2,287 research outputs found

    Repeatable texture sampling with interchangeable patches

    Get PDF
    Rendering textures in real-time environments is a key task in computer graphics. This paper presents a new parallel patch-based method which allows repeatable sampling without cache, and does not create visual repetitions. Interchangeable patches of arbitrary shape are prepared in a preprocessing step, such that patches may lie over the boundary of other patches in a repeating tile. This compresses the example texture into an infinite texture map with small memory requirements, suitable for GPU and ray-tracing applications. The quality of textures rendered with this method can be tuned in the offline preprocessing step, and they can then be rendered in times comparable to Wang tiles. Experimental results demonstrate combined benefits in speed, memory requirements, and quality of randomisation when compared to previous methods

    Octahedron-based Projections as Intermediate Representations for Computer Imaging: TOAST, TEA, and More

    Get PDF
    This paper defines and discusses a set of rectangular all-sky projections that have no singular points, notably the Tesselated Octahedral Adaptive Spherical Transformation (or TOAST) developed initially for the WorldWide Telescope. These have proven to be useful as intermediate representations for imaging data where the application transforms dynamically from a standardized internal format to a specific format (projection, scaling, orientation, etc.) requested by the user. TOAST is strongly related to the Hierarchical Triangular Mesh pixelization and is particularly well adapted to situations where one wishes to traverse a hierarchy of images increasing in resolution. Because it can be recursively computed using a very simple algorithm it is particularly adaptable to use with graphical processing units

    A Parallel Rendering Algorithm for MIMD Architectures

    Get PDF
    Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well

    Web GIS to support irrigation management: a prototype for SAGRA network, Alentejo Portugal

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesAn efficient water management, not only allows significant savings in costs of irrigation, but also an effective control on the quality of products, which can have obvious consequences on income operation and reducing the environmental impact of irrigation. As the Internet is becoming the easiest way of information distribution, irrigation management system can also be benefitted with it. Integrating GIS functionality with internet capacity will redefine the way of decision making, sharing and processing of information. In irrigation systems weather plays an imperative role in decision making, implementing and forecasting. Temperature, humidity, precipitation, and solar radiation are the most important parameters to calculate evapotranspiration by which crop water requirement can be determined. SAGRA (Sistema Agrometeorológico para a Gestão da Rega no Alentejo) network is providing information to the farmers through web but still lacks the use of GIS in their information to decision support system. Irrigation management support system can be benefitted with the use of Web GIS. In this thesis, web based GIS is designed using popular open source tools and software. Using data from automatic weather station maps are produced using Geo-statistical interpolation techniques and published in web map. These maps can be viewed with popular online maps like Google maps, Microsoft Bing and Openstreet maps. Animated weather maps are also created which are useful for visualizing changing pattern of weather parameters and water requirement over time

    A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    Get PDF
    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes

    Conformal Parametric Microstructure Synthesis for Boundary Representations

    Get PDF
    The use of lattices and microstructures in geometric design have been recognized as potentially superior to solid structures due to the potential benefits in improved strength-to-weight ratios, better control over heat exchange and heat transfer, and so on. In this work, we present a construction scheme to create parametric microstructures in a boundary representation (B-rep) model, M, that are conformal to an arbitrary specification, including the boundary of M. Given a B-rep model, M, either a polygonal or trimmed-spline based, a cage, T, is constructed around M to guide the synthesis of the microstructures in M. Micro-elements are synthesized following T, and verified to be inside M while bridging tiles are added as necessary. These parametric micro-elements can be heterogeneous in their material content, as well as locally vary in their geometric properties. We demonstrate these abilities with example microstructures synthesized from both polygonal B-rep models and spline-based B-rep solids, including 3D printed parts

    Robust tile-based texture synthesis using artificial immune system

    Get PDF
    The original publication is avalaible at www.springerlink.comInternational audienceOne significant problem in tile-based texture synthesis is the presence of conspicuous seams in the tiles. The reason is that sample patches employed as primary patterns of the tile set may not be well stitched if carelessly picked. In this paper, we introduce a robust approach that can stably generate an ω-tile set of high quality and pattern diversity. First, an extendable rule is introduced to increase the number of sample patches to vary the patterns in an ω-tile set. Second, in contrast to other concurrent techniques that randomly choose sample patches for tile construction, ours uses artificial immune system (AIS) to select the feasible patches from the input example. This operation ensures the quality of the whole tile set. Experimental results verify the high quality and efficiency of the proposed algorithm

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version
    • …
    corecore