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Abstract One significant problem in tile-based texture syn-
thesis is the presence of conspicuous seams in the tiles. The
reason is that sample patches employed as primary patterns
of the tile set may not be well stitched if carelessly picked.
In this paper, we introduce a robust approach that can sta-
bly generate an 𝜔-tile set of high quality and pattern diver-
sity. First, an extendable rule is introduced to increase the
number of sample patches to vary the patterns in an 𝜔-tile
set. Second, in contrast to other concurrent techniques that
randomly choose sample patches for tile construction, ours
uses Artificial Immune System (AIS) to select the feasible
patches from the input example. This operation insures the
quality of the whole tile set. Experimental results verify the
high quality and efficiency of the proposed algorithm.

Keywords Texture synthesis ⋅ 𝜔-tile ⋅ Sample patches
selection ⋅ Clonal Selection ⋅ Artificial Immune System

1 Introduction

Generating novel photo-realistic imagery from smaller ex-
amples has been widely recognized as a significant problem
in computer graphics. A wide number of applications require
realistic textures to be synthesized for object decoration in
virtual scenes. Texture refers to the class of imagery which is
usually defined as an infinite pattern consisting of stochasti-
cally stationary repeating elements. The global repeatability
within texture images is essential to texture synthesis tech-
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niques. This inherent property also makes it possible to ex-
press adequate texture information with limited portions.

Texture synthesis is an alternative way to create textures
because synthetic textures can be made any size, visual repe-
tition is avoided. Texture synthesis can also produce tileable
images by properly handling the boundary conditions. The
objective of texture synthesis can be stated as follows. Given
an example texture (Fig. 1(a)), synthesize a new texture that,
when perceived by a human observer, appears to be gener-
ated by the same underlying process (Fig. 1(c)).

(a) Sample (b) 𝜔-tiles (c) Texture synthesis

Fig. 1 Texture synthesis using our algorithm. The size of the input
example in (a) is 128 × 128. We construct the 𝜔-tiles (same sizes of
80× 80) in (b) with our robust tile construction algorithm. The output
texture in (c) has 256× 256 pixels and is generated in real-time using
the 𝜔-tiles in (b).

Non real-time texture synthesis techniques can be roughly
categorized into local region-growing methods and global
optimization-based methods. Local methods generate the tex-
ture by growing one pixel or patch at a time with the con-
straint of maintaining coherence of neighboring pixels in
the grown region [2–5]. Such approaches always suffer the
time-consuming neighbor searching in the example, so they
do not sufficiently meet real-time applications. On the other
hand, global methods use some criteria to evaluate the sim-
ilarity of the input, then the entire texture can be evolved as
a whole. Most existing global approaches either model only
pixel-to-pixel interactions which are insufficient to capture
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(a) Set of 16 𝜔-tiles in [1]. (b) Basic construction process of an 𝜔-tile. The intermediate tile is merged
with its matching patch from the input with graph-cut.

Fig. 2 The previous 𝜔-tile set formation process. The four texture patches in the left-most column of (b) are sample patches, corresponding to
the four color squares {𝑅,𝐺,𝐵, 𝑌 }. The sample patches are robustly selected using AIS in this paper.

large-scale structures of the sample texture [6, 7], or intro-
duce too complex formulations to optimize [8, 9]. Kwatra
et al. [10] defined a texture energy function to quantitatively
measure the quality of the synthesized texture, unfortunately
the synthesizing speed is still quite slow.

An alternative approach is to use texture synthesis to pre-
compute a set of small tiles (textures) and use these tiles to
generate arbitrary size of non-periodic images at run time
[1, 11–14]. The tile-based method usually employs a set of
sample patches which are extracted from the input example
as texturing primitive. Tiles are then constructed by stitch-
ing sample patches together following some given rules. The
technique requires only a small amount of memory and is
very useful in many real-time applications, although some-
times achieving low-quality results or dull patterns for the
lack of optimization on the tile set.

In this paper, we present an approach for tile-based im-
age synthesis based on the optimization of tile set quality
with respect to a Clonal Selection operator. This operator
is motivated by the Artificial Immune System (AIS)-driven
clonal selection algorithm which is frequently used in solv-
ing complex numerical optimization problems [15–18]. Our
main contribution is to merge some locally defined opti-
mization measures into a global objective function that can
jointly optimize the quality of the entire tile set. This objec-
tive function balances the qualities among tiles and can be
optimized using the clonal selection operator within a sim-
ple AIS framework with reasonable computational cost.

As shown in Fig. 2(a), an 𝜔-tile is a square block with
a specific color at each corner. A given number of small
patches (sample patches) are extracted from an input texture
to form different texturing blocks. As shown in Fig. 2(b) (the
left-most column), a tile is cut from the center of each block
to obtain the intermediate tile, which is the combination of

four sample patch quarters. The seams in each intermedi-
ate tile are removed by replacing the interior of the tile with
other pattern (matching patch) from the input example to
generate an 𝜔-tile. The color at each corner of an 𝜔-tile in-
dicates the color of the patch that contributes to the corner.
We propose a global optimization algorithm to search for a
feasible set of sample patches. The algorithm insures the in-
termediate tiles formed by these patches to satisfy both local
and global optimal conditions. The local condition implies
that each intermediate tile in the set could find an adequately
well matching patch (the texture patch picked from the input
example to merge into the intermediate tile for erasing junc-
tions) from the input, while the global condition means that
the tile qualities are balanced according to their matching er-
rors with closest matching patches. The two conditions are
interpreted together as an evaluation measure. This function
is defined as the linear combination of the sum of the match-
ing errors (the distance between the intermediate tile and the
candidate matching patch) between intermediate tiles and
their closest matching patches (the candidate matching patch
with the smallest distance), and the standard variance of all
the errors. Sample patches selection proceeds by optimizing
this evaluation function using AIS. We use the graph-cut [5]
method to merge the matching patches into the intermediate
tiles.

The rest of the paper is organized as follows. In Sect.
2, we review some related work. An extendable rule for de-
riving new tile sets is described in Sect. 3. We present the
AIS-based sample patches selection algorithm in Sect. 4. Fi-
nally, we show results and conclude the paper in Sect. 5 and
Sect. 6.
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2 Related Work

Texture synthesis. A number of work has been presented to-
ward synthesizing textures from input examples. Local region-
growing techniques generate textures one pixel or one patch
at a time. Pixel-based synthesis algorithms [2, 3, 19] [20]
grow an output texture pixel by pixel, normally using spatial
neighborhood compare to match across different frequency
bands. These approaches are fit for stochastic textures, but
usually fail on textures with more coherent structures. Patch-
based methods [4, 5, 21, 22] copy selected source regions
into the output instead of single pixels. They are generally
more successful on synthesizing structural textures. Some
intermediate techniques [10, 23] between pixel and patch-
based methods have also been presented, which somewhat
combine the advantages of both. None of the techniques
above can avoid laborious neighborhood matching in the in-
put example and this time-consuming process limits their
use to only off-line synthesis applications. Recently, effi-
cient GPU-based texture synthesis techniques [24, 25] have
also been proposed; however, they always demand a high
performance graphics hardware, and their methods suffer
from the pixel-based synthesis issue of performing poorly
on textures with semantic structures not captured by small
neighborhoods. On the other hand, some near real-time tex-
ture synthesis methods usually achieve low-quality results
for the lack of optimization in the pre-processing [26, 27] or
need very complex pre-computation and storing data struc-
tures [28]. They are also not available in many real-time en-
vironments.

In work concurrent with ours, Cohen et al. [11] devel-
oped a stochastic algorithm to non-periodically tile the plane
with a small set of Wang-tiles at run time. Wei [12] extended
this work with GPU to improve tile-based texture mapping.
Ng et al. [1] presented another approach to generate a set
of small texture tiles from an input example. These tiles can
also be tiled together to synthesize large textures. Our tech-
nique uses their 𝜔-tiles as the tile set pattern. Figure 2(a)
shows a typical 𝜔-tile set in [1]. All these approaches require
a set of sample patches extracted from the input example to
generate the intermediate tile patterns, so the quality of their
texture tiling results is not stable due to the uncertainty of
the sample patches. Dong et al. [13, 14] used Genetic Algo-
rithm (GA) to select an optimal set of sample patches from
the input and achieved better tiling quality than [11]. Unfor-
tunately, the limitation of GA sometimes plunges the objec-
tive into a local optimal solution.
Artificial Immune System and Clonal Selection. The Hu-
man Immune System (HIS) protects the body against dam-
ages from an extremely large number of harmful bacteria
and viruses, termed pathogens. It realizes this largely with-
out any prior knowledge of the structure of these pathogens.
An increasing amount of work is being carried out attempt-
ing to understand and extract the key mechanisms through
which the HIS is able to achieve its detection and protection
capabilities. A number of Artificial Immune Systems (AISs)
have been built for a wide range of applications including

document classification, fraud detection, and network- and
host-based intrusion detection [29–31]. These AISs have met
with some success and in many cases have rivalled or bet-
tered existing statistical and machine learning techniques. It
is also a powerful technique that can be applied to texture
synthesis.

The clonal selection algorithm is used by the natural im-
mune system to define the basic features of an immune re-
sponse to an antigenic stimulus. It establishes the idea that
only those cells that recognize the antigens are selected to
proliferate. The selected cells are subject to an affinity mat-
uration process, which improves their affinities to the selec-
tive antigens. Our approach uses a new Adaptive Dynamic
Clonal Selection Algorithm (ADCSA) as the selector (im-
mune algorithm) of the AIS, similar to the structure of the
clonal selection algorithms described in [16] and [17]. On
the basis of the antibody-antibody affinity, antibody-antigen
affinity and their dynamic allotting memory units along with
the scale of antibody populations, this algorithm combines
the stochastic searching methods with evolutionary search-
ing based on the probability. Its performance is better than
the classical genetic algorithm and the traditional clonal se-
lection algorithm like [29].

3 Tile Set Formation

We choose the size-8 𝜔-tile set in [1] as the basic tile set, as
shown in Fig. 3(a). We use 𝔹 to represent it in this paper. A
set of squares ℙ = {𝑅,𝐺,𝐵, 𝑌 } are used to compose blocks
and then slice the central parts to construct the 𝜔-tiles.

The previous 𝜔-tile construction process is shown in Fig.
2(b). The approach starts with randomly obtaining a set 𝕋 of
square sample patches from the input example 𝒮, the num-
ber is always equal to the members in ℙ (four in [1]). Each
patch is assigned to be related with one color square. Then
an intermediate tile ℐ can be cut from the middle of the tex-
ture block, as shown in the left two columns of Fig. 2(b).
Different intermediate tiles are generated according to the
different arrangements of the sample patches (corresponding
to the arrangements of the color squares). We note that the
cross junctions where four quarters meet have to be carefully
erased. This process is shown in the middle two columns of
Fig. 2(b). Similar with [1], we also pick a matching patch
(patch offset) 𝒞 from the input and merge it into the interme-
diate tile by graph-cut. The matching patch is the same size
as the intermediate tile. A circle is employed to constrain the
boundary of the cutting curve to maintain the continuity of
the patterns between matching sides in the tiling image.

3.1 Tile Patterns Analysis

The tiling process using 𝜔-tiles is carried out in the scan-line
order. Once the tile in the left-top corner is fixed, the rest tiles
in the tiling are laid one by one from left to right, and top
to bottom, consistent with the square colors of their neigh-
bors. A valid tiling using 𝔹 is shown in Fig. 3(b). The basic
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(a) Basic 𝜔-tile set

(b) A valid tiling using the tile set in (a)

(c) Add one color to the basic set

(d) Add the second color to the basic set

Fig. 3 Tile set formation from basic size-8 𝜔-tile set

tile set composed of only eight tiles will draw undesirable
repetitive patterns in a large synthesis image. Two methods
are proposed in [1] to overcome this artifact. One way is to
pick two patches from the input for each original tile. This
method doubles the number of the tiles but assumes at least
two choices for each tiling step. However, it can only partly
eliminate the repetitive patterns in the tiling. We should not
neglect the repetitive patterns caused by the central parts of
the sample patches. As shown in the rightmost column of
Fig. 2(b), the central pattern of the sample patch still pos-
sesses an important role in the tiling. To solve this problem,
we develop an effective method to directly increase the num-
ber of the sample patches which are used to form the in-
termediate 𝜔-tiles, without losing the characteristics of the
whole tile set. The other way used in [1] to eliminate repe-
tition is to increase the tiles number by using more arrange-

ments of the sample patches. This method is also suitable
for our approach. However, it still cannot avoid the repeti-
tive patterns caused by the sample patches themselves.

3.2 Increase Sample Patches

We add new patterns into the 𝜔-tile set by enlarging the size
of the sample patches set 𝕋. This operation is proceeded di-
rectly on 𝔹. We derive new tiles with the following steps:

1. Randomly pick a square from set ℙ as the ”reference”
square (or reference color). Without losing generality,
we choose the yellow square as the reference square.

2. Add a new square to the set ℙ. Here, we use 𝐶 (Cyan)
to represent it. Then the new square set is enlarged to be
ℙ1 = {𝑅,𝐺,𝐵, 𝑌, 𝐶}.

3. Generate new tiles by replacing the yellow squares with
cyan squares in 𝔹.

4. Add another two tiles by replacing only one yellow square
with cyan in the tile ⟨𝐵, 𝑌, 𝑌,𝑅⟩.
The new tiles formed by the above method is shown in

Fig. 3(c). The last two tiles are the additional tiles generated
by step 4). The new tiles together with 𝔹 forms the new 𝜔-
tile set ℕ1. Despite the two ”additional” tiles, the other new
tiles plus the tile ⟨𝑅,𝐺,𝐺,𝐵⟩ can be considered as a copy of
the basic set 𝔹. It can be used independently to tile arbitrary
size area. We use ℕ′

1 to indicate the tile set which possesses
all the tiles in ℕ1 except the two additional tiles. During the
tiling process, if only ℕ′

1 is used, there will be no problem if
no yellow square and cyan square need to be matched at the
same time when placing a tile. This can be treated as a pat-
tern duplication with the basic tile set. The cases shown in
Fig. 4(a) and Fig. 4(b) appear where yellow square and cyan
squares are needed to be matched simultaneously; there will
be no matching tile in ℕ′

1. Apparently, here the two addi-
tional tiles are necessary to complete the tiling process. In
fact, these two patterns are just the extensions of the pattern
in Fig. 4(c), which is one of the tiling patterns using the ba-
sic set 𝔹. Therefore, the new tile set ℕ1 can be used to tile
any large area and contains all the properties of the 𝜔-tile set
which are stated in [1].

Comparing with the size-16 tile set shown in Fig. 2(a),
with the similar number of tiles, our new set ℕ1 enriches
the patterns brought by sample patches in the tiling. And
the patterns of the tiles themselves are also more diverse be-
cause of the integration of more sample patches than simply
using more different arrangements of the squares. We note,
additionally, the diagonal repetition tiles (same color squares
share a diagonal) are also reduced. This also avoids some
repetitive patterns in a tiling.

We can continue to increase the number of sample patches
into six by following the same rule. On the basis of the tile
set ℕ1, we pick red as the reference color, and generate new
tiles by replacing the red squares with magenta. The tiles
with double red squares also need to be derived into two ad-
ditional tiles by replacing only one square at a time. The new
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(a) (b) (c)

Fig. 4 The cases why the two additional tiles in Fig. 3(c) are required.

tiles are shown in Fig. 3(d). Packed with set ℕ1, we get an-
other new 𝜔-tile set ℕ2. Here the square set is enlarged to
ℙ2 = {𝑅,𝐺,𝐵, 𝑌,𝐶,𝑀}. Obviously, we can keep on in-
creasing the sample patches in ℙ2 by following this rule if
there is enough memory during the rendering process. Then
in the tiling process, this method can effectively eliminate
the repetitive patterns caused by both the tiles and the sam-
ple patches themselves. Usually, the set ℕ2 which contains
38 tiles is enough to achieve a less-repetitive tiling result.

4 Tile Construction

The quality of tiling is decided by the quality of the final
tile set. As illustrated in Fig. 2(b), the graph-cutting result
performed between the intermediate tile and the matching
patch will directly affect the quality of the tile. Thus, special
care should be taken when picking sample patches from the
input, so that the intermediate tiles can get feasible match-
ing patches for graph-cut operations. The random picking
method used in [11] and [1] is not robust for this situation.
The intermediate tile formed by randomly chosen sample
patches cannot assure of finding a good matching patch 𝒞
from the example. On the other hand, because of the great
quantity of pixels in an image, it is almost impossible to
use brute-force searching method to find the best sample
patches extraction. For example, for an input example of size
128× 128, if we set the tile size to be 80× 80, there will be
(48 × 48)𝑛 choices for the sample patches extraction (𝑛 is
the number of sample patches). This is an unacceptable com-
putational requirement for a normal PC in reasonable time.
The GA-based sample patches selection technique in [13]
achieves better results for Wang-tiles than [11]. However,
it sometimes looses the best solution due to the limitation
of the evolutionary framework. Our approach can efficiently
and accurately solve the sample patches selection problem.

4.1 Algorithm Overview

Our robust sample patches selection algorithm is essentially
based on AIS. AISs use ideas gleaned from immunology to
develop adaptive systems which are capable of performing a
wide range of optimization tasks in various research areas. A
standard AIS starts with an initial set of random-generated

antibodies (immune cells) called a population where each
antibody encodes a solution of the optimization problem.
All antibodies are evaluated with the antigen by an evalua-
tion function which is some measure of affinity. A selection
process based on the affinity values will form a new popu-
lation. A cycle from one population to the next is called a
generation. During each new generation, all antibodies will
be updated by the immune operations. Then, the selection
process selects antibodies to form a new population. After
performing a given number of cycles, or when other termi-
nation criteria are satisfied, we denote the best antibody as
a solution, which is regarded as the optimal solution of the
optimization problem.

From the above, we can see that to design an AIS, it is
necessary to choose an appropriate affinity measure and an
immune algorithm. For the problem of sample patches selec-
tion, we encode each antibody as a candidate set of sample
patches, using the location of each patch at the input as a
gene. Clone selection is employed as the immune algorithm
in our AIS and we will define the affinity measure in the
following section.

The theory known as clone selection is used to explain
how the immune system ”fights” against an antigen. When
a bacterium invades our organism, it starts multiplying and
damaging our cells. One form of the immune system found
to cope with this replicating antigen was by replicating the
immune cells successful in recognizing and fighting against
this disease-causing element. Those cells capable of recog-
nizing the antigen reproduce themselves asexually in a way
proportional to their degree of recognition; the better the
antigenic recognition, the higher the number of offspring
(clones) generated. During the process of cell division (re-
production), individual cells suffer a mutation that allows
them to become more adapted to (increase affinity with) the
antigen recognized: the higher the affinity of the parent cell
is, the lower the mutation they suffer. We apply these char-
acteristics to design the immune algorithm in the AIS for
sample patches selection.

4.2 Robust Sample Patches Selection

The original problem of sample patches selection is to find
the optimal 𝑛 sample patches from the input example to fill
the 𝑚 tiles with a maximum objective function. For example,
for the 𝜔-tile set ℕ2, 𝑛 = 6,𝑚 = 38. Then the intermediate
tile filled by the optimal sample patches can find a feasible
matching patch safely under the given rules for junction flat-
tening. We will make use of clone selection in the AIS to
avoid suboptimal solutions. The AIS framework of finding
the optimal 𝑛 sample patches is described as follows.

4.2.1 Initialization

To ensure that an optimal solution can be obtained in a rea-
sonable runtime, an initial population consists of a consid-
erable amount of antibodies is necessary. To start the algo-
rithm, an integer 𝑁𝑝 is defined as the number of antibodies.



6

From the input texture, 𝑁𝑝/2 antibodies are randomly cho-
sen, i.e. randomly choose 𝑛 sample patches from the valid
region for each antibody. For the other half, we uniformly
divide the valid region into 𝑛 parts and randomly choose one
patch from every part. Then the patches are also randomly
arranged to be the genes of each antibody. The antibodies
are denoted by 𝒫 = {𝐴1, 𝐴2, ..., 𝐴𝑁𝑝}, we call it as a popu-
lation. Every antibody contains 𝑛 sample patches (𝑛 genes)
selected from the input example:

𝐴𝑖 = (𝑔1𝑖 , 𝑔
2
𝑖 , ...𝑔

𝑛
𝑖 ), 𝑖 = 1, 2, ..., 𝑁𝑝

4.2.2 Evaluation

In our AIS, the clone number of antibodies is determined
by a percentage assigned to each antibody. This percent-
age is proportional to its affinity relative to other antibodies
in the population, i.e. antibodies with higher affinities will
have more number of clones to produce offsprings in the
clone selection process. In the context of sample patches se-
lection, the antigen is defined as the set of valid matching
patches in the input example. The antibody-antigen affinity
of an antibody is evaluated by an evaluation function, which
in essence, computes the minimum matching error between
the intermediate tile and the candidate matching patch. It
involves searching for translations of the input image that
match well with the intermediate tile. Let 𝐼(𝑝) and 𝑇 (𝑝) be
the pixel colors at the position 𝑝 in the input example and
the intermediate tile, the evaluation function is defined as

𝐶𝑗(𝑡) =
1

∣𝑆𝑡∣
∑
𝑝∈𝑆𝑡

∣𝑇 (𝑝)− 𝐼(𝑝− 𝑡)∣2, (𝑗 = 1, 2, ...,𝑚; 𝑡 ∈ 𝑃𝑇 )

(1)

𝐷𝑗 = min {𝐶𝑗(𝑡), 𝑡 ∈ 𝑃𝑇 }
𝑉𝑖 = 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐷1, 𝐷2, ..., 𝐷𝑚)

𝐸(𝐴𝑖) = 𝜆 ⋅
𝑚∑
𝑗=1

𝐷𝑗 + (1− 𝜆) ⋅ 𝑉𝑖 (2)

where 𝐶𝑗(𝑡) is the matching error at translation 𝑡 of the 𝑗th
tile, 𝑆𝑡 is the portion of the translated input overlapping the
tile, 𝑃𝑇 is the set of valid translations (candidate matching
patches) in the input, and 𝐷𝑗 is the minimum matching er-
ror within all the translations. 𝑉𝑖 is the variance of all the
minimum errors, we add this factor in order to protect the
global quality of the final tile set. It avoids that intermediate
tiles with extremely high and extremely low matching errors
appear together in the same set. So the evaluation function
𝐸(𝐴𝑖) is the linear combination of the minimum error sum
and the variance. We set 𝜆 = 0.8 for all the experiments in
this paper. Note that our evaluation function is very similar
to the energy function used in [10] for texture optimization,
while here we use AIS rather than Expectation Maximiza-
tion (EM) to optimize it.

To obtain an optimal tile set, we need to determine the
best set of sample patches that has the smallest evaluation
value. Hence, to be consistent with the concept of affinity,
the antibody-antigen affinity function 𝑓(𝐴𝑖) is defined as the
reciprocal of the evaluation function, i.e. 𝑓(𝐴𝑖) = 1/𝐸(𝐴𝑖).
As previously addressed, it is also the objective function to
be optimized by our AIS. On the basis of the affinity value
of each antibody, the population 𝒫 is rearranged from high
affinity to low affinity.

4.2.3 Antibody Partition

According to the affinities, we adaptively allot the antibody
population. 𝒫 is divided into the memory unit ℳ and the
generic antibody unit 𝒜𝑏:

𝒫 = {ℳ,𝒜𝑏}
𝑁𝑚 = ⌊𝑁𝑝 ⋅min(𝑠ℳ𝑚𝑖𝑛 + ℎ, 𝑠ℳ𝑚𝑎𝑥)⌋, (𝑠ℳ𝑚𝑖𝑛, 𝑠

ℳ
𝑚𝑎𝑥 ∈ (0, 1))

ℳ = {𝐴1, 𝐴2, ..., 𝐴𝑁𝑚},𝒜𝑏 = {𝐴𝑁𝑚+1, 𝐴𝑁𝑚+2, ..., 𝐴𝑁𝑝}
where 𝑠ℳ𝑚𝑖𝑛 is a constant set to assure the minimum size of
the memory unit, while 𝑠ℳ𝑚𝑎𝑥 is the upper limit of it. Other-
wise

ℎ =

√√√⎷ 1

(𝑁𝑝 − 1) ⋅𝑁𝑝

𝑁𝑝∑
𝑖=1

𝑁𝑝∑
𝑗=1

𝐻𝑖𝑗

∣𝑢− 𝑙∣
which is used to measure the diversity of antibody popula-
tion, 0 < ℎ < 1, the bigger ℎ is, the better is the diver-
sity. 𝑢 and 𝑙 are separatively the upper and lower limit of
the antibody genes, here in our algorithm are the left-top
and right-bottom coordinate of the valid region for sample
patches at the input example. 𝐻𝑖𝑗 represents the antibody-
antibody affinity, which is defined as

𝐻𝑖𝑗 = ∥𝐴𝑖 −𝐴𝑗∥ =

𝑛∑
𝑘=1

∥𝑔𝑘𝑖 − 𝑔𝑘𝑗 ∥, 𝑖, 𝑗 = 1, 2, ..., 𝑁𝑝

where ∥ ∙ ∥ denotes the Euclidean distance of two sam-
ple patch locations. Apparently, 𝐻 is a symmetrical matrix
which indicates the diversity of the antibody population.

In this case, the memory unit is corresponding to the
memory cells in the human immune system which are able
to bind successfully to an antigen. Different mutative prin-
ciples will be used for memory unit and generic unit in the
Clone Selection process.

4.2.4 Mutation Regulation

We dynamically regulate the mutative probabilities of the
antibodies inversely proportional to their antigenic affinities:
the higher the affinity, the smaller the mutation rate. Follow-
ing this rule, the corresponding mutative probability 𝑝𝑖𝑚𝑢 of
each antibody is evaluated as
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𝑝𝑖𝑚𝑢 = 𝑝𝑐𝑚𝑢 +

⎡⎢⎢⎢⎣1 + exp

⎛⎜⎜⎜⎝𝑛 ⋅ 𝑓(𝐴𝑖)
𝑁𝑝∑
𝑗=1

𝑓(𝐴𝑗)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
−1

where 𝑝𝑐𝑚𝑢 is a constant to assure the minimum mutative
probability of the antibody. Then a further correction is made
by

𝑝𝑖𝑚𝑢 =

{
𝑝ℳ𝑚𝑢, 𝑝𝑖𝑚𝑢 > 𝑝ℳ𝑚𝑢, 1 ≤ 𝑖 ≤ 𝑁𝑚

𝑝𝒜𝑏
𝑚𝑢, 𝑝𝑖𝑚𝑢 < 𝑝𝒜𝑏

𝑚𝑢, 𝑁𝑚 + 1 ≤ 𝑖 ≤ 𝑁𝑝

where 𝑝ℳ𝑚𝑢 and 𝑝𝒜𝑏
𝑚𝑢 are mutative threshold value of mem-

ory unit and generic antibody unit respectively, generally,
𝑝ℳ𝑚𝑢 ≪ 𝑝𝒜𝑏

𝑚𝑢 < 1. In our program, given the minimum mem-
ory unit size 𝑠ℳ𝑚𝑖𝑛, it yields

𝑝𝑐𝑚𝑢 = (𝑠ℳ𝑚𝑖𝑛 + ℎ)/2.0

𝑝ℳ𝑚𝑢 = min (1.4 ⋅ 𝑝𝑐𝑚𝑢, 0.3)

𝑝𝒜𝑏
𝑚𝑢 = min (3.0 ⋅ 𝑝ℳ𝑚𝑢, 0.8)

These probabilities will be used in the mutation step of clone
selection.

4.2.5 Clone Selection

The process of clone selection in an AIS can be treated as a
refinement of the population. It is the most important part of
our sample patches selection algorithm. All the antibodies
will be applied to this operator independently. We describe
our clone selection operator as follows:

1. Clone the 𝑖th antibody proportionally to its antibody-
antigen affinity, generating a repertoire

ℛ𝑖 = {𝐴1
𝑖 , 𝐴

2
𝑖 , ..., 𝐴

𝑁𝑐

𝑖 }

of clones: the higher the affinity, the higher the number
of clones. The clone number 𝑁 𝑖

𝑐 is given by

𝜇 =
𝛽 ⋅𝑁𝑝 ⋅ 𝑓(𝐴𝑖)

𝑁𝑝∑
𝑗=1

𝑓(𝐴𝑗)

𝑁 𝑖
𝑐 =

{
max(𝛼 ⋅𝑁𝑝, 𝑁𝑝/3), 1 ≤ 𝑖 ≤ 𝑁𝑚

min(𝛼 ⋅𝑁𝑝, 𝑁𝑝/3), 𝑁𝑚 + 1 ≤ 𝑖 ≤ 𝑁𝑝

where 𝛼 is the threshold value for both memory unit
and generic unit, 𝛽 is a multiplying factor, 𝑁𝑝 is the to-
tal number of antibodies. The antibody with the highest
affinity will produce the most clones.

2. The repertoire ℛ𝑖 is submitted to an affinity maturation
process according to its mutative probability and gener-
ate a population ℛ′

𝑖 of mutated clones. We use a method
similar to BGA mutation [32] in this step. Let 𝐴𝑗

𝑖 =

{𝑔𝑗𝑖,1, 𝑔𝑗𝑖,2, ..., 𝑔𝑗𝑖,𝑛} be the 𝑗th cloned antibody of 𝐴𝑖 which
is selected to be mutated with probability 𝑝𝑖𝑚𝑢, we ran-
domly pick a gene 𝑔𝑗𝑖,𝑘(𝑘 = 1, 2, ..., 𝑛) for this mutation,
then the offspring is denoted as 𝐴′𝑗

𝑖 = {𝑔𝑗𝑖,1, 𝑔𝑗𝑖,2, ..., 𝑔′𝑗𝑖,𝑘, 𝑔𝑗𝑖,𝑘+1, ..., 𝑔
𝑗
𝑖,𝑛}.

In BGA mutation, 𝑔′𝑗𝑖,𝑘 is (𝑔𝑗𝑖,𝑘 + 0.1 ⋅ 𝛿 ⋅ (𝑢 − 𝑙)) or
(𝑔𝑗𝑖,𝑘 − 0.1 ⋅ 𝛿 ⋅ (𝑢 − 𝑙)) with equal probability. Here

𝛿 =
15∑
𝑖=0

𝛾𝑖2
−𝑖, 𝛾𝑖 ∈ {0, 1} and 𝛾𝑖 takes 1 with probabil-

ity of 1/16. 𝑢 and 𝑙 is the upper limit and lower limit of
the gene as addressed previously in the Antibody Parti-
tion step. If 𝑔′𝑗𝑖,𝑘 exceed the interval [𝑙, 𝑢], we will change
it to (𝑔′𝑗𝑖,𝑘 + 0.2 ⋅ (𝑢− 𝑙))/1.4.
This mutation method tests frequently the patches which
are close to 𝑔𝑗𝑖,𝑘, so it trends towards local search. Fur-
thermore, it is independent of the location in the pheno-
type space.

3. Determine the affinity 𝑓(𝐴′𝑗
𝑖 ) of the mutated clones ℛ′

𝑖.
4. From this set of mutated clones ℛ′

𝑖, reselect the one with
highest antigenic affinity 𝐴′𝑗

𝑖 to be a candidate to enter
the set of new antibody population. If the affinity of this
antibody is larger than its respective original antibody
𝐴𝑖, then 𝐴′𝑗

𝑖 will replace 𝐴𝑖 in the new population.

4.2.6 Antibody Regulation

Resort the antibodies from high affinity to low affinity, re-
place (antibody death) the 𝑁𝑑 lowest affinity antibodies from
the population by new randomly chosen individuals.

4.2.7 Termination

Two termination criteria are used. Either the process is ex-
ecuted to produce a fixed number 𝑁𝑔 of generations, or no
further improvement for the best solution is observed in 𝑁𝑜

consecutive generations. If the termination condition is sat-
isfied, the AIS will be terminated and the best solution (the
antibody with highest affinity) among all the individuals is
chosen. Otherwise, the AIS goes back to the evaluation step
and begins the next iteration.

4.3 Working Flow

The AIS-enhanced sample patches selection algorithm can
effectively reduce the boundary artifacts caused by the mer-
gence of the intermediate tile and its matching patch dur-
ing the graph-cut process. The whole working flow of our
optimized tile-based texture synthesis algorithm is: in pre-
computation, first randomly initialize a considerable number
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Fig. 5 Results for image texture synthesis. For each texture, the input is on the left and the output on the right. All results are generated in
real-time with the corresponding 𝜔-tiles.

of sample patches sets (as the antibodies) from the input ex-
ample, then use AIS to find the best one. Finally graph-cut is
employed for junction elimination. The run-time tiling pro-
cess is the same as [1], we can synthesize arbitrary size of
texture images in real time. Note that we also use Poisson
smoothing [33] to remove the prominent seams in 𝜔-tiles af-
ter the graph-cut operations.

4.4 Parameters and Optimizations

The basic parameters of the AIS are the antibody population
size 𝑁𝑝, the upper and lower limit of memory unit size 𝑠ℳ𝑚𝑖𝑛
and 𝑠ℳ𝑚𝑎𝑥, the threshold 𝛼 and multiplying factor 𝛽 for muta-
tive probabilities, the antibody death number 𝑁𝑑, the maxi-
mum iteration times 𝑁𝑔, and the maximum no-improvement
times 𝑁𝑜. In our approach, we use the same settings for
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Table 1 Sample patches selection timings for the examples in Fig. 5.

Example name Example size Tile size AIS timing
Beans 128× 128 80× 80 1 min. 8 sec.
Yellow leaves 160× 160 140× 140 2 min. 38 sec.
Tree barks 128× 128 80× 80 1 min. 12 sec.
Caustics 128× 128 80× 80 1 min. 10 sec.
Stones 128× 128 80× 80 0 min. 58 sec.
Bread 108× 99 70× 70 1 min. 5 sec.
Grape 144× 144 100× 100 1 min. 56 sec.
Grass 128× 128 80× 80 1 min. 18 sec.
School 128× 85 70× 70 1 min. 5 sec.
Flowers 128× 128 80× 80 1 min. 9 sec.
Tomatoes 128× 128 80× 80 1 min. 14 sec.
Fabric 128× 128 80× 80 1min. 17 sec.
Bricks 128× 128 80× 80 1 min. 1 sec.
Eggs 128× 102 80× 80 1 min. 54 sec.

all the experiments with {𝑁𝑝 = 40, 𝑠ℳ𝑚𝑖𝑛 = 0.2, 𝑠ℳ𝑚𝑎𝑥 =
0.4, 𝛼 = 0.4, 𝛽 = 4, 𝑁𝑑 = 10, 𝑁𝑔 = 50, 𝑁𝑜 = 6.}.

The most time-consuming procedure in our AIS is the
fitness evaluation of the chromosomes. In this procedure, we
use approximate-nearest-neighbor search (ANN) [34] to ac-
celerate the neighborhood matching operation between each
intermediate tile and the input example. Note that the other
techniques such as TSVQ [3, 35], FFT [36, 37] and mixture
trees [38] can also be employed here.

5 Results and Discussions

Figure 5 shows some texture synthesis results using our al-
gorithm. All the results are tiled in real-time with the 𝜔-tile
set ℕ2 which contains 38 tiles (illustrated in Fig. 3). Exe-
cution times of the AIS-based sample patches selection pro-
cess are listed in Table 1. All timing results are reported for
our unoptimized C++ code on a Pentium 4 3.2GHz PC with
1GB RAM. The sequence of the example names is consis-
tent with the image positions in Fig. 5, from left to right and
from top to bottom. The timings indicate that using AIS is
an efficient way to select feasible sample patches. We could
see that our algorithms could generate high-quality results
for random and semi-structural texture examples, while still
causes apparent artifacts for high-structural textures, like the
eggs example.

We can generate the distance function defined in Eq.
(1) to incorporate other characteristics of the texture besides
color. For example, to use image gradients as an additional
similarity metric, we could define the distance as

𝐶(𝑡) =
∑
𝑝∈𝑆𝑡

∣𝑇 (𝑝)− 𝐼(𝑝− 𝑡)∣2
𝜇(∥∇𝑇∥+ ∥∇𝐼∥) (3)

or

𝐶(𝑡) =
∑
𝑝∈𝑆𝑡

∣𝑇 (𝑝)− 𝐼(𝑝− 𝑡)∣2 + 𝜇
∑
𝑝∈𝑆𝑡

∣∇𝑇 −∇𝐼∣2 (4)

Fig. 6 Results comparison when using different distance metrics.
From left to right: the input example, result using Equation (1), (3)
and (4).

where ∇ = [ ∂.∂𝑥 ,
∂.
∂𝑦 ] is the gradient operator and 𝜇 is a rel-

ative weighting coefficient (𝜇 = 10 in our experiments).
Figure 6 shows the synthesis results using different distance
metrics. Even though we have experimented with color and
gradient, one could use other distance metric which mea-
sures some property of the texture patch. For most textures,
we can simply use the color as the distance metric, as all the
experiments in Figure 5 do.

The most important parameters in AIS are the population
size 𝑝𝑜𝑝 𝑠𝑖𝑧𝑒 and the generation number 𝑁𝑔. In Figure 7 and
Figure 8 we show comparisons of using different population
sizes and different generation numbers in AIS. The other pa-
rameters are set to be the same as Figure 5. The input exam-
ples are the same as the input texture in the first row in Fig-
ure 9. We can see the quality increase of the output textures
when the parameters change. Table 2 shows the comparisons
of the AIS training results using different population sizes
and generation numbers. For each result, the left value in the
brackets is the antibody-antigen affinity value of the best an-
tibodies when AIS terminates, and the right value is the AIS
training time. The random operation means that we calcu-
late the average evaluation value of 100 randomly obtained
sample patches sets. And the semi-random operation means
that we compute the minimum evaluation value from 100
randomly obtained sample patches sets. Results show that
the increase of population size and generation number both
increase the affinity value of the antibodies, while simulta-
neously cost more training time. We can see that normally
the setting of {𝑁𝑝 = 40, 𝑁𝑔 = 50} is enough for most syn-
thesis. The setting of {𝑁𝑝 = 40, 𝑁𝑔 = 80} could achieve
bigger affinity value, but the training time is nearly the dou-
ble of {𝑁𝑝 = 40, 𝑁𝑔 = 50}.

We compare our results with other techniques in Fig-
ure 9. We can see that the qualities of our results are com-
parable with the off-line graph-cut method [5] (even though,
their results outperform ours when synthesizing some struc-
tural textures) while better than the other CPU-based real-
time techniques. The results in Fig. 5 and Figure 9 show that
our method is a very good choice for textures without very
clear structures, especially for natural textures [20].

6 Conclusion and Future Work

We have presented a novel optimization-based technique for
tile-based texture synthesis. Our results for both texture syn-
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Fig. 7 Results comparison of using different number of antibodies in AIS. The size of input example is 64 × 64 and the tile size is 48 × 48.
𝑁𝑔 = 50. From left to right: 𝑁𝑝 = 10, 20, 40, 80, the antibody-antigen affinity 𝑓 = 0.988, 1.211, 1.396, 1.412, training time: 8”, 13”, 26”,
48”.

Fig. 8 Results comparison of using different generation numbers in AIS. The size of input example is 64 × 64 and the tile size is 48 × 48.
𝑁𝑝 = 40. From left to right: 𝑁𝑔 = 10, 30, 50, 80, the antibody-antigen affinity 𝑓 = 0.972, 1.269, 1.385, 1.403, training time: 6”, 15”, 33”,
51”.

Table 2 The antibody-antigen affinity value of the best antibodies when AIS terminates and AIS training times using different parameters.

Example name (𝑁𝑝, 𝑁𝑔)
Random Semi-Random (10, 10) (20, 30) (20, 50) (40, 30) (40, 50) (40, 80)

Beans (0.179, -) (0.244, -) (0.297, 18”) (0.316, 34”) (0.339, 56”) (0.347, 58”) (0.353, 1’8”) (0.385, 2’24”)
Yellow leaves (0.069, -) (0.083, -) (0.093, 39”) (0.122, 1’13”) (0.129, 1’17”) (0.134, 1’34”) (0.143, 2’38”) (0.155, 6’7”)
Tree barks (0.373, -) (0.441, -) (0.468, 16”) (0.475, 35”) (0.497, 49”) (0.511, 56”) (0.532, 1’12”) (0.541, 2’7”)
Caustics (0.137, -) (0.219, -) (0.266, 15”) (0.271, 41”) (0.283, 47”) (0.296, 1’11”) (0.315, 1’10”) (0.322, 2’17”)
Stones (0.247, -) (0.338, -) (0.358, 11”) (0.361, 32”) (0.387, 44”) (0.392, 46”) (0.418, 58”) (0.429, 2’7”)
Bread (0.164, -) (0.229, -) (0.268, 8”) (0.276, 29”) (0.271, 46”) (0.273, 44”) (0.285, 1’15”) (0.291, 2’11”)
Grape (0.237, -) (0.319, -) (0.362, 17”) (0.371, 42”) (0.397, 1’4”) (0.411, 1’26”) (0.435, 1’56”) (0.471, 4’49”)
Grass (0.230, -) (0.275, -) (0.351, 14”) (0.384, 38”) (0.411, 50”) (0.417, 57”) (0.423, 1’18”) (0.428, 2’28”)
School (0.271, -) (0.352, -) (0.387, 11”) (0.399, 33”) (0.416, 42”) (0.428, 51”) (0.451, 1’5”) (0.465, 1’59”)
Flowers (1.092, -) (1.171, -) (1.181, 18”) (1.202, 36”) (1.297, 47”) (1.307, 50”) (1.336, 1’19”) (1.368, 2’40”)
Tomato (0.165, -) (0.204, -) (0.257, 19”) (0.265, 32”) (0.271, 46”) (0.273, 51”) (0.296, 1’14”) (0.311, 2’10”)
Fabric (0.081, -) (0.121, -) (0.144, 21”) (0.148, 37”) (0.151, 51”) (0.153, 1’11”) (0.167, 1’17”) (0.175, 2’29”)
Brick (0.152, -) (0.206, -) (0.221, 14”) (0.227, 36”) (0.239, 44”) (0.242, 51”) (0.256, 1’11”) (0.266, 2’24”)
Eggs (0.558, -) (0.659, -) (0.772, 27”) (0.793, 38”) (0.831, 59”) (0.834, 1’17”) (0.998, 1’54”) (1.055, 2’29”)

(a) INPUT (b) GRAPH-CUT (c) JUMP MAP (d) WANG-TILES (e) 𝜔-TILES (f) OURS

Fig. 9 Comparison of texture synthesis results with various other techniques. Results for other techniques are obtained from their web pages.
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thesis and image tiling are comparable to state-of-the-arts.
We define a pattern repetitive principle that allows us to de-
rive new 𝜔-tile sets from the existing one. An optimized
sample patches selection algorithm based on AIS is used to
improve the quality of the whole tile set. The experimental
results demonstrate that the quality of tile-based texture syn-
thesis is markedly improved after using the proposed robust
sample patches selection. This framework is also fit for qual-
ity improvement of Wang-tile based texture synthesis [11].
In the real applications, the sample patches selection and 𝜔-
tile set construct are preceded as pre-processing. The tile sets
of different textures are saved into a database. Then at run-
time we only need to pick the pre-computed tile set and per-
form the texture tiling process in real-time. Our technique
can be nicely applied in the environment where real-time
texture synthesis is needed, such as 3D games and real-time
virtual reality systems, while the local region-growing meth-
ods such as image quilting, graph-cut and texture optimiza-
tion are not applicable (need seconds or minutes to generate
an image).

A limitation of our technique is that because it tries to
erase the junctions in the intermediate tiles by a single patch
from the input example, it is always constrained by the pat-
terns of the intermediate tiles. It is manifested as relatively
low qualities when synthesizing some structural textures, for
example the eggs texture in Fig. 5.

For future work, we wish to extend our tile-based synthe-
sis technique to handle image or geometric textures on 3D
models. Another potential direction is to experiment with
other local region-growing texture synthesis methods, such
as texture optimization [10], fractional Fourier texture masks
[39] and appearance-space texture synthesis [25], in the tile
construction step to improve the synthesizing quality of struc-
tural textures.
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