15 research outputs found

    The Mechanical Behavior of Salt X

    Get PDF
    Rock salt formations have long been recognized as a valuable resource - not only for salt mining but for construction of oil and gas storage caverns and for isolation of radioactive and other hazardous wastes. Current interest is fast expanding towards construction and re-use of solution-mined caverns for storage of renewable energy in the form of hydrogen, compressed air and other gases. Evaluating the long term performance and safety of such systems demands an understanding of the coupled mechanical behavior and transport properties of salt. This volume presents a collection of 60 research papers defining the state-of-the-art in the field. Topics range from fundamental work on deformation mechanisms and damage of rock salt to compaction of engineered salt backfill. The latest constitutive models are applied in computational studies addressing the evolution and integrity of storage caverns, repositories, salt mines and entire salt formations, while field studies document ground truth at multiple scales. The volume is structured into seven themes: Microphysical processes and creep models Laboratory testing Geological isolation systems and geotechnical barriers Analytical and numerical modelling Monitoring and site-specific studies Cavern and borehole abandonment and integrity Energy storage in salt caverns The Mechanical Behavior of Salt X will appeal to graduate students, academics, engineers and professionals working in the fields of salt mechanics, salt mining and geological storage of energy and wastes, but also to researchers in rock physics in general

    Review of underground hydrogen storage: Concepts and challenges

    Get PDF
    The energy transition is the pathway to transform the global economy away from its current dependence on fossil fuels towards net zero carbon emissions. This requires the rapid and large-scale deployment of renewable energy. However, most renewables, such as wind and solar, are intermittent and hence generation and demand do not necessarily match. One way to overcome this problem is to use excess renewable power to generate hydrogen by electrolysis, which is used as an energy store, and then consumed in fuel cells, or burnt in generators and boilers on demand, much as is presently done with natural gas, but with zero emissions. Using hydrogen in this way necessitates large-scale storage: the most practical manner to do this is deep underground in salt caverns, or porous rock, as currently implemented for natural gas and carbon dioxide. This paper reviews the concepts, and challenges of underground hydrogen storage. As well as summarizing the state-of-the-art, with reference to current and proposed storage projects, suggestions are made for future work and gaps in our current understanding are highlighted. The role of hydrogen in the energy transition and storage methods are described in detail. Hydrogen flow and its fate in the subsurface are reviewed, emphasizing the unique challenges compared to other types of gas storage. In addition, site selection criteria are considered in the light of current field experience.Cited as: Hematpur, H., Abdollahi, R., Rostami, S., Haghighi, M., Blunt, M. J. Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research, 2023, 7(2): 111-131. https://doi.org/10.46690/ager.2023.02.0

    Estimating available salt volume for potential CAES development: a case study using the Northwich Halite of the Cheshire Basin

    Get PDF
    The massively bedded rock salts forming the Northwich Halite Member of the Cheshire Basin represent a huge mineral resource, which historically, have been worked by dry mining for rock salt and brine production from both the area of wet rockhead and also from solution-mined caverns. More recently, the halite beds have also provided the host storage horizon for natural gas storage in specifically designed and constructed solution-mined salt caverns. Increasingly, compressed air energy storage (CAES) is being viewed as a viable bulk storage option for surplus electrical energy, which may be through the use of off-peak electricity from both conventional and renewable sources. We describe a novel technique using Esri’s ArcGIS® Geographic Information System software, to derive potential storage cavern locations and an estimate of the physical volumes that might be available for storage purposes, including for CAES. The process involves defining the spatial distribution, thickness and insoluble content of the halite beds is described, together with an estimate of the potential physical volumes of solution-mined caverns. Cavern volumes compare favourably with those of current gas storage facilities, which are illustrated in terms of their surface footprints and use of resource

    Utility-scale Subsurface Hydrogen Storage: UK Perspectives and Technology

    Get PDF
    To reduce effects from anthropogenically induced climate change renewable energy systems are being implemented at an accelerated rate, the UKs wind capacity alone is set to more than double by 2030. However, the intermittency associated with these systems presents a challenge to their effective implementation. This is estimated to lead to the curtailment of up to 7.72TWh by 2030. Through electrolysis, this surplus can be stored chemically in the form of hydrogen to contribute to the 15TWh required by 2050. The low density of hydrogen constrains above ground utility-scale storage systems and thus leads to exploration of the subsurface. This literature review describes the challenges and barriers, geological criteria and geographical availability of all utility-scale hydrogen storage technologies with a unique UK perspective. This is furthered by discussion of current research (primarily numerical models), with particular attention to porous storage as geographical constraints will necessitate its deployment within the UK. Finally, avenues of research which could further current understanding are discussed

    Gas storage in geological formations: a comparative review on carbon dioxide and hydrogen storage

    Get PDF
    Carbon dioxide and hydrogen storage in geological formations at Gt scale are two promising strategies toward net-zero carbon emissions. To date, investigations into underground hydrogen storage (UHS) remain relatively limited in comparison to the more established knowledge body of underground carbon dioxide storage (UCS). Despite their analogous physical processes can be used for accelerating the advancements in UHS technology, the existing distinctions possibly may hinder direct applicability. This review therefore contributes to advancing our fundamental understanding on the key differences between UCS and UHS through multi-scale comparisons. These comparisons encompass key factors influencing underground gas storage, including storage media, trapping mechanisms, respective fluid properties, petrophysical properties, and injection scenarios. They provide guidance for the conversion of our existing knowledge from UCS to UHS, emphasizing the necessity of incorporating these factors relevant to their trapping and loss mechanisms. The article also outlines future directions to address the crucial knowledge gaps identified, aiming to enhance the utilisation of geological formations for hydrogen and carbon dioxide storage

    US-German Workshop on Salt Repository Research, Design, and Operation (KIT Scientific Reports ; 7569)

    Get PDF

    Full Issue 31(1/4)

    Get PDF

    The reliability of rock mass classification systems as underground excavation support design tools

    Get PDF
    This thesis examines the reliability of rock mass classification systems available for underground excavation support design. These methods are sometimes preferred to rational methods of support design particularly if detailed information required for the latter mentioned methods is lacking. The classification approach requires no analysis of any specific failure mechanisms or the forces required to stabilise unstable rocks, yet, the support measures thus designed are considered to deal with all possible failure mechanisms in a rock mass.Amongst the several rock mass classification methods developed for application in underground excavation engineering, two have stood out. These are known as rock mass rating (RMR) and tunnelling quality index (Q), introduced by Bieniawski (1973) and Barton et al. (1974), respectively. Over the years, the two methods have been revised and updated so as to improve their reliability as support design tools, yet the two methods are know to have limitations and their reliability has long been a subject of considerable debate. Nevertheless, attempts to assess their reliability in a systematic manner have been limited. Further, some practitioners in the field of rock engineering continue to use these methods as the sole methods of support design for underground rock excavations. The objective of thesis, therefore, is to contribute to a better understanding of the reliability of the two classification methods.This study considered that the reliability of the RMR and Q methods can be assessed by comparing their support predictions with those derived by other applicable methods and also with the actual support installed. Such an assessment can best be carried out during excavation of an underground opening because representative data can be collected by direct observation of the as-excavated ground conditions and monitoring the performance of the support installed. In this context, the geotechnical data obtained during the construction of several case tunnels were reviewed and the two classification methods were applied. The effectiveness of their support predictions was then evaluated against the potential failures that can be predicted by some of the applicable rational methods. Since the rock masses intersected in the case tunnels are jointed, mostly the structurally controlled failure modes were analysed. The support measures predicted by the two methods were compared with each other and with the actual support installed in the case tunnels. Further, the RMR and Q vales assigned to the case tunnels were correlated to observe any relationship between the two.The study showed that the RMR and Q predicted support measures are not always compatible. In some circumstances, the two methods can either overestimate or under estimate support requirements

    Full Proceedings

    Get PDF
    corecore