68 research outputs found

    Interpolatory frames in signal space

    Full text link

    Book Reviews

    Get PDF

    Adaptive value function approximation in reinforcement learning using wavelets

    Get PDF
    A thesis submitted to the Faculty of Science, School of Computational and Applied Mathematics University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, South Africa, July 2015.Reinforcement learning agents solve tasks by finding policies that maximise their reward over time. The policy can be found from the value function, which represents the value of each state-action pair. In continuous state spaces, the value function must be approximated. Often, this is done using a fixed linear combination of functions across all dimensions. We introduce and demonstrate the wavelet basis for reinforcement learning, a basis function scheme competitive against state of the art fixed bases. We extend two online adaptive tiling schemes to wavelet functions and show their performance improvement across standard domains. Finally we introduce the Multiscale Adaptive Wavelet Basis (MAWB), a wavelet-based adaptive basis scheme which is dimensionally scalable and insensitive to the initial level of detail. This scheme adaptively grows the basis function set by combining across dimensions, or splitting within a dimension those candidate functions which have a high estimated projection onto the Bellman error. A number of novel measures are used to find this estimate.

    Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data

    Get PDF
    Virtual reconstruction of historic sites, planning of restorations and attachments of new building parts, as well as forest inventory are few examples of fields that benefit from the application of 3D surveying data. Originally using 2D photo based documentation and manual distance measurements, the 3D information obtained from multi camera and laser scanning systems realizes a noticeable improvement regarding the surveying times and the amount of generated 3D information. The 3D data allows a detailed post processing and better visualization of all relevant spatial information. Yet, for the extraction of the required information from the raw scan data and for the generation of useable visual output, time-consuming, complex user-based data processing is still required, using the commercially available 3D software tools. In this context, the automatic object recognition from 3D point cloud and depth data has been discussed in many different works. The developed tools and methods however, usually only focus on a certain kind of object or the detection of learned invariant surface shapes. Although the resulting methods are applicable for certain practices of data segmentation, they are not necessarily suitable for arbitrary tasks due to the varying requirements of the different fields of research. This thesis presents a more widespread solution for automatic scene reconstruction from 3D point clouds, targeting street scenarios, specifically for the task of traffic accident scene analysis and documentation. The data, obtained by sampling the scene using a mobile scanning system is evaluated, segmented, and finally used to generate detailed 3D information of the scanned environment. To realize this aim, this work adapts and validates various existing approaches on laser scan segmentation regarding the application on accident relevant scene information, including road surfaces and markings, vehicles, walls, trees and other salient objects. The approaches are therefore evaluated regarding their suitability and limitations for the given tasks, as well as for possibilities concerning the combined application together with other procedures. The obtained knowledge is used for the development of new algorithms and procedures to allow a satisfying segmentation and reconstruction of the scene, corresponding to the available sampling densities and precisions. Besides the segmentation of the point cloud data, this thesis presents different visualization and reconstruction methods to achieve a wider range of possible applications of the developed system for data export and utilization in different third party software tools
    • …
    corecore