33 research outputs found

    Design and Implementation of a UWB Radar Sensor for Non-Destructive Application

    Full text link
    [ES] Debido a la importancia de los campos de aplicación del sensor de radar de banda ultraancha, y también a los requisitos de cada aplicación específica, existe una demanda creciente de diseño compacto, de bajo coste y alta precisión del sensor de radar de banda ultraancha. Para responder a estas exigencias, esta tesis pretende proponer un sensor de radar UWB avanzado. Este trabajo de investigación se centra en el diseño del sensor de radar de banda ultraancha (UWB) para aplicaciones no destructivas (END). Los detalles de diseño incluyen el diseño de un generador de pulsos ultracorto, de alta potencia con un timbre mínimo. El radar desarrollado fue construido con una configuración biestática. El objetivo de este trabajo es medir el rango de distancia y las propiedades eléctricas de un objetivo, por ejemplo, metales y materiales dieléctricos, como el cloruro de polivinilo (PV C). Para lograr este objetivo, se ha desarrollado un novedoso generador de pulsos de alta potencia ultra-corto (pulsador de radar). El nuevo generador de pulsos consiste en un transistor que funciona en modo de avalancha y un circuito de afilado de pulsos que utiliza un nuevo modelo de diodo de recuperación de paso (SRD). Para convertir el pulso gaussiano en un monociclo, se ha añadido una red de formación de monociclo (MFN). El generador de impulsos desarrollado produce un impulso eléctrico con una amplitud de 12 V, un tiempo de subida de 112 ps y un ancho de impulso (FWHM) de 155 ps. Con el fin de aumentar la amplitud de los pulsos, se han propuesto dos técnicas útiles en este trabajo. El primero consiste en agregar dos generadores en paralelo, en este diseño propuesto se tuvo en cuenta alguna especificación para hacer que este circuito funcione. Sin embargo, la segunda técnica adoptada en este trabajo consiste en dos etapas de generadores, ambas técnicas dan lugar a un buen rendimiento; en lugar de un solo módulo de un generador de impulsos, las técnicas propuestas en este trabajo aumentan la amplitud en torno al doble. Ambas técnicas han sido investigadas en detalle. Para transmitir y recibir los impulsos ultracortos generados, se utilizaron dos tipos diferentes de antenas UWB. En primer lugar, una antena Vivaldi con un ancho de banda de unos 5,5 GHz de 600 MHz a 6 GHz. La segunda es una antena Vivaldi con un ancho de banda de 6 GHz de 400 Mhz a 6,2 GHz. Utilizando el sensor de radar de banda ultraancha desarrollado, se realizaron mediciones de prueba. Esto incluye las propiedades eléctricas, así como la medición de la distancia a las placas de metal, madera y PVC. La incertidumbre del sensor de radar es de 14 mm (datos medidos asustados a + 14 mm para un blanco fijo). El diseño y la implementación real que conduce a lograr un excelente prototipo de rendimiento para una aplicación no destructiva.[CA] A causa de la rellevància dels camps d'aplicació del sensor de radar d'ultra banda ampla, i també l'exigència de cada aplicació específica, hi ha una demanda creixent de disseny compacte, de baix cost i alta precisió del sensor de radar d'ultra banda ampla. Amb la intenció d'atendre aquestes demandes, aquesta tesi pretén proposar un sensor avançat de radar UWB. Aquest treball de recerca tracta del disseny del sensor de radar d'ultra-banda ampla (UWB) per a aplicacions no destructives (NDT). Els detalls del disseny inclouen el disseny d'un pols de monocicle amb pols de potència d'alta potència i amb un mínim de timbre. El radar desenvolupat va ser construït en configuració bi-estàtica. L'objectiu d'aquest treball és mesurar el rang de distància i les propietats elèctriques d'un objectiu, per exemple, materials metàl·lics i dielèctrics, com el clorur de polivinil (PV C). Per assolir aquest objectiu, s'ha desenvolupat un nou ultrasò, generador de pols d'alta potència (polsador de radar). El nou generador de pols està format per un transistor que funciona en mode d'allaus i un circuit d'afilat de pols mitjançant un nou model de díode de recuperació de pas (SRD). Per a convertir el pols gaussiano en un monocicle, s'ha afegit una xarxa de formació de monocicles (MFN). El generador de polsos desenvolupat produeix un pols elèctric amb una amplitud de 12 V, un temps d'augment de 112 ps i un ample de pols (FWHM) de 155 ps. Amb l'objectiu d'augmentar l'amplitud dels polsos, s'han proposat dues tècniques útils en aquest treball. El primer consisteix a afegir dos generadors de forma paral·lela, en aquest disseny proposat, cal tenir en compte algunes especificacions per a fer la viabilitat d'aquest circuit. No obstant això, la segona tècnica adoptada en aquest treball consisteix en una doble etapa de generadors, ambdues tècniques donen lloc a una bona actuació; en lloc d'un únic mòdul d'un generador de pols, les tècniques proposades en aquest treball augmenten l'amplitud al voltant del doble. Per transmetre i rebre polsos ultra-curts generats, s'han utilitzat dos tipus diferents d'antenes UWB. En primer lloc, una antena de Vivaldi amb un ample de banda d'uns 5,5 GHz de 600 MHz a 6 GHz. Mentre que la segona és una antena Vivaldi amb un ample de banda de 6 GHz de 400 MHz a 6.2 GHz. Mitjançant el sensor de radar ultra-ampla desenvolupat, es va realitzar la mesura de la prova. Incloïen propietats elèctriques i mesures de distància a les plaques metàl·liques, fusta i PVC. S'ha trobat que la incertesa del sensor de radar és de 14 mm (dades mesurades espantades entre + 14 mm per a un objectiu fix). El disseny i la implementació real condueixen a aconseguir un excel·lent prototip de rendiment per a una aplicació no destructiva.[EN] Due to the relevance of application fields of ultra-wideband radar sensor, and also the requirement of each specific application, there is an increasing demand of compact, low cost and high accuracy design of ultra-wideband radar sensor. With a view to addressing these demands, this thesis aims to propose an advanced UWB radar sensor. This research work deals with the design of the ultra-wideband (UWB) radar sensor for non-destructive (NDT) application. The design details include the design of ultra-short, high power pulse generator monocycle pulse with a minimum of ringing. The developed radar was build in bi-static configuration. The goal of this work is to measure the distance range and electrical properties of a target e.g, metal and dielectric materials, such as Polyvinyl chloride (PV C). To achieve this goal, a novel ultrashort, high power pulse generator (radar pulser) has been developed. The new pulse generator consists of a transistor operating in avalanche mode and a pulse sharpening circuit using a new model of step recovery diode (SRD). In order to converts the Gaussian pulse to a monocycle, a monocycle forming network (MFN) has been added. The developed pulse generator produces an electrical pulse with an amplitude of 12 V, a rise-time of 112 ps and pulse width (FWHM) of 155 ps. For the purpose to increase the amplitude of the pulses, two useful techniques have been proposed in this work. The first one consist of adding two generators in parallel, in this proposed design some specification was be taking into account to making the workability of this circuit. However, the second technic adopted in this work consists of a two-stage of generators, both technics give rise to a good performance; instead of a single module of a pulse generator, the techniques proposed in this work increase the amplitude around the double. In order to transmit and receive the generated ultra-short pulses, two different types of UWB antennas have been used. First, a Vivaldi antenna with a bandwidth of about 5.5 GHz from 600 MHz to 6 GHz. While the second is a Vivaldi antenna with a bandwidth of 6 GHz from 400 Mhz to 6,2 GHz. Using the developed ultra-wideband radar sensor, test measurement was performed. These included electrical properties as well as distance measurement towards metal plates, wood, and PVC. The uncertainty of the radar sensor has been found to be 14 mm (measured data scared within + 14 mm for a fixed target). The design and real implementation leading to achieve excellent performance prototype for a non-destructive application.Ahajjam, Y. (2019). Design and Implementation of a UWB Radar Sensor for Non-Destructive Application [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124057TESI

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques

    A Real Time Locating System based on TDOA estimation of UWB pulse sequences

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Differential ultra-wideband microwave imaging: principle application challenges

    Get PDF
    Wideband microwave imaging is of interest wherever optical opaque scenarios need to be analyzed, as these waves can penetrate biological tissues, many building materials, or industrial materials. One of the challenges of microwave imaging is the computation of the image from the measurement data because of the need to solve extensive inverse scattering problems due to the sometimes complicated wave propagation. The inversion problem simplifies if only spatially limited objects—point objects, in the simplest case—with temporally variable scattering properties are of interest. Differential imaging uses this time variance by observing the scenario under test over a certain time interval. Such problems exist in medical diagnostics, in the search for surviving earthquake victims, monitoring of the vitality of persons, detection of wood pests, control of industrial processes, and much more. This paper gives an overview of imaging methods for point-like targets and discusses the impact of target variations onto the radar data. Because the target variations are very weak in many applications, a major issue of differential imaging concerns the suppression of random effects by appropriate data processing and concepts of radar hardware. The paper introduces related methods and approaches, and some applications illustrate their performance

    Multiple moving target detection with ultra wideband radar using super-resolution algorithms

    Get PDF
    The improvements in microwave electronics opened the way to build microwave components such as low noise amplifiers, samplers and pulse generators that are broadband. As these building blocks are being developed, new applications become subject of research. Ultra wideband radar is one of these subjects. Major applications of ultra wideband radars are behind the wall imaging, biomedical imaging and buried land mine detection. In this study we aimed to locate multiple scatterers that are moving. Even though there are many scatterers in an environment, detection of moving targets is possible using differences of successive radar snapshots. This is generally the case when behind the wall human targets are to be detected. We investigated the effectiveness of various types Multiple Signal Classification (MUSIC) algorithms on the data acquired by our ultra wideband radar prototype. In ideal computer simulations, Time Reversal MUSIC (TRM) algorithm provides successful estimations of both directions and distances of multiple targets. However in practice where non-ideal effects are existent, the performance of TRM algorithm is estimating the target distances degrades. On the other hand, Delay Estimation MUSIC algorithm provides better estimates for the distances of the targets since it is less sensitive to phase noise. Combining the output of TRM algorithm for target directions and the output of Delay Estimation MUSIC method for target distances resulted in successful localization of targets. Experiments are performed using two moving targets in order to test the effectiveness the proposed processing scheme. The problem of detection ambiguities is also considered and several methods to resolve actual targets are presented

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    corecore