426 research outputs found

    Time Distortion Anonymization for the Publication of Mobility Data with High Utility

    Get PDF
    An increasing amount of mobility data is being collected every day by different means, such as mobile applications or crowd-sensing campaigns. This data is sometimes published after the application of simple anonymization techniques (e.g., putting an identifier instead of the users' names), which might lead to severe threats to the privacy of the participating users. Literature contains more sophisticated anonymization techniques, often based on adding noise to the spatial data. However, these techniques either compromise the privacy if the added noise is too little or the utility of the data if the added noise is too strong. We investigate in this paper an alternative solution, which builds on time distortion instead of spatial distortion. Specifically, our contribution lies in (1) the introduction of the concept of time distortion to anonymize mobility datasets (2) Promesse, a protection mechanism implementing this concept (3) a practical study of Promesse compared to two representative spatial distortion mechanisms, namely Wait For Me, which enforces k-anonymity, and Geo-Indistinguishability, which enforces differential privacy. We evaluate our mechanism practically using three real-life datasets. Our results show that time distortion reduces the number of points of interest that can be retrieved by an adversary to under 3 %, while the introduced spatial error is almost null and the distortion introduced on the results of range queries is kept under 13 % on average.Comment: in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Aug 2015, Helsinki, Finlan

    Privacy-preserving Publication of Mobility Data with High Utility

    Full text link
    An increasing amount of mobility data is being collected every day by different means, e.g., by mobile phone operators. This data is sometimes published after the application of simple anonymization techniques, which might lead to severe privacy threats. We propose in this paper a new solution whose novelty is twofold. Firstly, we introduce an algorithm designed to hide places where a user stops during her journey (namely points of interest), by enforcing a constant speed along her trajectory. Secondly, we leverage places where users meet to take a chance to swap their trajectories and therefore confuse an attacker.Comment: 2015 35th IEEE International Conference on Distributed Computed System

    Quantification of De-anonymization Risks in Social Networks

    Full text link
    The risks of publishing privacy-sensitive data have received considerable attention recently. Several de-anonymization attacks have been proposed to re-identify individuals even if data anonymization techniques were applied. However, there is no theoretical quantification for relating the data utility that is preserved by the anonymization techniques and the data vulnerability against de-anonymization attacks. In this paper, we theoretically analyze the de-anonymization attacks and provide conditions on the utility of the anonymized data (denoted by anonymized utility) to achieve successful de-anonymization. To the best of our knowledge, this is the first work on quantifying the relationships between anonymized utility and de-anonymization capability. Unlike previous work, our quantification analysis requires no assumptions about the graph model, thus providing a general theoretical guide for developing practical de-anonymization/anonymization techniques. Furthermore, we evaluate state-of-the-art de-anonymization attacks on a real-world Facebook dataset to show the limitations of previous work. By comparing these experimental results and the theoretically achievable de-anonymization capability derived in our analysis, we further demonstrate the ineffectiveness of previous de-anonymization attacks and the potential of more powerful de-anonymization attacks in the future.Comment: Published in International Conference on Information Systems Security and Privacy, 201

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    A Survey and Experimental Study on Privacy-Preserving Trajectory Data Publishing

    Get PDF
    Trajectory data has become ubiquitous nowadays, which can benefit various real-world applications such as traffic management and location-based services. However, trajectories may disclose highly sensitive information of an individual including mobility patterns, personal profiles and gazetteers, social relationships, etc, making it indispensable to consider privacy protection when releasing trajectory data. Ensuring privacy on trajectories demands more than hiding single locations, since trajectories are intrinsically sparse and high-dimensional, and require to protect multi-scale correlations. To this end, extensive research has been conducted to design effective techniques for privacy-preserving trajectory data publishing. Furthermore, protecting privacy requires carefully balance two metrics: privacy and utility. In other words, it needs to protect as much privacy as possible and meanwhile guarantee the usefulness of the released trajectories for data analysis. In this survey, we provide a comprehensive study and a systematic summarization of existing protection models, privacy and utility metrics for trajectories developed in the literature. We also conduct extensive experiments on two real-life public trajectory datasets to evaluate the performance of several representative privacy protection models, demonstrate the trade-off between privacy and utility, and guide the choice of the right privacy model for trajectory publishing given certain privacy and utility desiderata

    Privacy in trajectory micro-data publishing : a survey

    Get PDF
    We survey the literature on the privacy of trajectory micro-data, i.e., spatiotemporal information about the mobility of individuals, whose collection is becoming increasingly simple and frequent thanks to emerging information and communication technologies. The focus of our review is on privacy-preserving data publishing (PPDP), i.e., the publication of databases of trajectory micro-data that preserve the privacy of the monitored individuals. We classify and present the literature of attacks against trajectory micro-data, as well as solutions proposed to date for protecting databases from such attacks. This paper serves as an introductory reading on a critical subject in an era of growing awareness about privacy risks connected to digital services, and provides insights into open problems and future directions for research.Comment: Accepted for publication at Transactions for Data Privac

    Privacy, Space and Time: a Survey on Privacy-Preserving Continuous Data Publishing

    Get PDF
    Sensors, portable devices, and location-based services, generate massive amounts of geo-tagged, and/or location- and user-related data on a daily basis. The manipulation of such data is useful in numerous application domains, e.g., healthcare, intelligent buildings, and traffic monitoring, to name a few. A high percentage of these data carry information of users\u27 activities and other personal details, and thus their manipulation and sharing arise concerns about the privacy of the individuals involved. To enable the secure—from the users\u27 privacy perspective—data sharing, researchers have already proposed various seminal techniques for the protection of users\u27 privacy. However, the continuous fashion in which data are generated nowadays, and the high availability of external sources of information, pose more threats and add extra challenges to the problem. In this survey, we visit the works done on data privacy for continuous data publishing, and report on the proposed solutions, with a special focus on solutions concerning location or geo-referenced data
    corecore