278 research outputs found

    Engaging Citizens with Televised Election Debates through Online Interactive Replays

    Get PDF
    In this paper we tackle the crisis of political trust and public engagement with politics by investigating new methods and tools to watch and take part in televised political debates. The paper presents relevant research at the intersection of citizenship, technologies and government/democracy, and describes the motivation, requirements and design of Democratic Replay, an online interactive video replay platform that offers a persistent, customisable digital space for: (a) members of the public to express their views as they watch online videos of political events; and (b) enabling for a richer collective understanding of what goes on in these complex media events

    Curtains Up! Lights, Camera, Action! Documenting the Creation of Theater and Opera Productions with Linked Data and Web Technologies

    Get PDF
    International audienceFor this paper, in the context of the French research project Spectacle en Ligne(s), we have recorded the entire set of rehearsals of one theater and one opera production using state-of-the-art video equipment. The resulting raw video and audio tracks as well as manually generated annotation data were then preprocessed in order to localize actors and detect their dialogues. Based on these preprocessing steps, we have built a Web-based hypervideo application that allows for navigation through performance time, performance space, and rehearsal time using modern HTML5 Web technologies like the emerging Web Components standard. We publish and consume the annotation data as so-called Linked Data Fragments, a novel way to make triple-based structured data available in a scalable way. As a direct outcome, researchers interested in the genetic analysis and the creation process of live performances can, thanks to this application, freely zoom in and out of scenes, rehearsal sessions, and stage locations in order to better understand the different steps on the way to a chef d'oeuvre. A live demo of the application is publicly available at the URL http://spectacleenlignes.fr/hypervideo/

    Leveraging video annotations in video-based e-learning

    Get PDF
    The e-learning community has been producing and using video content for a long time, and in the last years, the advent of MOOCs greatly relied on video recordings of teacher courses. Video annotations are information pieces that can be anchored in the temporality of the video so as to sustain various processes ranging from active reading to rich media editing. In this position paper we study how video annotations can be used in an e-learning context - especially MOOCs - from the triple point of view of pedagogical processes, current technical platforms functionalities, and current challenges. Our analysis is that there is still plenty of room for leveraging video annotations in MOOCs beyond simple active reading, namely live annotation, performance annotation and annotation for assignment; and that new developments are needed to accompany this evolution.Comment: 7th International Conference on Computer Supported Education (CSEDU), Barcelone : Spain (2014

    Optimizing Hypervideo Navigation Using a Markov Decision Process Approach

    Get PDF
    Interaction with hypermedia documents is a required feature for new sophisticated yet flexible multimedia applications. This paper presents an innovative adaptive technique to stream hypervideo that takes into account user behaviour. The objective is to optimize hypervideo prefetching in order to reduce the latency caused by the network. This technique is based on a model provided by a Markov Decision Process approach. The problem is solved using two methods: classical stochastic dynamic programming algorithms and reinforcement learning. Experimental results under stochastic network conditions are very promising

    360º hypervideo

    Get PDF
    Tese de mestrado em Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011Nesta dissertação descrevemos uma abordagem para o design e desenvolvimento de uma interface imersiva e interactiva para a visualização e navegação de hipervídeos em 360º através da internet. Estes tipos de hipervídeos permite aos utilizadores movimentarem-se em torno de um eixo para visualizar os conteúdos dos vídeos em diferentes ângulos e acedê los de forma eficiente através de hiperligações. Desafios para a apresentação deste tipo de hipervídeos incluem: proporcionar aos utilizadores uma interface adequada que seja capaz de explorar conteúdos em 360º num ecrã normal, onde o vídeo deve mudar de perspectiva para que os utilizadores sintam que estão a olhar ao redor, e formas de navegação adequadas para compreenderem facilmente a estrutura do hipervídeo, mesmo quando as hiperligações estejam fora do alcance do campo de visão. Os dispositivos para a captura de vídeo em 360º, bem como as formas de os disponibilizar na Web, são cada vez mais comuns e acessíveis ao público em geral. Neste contexto, é pertinente explorar formas e técnicas de navegação para visualizar e interagir com hipervídeos em 360º. Tradicionalmente, para visualizar o conteúdo de um vídeo, o utilizador fica limitado à região para onde a câmara estava apontada durante a sua captura, o que significa que o vídeo resultante terá limites laterais. Com a gravação de vídeo em 360º, já não há estes limites: abrindo novas direcções a explorar. Um player de hipervídeo em 360º vai permitir aos utilizadores movimentarem-se à volta para visualizar o resto do conteúdo e aceder de forma fácil às informações fornecidas pelas hiperligações. O vídeo é um tipo de informação muito rico que apresenta uma enorme quantidade de informação que muda ao longo do tempo. Um vídeo em 360º apresenta ainda mais informações ao mesmo tempo e acrescenta desafios, pois nem tudo está dentro do nosso campo de visão. No entanto, proporciona ao utilizador uma nova experiência de visualização potencialmente imersiva. Exploramos técnicas de navegação para ajudar os utilizadores a compreenderem e navegarem facilmente um espaço de hipervídeo a 360º e proporcionar uma experiência de visualização a outro nível, através dum espaço hipermédia imersivo. As hiperligações levam o utilizador para outros conteúdos hipermédia relacionados, tais como textos, imagens e vídeos ou outras páginas na Web. Depois de terminar a reprodução ou visualização dos conteúdos relacionados, o utilizador poderá retornar à posição anterior no vídeo. Através da utilização de técnicas de sumarização, podemos ainda fornecer aos utilizadores um sumário de todo o conteúdo do vídeo para que possam visualizá-lo e compreendê-lo duma forma mais eficiente e flexível, sem necessitar de visualizar o vídeo todo em sequência. O vídeo tem provado ser uma das formas mais eficientes de comunicação, permitindo a apresentação de um leque enorme e variado de informação num curto período de tempo. Os vídeos em 360º podem fornecer ainda mais informação, podendo ser mapeados sobre projecções cilíndricas ou esféricas. A projecção cilíndrica foi inventada em 1796 pelo pintor Robert Barker de Edimburgo que obteve a sua patente. A utilização de vídeo na Web tem consistido essencialmente na sua inclusão nas páginas, onde são visualizados de forma linear, e com interacções em geral limitadas às acções de play e pause, fast forward e reverse. Nos últimos anos, os avanços mais promissores no sentido do vídeo interactivo parecem ser através de hipervídeo, proporcionando uma verdadeira integração do vídeo em espaços hipermédia, onde o conteúdo pode ser estruturado e navegado através de hiperligações definidas no espaço e no tempo e de mecanismos de navegação interactivos flexíveis. Ao estender o conceito de hipervídeo para 360º, surgem novos desafios, principalmente porque grande parte do conteúdo está fora do campo de visão. O player de hipervídeo a 360º tem que fornecer aos utilizadores mecanismos apropriados para facilitar a percepção da estrutura do hipervídeo, para navegar de forma eficiente no espaço hipervídeo a 360º e idealmente proporcionar uma experiência imersiva. Para poder navegar num espaço hipervídeo a 360º, necessitamos de novos mecanismos de navegação. Apresentamos os principais mecanismos concebidos para visualização deste tipo de hipervídeo e soluções para os principais desafios em hipermédia: desorientação e sobrecarga cognitiva, agora no contexto de 360º. Focamos, essencialmente, os mecanismos de navegação que ajudam o utilizador a orientar-se no espaço de 360º. Desenvolvemos uma interface que funciona por arrastamento para a navegação no vídeo em 360º. Esta interface permite que o utilizador movimente o vídeo para visualizar o conteúdo em diferentes ângulos. O utilizador só precisa de arrastar o cursor para a esquerda ou para a direita para movimentar o campo de visão. Pode no entanto movimentar-se apenas para um dos lados para dar a volta sem qualquer tipo de limitação. A percepção da localização e do ângulo de visualização actual tornou-se um problema devido à falta de limites laterais. Durante os nossos testes, muitos utilizadores sentiram-se perdidos no espaço de 360º, sem saber que ângulos é que estavam a visualizar. Em hipervídeo, a percepção de hiperligações é mais desafiante do que em hipermédia tradicional porque as hiperligações podem ter duração, podem coexistir no tempo e no espaço e o vídeo muda ao longo do tempo. Assim, são precisos mecanismos especiais, para torná-las perceptíveis aos utilizadores. Em hipervídeo em 360º, grande parte do conteúdo é invisível ao utilizador por não estar no campo de visão, logo será necessário estudar novas abordagens e mecanismos para indicar a existência de hiperligações. Criámos os Hotspots Availability e Location Indicators para permitir aos utilizadores saberem a existência e a localização de cada uma das hiperligações. O posicionamento dos indicadores de hotspots availabity no eixo da ordenada, nas margens laterais do vídeo, serve para indicar em que posição vertical está cada uma das hiperligações. O tamanho do indicador serve para indicar a distância do hotspot em relação ao ângulo de visualização. Quanto mais perto fica o hotspot, maior é o indicador. Os indicadores são semi-transparentes e estão posicionados nas margens laterais para minimizar o impacto que têm sobre o conteúdo do vídeo. O Mini Map também fornece informações acerca da existência e localização de hotspots, que deverão conter alguma informação do conteúdo de destino, para que o utilizador possa ter alguma expectativa acerca do que vai visualizar depois de seguir a hiperligação. Uma caixa de texto com aspecto de balão de banda desenhada permite acomodar várias informações relevantes. Quando os utilizadores seleccionam o hotspot, poderão ser redireccionados para um tempo pré-definido do vídeo ou uma página com informação adicional ou a selecção pode ser memorizada pelo sistema e o seu conteúdo ser mostrado apenas quando o utilizador desejar, dependendo do tipo de aplicação. Por exemplo, se a finalidade do vídeo for o apoio à aprendizagem (e-learning), pode fazer mais sentido abrir logo o conteúdo da hiperligação, pois os utilizadores estão habituados a ver aquele tipo de informação passo a passo. Se o vídeo for de entretenimento, os utilizadores provavelmente não gostam de ser interrompidos pela abertura do novo conteúdo, podendo optar pela memorização da hiperligação, e pelo seu acesso posterior, quando quiserem. Para além do título e da descrição do vídeo, o modo Image Map fornece uma visualização global do conteúdo do vídeo. As pré-visualizações (thumbnails) referem-se às cenas do vídeo e são representadas através duma projecção cilíndrica, para que todo o conteúdo ao longo do tempo possa ser visualizado. Permite também, de forma sincronizada, saber a cena actual e oferece ao utilizador a possibilidade de navegar para outras cenas. Toda a área de pré-visualização é sensível ao clique e determina as coordenadas da pré-visualização que o utilizador seleccionou. Uma versão mais condensada disponibiliza apenas a pré-visualização da parte central de cada uma das cenas. Permite a apresentação simultânea de um maior número de cenas, mas limita a visualização e a flexibilidade para navegar para o ângulo desejado de forma mais directa. Algumas funcionalidades também foram adicionadas à linha de tempo (timeline), ou Barra de Progresso. Para além dos tradicionais botões de Play, Pause e Tempo de Vídeo, estendemos a barra para adaptar a algumas características de uma página Web. Como é um Player desenvolvido para funcionar na internet, precisamos de ter em conta que é preciso tempo para carregar o vídeo. A barra de bytes loaded indica ao utilizador o progresso do carregamento do vídeo e não permite que o utilizador aceda às informações que ainda não foram carregadas. O hiperespaço é navegado em contextos espácio-temporais que a história recorda. A barra de memória, Memory Bar, fornece informação ao utilizador acerca das partes do vídeo que já foram visualizadas. O botão Toogle Full Screen alterna o modo de visualização do vídeo entre full e standard screen . O modo full screen leva o utilizador para fora das limitações do browser e maximiza o conteúdo do vídeo para o tamanho do ecrã. É mais um passo para um modo de visualização imersiva, por exemplo numa projecção 360º dentro duma Cave, como estamos a considerar explorar em trabalho futuro. Nesta dissertação, apresentamos uma abordagem para a visualização e interacção de vídeos em 360º. A navegação num espaço de vídeo em 360º apresenta uma nova experiência para grande parte das pessoas e não existem ainda intuições consistentes sobre o comportamento deste tipo de navegação. Os utilizadores, muito provavelmente, vão sentir o problema que inicialmente houve com o hipertexto, em que o utilizador se sentia perdido no hiperespaço. Por isso, o Player de Hipervídeo a 360º tem que ser o mais claro e eficaz possível para que os utilizadores possam interagir facilmente. O teste de usabilidade foi feito com base no questionário USE e entrevistas aos utilizadores de modo a determinar a usabilidade e experiência de acordo com os seus comentários, sugestões e preocupações sobre as funcionalidades, mecanismos de acesso ou de representação de informação fornecidos. Os resultados dos testes e comentários obtidos, permitiu-nos obter mais informação sobre a usabilidade do player e identificar as possíveis melhorias. Em resumo, os comentários dos utilizadores foram muito positivos e úteis que nos ajudará a continuar a trabalhar na investigação do Hipervídeo 360º. O trabalho futuro consiste na realização de mais testes de usabilidade e desenvolvimento de diferentes versões do Player de Hipervídeo em 360º, com mecanismos de navegação revistos e estendidos, com base nos resultados das avaliações. O Player de Hipervídeo em 360º não deverá ser apenas uma aplicação para Web, deverá poder integrar com quiosques multimédia ou outras instalações imersivas. Provavelmente serão necessárias novas funcionalidades e tipos de navegação para adaptar a diferentes contextos. O exemplo do Player de Hipervídeo em 360º apresentado neste artigo utiliza um Web browser e um rato como meio de apresentação e interacção. Com o crescimento das tecnologias de vídeo 3D, multi-toque e eye-tracking, podem surgir novas formas de visualização e de interacção com o espaço 360º. Estas novas formas trazem novos desafios mas também um potencial acrescido de novas experiências a explorar.In traditional video, the user is locked to the angle where the camera was pointing to during the capture of the video. With 360º video recording, there are no longer these boundaries, and 360º video capturing devices are becoming more common and affordable to the general public. Hypervideo stretches boundaries even further, allowing to explore the video and to navigate to related information. By extending the hypervideo concept into the 360º video, which we call 360º hypervideo, new challenges arise. Challenges for presenting this type of hypervideo include: providing users with an appropriate interface capable to explore 360º contents, where the video should change perspective so that the users actually get the feeling of looking around; and providing the appropriate affordances to understand the hypervideo structure and to navigate it effectively in a 360º hypervideo space, even when link opportunities arise in places outside the current viewport. In this thesis, we describe an approach to the design and development of an immersive and interactive interface for the visualization and navigation of 360º hypervideos. Such interface allow users to pan around to view the contents in different angles and effectively access related information through the hyperlinks. Then a user study was conducted to evaluate the 360º Hypervideo Player’s user interface and functionalities. By collecting specific and global comments, concerns and suggestions for functionalities and access mechanisms that would allow us to gain more awareness about the player usability and identify directions for improvements and finally we draw some conclusions and opens perspectives for future work

    Web Browsing Behavior Analysis and Interactive Hypervideo

    Full text link
    © ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in, ACM Transactions on the Web, Vol. 7, No. 4, Article 20, Publication date: October 2013.http://doi.acm.org/ 10.1145/2529995.2529996[EN] Processing data on any sort of user interaction is well known to be cumbersome and mostly time consuming. In order to assist researchers in easily inspecting fine-grained browsing data, current tools usually display user interactions as mouse cursor tracks, a video-like visualization scheme. However, to date, traditional online video inspection has not explored the full capabilities of hypermedia and interactive techniques. In response to this need, we have developed SMT 2ǫ, a Web-based tracking system for analyzing browsing behavior using feature-rich hypervideo visualizations. We compare our system to related work in academia and the industry, showing that ours features unprecedented visualization capabilities. We also show that SMT 2ǫ efficiently captures browsing data and is perceived by users to be both helpful and usable. A series of prediction experiments illustrate that raw cursor data are accessible and can be easily handled, providing evidence that the data can be used to construct and verify research hypotheses. Considering its limitations, it is our hope that SMT 2ǫ will assist researchers, usability practitioners, and other professionals interested in understanding how users browse the Web.This work was partially supported by the MIPRCV Consolider Ingenio 2010 program (CSD2007-00018) and the TIN2009-14103-C03-03 project. It is also supported by the 7th Framework Program of the European Commision (FP7/2007-13) under grant agreement No. 287576 (CasMaCat).Leiva Torres, LA.; Vivó Hernando, RA. (2013). Web Browsing Behavior Analysis and Interactive Hypervideo. ACM Transactions on the Web. 7(4):20:1-20:28. https://doi.org/10.1145/2529995.2529996S20:120:287

    Social video: A collaborative video annotation environment to support E-learning

    Full text link
    Our social video system allows users to enrich video by additional information like external websites, hypertext, images, other videos, or communication channels. Users are able to annotate whole videos, scenes, and objects in the video. We do not focus on a single user accessing the system but on multiple users watching the video and accessing the annotations others have created. Our web-based prototype differs from classical hypervideo systems because it allows annotation (authoring) and navigation in videos by focusing on collaboration and communication between the users. The prototype is integrated into the online social network Facebook and was evaluated with more than 300 users. The evaluation analyzes the usage of the system with a learning scenario in mind and indicates a learning success of users

    Enhancing learner: centred design of hypermedia artefacts through cognitive and affective indicators

    Get PDF
    This paper discusses some issues and research findings of the project we call UNIBASE. In order to improve the learning processes through hypermedia technology, we investigated the role of cognitive mapping and the application of certain cognitive ambiguities and breakdowns. The addition of clear learning goals, explicitly expressed through cognitive mapping tools, allowed students to acquire the right knowledge and helped them adopt a productive strategy. Complementary to this elicitation process, video information embedded in hypermedia learning environments was used to increase the levels of attention and motivation, using devices such as movement, novelty and appeal. Our aims were to explore and develop the application of innovative hypermedia artefacts.info:eu-repo/semantics/publishedVersio
    corecore