVinc & Rinc > TRinc

LL PW/OF/FV DL

{ n f looded_neighbors
nneighbors

> 0.5

DEMobject < min(DEM f looded_neighbors)

3.5. Accuracy Assessment

The accuracy of the presented approach is assessed primarily by the F1 score, the harmonic
mean of Precision and Recall. Similarly as the Critical Success Index (CSI), this measure does not
consider the correctly classified dry land pixels (true negatives in a binary classification) which cause
an overestimation of the accuracy [63]. The F1 score is preferred here given its higher popularity
for classifications problems in general. It is calculated based on the number of true positives (TP),
false positives (FP) and false negatives (FN), which can be retrieved from the contingency matrix.

F1 = 2
Pre · Rec

Pre + Rec
=

2TP
2TP + FP + FN

(6)

In order to get an idea of over- and underestimations, the Precision and Recall are also calculated
separately. The respective equations are

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

As the resulting classification comprises four classes, i.e., DL, PW, OF, and FV, the accuracy metrics
cannot be calculated in a binary way. Therefore, a multi-class accuracy is determined as the unweighted
average of the accuracies obtained for each class separately. This way, the different classes have an
equal influence on the resulting accuracy and a bias due to a dominating class (often DL) is avoided.
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Moreover, as FV is not present in all ROIs, OF and FV are considered as one class. Thus, a 3-class
F1 score is obtained based on the DL, PW, and OF + FV classes. In order to allow comparison with
other studies, who typically result in a single scene or change flood map, the single (PW + OF + FV
vs. DL) and change (OF + FV vs. DL + PW) accuracies are calculated too. The results are furthermore
compared to a benchmark, i.e., the classifications resulting from object- and pixel-based thresholding.
The thresholds were obtained by automated tile-based thresholding using the KI algorithm [12],
while the PW and OF class definitions were the same as in Equation (4).

4. Results and Discussion

4.1. Separability of Flooded Vegetation

In order to know whether the flooded vegetation present in the ROI can be mapped at all, it is
important to get an idea of the separability between this class and others. Previous studies indicated
the separability between FV and OF is generally good, while significant confusion can occur between
the FV and DL classes [41,42]. Figure 3 shows the class distributions of FV and DL across the SAR
features for the Sava ROI and subset 3 of the Volta ROI. In the Sava ROI, deciduous forest is the
predominant type of FV. As the flooding occurred in summer, limited penetration is expected. This can
also be seen in Figure 3, as there is a strong overlap and similarity between the two classes for all
SAR features. The flooded vegetation in Volta-3 is a mixture of shallow water, shrubs, and grassland.
The resulting backscatter shows a more pronounced shift from the DL class for several SAR features.
At the time of flooding, VH shows a shift towards lower backscatter values, while VV is shifted towards
both higher and lower backscatter values. This observation confirms the assumption that VV is more
sensitive to double-bounce, and FV thus leads to increased backscatter values. VH is less sensitive to
both double-bounce and roughening of specular surfaces, resulting in a drop due to more specular
reflection rather than an increase due to double-bounce. The VVinc and VHinc features show similar
shifts, while the Rinc feature shows a clear increase, explained by the differences in backscatter response
between VV and VH. However, a considerable overlap between the DL and FV classes remains in all
features, so classifying FV by means of single feature thresholding is not possible.

(a) Sava (b) Volta-3

Figure 3. Violin plots demonstrating the class distributions of dry land (DL) and flooded vegetation
(FV) objects across the different SAR features for the Sava ROI (a) and subset 3 of the Volta ROI (b).

4.2. K-Means Cluster Classification

K-means clustering and cluster classification (CC) were applied on several feature spaces for
a range of k values. The resulting three-class F1 scores as well as the F1 scores for the pixel- and
object-based thresholding benchmark are visualized in the left column of Figure 4. For all ROIs,
several FS/k combinations outperform the benchmarks. However, significant differences between
the FS/k combinations exist and several trends can be identified. First of all, k values below 5 lead to
poor results for all cases. As K-means has difficulties identifying clusters of varying sizes and the DL
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class is significantly larger than the others, over-clustering is necessary. Moreover, the optimal k value
increases with an increasing number of features. The structure of the feature space indeed becomes
more complex when the number of dimensions increases, and more clusters are needed to capture the
full structure. Despite their differences in land cover, no significant differences concerning the optimal
k value could be detected across the ROIs.
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Figure 4. Three-class F1 scores for K-means clustering and cluster classification (CC, left) and K-means
clustering and cluster classification, complemented by the post-processing refinement, (CC+PP, right),
using different feature spaces and a varying number of clusters k.
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Considering the SAR features only, the benchmarks are outperformed for several values of k for
all ROIs. As the same thresholds were used to classify the clusters, objects, and pixels, this improved
accuracy underlines the added value of first grouping similar objects in clusters based on the inherent
structure of the data. By doing so, objects that do not satisfy the PW or OF class definition but are
similar to a group of objects that does, are nevertheless classified into this class. Therefore, issues like
water roughening are circumvented. However, the accuracy for the SAR FS across k values is rather
inconsistent. Other FSs lead to higher accuracies, although the optimal FS seems to depend on the
ROI and the outcome is quite sensitive to the choice of k. The inclusion of the land cover fractions
leads to poor results across all ROIs, due to the skewness of these features, which typically contain
a lot of zero values. This feature subspace was thus found unsuited for K-means clustering without
transformation, but the results were included here for completeness. In general, the SARincF and
SARwC FSs complemented by three or ten optical bands perform well and the optimal k lies around 10.
This k value is in line with the findings of Refice et al. [40], who initially opted for a higher number of
clusters but obtained 12 distinct clusters after merging.

In order to include information on texture too, some tests were done considering both the object
means and standard deviations (results not shown). However, the inclusion of standard deviation
features did not improve the resulting accuracies, on the contrary. Due to the image segmentation and
object refinement as well as the speckle filtering, standard deviation and texture in general was found
significantly less descriptive than the mean.

It is important to note that across all ROIs, FSs, and k values, only one cluster was classified as
FV, i.e., for SARwC and k = 15 on the Volta ROI. The FV areas in both the Sava and Volta ROI were
primarily classified as DL. In the former, this confusion can be attributed to the limited penetration
of the C-band SAR signal. In the latter, several objects but no clusters—except for one—satisfy the
FV class definition. The detected cluster (SARwC-15) has a mean VVinc of 3.1 and a mean Rinc of 4.1.
It exists mainly out of FV objects but contains 17% DL objects too. For lower values of TVVinc and TRinc,
more FV clusters would be detected but all of these would lead to a considerable amount of FPs due to
confusion with the DL class. The threshold values of 3 were chosen based on the considered cases as
well as values reported in literature. However, these could need some refinement based on insights
brought by additional cases.

4.3. Post-Processing Refinement

The post-processing procedure comprises several steps, i.e., the refinement of the OF, PW, and FV
classes using region growing, the inclusion of low elevation areas using DEM-based region growing,
the removal of small flood objects, and the indication of forested areas. The three-class F1 scores
obtained after applying the RG and MMU steps on all FS/k combinations are shown in the right
column of Figure 4. As can be seen when comparing the two columns in this figure, the post-processing
procedure improves both the accuracy and the robustness of the methodology. Especially the sensitivity
to the choice of k is decreased but also the differences amongst FSs are reduced. Across all ROIs,
the best results are obtained by SARwCopt with 10 clusters. However, considering the SAR FS,
a three-class F1 of only 0.016 less (0.8368 compared to 0.8532) is obtained. The added value of the
optical features is thus rather limited, although improvements can be obtained depending on the case.
The improvement compared to the cluster classification is most pronounced for the Sava and Volta
ROIs, while differences are marginal for the Fergus and Shannon ROIs. However, the initial accuracy
for the latter is already high, so only marginal improvements can be obtained. Moreover, these ROIs
do not contain flooded vegetation areas.

Figure 5 shows the evolution of the three-class F1 score throughout the different processing steps,
including forest flagging, for SAR-10 and SARwCopt-10. As can be seen here, the impact of these steps
strongly depends on the ROI as well as the FS/k combination. In general, mainly RG PW and RG OF
alter the classification outcome. RG FV significantly altered the classification outcome for Volta too,
although the resulting change in accuracy is limited due to the small size of this class. Forest flagging



Remote Sens. 2020, 12, 3611 13 of 20

also significantly increases the accuracy for all ROIs. The shown values are the accuracies calculated
over the non-forested areas only. The increase is most pronounced for the Sava ROI due to the high
abundance of forests in this region. The high accuracy mostly indicates that the visible flooding
is mapped highly accurately and underlines the incapability of Sentinel-1 to map flooding under
dense forest canopies. The limited impact of RG DEM is not unexpected, given the coarse resolution
(both horizontally and vertically) of the SRTM DEM product. Especially in forested areas, the reliability
of this product can be poor [64]. A finer resolution DEM could substantially increase the added value
of this step.

For each PP step, several parameter values were compared. For example, the outcome of RG OF
into regions below the threshold in VV and VH vs. in VV or VH was compared. The latter lead to
minimal differences for Fergus, Shannon, and Sava but increased the accuracy for Volta with up to
0.10. RG DEM only has a negligible impact on the outcome. Relaxing the growing condition to the
mean or maximum of neighboring heights increased the accuracy for the Volta ROI but significantly
lowered the accuracy for other cases. On the other hand, the outcome proved insensitive to the fraction
of flooded neighbors required. For RG FV too, several values of TVVinc and TRinc were tested. Again,
a value of 3 resulted in the best trade-off of FPs and FNs, but some refinement based on additional
cases might be beneficial. Furthermore, the chosen MMU value provided the best trade-off between
FPs and FNs across all ROIs.

Sava Volta Fergus Shannon
0.5

0.6

0.7

0.8

0.9

1.0

F
1
(−

)

SAR− k = 10

Sava Volta Fergus Shannon

SARwCopt− k = 10

CC RG PW RG OF RG FV RG DEM MMU FA

Figure 5. Three-class F1 score per processing step for clustering based on the SAR features with k = 10
(left) and based on the SARwCopt features with k = 10 (right). These steps are cluster classification
(CC), region growing (RG) for the permanent water (PW), open flooding (OF) and flooded vegetation
(FV) class, region growing refinement based on elevation (RG DEM), the application of a minimal
mapping unit (MMU), and the indication of forested areas (FA).

4.4. Final Flood Maps

Contingency maps for the final classifications are shown in Figure 6. In general, most of the water
surfaces are mapped correctly. In the Sava ROI, a high number of false negatives (FN) occurs due
to dense forest canopies, hampering the SAR signal penetration. As can be seen, almost the entire
floodplain is forested. More FNs occur in the Volta subsets, especially at the flood edges. In the latter,
quite some within-flood confusion (WFC) occurs too. These are areas that were mapped as PW, OF or
FV but belonged to another of those three according to the reference data. These WFCs are mainly
confusions between FV and OF, which can be explained by the fact that the flooded vegetation in this
ROI is a mixture of shallow water and flooded vegetation and thus the backscatter signature is a mix
too. For both the FNs in the Sava ROI and the WFCs in the Volta ROI, the inclusion of additional SAR
features like L-band imagery could be beneficial.
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Figure 6. Contingency maps of the final classification all ROIs. These maps discriminate between
correctly classified dry land (DL), permanent water (PW), open flooding (OF), and flooded vegetation
(FV), false positives (FP), false negatives (FN), within flood confusion (WFC), and forested areas (FA).

In order to allow comparison with other studies, Table 4 summarizes the F1 scores when
considering the flood classification as a three-class, single scene or change detection problem. The single
and change F1 scores exceed the three-class value for all ROIs except for the Sava area, where the DL
accuracy is significantly higher than the PW and OF values. Although these values are encouraging,
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they should be interpreted with care as they were calculated on relatively small reference subsets.
This prevents the accuracy from being too heavily biased by the DL class, but does not allow to
thoroughly test the algorithm for FP detection in the context of automated flood monitoring. Within the
Volta ROI, one subset was selected in a flood-free area and did not result in erroneous flood detection.
However, ideally, the approach would also be applied on a non-flood image pair in order to test
whether seasonal backscatter changes are not erroneously picked up as flooding.

Table 4. Accuracy of CC+PP for SARwCopt-10 expressed in terms of different metrics for all ROIs.

Measure Sava Volta Fergus Shannon

F1 three-class 0.7648 0.8588 0.8793 0.9098
F1 single 0.7467 0.9287 0.9461 0.9625
F1 change 0.7031 0.9117 0.8904 0.9449

4.5. Limitations and Future Improvements

Although the results presented in this paper illustrate the potential of the developed framework,
several aspects could be improved in the future.

First of all, the considered feature space could be further extended and improved. As some
confusion occurred between the OF and FV classes in the Volta ROI and the flooded forests in the Sava
ROI could not be detected, the inclusion of additional SAR features could further refine the flood class
definitions and help overcome these issues. Olthof and Rainville [65] and Plank et al. [47] illustrated
the potential of including multiple polarizations and derived polarimetric parameters, as well as
SAR imagery acquired using different wavelengths. Especially L-band imagery could significantly
contribute to the framework’s capability of mapping flooding in forested areas [31,33,40]. Within the
context of open source data, the upcoming NISAR mission, which is expected to be launched in 2022
and will provide L- and S-band SAR imagery, is promising [66]. Moreover, ESA is planning to include an
L-band satellite, named ROSE-L, in its Copernicus program. It is part of the six high-priority candidate
missions currently being studied [67]. As the Sentinel constellation provides systematic imagery with
short revisit times, the inclusion of time series information could improve the classification outcome
too [19]. As such, the sensitivity to the choice of the reference image could be decreased, though
anomaly detection is less suited for persistent flooding. The inclusion of time series could furthermore
contribute to the detection of thematic clusters as long as the weight of the flood features is maintained.

Second, the robustness of the classification thresholds could be further increased. Currently, the FV
classification thresholds were set as fixed values. For the considered cases, these values provided a
good trade-off between over- and underestimation. However, more cases are needed to check the
general applicability of these values. Besides good reference data, a thorough investigation of the
impact of incidence angle and vegetation type on the resulting backscatter for different wavelengths
and polarizations, based on an experimental set-up, would provide invaluable information for the
future improvement of FV classification algorithms. Furthermore, future work could investigate
whether the selection of the FV threshold values could be automated, similar as is the case for the OF
and PW thresholds. Moreover, the incidence angle dependency of both classification thresholds is a
topic for further investigation.

Third, some modifications can be made to further upscale the presented framework. Given the
global availability of the input data, the framework’s independence on training data and the good
results for floods with varying characteristics, it has substantial potential for automated near-real time
flood monitoring. However, the presented results were obtained on relatively small (around 1000 km2

for Fergus/Shannon/Sava, 16,000 km2 for Volta), manually delineated subsets with a significant
fraction of flooding. On full scenes, the fraction of flooding is usually significantly lower and
the detection of a flood cluster can be hampered, similar as with global thresholding. Moreover,
the computation time, which was 39 minutes for the Fergus ROI on an Intel E5-2660v3 (Haswell-EP @
2.6 GHz) computation node using 4 cores and 16 GB of RAM, is expected to significantly increase with
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increasing image sizes. However, both issues could be overcome by detecting the core area of flooding
prior to applying the clustering framework. This could be done by applying a split-based approach,
as was suggested by Chini et al. [68]. Last, confusion between urban and flooded vegetation areas did
not occur in the considered ROIs. However, given the similar backscatter behavior of these thematic
classes, confusion could occur in other regions. This could be prevented by masking out urban areas,
similar as was done for forested areas, e.g., based on Global Urban Footprint [69].

5. Conclusions

In this study, an unsupervised clustering-based approach that can be used for automated,
near real-time flood mapping in vegetated areas based on freely available data is presented. After image
segmentation, K-means clustering is applied on an object-based feature space consisting of SAR and
optical features. The resulting clusters are classified based on their centroids. Finally, the classification is
refined by a region growing post-processing refinement. The final outcome discriminates between dry
land, permanent water, open flooding and flooded vegetation, while forested areas which might hide
flooding are indicated too. Results are presented based on four case studies, of which two contain areas
of flooded vegetation. The results for the ROIs without flooded vegetation illustrate the added value of
the clustering approach, as the pixel- and object-based benchmarks are outperformed by the clustering
framework even when considering the same SAR features. Although good results are obtained based
on the SAR bands only, additional SAR and optical features lead to further improvements. Moreover,
the post-processing refinement significantly increases the accuracy of the methodology and decreases
the sensitivity to the parameter choice. Across all ROIs, the best result was obtained based on the
SARwCopt FS using 10 clusters. For the Sava, Volta, Fergus, and Shannon ROIs, three-class F1 scores
of 0.7648, 0.8588, 0.8793, and 0.9098, respectively are obtained. The detection of flooding beneath
dense forest canopies was not possible using C-band SAR and optical features only. Flooding in
less densely vegetated areas could be mapped successfully, although significant confusion with the
open flood class occurred. However, the clustering framework allows to easily integrate additional
features. For example, the inclusion of L-band SAR imagery could substantially improve the FV
classification accuracy. The code of this object-based flood mapping framework is available through
https://github.com/h-cel/OBIAflood.
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The following abbreviations are used in this manuscript.

CGLS Copernicus Global Land Service
DEM Digital Elevation Model
DL dry land
ESA European Space Agency
FA forested areas
FV flooded vegetation
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FS feature space
OF open flood
LC land cover
MMU minimal mapping unit
PW permanent water
RG region growing
ROI region of interest
S-1 Sentinel-1
S-2 Sentinel-2
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission
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