812 research outputs found

    Music Learning with Massive Open Online Courses

    Get PDF
    Steels, Luc et al.-- Editors: Luc SteelsMassive Open Online Courses, known as MOOCs, have arisen as the logical consequence of marrying long-distance education with the web and social media. MOOCs were confidently predicted by advanced thinkers decades ago. They are undoubtedly here to stay, and provide a valuable resource for learners and teachers alike. This book focuses on music as a domain of knowledge, and has three objectives: to introduce the phenomenon of MOOCs; to present ongoing research into making MOOCs more effective and better adapted to the needs of teachers and learners; and finally to present the first steps towards 'social MOOCs’, which support the creation of learning communities in which interactions between learners go beyond correcting each other's assignments. Social MOOCs try to mimic settings for humanistic learning, such as workshops, small choirs, or groups participating in a Hackathon, in which students aided by somebody acting as a tutor learn by solving problems and helping each other. The papers in this book all discuss steps towards social MOOCs; their foundational pedagogy, platforms to create learning communities, methods for assessment and social feedback and concrete experiments. These papers are organized into five sections: background; the role of feedback; platforms for learning communities; experiences with social MOOCs; and looking backwards and looking forward. Technology is not a panacea for the enormous challenges facing today's educators and learners, but this book will be of interest to all those striving to find more effective and humane learning opportunities for a larger group of students.Funded by the European Commission's OpenAIRE2020 project.Peer reviewe

    Survey of Personalized Learning Software Systems: A Taxonomy of Environments, Learning Content, and User Models

    Get PDF
    This paper presents a comprehensive systematic review of personalized learning software systems. All the systems under review are designed to aid educational stakeholders by personalizing one or more facets of the learning process. This is achieved by exploring and analyzing the common architectural attributes among personalized learning software systems. A literature-driven taxonomy is recognized and built to categorize and analyze the reviewed literature. Relevant papers are filtered to produce a final set of full systems to be reviewed and analyzed. In this meta-review, a set of 72 selected personalized learning software systems have been reviewed and categorized based on the proposed personalized learning taxonomy. The proposed taxonomy outlines the three main architectural components of any personalized learning software system: learning environment, learner model, and content. It further defines the different realizations and attributions of each component. Surveyed systems have been analyzed under the proposed taxonomy according to their architectural components, usage, strengths, and weaknesses. Then, the role of these systems in the development of the field of personalized learning systems is discussed. This review sheds light on the field’s current challenges that need to be resolved in the upcoming years

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF

    Designing Embodied Interactive Software Agents for E-Learning: Principles, Components, and Roles

    Get PDF
    Embodied interactive software agents are complex autonomous, adaptive, and social software systems with a digital embodiment that enables them to act on and react to other entities (users, objects, and other agents) in their environment through bodily actions, which include the use of verbal and non-verbal communicative behaviors in face-to-face interactions with the user. These agents have been developed for various roles in different application domains, in which they perform tasks that have been assigned to them by their developers or delegated to them by their users or by other agents. In computer-assisted learning, embodied interactive pedagogical software agents have the general task to promote human learning by working with students (and other agents) in computer-based learning environments, among them e-learning platforms based on Internet technologies, such as the Virtual Linguistics Campus (www.linguistics-online.com). In these environments, pedagogical agents provide contextualized, qualified, personalized, and timely assistance, cooperation, instruction, motivation, and services for both individual learners and groups of learners. This thesis develops a comprehensive, multidisciplinary, and user-oriented view of the design of embodied interactive pedagogical software agents, which integrates theoretical and practical insights from various academic and other fields. The research intends to contribute to the scientific understanding of issues, methods, theories, and technologies that are involved in the design, implementation, and evaluation of embodied interactive software agents for different roles in e-learning and other areas. For developers, the thesis provides sixteen basic principles (Added Value, Perceptible Qualities, Balanced Design, Coherence, Consistency, Completeness, Comprehensibility, Individuality, Variability, Communicative Ability, Modularity, Teamwork, Participatory Design, Role Awareness, Cultural Awareness, and Relationship Building) plus a large number of specific guidelines for the design of embodied interactive software agents and their components. Furthermore, it offers critical reviews of theories, concepts, approaches, and technologies from different areas and disciplines that are relevant to agent design. Finally, it discusses three pedagogical agent roles (virtual native speaker, coach, and peer) in the scenario of the linguistic fieldwork classes on the Virtual Linguistics Campus and presents detailed considerations for the design of an agent for one of these roles (the virtual native speaker)

    Gathering Momentum: Evaluation of a Mobile Learning Initiative

    Get PDF

    A Novel Adaptation Model for E-Learning Recommender Systems Based on Student’s Learning Style

    Get PDF
    In recent years, a substantial increase has been witnessed in the use of online learning resources by learn- ers. However, owing to an information overload, many find it difficult to retrieve appropriate learning resources for meeting learning requirements. Most of the existing systems for e-learning make use of a “one-size-fits-all” approach, thus providing all learners with the same content. Whilst recommender systems have scored notable success in the e-commerce domain, they still suffer from drawbacks in terms of making the right recommendations for learning resources. This can be attributed to the differences among learners’ preferences such as varying learning styles, knowledge levels and sequential learning patterns. Hence, to identify the needs of an individual student, e-learning systems that can build profiles of student preferences are required. In addition, changing students’ preferences and multidimensional attributes of the course content are not fully considered simultaneously. It is by failing to review these issues that existing recommendation algorithms often give inaccurate recommendations. This thesis focuses on student learning styles, with the aim of dynamically tailoring the learning process and course content to meet individual needs. The proposed Ubiquitous LEARNing (ULEARN) system is an adaptive e-learning recommender system geared towards providing a personalised learning environ- ment, which ensures that course learning objects are in line with the learner’s adaptive profile. This thesis delivers four main contributions: First, an innovative algorithm which dynamically reduces the number of questions in the Felder-Silverman Learning Styles (FSLSM) questionnaire for the purpose of initialising student profiles has been proposed. The second contribution comprises examining the accuracy of various similarity metrics so as to select the most suitable similarity measurements for learning objects recommendation algorithm. The third contribution includes an Enhanced Collaboration Filtering (ECF) algorithm and an Enhanced Content-Based Filtering (ECBF) algorithm, which solves the issues of cold-start and data sparsity in- herent to the traditional Collaborative Filtering (CF) and the traditional Content-based Filtering (CBF), respectively. Moreover, these two new algorithms have been combined to create a new Enhanced Hybrid Filtering (EHF) algorithm that recommends highly accurate personalised learning objects on the basis of the stu- dents’ learning styles. The fourth contribution is a new algorithm that tracks patterns of student learning behaviours and dynam- ically adapts the student learning style accordingly. The ULEARN recommendation system was implemented with Visual Studio in C++ and Windows Pre- sentation Foundation (WPF) for the development of the Graphical User Interface (GUI). The experimental results revealed that the proposed algorithms have achieved significant improvements in student’s profile adaptation and learning objects recommendation in contrast with strong benchmark models. Further find- ings from experiments indicated that ULEARN can provide relevant learning object recommendations based on students’ learning styles with the overall students’ satisfaction at almost 90%. Furthermore, the results showed that the proposed system is capable of mitigating the problems data sparsity and cold-start, thereby improving the accuracy and reliability of recommendation of the learning object. All in all, the ULEARN system is competent enough to support educational institutions in recommending personalised course content, improving students’ performance as well as promoting student engagement.Arab academy for science technology & maritime transpor
    • …
    corecore