

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Jamieson-Binnie, Alexander D

Title:
Visualisation and tooling for interactive molecular dynamics in virtual reality

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.
Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•Your contact details
•Bibliographic details for the item, including a URL
•An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Visualisation and Tooling for Interactive
Molecular Dynamics in Virtual Reality

By

Alexander David Jamieson-Binnie

Department of Chemistry
University of Bristol

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of Doctor
of Philosophy in the Faculty of Science.

June 2022

Word count: forty-three thousand, eight hundred and one

Abstract

Interactive molecular dynamics (IMD) is a powerful technique which allows user intuition to
guide and perturb a simulation. I do not believe that we have taken full advantage of this
medium as by merely duplicating existing methods we do not address the new issues nor take
advantage of the possibilities.

It is vital to ensure that the system can be rendered efficiently to avoid motion sickness.
We must use the latest techniques to allow the visualisation of large systems at a range of
magnification levels. I discuss how we achieve this using raycasting imposters, as well as
proposing some new primitives that can find use in molecular visualisation.

Sudden visual discontinuities can be immersion-breaking and distracting when using virtual
reality. I have developed two techniques to avoid these issues when visualising systems. For
periodic systems, I propose a technique to crop atoms within the simulation box to ensure
a smooth transition across periodic boundaries. I also correctly depict bonds across periodic
boundaries.

Another visual discontinuity occurs when viewing proteins using ribbon diagrams, with
discrete flips in the direction the ribbon twists prevalent at the time resolution used in IMD.
I address this with a novel double-normal interpolation approach, which when combined with
smoothly interpolating the colour and scale yields diagrams that are no longer visually jarring.

In addition to visualisation techniques, we can also exploit the additional freedom afforded
in virtual reality to apply interactive forces. By leveraging the rotational degrees of freedom of
a handheld virtual reality controller, I propose a new class of interactive forces that can rotate
and translate a molecule without internal perturbations. By including damping forces as well,
a user can now have precise control over a molecule’s trajectory. This technique also extends
to more complex coarse-grained systems with asymmetric particles.

i

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the

requirements of the University’s Regulations and Code of Practice for Research

Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the

candidate’s own work. Work done in collaboration with, or with the assistance of,

others, is indicated as such. Any views expressed in the dissertation are those of

the author.

SIGNED: .. DATE: ..

iii

Acknowledgements

I would not have reached this point if not for the many talented, wonderful and amazing people
that have been at Bristol these past few years. Through all the abuse that our supervisors put
us through, it is the camaraderie and companionship that has held us together, and for that I
am eternally grateful.

There are so many people that have contributed to my journey, and I’d like to thank a few
here.

To Becca Walters, who has basically been my academic sibling through this all — I shall
miss many evenings spent watching the dregs of reality TV and how you laughed at all my
bad jokes. There was never a dull moment when you were here.

To Callum Bungey, who’s chaotic and unbridled energy ensured that for the time we lived
together I was not the messiest housemate. Somehow despite everything that life has thrown
at you, you remain upbeat and acerbic. Never change.

To Mike O’Connor, who’s work ethic, easy-going attitude and love of the craft was and
still is a massive influence on me.

To Zack Williams, for being a great housemate and his encyclopedic knowledge of all things
Trek and Star Wars.

To Simon Bennie, who always put his neck out for the rest of us, your absence through the
last couple of years is sorely noted.

To Joe Crossley-Lewis, I’ve never met someone quite as affable, charming or fluent in as
many European languages. I shall miss having my afternoons punctuated with a ‘Salut Salut!’.

To Jonathan Barnoud, our resident rubber duck who was always open to hearing our worries
and problems. Thanks for your many helpful comments on this thesis.

To Helen Deeks, who has somehow survived here for this long. Clearly this is because
of how politically savvy you are. Thanks for being such a consistent presence, and helping
maintain afternoon tea during lockdown.

To Robin Shannon, who though you live a good hour and a half away always made the
effort to come to our social occasions.

To Lars Bratholm, who’s comfy former office chair I am currently writing this from. Your
forthrightness, many bottles of peppermint schnapps and unexpected collection of fancy dress
costumes never failed to put a smile on our faces.

To Stephanie Hare, who brought such joy and energy into the CCC. Bristol is a worse place
in your absence.

To Harry Stroud, just genuinely one of the nicest and good-hearted people I’ve met. I hope
the shitshow of the last few years does not put a damper on your infectious love of science.

To Oliver Feighan, whose dogged belief that heating a banana would cause it to melt shows
good scientists are prepared to consider any outcome.

v

To Rhos Roebuck Williams, one of the sunniest and least-aggressive people I know. The
world needs more optimistic and candid people like you.

To Alex Jones, I will never know how you maintained that constant sense of being both
frazzled and chill (through the balance may have shifted since parenthood).

To Luke Lewis-Borrell, for being our token experimentalist friend and always up for dis-
cussing your love for Sci-Fi.

To Lex O’Brien, who suffered through more than most and got through to the other side.
To Mark Wonnacott, for being a valued colleague, and for being the source of one of the

most surreal stream-of-consciousness twitter’s I have ever seen.
To Josh Dunn, for many long conversations when I probably should have been working,

and for giving me frankly one of the most horrific gifts I have ever received.
To Dasha Shchepanovska, without you this thesis would be a lot worse and my life a lot

emptier.
To my D&D crew — Callum, Dasha, Helen, Jonathan, Lars, Robin and Zack — I thank

for many hilarious evenings spent dealing with the no-win moral dilemmas I threw at you.
To my supervisors and advisors who have got me through the PhD: to my former supervisor

David Glowacki, I have managed to complete this PhD despite your many shortcomings, and
yet would not have had the freedom to work on what I have without you; to Adrian Mulholland,
for supporting me through my PhD; and finally to Craig Butts, for helping me get over the
finish line and been a great source of advice.

To current and former academics with the department, Andrew Orr-Ewing, Tom Oliver,
Neil Allan & Natalie Fey, I’d like to thank for showing not all academia is bad. And to everyone
else who I’ve met — Jillisa Thompson, Simon McKenzie, Silvia Amabilino, Jae Levy, Matt
Bain, Rebecca Twidale, Angus Voice, Ella Gale, Ian Shepherd and Lisa May Thomas — thanks
for contributing to my time here

To Basile Curchod and your group — Antonio Prlj, Daniel Hollas, Jack Taylor, Lewis
Hutton, Yorick Lassmann and Ema Marsili — I’m sorry that I did not get to spend more time
with you all. After the general lull in membership of the CCC, it is reassuring to know that
there are people like you all to keep the spirit alive.

Outside of Bristol, I’d like to thank my friends from St Andrews — Laras Yuniarto, Finn
Smith, Annabel Grout, Billy Brown, Cameron Bathgate, Andrew Woods, Boti Hajdara, Alec
Christie and Grania Smith — for their continued friendship and the many evening zoom games
that got us through lockdown. And to Jenny Winstone, for her support through the first few
years of my PhD.

Finally, I would like to thank my family — my mother Wendy, father Rob, uncle Pete and
my Nan Lynn — for being constant support regardless if they have any idea what I do. They’ll
be pleased to know I finally have a real job.

vi

Contents

Contents vii

List of Figures ix

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 What is Molecular Dynamics? . 1

1.2 What is Virtual Reality? . 3

1.3 Thesis Overview . 5

1.4 Contributions . 6

1.5 Publications . 7

2 The Narupa Framework 9

2.1 Development of NarupaXR . 11

2.2 Co-location in Virtual Reality . 14

2.3 Communication . 17

2.4 Synchronising Data . 25

2.5 Streaming Molecular Dynamics . 29

2.6 Integrations and Expansions . 34

2.7 Visualisation . 37

2.8 Conclusions . 42

3 Molecular Visualisation 43

3.1 Introduction . 44

3.2 Ray casting . 54

3.3 Periodic Boundary Conditions . 70

3.4 Conclusions . 81

4 Continuity in Secondary Structure Rendering 83

vii

4.1 Protein Structure . 84

4.2 History of the ribbon diagram . 88

4.3 Splines and Curves . 91

4.4 Extruding the curve . 100

4.5 Ribbon Flipping . 104

4.6 Conclusions . 116

5 Interactive Molecular Dynamics 117

5.1 Introduction . 118

5.2 Interactive Molecular Dynamics . 123

5.3 Rotational Interactions . 133

5.4 Finite and Asymmetric Particles . 153

5.5 Conclusions . 159

6 Conclusions 161

Appendices 163

A Transformations & Affine Coordinates 165

A.1 Linear Transformations . 165

A.2 Affine Transformations . 166

A.3 Perspective Transformations . 168

B Splines 169

B.1 Bezier Curves . 169

B.2 Cubic Hermite Spline . 171

B.3 Natural Cubic Spline . 173

B.4 B-Splines . 175

C Quaternions 177

C.1 Quaternions as rotations . 178

Bibliography 181

viii

List of Figures

2.1 Projection of a user’s silhouette into a potential energy surface using a depth sensor. 11

2.2 Two users occupying the same physical space R, but interacting with different

virtual spaces V1 and V2. 15

2.3 Two users occupying the same physical space R and interacting with the same

virtual space V. 16

2.4 Comparison of markup languages for representing arbitrary data. 18

2.5 Comparison of structure of arrays vs. arrays of structure for storing molecular data. 23

2.6 Comparison of encoding three floating-point number (each of 8 bytes), using a

standard protobuf list (bottom) and a specific repeated field of floats (top). 25

2.7 Synchronisation of frame data between a server and a client. 26

2.8 Comparison of synchronising a value between the client and server with and without

update count tracking. 28

2.9 Core MD loops of NarupaXR, Narupa iMD and narupatools. 29

2.10 Simulation rate of a Neuraminidase system in OpenMM, using different software in

or based on Narupa. 31

2.11 Network transfer rate of a Neuraminidase system in OpenMM, using different soft-

ware in or based on Narupa. 33

2.12 Various screenshots of the Narupa Builder in use. 36

2.13 Standard ball-and-stick visualisation as defined in Narupa iMD 39

2.14 Examples of node-based visual programming in modern software for 3D modelling

and game development. 41

3.1 Molecular model of penicillin . 44

3.2 Illustration of a caffeine molecule represented using the three common atomistic

visualisations. The atoms are coloured based on the CPK color scheme. 45

3.3 Comparison of three molecular surfaces used in visualisation 46

3.4 Overview of the steps in the graphics pipeline. 49

3.5 Mesh of a cube broken down into 12 triangles and 24 vertices. Each of the six faces

consists of two triangles. 50

3.6 Various steps involved in transforming a triangle to a set of pixels on the screen. . 52

ix

3.7 Techniques used in the fragment shader to perform ray casting. 54

3.8 Various approaches to enclosing a surface within a bounding mesh. 55

3.9 Intersection of a ray with an arbitrary surface. 56

3.10 Intersection of a ray with a sphere. 57

3.11 Time taken to render each frame using various representations of spheres. 58

3.12 Number of spheres that can be rendered at 90 FPS using various approaches. . . . 59

3.13 General problem for the intersection of a ray with a cylinder. 60

3.14 Three-dimensional plots of the two general cases for hyperboloids of revolution. . . 61

3.15 Reduction of the problem to two dimensions. 62

3.16 Caffeine molecule represented using the hyperballs visualisation. 63

3.17 The intersection of a ray with an infinite number of spheres spaced at integer

multiples of ~a from a centre ~c . 64

3.18 Example of a use for a ray casted chains of spheres. 66

3.19 Example of sphere marching a signed distance field. 67

3.20 Comparison of ray tracing using standard sphere tracing and exploting the property

of a convex shape using tangent planes. 68

3.21 Comparison of sphere tracing and tangent tracing for a wheel shape. 68

3.22 Comparison of spheroid- and wheel-shaped base pairs for visualising a DNA helix. 69

3.23 Illustration of a 2D periodic system . 70

3.24 Issues with current visualisation of periodic systems. 71

3.25 Comparison between a cropped and uncropped simulation box for a typical BCC

unit cell. 72

3.26 Conversion between fractional coordinates (unit cube) and simulation coordinates

(simulation box) using H. 73

3.27 Minimum image convention for bonds. 74

3.28 2D example of bounding volumes for objects in periodic simulations. 75

3.29 Additional geometry for periodic systems. 76

3.30 Possible intersections (striped region) between two objects A (blue) and B (red),

assuming the ray passes through both objects. 78

3.31 A periodic cell of the BRE zeolite structure, showing which parts will be clipped

(red) and which lie inside the unit cell (green). 79

3.32 A periodic cell of the BRE zeolite structure, using all above-described techniques

to implement periodic systems. Oxygen atoms are in red and silicon atoms in beige. 79

3.33 Two examples of systems visualised using periodic boundaries 80

4.1 Condensation reaction between two amino acids to yield a peptide bond. 84

4.2 Depiction of the two common secondary structure motifs. 85

4.3 Illustration of three peptide planes. 86

x

4.4 Comparison between an artwork by M.C. Escher and the structure of a Beta barrel

visualised using a ribbon structure. 88

4.5 Illustration of Ribonuclease A by Jane Richardson, from The Anatomy and Taxon-

omy of Protein Structure.175 . 89

4.6 Division of a curve into spline segments ~s0(t), ~s1(t) and ~s2(t). 91

4.7 Continuity requirements for splines . 92

4.8 Cubic Hermite curve for a set of points {~pi} and their corresponding tangents {~mi} 93

4.9 Simple linear interpolating spline between a set of points {~pi}, as described in

Equation 4.2 . 93

4.10 Example of a uniform cubic B-spline. 95

4.11 Comparison of the three common curve approaches fitted to an ideal α-helix, as

seen from the side and from above. 98

4.12 Side-view of different splines fitted to a β-sheet. 99

4.13 Tube representation of a small protein (Code 1CTF) along a natural cubic spline,

and coloured according to the secondary structure motifs. 100

4.14 Illustration of a Frenet-Serret frame along a cubic Hermite curve. 101

4.15 Example of a strands representation of FMET t-RNA, reproduced from Carson178. 102

4.16 Some of the possible cross-sections that can be used for ribbons. 103

4.17 Illustration of three ways to interpolate a ribbon, given an initial and final orientation.105

4.18 Ribbon flipping as it occurs in consecutive frames of a protein trajectory in major

visualisation software. 106

4.19 Steps involved in simple linear interpolation of normals to create an ellipsoid cross-

section. 108

4.20 Linear interpolation of the two normals in the double-normal method. 109

4.21 Transformation of a circle with radius 1 into an ellipse using a matrix M. 109

4.22 Comparison of my double-normal interpolation technique to standard ribbon rota-

tion for a 30 degree ribbon rotation. 110

4.23 Comparison of my double-normal interpolation technique to standard ribbon rota-

tion for a 60 degree ribbon rotation. 111

4.24 Comparison of my double-normal interpolation technique to standard ribbon rota-

tion for a 90 degree ribbon rotation. 112

4.25 Examples of flipping artifacts between adjacent timesteps that now are continuous

thanks to my double-normal method. 113

4.26 Comparison of neuraminidase rendered using a standard single-normal interpola-

tion and my double-normal interpolation method, illustrating their similarities at

a distance. 114

4.27 Comparison of discrete changes, where the DSSP calculation changes the colour

and size directly; and smoothed, where the calculated changes are delayed to give

a smooth transition. 115

xi

5.1 Comparison of various rare event sampling techniques. 125

5.2 Harmonic Potential U(r) and corresponding force F (r). 129

5.3 Gaussian Potential U(r) and corresponding force F (r). 130

5.4 Clipped Harmonic Potential U(r) and corresponding force F (r). 130

5.5 Comparison of applying an interaction to each particle individually, or applying

it to a composite particle at the centre of mass and then redistributing the forces

using mass-weighting. 131

5.6 Example of rotational SMD, with each atom linearly attracted to a rotating con-

straint position, which rotates about an axis at constant velocity ~ω. 133

5.7 Comparison of rotating a small molecule using a single interaction on an atom and

by applying a set of interactive forces to induce a rotation. 135

5.8 Steps involved in applying the rigid motion interaction in virtual reality. 145

5.9 Comparison of various methods to rotate an alanine dipeptide molecule. 147

5.10 Breakdown of kinetic energies for the rotation of alanine dipeptide, for the four

methods of rotation shown in Figure 5.9 . 149

5.11 Effect of various damping coefficients on the rotation of an alanine dipeptide by 90°. 150

5.12 Breakdown of the total rigid motion interactive force. 152

5.13 Illustration that when rotating a set of asymmetric particles, an angular acceleration

must be applied to each particle in addition to the acceleration applied to rotate

the three particles about their centre of mass. 157

5.14 Rotation of an oxDNA duplex using my rotational force, illustration the effect of

the centripetal force and the per-particle torques. 158

B.1 Illustration of a quadratic Bezier based on three control points. 170

xii

List of Tables

2.1 Examples of data that can be found in a Narupa iMD FrameData, and their corre-

sponding keys. 24

2.2 Units used by different software, packages, and file formats. 34

4.1 Summary of spline fits used in various molecular visualisation packages, highlighting

the variety of methods used. 96

5.1 Various accelerations caused by the two forces described in equations 5.41 and 5.42. 139

xiii

List of Abbreviations

AABB Axis-Aligned Bounding Box.

API Application Programming Interface.

BCC Body-Centred Cubic.

BXD Boxed Molecular Dynamics.

COM Centre of Mass.

CPK Corey, Pauling and Koltun.

CPU Central Processing Unit.

CSG Constructive Solid Geometry.

DNA Deoxyribonucleic Acid.

DSL Domain-Specific Language.

DSSP Define Secondary Structure of Proteins.

FPS Frames Per Second.

GPU Graphics Processing Unit.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

ID Identifier.

IMD Interactive Molecular Dynamics.

IMD-VR Interactive Molecular Dynamics in Virtual Reality.

xv

JSON JavaScript Object Notation.

LED Light-Emitting Diode.

LES Ligand Excluded Surface.

MD Molecular Dynamics.

MSS Molecular Skin Surface.

NMR Nuclear Magnetic Resonance.

NPT Isothermal-Isobaric Ensemble.

NURBS Non-Uniform Rational B-Splines.

NVE Microcanonical Ensemble.

NVT Canonical Ensemble.

OSC Open Sound Control.

PC Personal Computer.

PCA Principal Component Analysis.

PDB Protein Data Bank.

RPC Remote Procedure Call.

SAS Solvent Accessible Surface.

SES Solvent Excluded Surface.

SGMD Self-Guided Molecular Dynamics.

SMD Steered Molecular Dynamics.

SMILES Simplified Molecular-Input Line-Entry System.

SSAO Screen Space Ambient Occlusion.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

xvi

VR Virtual Reality.

XDR External Data Representation.

XML Extensible Markup Language.

YAML YAML Ain’t Markup Language.

xvii

Chapter 1

Introduction

1.1 What is Molecular Dynamics?

Using computational methods to describe chemical systems has a rich history going back to the

1950s. Advantages of computational methods in comparison to experiment include the reduced

cost and the potential insight such simulations provide. However, the two must always coexist,

informing each other and leveraging their respective strengths.

Bulk properties of a given molecular system can be determined using computational meth-

ods. This is often predicated on sampling configurations of our system, determining the desired

property for each of these states, and weighting them by the probability of that state occurring.

One method of collecting a representative set of configurations is the Monte Carlo method.

Specifically, the Metropolis Monte Carlo approach is commonly applied to molecular systems,

where random perturbations or moves are made to generate a new state. The probability of

accepting this as a valid move is based on the difference in energy from the Boltzmann distri-

bution, which ensures that higher energy states are visited less often. As Monte Carlo is not

describing the time evolution of the system, it is limited to calculating static properties.

An alternative approach arose in the 1950s, called Molecular Dynamics (MD). Molecular

dynamics propagates the system by solving Newton’s equations of motion. As molecular

dynamics describes a passage through time, it is more suited to questions where dynamical

properties based on the trajectories of atoms are of interest.1 Generally, classical molecular

dynamics treats each atom as a point mass generally referred to as a particle. Each particle

has position {~qi} and momentum {~pi}, which are propagated forwards in time in accordance

with Newton’s second law:

~Fi = mi
d2~qi
dt2

=
d~pi
dt

(1.1)

The force on each particle is usually expressible as the gradient of a potential energy

1

function U , which itself is a function of the atomic coordinates:

~Fi = −∇~riU({~qi}) (1.2)

Combining equations 1.1 and 1.2 yields a set of N differential equations, where N is the

number of particles. Large molecular systems are not tractable analytically, and hence nu-

merical methods must be used to determine a solution. These equations can be propagated

using explicit numerical integration such as velocity Verlet, which determine the positions and

velocities at a time t+ δt from the positions and velocities at time t.

Whilst the underlying techniques of molecular dynamics have emerged largely unchanged

through the years, it has instead evolved both in developing new forcefields (ranging from

empirical to quantum mechanical to modern machine learning potentials) and in applying

enhanced sampling methods for exploring the occurrence of rare events. The increase in com-

putational power over the last century also has lead to molecular simulations becoming viable

on personal computers, reducing the barrier to entry and making it a widely adopted technique

for scientific discovery.

2

1.2 What is Virtual Reality?

Virtual reality (VR) describes any technology that can place a user in an immersive, visual

digital environment. This is commonly achieved by the suspension of screens in front of

the users’ eyes in a headset, displaying a virtual environment. By combining this with pose

tracking, where the position and orientation of the head control the view through the headset,

the user is effectively immersed in a digital world.

Virtual reality has found widespread uses in many disciplines. In medicine, it has been

adopted as an effective tool for improving operating room performance2 and exploring hu-

man anatomy.3,4 In industry, it has been incorporated into product development5 and drug

discovery.6–8 Additionally, it has seen adoption as an educational tool, where it provides not

just the ability to improve spatial reasoning, but improving engagement and immersion.3 In

chemistry, VR has been applied to many areas such as quantum chemistry,9 NMR ensembles10

and chemistry education.11–14 The three-dimensional nature of molecular conformation means

virtual reality is an ideal medium to explore the three-dimensional structure of molecules15–18

and allows immersion in molecular simulations.19,20

The tracking of the orientation and position of the headset is generally done in one of two

ways. Outside-in tracking uses external sensors positioned in the room to track the location of

the headset. Inside-out tracking uses cameras on the outside of the headset, which record the

surroundings and use the relative movement between frames to determine the motion of the

headset. This newer form of tracking has been made possible by the increased computational

power that can be incorporated directly into the headset.

This move towards incorporating more hardware into the headset has also led to a general

shift away from tethered headsets. A tethered headset acts as a screen and tracker, whilst the

actual calculation of what to display is performed on a separate computer. These headsets

must be plugged into the GPU of the user’s machine, and hence they are limited in how far the

user can move around due to the physical cable. An untethered headset is effectively a small

computer, similar to a smartphone. As all computation is shifted to the headset itself, they

are more limited in what they can display. They also require some source of power within the

headset and hence require charging between uses. However, they provide unparalleled freedom

to move around, without the constraint of a cable.

Whilst VR applications often rely on dedicated hardware, the increasing processing power

of personal smartphones has made them a widely available and affordable alternative for some

VR applications. These headsets work by suspending a user’s phone in front of the lenses. By

displaying a specific view on the screen and utilising the inbuilt accelerometers, these devices

provide access to VR for users without high-end personal computers. Whilst more limited than

dedicated hardware, these developments allow virtual reality to be an affordable technology

for many people.

An important drawback to consider when using virtual reality is virtual reality sick-

3

ness.21 This is similar to motion sickness and affects certain people more than others. Gen-

erally, to reduce the effects of virtual reality sickness, the refresh rate of the display must be

kept above a certain threshold. This emphasises the need for virtual reality applications to

avoid expensive calculations and remain responsive to user actions.

In recent months, much has been made of the concept of the metaverse. The Meta Plat-

forms, Inc. conglomerate, one of the Big Five technology companies, launched a social VR

application known as Horizon Worlds. Given the profound impact that COVID-19 has had on

global working practices within the last few years, virtual reality has experienced a resurgence

as a method of interacting with other users remotely.

The software in our group has been developed as a framework for performing interactive

molecular dynamics in virtual reality.22–24 This work has been used to teach enzyme catalysis14,

simulate drug binding25, generate data to train an atomic neural network26 and explore reaction

networks.27 This breadth of applications shows that virtual reality is applicable to many of the

challenges faced by today’s scientists.

4

1.3 Thesis Overview

In Chapter 2, I introduce the work I have done in the development of Narupa iMD and other

software. This starts with a brief overview of its development, and the major features and

drawbacks of the various versions that have been released. I lay out my contributions to the

project, which include the final versions of NarupaXR to Narupa iMD and other projects.

Leading on from this, Chapter 3 is a detailed introduction to rendering for molecular

systems, based on my work implementing the visualisations in Narupa iMD. I describe the

rendering pipeline, and the technique of raycasting impostors employed by many molecular

visualisation applications. I discuss how existing representations such as ball-and-stick are

rendered, as well as introduce new methods for rendering dotted and dashed three-dimensional

lines, with applications for partial and directed bonds. Finally, I present my novel implemen-

tation of periodic systems visualisation, and describe a set of modifications that may be made

to existing rendering workflows.

In my work on periodic systems, I argue that visual continuity is important in dynamic

visualisation in virtual reality, as it prevents sudden jumps or changes that would distract the

user and break immersion. This leads on to my work in Chapter 4, in which I introduce a new

method for rendering ribbon representations of secondary structure. This method does not

suffer from the dynamic discontinuities observed in existing implementations. I also discuss the

history and development of the ribbon diagram, as well as look at how they are implemented

in existing packages.

Finally, in Chapter 5 I discuss the background and theory of interactive molecular dynamics

(IMD). I describe how interactions are incorporated into the equations of molecular dynamics,

and propose improvements to the existing implementation of IMD as it appears in NarupaXR

and Narupa iMD. This chapter also discusses how IMD trajectories can be recorded for sub-

sequent analysis, and the information we can extract from this, such as calculating the work

performed by our interactions. Finally, I introduce a novel form of a rotation-based interac-

tion, which can be used for fine-grained control of molecular fragments. This method allows

manipulation of molecules without distortion, and can be generalised to finite-sized anisotropic

particles as well.

Overall, the thesis lays out the current state of the field of interactive molecular dynamics.

The overall message of the thesis is that we should not simply duplicate our existing approaches

into VR, but take advantage of this transformative medium. The menu and toolbar heavy

interfaces which make up most software is ill-suited for VR, where the goal is clean and clear

user interfaces, with data presented in a manner that will not overwhelm the user. Just as

it has its limitations, the increased degrees of freedom that the controllers provide should be

leveraged to provide inputs that would not be possible in a 2D interface. The goal is therefore

to understand what works and what doesn’t, and design software that takes advantage of VR.

5

1.4 Contributions

To the benefit of the reader, as some work presented here is collaborative, my contributions

may be summarised as:

1. Developing, reviewing and writing a large amount of the Narupa iMD software. This

includes contributing to the design and implementation of the communication protocol. I

developed and wrote all visualisation code within the virtual reality frontend, as described

in Chapters 2 and 3.

2. Developing two novel raycasting shapes for use in visualising molecular systems — a

chain of spheres and a wheel shape.

3. Developing a novel approach for visualising periodic systems, cropping shapes as they

cross the boundaries and ensuring they smoothly enter from the opposing side.

4. Developing and implementing a novel approach for rendering ribbon diagrams, which

does not suffer from previous visual glitches that affect all other protein visualisations.

5. Proposing a new approach for applying rotational forces in interactive molecular dynam-

ics, whilst still allowing internal motion.

6

1.5 Publications

My work and contributions have lead to the following publications:

Michael B. O’Connor, Simon J. Bennie, Helen M. Deeks, Alexander Jamieson-Binnie, Alex

J. Jones, Robin J. Shannon, Rebecca Walters, Thomas J. Mitchell, Adrian J. Mulholland,

and David R. Glowacki. “Interactive molecular dynamics in virtual reality from quantum

chemistry to drug binding: An open-source multi-person framework”. In: The Journal of

Chemical Physics 150.22 (June 14, 2019). Publisher: American Institute of Physics Inc.,

p. 220901. issn: 0021-9606. doi: 10.1063/1.5092590

Rhoslyn Roebuck Williams, Xan Varcoe, Becca R. Glowacki, Ella M. Gale, Alexander

Jamieson-Binnie, and David R. Glowacki. “Subtle Sensing: Detecting Differences in the Flex-

ibility of Virtually Simulated Molecular Objects”. In: Extended Abstracts of the 2020 CHI

Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, Apr. 25,

2020, pp. 1–8. isbn: 978-1-4503-6819-3. doi: 10.1145/3334480.3383026

Alexander D Jamieson-Binnie, Michael B. O’Connor, Jonathan Barnoud, Mark D. Won-

nacott, Simon J. Bennie, and David R. Glowacki. “Narupa iMD: A VR-Enabled Multiplayer

Framework for Streaming Interactive Molecular Simulations”. In: ACM SIGGRAPH 2020

Immersive Pavilion. New York, NY, USA: ACM, Aug. 17, 2020, pp. 1–2. isbn: 978-1-4503-

7968-7. doi: 10.1145/3388536.3407891

Alexander D. Jamieson-Binnie and David R. Glowacki. “Visual Continuity of Protein

Secondary Structure Rendering: Application to SARS-CoV-2 Mpro in Virtual Reality”. In:

Frontiers in Computer Science 0 (July 12, 2021). Publisher: Frontiers, p. 63. issn: 2624-9898.

doi: 10.3389/FCOMP.2021.642172

7

https://doi.org/10.1063/1.5092590
https://doi.org/10.1145/3334480.3383026
https://doi.org/10.1145/3388536.3407891
https://doi.org/10.3389/FCOMP.2021.642172

Chapter 2

The Narupa Framework

The Narupa framework is the software and protocols developed within the Glowacki group at

the University of Bristol to perform interactive molecular dynamics. It consists of two core

parts — a front-end application which allows a user to enter virtual reality to view and interact

with a simulation; and a back-end server, which interfaces with a molecular dynamics engine

and synchronises between the simulation and the front-end clients.

In this chapter, I will discuss the various components that make up the Narupa framework

I have contributed to. After a brief overview of the development history of the predecessor of

Narupa iMD, I will discuss co-location in virtual reality, comparing it to other approaches that

have been tried and explaining how it is achieved.

I will then discuss one of the main purposes of Narupa — communication between simula-

tion and visualisation software. With software for run molecular dynamics bering well estab-

lished, and a plethora of molecular visualisation programs available, communication between

the two is still somewhat limited and underdeveloped. I will discuss file formats commonly

used for chemical data and how they are often ill-suited for fast transmission over a network.

This will lead onto the development of Narupa iMD’s communication framework, using gRPC

and protocol buffers to send molecular data to clients, and how shared data is synchronised

between users.

After describing how NarupaXR and Narupa iMD propagate and stream their dynamics,

I will discuss benchmarks comparing the relative performance of the software defined above.

Finally, I will discuss some integration with other packages, as well as the visualisation system

employed in the Narupa framework that I developed.

9

Contributions

The work carried out on Narupa has been a collaborative effort between myself and other col-

leagues in the Glowacki group. My involvement in the framework started when the project was

known as NanoSimbox, before being rebranded as NarupaXR. I was heavily involved in refac-

toring and tidying the codebase and implementing a trajectory playback feature. I implemented

new controller models for the user which more closely mapped their physical counterparts to

help new users use them. I also experimented with features that would later make it into later

versions, such as using raytracing for visualisation and combining the topology and positions

of atoms into the concept of a frame of a trajectory.

When we decided that a complete rewrite would be beneficial, I was involved in initial

experimentation for a new communication protocol. I wrote a large part of the frontend appli-

cation, as well as worked on the Python backend. In the frontend, I developed the visualisation

stack that renders the system. I also worked on the user interface and communication between

the frontend and backend, including addressing several long-term issues with synchronisation.

I was involved in the design choices, such as the appearance of the user interface and menus.

This new version is generally referred to as the Narupa framework, with the frontend being

called Narupa iMD.

After that project had stagnated, I continue to develop and release versions of the software

which I have developed alone — the narupatools Python package which extends the backend

server and a modified version of the Narupa iMD frontend. This was necessary for me to con-

tinue developing on the project and to incorporate the work presented in subsequent chapters

into software that is openly available to all. To be clear:

1. NarupaXRa refers to the first version of Narupa as described by O’Connor et al.23. This

was a continuation of an existing project formerly known as NanoSimbox, and consists

of a frontend written in C] using the Unity game engine, and a custom backend written

in C].

2. Narupa iMDb refers to the second version of Narupa, described by Jamieson-Binnie et

al.29. This was a complete rewrite based on ideas developed in NarupaXR. The backend

consists of a set of python libraries which interface with existing molecular dynamics

libraries.

3. narupatoolsc is a set of python libraries which extends the existing narupa-server

package of Narupa iMD with new features. Servers run through narupatools are com-

patible with Narupa iMD clients.

ahttps://irl.itch.io/narupaxr
bhttps://narupa.readthedocs.io/en/latest/
chttps://github.com/alexjbinnie/narupatools

10

2.1 Development of NarupaXR

The origin of NarupaXR lies in the development of danceroom Spectroscopy (dS).30–32 This

project used consumer-grade depth sensors to project the silhouettes of people into a three-

dimensional simulation, and use these as potential energy landscapes (as shown in Figure 2.1).

Whilst mainly used for art installations, the same technology could be used to manipulate

small molecules such as peptides using the user’s hands. dS also allowed multiple people to

interact with the same simulation simultaneously, whilst being located in the same physical

space. With these features, Glowacki et al.32 postulated that this approach had not just

educational applications but could be used to accelerate rare event sampling and find new

dynamical pathways.

The development of danceroom Spectroscopy lead directly to the development of NanoSim-

box, which used, in place of depth sensors such as the Microsoft Kinect, commercial virtual

reality headsets in the form of the HTC Vive (and later HTC Vive Pro).22 A core feature of this

setup is the idea of co-location, in which multiple users could interact with the simulation

whilst being in the same physical and virtual space. This enabled users to see each other within

the context of the simulation, which has both the practical aspect of avoiding collisions and

the psychological aspect of inhabiting the same space, which is beneficial for demonstrating

and teaching purposes.

The NanoSimbox project was later forked and renamed to NarupaXR. The name Narupa

was chosen as it combines the sanskrit word arūpa, which means formless, and the prefix n- for

nano. This name is meant to avoid limiting the scope of the project to something specific such

as molecules, and instead encapsulate its generality to visualising scales we cannot observe

with our own eyes.

As the project had been continuously developed from danceroom Spectroscopy to Naru-

Figure 2.1: Projection of a user’s silhouette into a potential energy surface using a depth
sensor.

11

paXR, the NarupaXR codebase was cluttered with techniques and clauses that related to now

defunct developments. Another issue that was encountered was the development of the server,

which is where users may wish to add custom forces and integrators for their specific system.

The server and client are both written in C], an interpreted language similar to Java. However,

it was found that generally scientists were unfamiliar with this language, and it provided a

barrier to entry for users to adopt the software. To interface C] with existing codes (often

written in C++), custom bindings also have to be developed.

It was these issues that lead to the development of Narupa iMD, sometimes referred to

as Narupa 2 to distinguish it from NarupaXR. This was a complete rewrite of the codebase,

based on the insights gained during the previous years of development. Whilst the VR client

was similar, using C] and the game engine Unity, to that of NarupaXR, the backend was

completely rewritten in Python. Python is an interpreted language, and has wide adoption

in the scientific community. Many software packages also provide a Python wrapper or API,

making it much easier to interface Narupa iMD with other software.

Game engines as scientific platforms

The development of molecular visualisation software is similar to the development of video

games, with immersive three-dimensional environments and user interaction. Unlike the ren-

dering of animated films, where the production of a film of a few hours can take many months

whilst being rendered across a large number of computers, a video game must use commodity

hardware found in a users computer to deliver a scene in real time. By addressing issues re-

lating to high-performance rendering, the video game industry solves similar issues that face

molecular visualisation programs.33

Often, visualisation techniques originate in video games. For example, ambient occlusion is

a method which describes the darkening of creases and corners of a scene, due to less ambient

light reaching them. Mathematically, calculating ambient occlusion exactly is expensive and

generally limited to pre-rendered scenes. However, in the video game Crysis the cheaper

approximation of Screen Space Ambient Occlusion (SSAO) was developed.34 This technique

has since found widespread adoption in both video games and in molecular visualisation,

where it provides important depth information to help users understand the three-dimensional

structure of their molecule.35

Writing a video game involves many parts, including interfacing with the computer’s graph-

ics API, reading in assets and representing the scene. It is for this reason that game engines

exist, which provide a foundation which builds on the low-level code required to create a game

and allows developers to focus on their application-specific concerns. Using a game engine also

allows a developer to target a wide range of platforms — whilst different operating systems

and hardware may have different capabilities and interfaces, a game engine can abstract this

into a single generic interface that is exposed to the developer.

12

In recent years, scientific software has increasingly adopted the use of game engines such as

Unity and Unreal. These programs provide comprehensive editors for laying out and creating

scenes graphically rather than purely through code. They also benefit from a wide adoption in

game development, which has lead to a thriving ecosystem of tutorials and assets. Adopting

an engine such as Unity therefore has a lower barrier of entry than learning low-level graphics

and user interface libraries. Another advantage is that game engines often allow programming

in a higher-level language, such as Python or C], whilst the lower-level code driving the engine

is often written in C++.

When developing software for virtual reality, using a game engine helps support a range

of different headset hardware and APIs. The Unity game engine has seen an especially wide

adoption in molecular visualisation, especially when augmented or virtual reality compatibil-

ity is required. Examples of software that uses Unity include Narupa23,29, UnityMol33,36–40,

Nanome18, Molecular Rift41 MOF-VR42, CellexalVR43, Peppy44, BioVR45, MDV46, SimView47

and InteraChem48. Meanwhile, the Unreal engine has seen less widespread adoption.

As an alternative to developing applications to run on a user’s computer, molecular software

may be run within a web browser. Instead of requiring an entire game engine, applications

running in the browser can leverage a wide range of Javascript libraries, such as Three.js.

With modern libraries such as WebXR there has been an increasing number of web-based

virtual reality applications for chemistry, including ProteinVR49, VRMol50, BioSimAR51 and

MoleculARWeb52.

When compared to a standalone software, web-based applications tend to have a smaller

distribution size. They are not compiled — being mostly Javascript, they are easily modifiable

and extensible. This also allows them to be easily distributed and embedded in other websites.

For examples, viewers such as JSmol, ngl and Mol* have found widespread use for embedding

three-dimensional molecular structures in a range of web resources.

13

2.2 Co-location in Virtual Reality

A unique aspect of Narupa’s approach to IMD-VR is its support for co-location.23,29 It

allows users who were located in the same physical space to experience the same virtual world

simultaneously, by utilising multiple headsets located within the same room.

It has been observed that the exclusivity of utilising a single headset whilst multiple people

are physically present results in these people being excluded from participating in the expe-

rience, often being relegated to observing what the headset-wearing user is doing through a

two-dimensional screen. Previous work to address this issue includes CoVR53, which displays

the view of a VR user using a projector, allowing others to view exactly what the user sees.

Other approaches include ShareVR54, which allowed a user in virtual reality to interact with

others who are in the same physical space but are not wearing a headset, or FaceDisplay55,

which used touch-sensitive displays attached externally to the headset to allow external users

to interact.

The issue of external observers not being able to experiance the virtual world can be ad-

dressed by the ReverseCAVE 56. Here, translucent screens can be used to project the virtual

environment around the user, allowing external bystanders to understand where they are rel-

ative to what they are experiencing. However, none of these approaches are as immersive as

placing the observers within the same virtual space and allowing them to participate as equals.

Multiuser experiences in virtual reality often makes the assumption that the users are

located in different physical spaces. Therefore, there is no need for a correlation between their

relative physical positions and their relative positions within a virtual world. However, when

multiple users wear headsets in the same room and interact in the same virtual world, it is

important that the two positions correlate. For example, if a user is standing to the left of

another, they should also appear at this position within the virtual world. This helps avoid

collisions in the physical world. Another consideration is that if the users are speaking in real

life, the audio will come from the same direction as would be expected by the position of their

virtual avatars.

Co-location in NarupaXR and Narupa iMD is implemented using the lighthouse tracking

system of the SteamVR ecosystem, as it allows the tracking of multiple headsets simultaneously.

As each headset agrees on an upwards direction, as well as the location of the two lighthouses,

we are able to correctly position the headsets relative to one another.

A similar approach to co-location has been explored at Purdue University.57 This approach

used a custom-made visualisation platform written in Unity, and used multiple Oculus Quest

headsets. As described previously, the Oculus Quest headset uses an inside-out tracking,

where cameras on the headset determine the orientation rather than external sensors. Early

approaches at Purdue used various external trackers attached to the headset to synchronise the

headsets within one virtual space. However, by marking a clear origin and forwards direction

on the floor, each headset can be calibrated in the same manner. This achieves the same result

14

as Narupa’s co-location, but it requires careful calibration of each headset.

There are several different spaces (referring to a coordinate system of an origin and three

axes) that must be considered when synchronising users:

1. Real space R. This describes the actual location of users within the physical space they

occupy.

2. Calibration space Ci. Each user’s headset is calibrated in a manner specific to that

headset. This calibration step is performed before using the headset and determines the

floor level and direction that the headset considers to be forwards. If the calibration is

performed correctly, the floor height and upwards directions with agree for all users, and

be aligned with the real physical space R.

3. Virtual space V. The virtual space is the coordinate space in which the virtual world

will be defined.

The transformation (represented as a matrix) which transforms points from one space A
to another B will be written as T [A → B].

When multiple people are viewing the same system (either remotely or in the same room)

and co-location is not in use, a situation as shown in Figure 2.2 will occur. The virtual space V
is positioned relative to each user’s calibration frame Ci, and hence will be located in different

positions in real space. This means when avatars are synchronised between users, they will

appear at somewhat arbitrary locations and may overlay with each other.

Co-location is achieved in Narupa iMD by assuming that all headsets are tracked by the

same lighthouse base stations. As each of these base stations has a unique ID that is transmitted

R

C1
C2

V1 V2

Figure 2.2: Two users occupying the same physical space R, but interacting with different
virtual spaces V1 and V2.

15

automatically to each headset, all users can agree on the location of the two sensors with the

lowest IDs. By taking the midpoint of the two lighthouse locations and projecting it onto the

floor, all users can agree on a single point in real space, and know where this is relative to

their calibrated space. By aligning this coordinate system with the lighthouses, and locating

the virtual space here, the virtual space of each user are now aligned in real space (as shown

in Figure 2.3. This achieves the goal of co-location — aligning the virtual space even when the

calibration space of each headset differs. The common reference space of V allows the users

avatars to be synchronised in a manner in which they are aligned with their real-life locations.

R

C1
C2

V

Figure 2.3: Two users occupying the same physical space R and interacting with the same
virtual space V.

16

2.3 Communication

Communication is a vital part of developing interconnected software, from communicating

between two programs running on the same PC to transfering data between different computers

that may be on the same network or on a different continent. The communication between

two pieces of software can be broken into two parts:

1. The format in which the data is transmitted between the software. Converting from a

native format used by the software to the form used for communication is referred to as

serialisation, whilst converting back is referred to as deserialisation.

2. The method in which this data is transferred from one piece of software to another,

whether they are on the same computer or separated.

Chemical file formats

When sending sending files between different software, or sharing files to other people across

the internet, it has to be agreed what format these files with take. Over the years, many file

formats have been developed to communicate molecular data.

The XYZ file format is one of the most widely utilised formats, though it lacks an exactly

defined standard. It is a simple format, usually storing just atomic positions and elements.

This makes it suitable for storing trajectories of small molecules, but usually needs to be

accompanied by another file which better describes the structure of the molecule. These

additional data describing the groupings and bonds within a chemical structure is referred to

as the topology. The topology of a molecule contains both information on the bonds within

a molecule, as well as information such as atom names or residues.

For protein structures, the Protein Data Bank (PDB) format has been widely adopted.

In the PDB format, each line is preceded by a keyword such as TITLE or ATOM. The atomic

data is stored in a fixed column manner, with only a specific number of characters in each line

allocated for each specific piece of data. This applies certain limitations upon the format, such

as a limit on the number of atoms it can store or the ability to store additional data. However,

it has been widely adopted and is supported by most software handling protein molecules.

As it is developed for protein structures, it contains topological information such as residues,

secondary structure assignments and bond information.

Software packages that actually run simulations have generally used bespoke file formats

specific to their use cases, such as the .gro file format of GROMACS58 or the .crd and .psf

formats of CHARMM59. This has lead to the proliferation of many different ways of describing

molecular systems, each with their own pros and cons. It therefore necessitates that software

have a wide range of importers and exporters, or users having to use software such as Open

Babel60 or MDAnalysis61,62 to convert between them.

17

Human-readable and binary formats

These file formats such as PDB and XYZ are unique to molecular data and use specific syntax.

This means different applications must implement specific importers and exporters that must

both understand the raw data conveyed within the files, but also how it is laid out within

these files. This can be addressed by file formats that use a markup language. These are well-

described methods for laying out arbitrary data in a file, without dictating exactly what data

should be stored. The most common of these includes JavaScript Object Notation (JSON),

Extensible Markup Language (XML) and YAML, examples of which can be found in Figure

2.4. These are all examples of human-readable formats that can be used to serialise data.

A classic example of a human-readable format that is transferred between computers is

HTML, which is stored in a format very similar to XML. This describes the format in which

web pages are defined, using a standard set of tags and nodes to describe various features such

as links and headers. It is this file that is distributed across the internet when you visit a

website, and the browser acts as a front end that ‘deserialises’ this plain text file and interprets

it as an interactive viewable webpage that is presented to the user.

Human-readable formats such as these are well suited if they are to be modified directly

by the user, or where the size is not an issue. However, when sending large amounts of data

across a network, smaller binary formats are preferred. In our web example, whilst the general

layout of a web page is send as a human-readable HTML file, a video on a webpage will be

sent using a highly compressed binary format.

Each common letter or character can be represented on a computer using a single byte —

a group of eight bits each of which may be a 0 or a 1. A human readable ‘spells out’ the data

in writing, in a similar manner to writing it down on a page. However, computers have more

<Family>

<Person>

<Name>Alice</Name>

<Age>21</Age>

</Person>

<Person>

<Name>Bob</Name>

<Age>24</Age>

</Person>

<Person>

<Name>Eve</Name>

<Age>18</Age>

</Person>

</Family>

(a) XML

{

"family": [

{

"name": "Alice",

"age": 21

},

{

"name": "Bob",

"age": 24

},

{

"name": "Eve",

"age": 18

}

]

}

(b) JSON

--- # family

- name: Alice

age: 21

- name: Bob

age: 24

- name: Eve

age: 18

(c) YAML

Figure 2.4: Comparison of markup languages for representing arbitrary data.

18

optimal ways of storing numerical data. For example, storing an integer on most platforms

requires 4 bytes, but can represent a range of values from −2 147 483 648 to 2 147 483 648. If

this were to be written out in text form, 4 bytes could only store numbers from −999 to 9999.

More importantly, when performing calculations and otherwise processing data, computers act

on these internal binary representations of numbers rather than the text form.

This concept underpins binary serialisation formats, where values are stored not as a se-

quence of characters but as a well-defined sequence of bytes. This tends to be closer to how

software already stores these values internally, and hence it is faster to read and write files of

this type. As different computer systems can interpret data differently, binary formats must

be very specific in how they store certain values. For example, when storing integers there is

the concept of endianness, which describes the order in which the bytes which describe the

integer are sorted (with big-endianness systems storing the most most significant byte first and

small-endianness systems storing it last).

Transport of data

Regardless of the data exchange format used, to a computer all data fundamentally consists

of a sequence of bytes, each consisting of 8 digits that may be 0 or 1. The communication of

this exact sequence of bytes from one computer to another involves defining some method of

communication. The specification of how exactly data should be interpreted at each end is

referred to as a protocol. Defining how data is transported between computers is the job of

the transport layer, with the two most common transport protocols being TCP and UDP.

TCP (Transmission Control Protocol) defines communication based on connections, and can

transmit streams of bytes between two computers in a reliable manner. Reliable in this sense

means that if somehow a part of the message is lost in transmission, then the sender is informed

and can resend it. This is in contrast to UDP (User Datagram Protocol), which does not have

any sort of guarantee that the data will arrive at the destination. This makes UDP better

suited for audio and video, where if a small amount of data is lost, it is not important as it is

soon to be replaced by subsequent data regardless.

Dealing directly with these protocols involves writing code that has to deal with the exact

meaning of every byte. This is usually hidden behind the higher-level application protocol.

A prime example of this higher-level protocol is HTTP (Hyper Text Transfer Protocol), over

which a vast majority of the internet is communicated over. This protocol usually employs

TCP, and helps separate the user from the fundamentals of communications and focus on high-

level application development. In the context of internet browsing, we have a server that sends

data (in the form of web pages written in HTML) to a user’s browser via the communication

protocol HTTP, which uses TCP to communicate the bytes of the HTML page to the browser.

Another example of a higher-level protocol are WebSockets, which again use TCP as a

low-level protocol to send messages between clients. As TCP transmits chunks of bytes, the

19

WebSocket layer handles the disassembly of a message to be sent via TCP and its reassem-

bly into a message on the recieving end. The predominant difference between HTTP and

WebSockets is that HTTP is mainly suited to a request/response based system, where no per-

sistent connection is maintined, whilst WebSockets are good for event-driven communication

between two clients. However, recent moves towards HTTP/2 and HTTP/3 are introducing

new features to HTTP to remedy this.

Communication for interactive dynamics

Some of the earliest development for streaming molecular simulations came in the set of tools

known as MDScope.63 This linked together the molecular visualisation package VMD64 with

the molecular dynamics software NAMD65, using a custom communication library known as

MDComm. MDComm uses eXternal Data Representation (XDR), which is an example of a

binary serialisation format, and the TCP standard to transmit this data between computers.

The next generation of communication between VMD and NAMD came with the replace-

ment of MDComm by a custom protocol by Stone, Gullingsrud, and Schulten66, commonly

referred to as the VMD-IMD protocol. This aimed to allow highly efficient communication

between server and client, as latency is a major issue when performing interactive molecular

dynamics. This protocol has seen adoption in a wide range of molecular dynamics packages,

such as NAMD, GROMACS58, LAMMPS67 and HOOMD68. In addition to VMD, the Python

application Tios69 allowed simulations to be streamed using this protocol.

The IMD protocol defines various messages, including sending energies or communicating

new forces. However, it is very prescriptive and only supports receiving coordinates. Data

such as molecular topology and periodic box dimensions are not transmitted, and hence must

be provided separately. It is also limited to simulations where the number of atoms does not

change. However, it is still currently the de facto standard for interactive molecular simulations,

finding use in other inter-software communication packages such as MDDriver.70

MDsrv71 uses the popular web-based NGL viewer to show trajectories streamed across the

web. However, it does not use any special binary formats, but simply transmits standard

chemical file formats over an internet connection to be displayed by NGL viewer. HTMoL72

acts in a similar manner, however it only supports a small subset of MD formats (XTC,

DCD and NC). However, these are specifically binary formats, and hence are well suited for

streaming data across a network. These web-based approaches are mainly focused on streaming

pre-existing trajectories which have already been written to file, rather than streaming data

from simulations that are currently taking place.

NarupaXR uses a server that performs the integration of each MD timestep itself and relies

on external engines for the calculation of forces. The communication between the VR client

and server was an in-house solution referred to as the Nano API. The Nano API supports two

connection types — TCP and WebSockets. These relatively low-level communication protocols

20

mean that a lot of the complexities of serialising the data and communicating it also had to

be developed and incorporated into the codebase. Using a bespoke approach such as this as

the disadvantage of being harder for new developers to understand, compared to utilising a

well-defined protocol.

The streaming of data such as atomic positions was achieved through a set of streams —

a continuous open communication from the server to the client along which arbitrary bytes

could be sent. As both the client and the server agreed on the meaning of these bytes, this

allowed the efficient transmission of a large amount of data. To minimise the amount of data,

the server converted each numeric value from a 4 byte representation (with around 6 to 9

significant figures) to a 2 byte representation (with around 3 to 5 significant figures). Whilst

this loses precision, it is an acceptable trade off for halving the amount of data transmitted.

Additional communication within NarupaXR is performed using the Open Sound Control73

(OSC) protocol, originally used for communication between musical devices. This could be

used to both execute functions on the server from the client, such as adding a new restraint,

or be broadcast from the server to all clients. This second approach could be used to inform

clients when certain events occurred, such as a bond breaking. These OSC commands are used

to implement common playback commands that the client can control, such as playing and

pausing the interaction. For example, the /play command when sent by a client will resume

a simulation if it has previously been paused.

When the development of Narupa iMD took place, many discussions were had about how

to implement the communication between the server and the clients. Desirable properties

were an extensible format that allowed transmitting arbitrary data, a small packet size to

minimise bandwidth and latency when broadcasting, and an avoidance of low-level custom

implementations previously used. Adopting existing packages to handle the networking gives

more time to the developers to focus on the scientific side of the software, makes the code more

reliable and makes it easier for new developers to understand how it works.

gRPC

For the communication side of Narupa iMD, we decided to use gRPC74. This is a high-level

library based on HTTP/2 that handles establishing connections and transmitting data in a

bidirectional manner. It supports a wide variety of programming languages, which makes

interoperability between various programs within the Narupa framework easier.

Although gRPC can support any serialisation format, we chose to use the default format of

protocol buffers, or protobuf. This is a binary serialisation format developed by Google, and

used extensively in web services. We settled on this format due to its wealth of documentation,

its strong cross-language support and its flexible schema. Protobuf works on the basis of

‘messages’, which are predefined in specific protocol files. These messages define what kinds of

data are held and in what order. By adopting a message-based approach, if two applications

21

know the message definition, they know for example that the second number in a message is

a ‘count’ variable, without having to send the word ‘count’ in the message itself to identify it.

This reduces the size of a complex message compared to sending arbitary data. Protocol buffers

have found some use within computational chemistry, with the TeraChem electronic structure

package using them for communication between loosely coupled computing resources.75

The RPC in the name gRPC refers to it being a Remote Procedure Call library. This

concept comes from the idea that instead of just sending arbitrary messages, the protocol

must also define functions or procedures that can be invoked. In the simplest sense, a simple

procedure call takes some arguments (in the form of a message) and returns one or more

results (again, in the form of a single message). Therefore, the messages are just part of the

communication, and this approach can be seen as calling a function on a remote computer,

with the result returned at some later point. This is a ‘request-response’ system.

The advantage of gRPC is that it also allows ‘streaming’ calls, which allow more than one

message to be sent or received. This breaks down each function that can be defined into four

categories:

1. Simple request-response, with one request being answered with one (optional) response.

2. Client-streaming calls, where the clients send repeated messages to the server and the

server only responds when it’s finished. This was used for sending user interactions to

the server, before being superseded by a bidirectional stream.

3. Server-streaming calls, where the server sends repeated messages to the client. This

encapsulates another pattern known as the ‘publisher-receiver’ pattern and is used to

send the simulation data to the clients (where the server does not want any response

back).

4. Bidirectional streaming calls, where both server and clients can send multiple messages

to each other. This is the most general case and implements the synchronisation of data

in the Narupa framework. The clients can update values and send them to the server,

and the server sends everyone these values so all clients are in sync.

Using gRPC has allowed us to focus on developing the software itself, as it handles all

communication, establishing servers and maintaining connections. As it uses the HTTP/2

protocol, it can utilise the same port as regular internet traffic and hence can work without

configuring network hardware. It also has features designed for authentication, encryption and

compression, which can be leveraged when the use case requires it.

22

Frame data representation

The most common piece of data we wish to communicate using the Narupa protocol is a

snapshot of a molecular trajectory. This draws a parallel between our use case and the concept

of a video — a series of images spaced through time. Correspondingly, we refer to these

individual snapshots of a system as a frame, allowing the use of corresponding jargon such as

frame rate to describe the rate at which molecular frames are produced.

Unlike a video, where each frame is a single image consisting of a grid of coloured pixels,

a molecular frame consists of different kinds of data. These frames are an example of a record

or struct, a basic data structure consisting of one or more fields. For example, each atom may

have fields including its position, the index of the residue it belongs to or its atomic charge.

There are two general manners in which a set of records can be stored — as an array of

structures (AoS) or a structure of arrays (SoA).

In the case of an array of structures, each atom is a separate data structure containing its

properties, such as position and charge. Therefore, data relating to each atom are located close

together in memory. In contrast, a structure of arrays (sometimes known as parallel arrays)

stores separate arrays for each property. In this case, data of the same type (such as positions)

are located close together in memory. Figure 2.5 illustrates this point.

The AoS approach is well suited if certain atoms have fields which other atoms lack. It is

also more suitable where atoms are added or removed from the simulation, as only one array

needs to be modified. Often, chemical file formats are laid out in this manner. For example,

each line of a PDB file describes an atom and all its properties. However, the SoA approach is

generally better for molecular simulations, where the number of atoms is constant. It is often

the one encountered in simulation engines such as ASE76. The SoA approach allows the data

to be easily filtered before sending to the client, by only sending relevant data when required.

[0.23, 1.02, -0.23]
0.3
"CA"
[-0.52, 0.11, 0.27]
-0.1
"O"
[1.33, -1.40, 0.61]
0.0
"H"

...

...

A
to

m
1

A
to

m
2

A
to

m
3

(a) Array of Structures

[0.23, 1.02, -0.23]
[-0.52, 0.11, 0.27]
[1.33, -1.40, 0.61]
0.3
-0.1
0.0
"CA"
"O"
"H"

...

...

P
o
si
ti
o
n
s

C
h
a
rg

e
s

N
a
m
e
s

(b) Structure of Arrays

Figure 2.5: Comparison of structure of arrays vs. arrays of structure for storing molecular
data.

23

Therefore, the Narupa framework adopts an SoA approach when describing a snapshot of a

molecular system. This data structure is known as a FrameData, and consists of a set of single

values (such as potential energy) and arrays (such as the atomic positions or bond array).

Theses fields are uniquely identified by a name, which is defined by the protocol. Table 2.1

gives some examples of the fields that are defined in the Narupa framework, along with the

data type associated with them. As these frames consist of arbitrary data, it is very easy for

users to append new per-atom data to send to the client. In comparison, each field (such as

positions or charges) was synchronised as a separate pre-defined stream in NarupaXR, limiting

its extensibility to new kinds of simulations.

Protocol buffers contains a predefined data structure that is well suited for defining arbi-

trary data, called a struct. This stored arbitrary key-value pairs, in a similar manner to a

dictionary in Python. Protocol buffers also have the ability to store lists. However, these lists

are untyped — they can store arbitrary data such as strings, integers and other lists within the

same list. When serialising data consisting of the same data type, such as the 3N coordinates

of a system, each number must be prefixed by a byte indicating the following entry should

be interpreted as a float. This both increases the size of the serialised message, and requires

slowly deserialising the data item by item to reproduce the original list.

To address this, I developed the protocol used with the Narupa framework for storing and

transmitting frames of a molecular simulation. Each frame consists of two parts — arbitrary

key-value pairs that can hold arbitrary data as defined above, and a special set of key-value

pairs which are optimised for storing repeated data. The difference between the two when

storing three floats is illustrated in Figure 2.6. These array fields can store repeated floating-

point numbers, integers and strings without the additional bytes indicating their type. This

reduces the size of the messages transmitted (allowing larger systems) and allowed optimised

reading and writing of these data.

Key Meaning Type

particle.count Number of particles N Single integer
particle.positions x, y, z coordinates of each particle Array of 3N floats
particle.elements Atomic numbers of each particle Array of N integers
particle.residues Index of the residue the atom be-

longs to, in the corresponding array
Array of N integers

residue.count Number of residues Nr Single integer
residue.name Name of each residue Array of Nr text strings
bond.count Number of bonds Nb Single integer
bond.pairs Pairs of particle indices Array of 2Nb integers

energy.kinetic Kinetic energy Single floats
energy.potential Potential energy Single floats

Table 2.1: Examples of data that can be found in a Narupa iMD FrameData, and their corre-
sponding keys.

24

2.4 Synchronising Data

The gRPC framework is well suited for a request-response pattern, in which a client sends

a request to a server, which responds with a single reply. Another common pattern that

is relevant for streaming molecular data is the publish-subscribe pattern. Here, a publisher

produces messages without regarding exactly who requires them. Clients may then subscribe

to a specific subset of these messages. When a publisher produces a new message, all current

subscribers are sent the message.

This approach can be implemented using the gRPC server-side streaming paradigm. This

is similar to request-response, however the server may respond with multiple messages. These

messages may be separated by a large amount of time, and the client can act while waiting for

additional messages. This is used for the frame subscription portion of the Narupa protocol.

A client may register an interest in receiving frames of the molecular simulation using the

SubscribeLatestFrames command. The server first replies by sending a FrameData which

contains all information about the current system. Subsequent messages inform the client of

updates to this using additional FrameData.

Of the data available, most of it does not vary with time. For example, for a fixed molecular

system, values such as the atomic elements, bonding pairs or residue names do not change over

the course of the simulations. Streaming all this information whenever the atomic positions

change would be a waste of network bandwidth and limit the size of the simulation that can

be simulated.

To address this, the updates that the server sends the client after the initial reply are

partial changes, describing only the data which has changed since the last message. This is an

approach commonly used in web interfaces, using the PATCH method of the HTTP protocol.

In the example of a molecular simulation, subsequent messages usually only contain the new

atomic positions computed by the molecular simulation engine. This is performed by key

however — if a single position changes, all the atomic positions must be sent again. This could

0a 18 00 00 00 00 00 00 f0 3f︸ ︷︷ ︸ 00 00 00 00 00 00 00 40︸ ︷︷ ︸
00 00 00 00 00 00 08 40︸ ︷︷ ︸

0a 21 0a 09 11 00 00 00 00 00 00 f0 3f︸ ︷︷ ︸ 0a 09 11

00 00 00 00 00 00 00 40︸ ︷︷ ︸ 0a 09 11 00 00 00 00 00 00 08 40︸ ︷︷ ︸
Figure 2.6: Comparison of encoding three floating-point number (each of 8 bytes), using a
standard protobuf list (bottom) and a specific repeated field of floats (top).

25

be improved in the future by allowing more granular specification of what has changed.

This process occurs on the server between the molecular simulation engine and the frame

publisher. Here, the simulation engine informs the publisher that some data has changed and

hence a new FrameData must be sent to the clients. It is hence the simulation engine’s job

to track what data has changed and hence what data must be sent to the publisher. When

new data is received by the publisher, it first merges it onto a FrameData which represents

all previously received FrameData. This means the publisher has an object which represents

the merging of all simulation data received so far, and hence has a complete snapshot of the

system at this point. It is this object which is first sent to a new client.

On the client side, the received FrameData is merged onto the existing one. Using these

methods, the servers can keep the clients informed about the current state of the simulation

whilst minimising the amount of data transmitted. The process of merging does not contain

a history of the changes — by merging all the differences together, each client has a copy

of the FrameData that represents the current state of the system. Figure 2.7 illustrates how

synchronisation between the server and client is achieved.

A

X

P

B

X

P

C

X

P

D

X

P

E

Y

Q

F

Y

Q

G

Y

P

H

Y

P

I

Y

P

J

Y

P

A
X
P

A

X

P

A

X

P

A

X

P

D

X

P

D G
Y

D

X

P

D

X

P

G

Y

P

G

Y

P

G

Y

P

J

Y

P

Jinitial

S
er

ve
r

C
li

en
t

Figure 2.7: Synchronisation of frame data between a server and a client. The server’s state
changes according to the dynamics, while periodically the fields (denoted by different colours)
that have changed (denoted by different letters) are sent to the client to merged into the client’s
frame. Note that the red field changes faster than the frames are produced, and hence certain
values are never sent to the client. Similarly, the green field changes to Q temporarily, but this
is never seen by the clients as it occurs between frames.

26

Shared State

Transmitting the state of the molecular simulation is unidirectional — the server determines

the state of the simulation and transmits this to the clients. However, other data needs to be

shared between the server and the clients which is not associated directly with the simulation.

This includes the positions of the users’ avatars (their headsets and controllers), interactions

applied to the simulation by the user, and the position of the simulation box relative to the

virtual space. This data is bidirectional — it may be influenced by either a client or a server.

All this data is grouped into a single data structure known as the shared state in Narupa.

This is effectively a dictionary of arbitrary key-value pairs which is synchronised between the

server and the clients. The server shares this to the clients in a similar manner to how molecular

frames are transmitted — it groups together all changes since the last update and sends these

to all clients. However, the use of a bidirectional stream allows clients to make modifications

themselves.

Usually, only one party (either a user or the server) modify a certain value. For example,

only a user writes to its own avatar location and its own interactions, whilst other parties

merely read these values. However, the simulation box is modifiable by any user, by using their

controller to grab the box and manoeuvre it. As Narupa iMD is a multiple-user experience,

there has to be an approach that prevents race conditions where more than one user attempts

to move the box at the same time. This is achieved using a feature of the shared state known

as locking, where a client may request that one or more keys are locked. If the key is unlocked,

then that client is granted an exclusive right to modify that value until the client requests it

is unlocked.

One issue which I addressed was a glitch which occurred when a user was moving the

simulation box. As you move the simulation box, its position is tied to the position of your

controller and this is sent to the server to ensure all users see the box in the same position.

When the user had finished moving the box and let go, the simulation box was teleporting

briefly back to a previous position before moving back to where the user has last positioned

it. This is because of the finite time it takes for messages to go to and from the server. When

the user was releasing the box, the server was only just sending them where the box has been

a few moments prior.

To address this, I implemented a protocol where each time the user sends an update to the

server, they also send a monotonically increasing identifier called an update count. Therefore,

they can ignore updates to the box’s position if they are older than the update count when

the box was last sent. Figure 2.8 illustrates this technique.

27

A A B C D E D E FF G G G G

B C D E F GAAA G G G

Client

Server

(a) After changing a value (blue region), the client observes some of the previous values (orange region)
due to the delay in communication.

A A B C D E G G G

B

F

C D E

G

F G

G G G

AAA G G G

1 1 2 3 4 5 6 7 7 7 7 7 7 7

1 1 1 2 3 4 5 6 7 7 7 7

Server

Client

(b) By tracking update counts when changing values and synchronising them as value, the client can
ignore the server until it sends back the last update count the client sent.

Figure 2.8: Comparison of synchronising a value between the client and server with and without
update count tracking.

28

2.5 Streaming Molecular Dynamics

Molecular dynamics consists of the propagation of a system forwards in time in discrete steps,

governed by a dynamical equation. Running molecular dynamics on a computer therefore

consists of repeated steps forward in time, each advancing the system forward by some timestep

dt. Often, when trajectories are recorded the simulation is interrupted at an interval, for

example every 100 steps, and the current state of the system is written to disk.

It is this approach which was used in NarupaXR, and subsequently carried over to Narupa

iMD. Here, the user specifies a frame interval — how many steps of the simulation should pass

between publishing a molecular dynamics snapshot to the VR clients. By choosing a good

value such that an adequate amount of frames are produced, this results in a simulation that

runs as fast as possible, while streaming the current state of the simulation to any observers

at an acceptable frame rate.

However, there are limitations to this approach. Choosing a frame interval relies on prior

knowledge of how fast the simulation will run, something which is heavily dependent on the

nature of the system and the computer it is being run upon. Another consequence of running

the simulation as fast as possible is that it may be too fast to visualise and interact with

effectively. This can be addressed by lowering the timestep, but this artificially increases how

slowly the dynamics runs without necessarily improving the results obtained. A third problem

occurs when certain activities (such as multiple users interact with the system simultaneously)

cause the MD steps to take more time. This is observed by the users as a sudden slow down

of the system, which can be distracting and undesirable.

MD Steps

Get Frame

Send Frame

MD Steps

Get Frame

Send Frame

MD Steps

Get Frame

Send Frame

S
im

u
la

ti
on

S
er

ve
r

Wait

Wait

(a) Core MD loop of NarupaXR and
Narupa iMD.

MD Step

Wait

MD Step

Wait

MD Step

Wait

MD Step

Wait

MD Step

Wait

Get Frame

Send Frame

Wait

Get Frame

Send Frame

Wait

Get Frame

Send Frame

Wait

S
er

ve
r

S
im

u
la

ti
on

(b) Core MD loop of narupatools.

Figure 2.9: Core MD loops of NarupaXR, Narupa iMD and narupatools.

29

Instead of increasing the timestep, a rate-limiting loop is added to the molecular dynamics.

This ensures that the dynamics does not run above a given number of steps per second, by

inserting small pauses between the steps. This allows a user to specify the speed they wish the

simulation to run in a comprehensible unit, such as picosecond of simulation per second of real

time. It also provides a buffer zone — if calculating an interaction causes the simulation to

slow down somewhat, then the pauses will be made smaller to compensate and hence the user

will not notice a slow down. For simulations which would run much faster than the user would

desire, inserting pauses slows down the simulation without performing unnecessary additional

timesteps.

Rather than specifying some arbitrary system-specific frame interval to state how many

steps should pass between frames, a more intuitive specification would be to state how many

frames should be produced per second. This can be adjusted based on parameters such as

how smooth the simulation should be and how large it is. To achieve this in narupatools,

extracting snapshots of the simulation and sending them to the users is performed on a second

thread. This runs in parallel, at a different rate to the main simulation loop. This decouples

the rate at which the simulation runs from the rate at which frames are produced. Figure 2.9

illustrates the difference between the two approaches.

Benchmarks

The main simulation engine that NarupaXR and Narupa iMD can interface with is OpenMM77,78.

OpenMM is a GPU-enabled simulation engine written in C++, that supports a wide range of

forcefields and even the addition of custom forces. The toolset available for OpenMM makes

it readily usable for protein-ligand systems.

Whilst NarupaXR provides its own implementation of an integrator written in C], Narupa

iMD can instead leverage the Atomic Simulation Environment (ASE) package76. ASE is a

Python package that can perform many common molecular dynamics tasks, however it dele-

gates the calculation of forces to an external package. In this case, running OpenMM through

ASE involves ASE propagating the system, and OpenMM computing the corresponding forces.

Finally, Narupa iMD also has direct support for OpenMM. Here, both the integration and

the forcefield calculations are performed by OpenMM, and Narupa iMD only interrupts to add

interaction forces and to extract the state of the system to send to any clients.

Figure 2.10 gives the simulation rate of a Neuraminidase-Oesteltamivir protein-ligand sim-

ulation in OpenMM, when ran through the various softwares including NarupaXR and Narupa

iMD. The methods compared are:

1. Using NarupaXR, running the narupa-server application.

2. Using the OpenMM and ASE OpenMM runners in Narupa iMD. For the ASE runner,

modifications were made so the simulation ran using Velocity Verlet using the correct

30

timestep, as by default the runner uses a Langevin integrator.

3. A benchmark calling OpenMM directly without the use of Narupa.

This protein-ligand system is the model system used for testing Narupa iMD, and has

previously been used in studies by Deeks et al.25. The 5988 atom system is parameterised with

the Amber 14ffSB forcefield in implicit solvent, and ran using a timestep of 0.5 fs.

The simulation was ran using either a Verlet integrator (when ran through OpenMM or

NarupaXR) or a velocity Verlet integrator (when ran through ASE). Each simulation was run

for a short period of around 4 seconds, and this was repeated 10 times for each setup.

NarupaXR uses a custom integrator written in C]. There is a large overhead with running

NarupaXR, however the additional calculations when handling interactions from users are

insignificant.

In comparison, Narupa iMD implements the interactions in Python. Whilst this allows the

definition of new forces easily, it comes with a large amount of overhead. Regarding running the

simulation, it may run in two manners — using the Python integrator in ASE and using forces

from OpenMM, or running the full simulation in OpenMM and uploading the interactions from

Python. Figure 2.10 clearly shows that the performance of molecular dynamics ran through

0 1 2 3 4 5 6 7 8

Simulation Rate (seconds per picosecond of simulation)

NarupaXR

Narupa iMD
[ASE/OpenMM]

Narupa iMD
[OpenMM]

OpenMM

Simulation Rate of Neuraminidase Simulation at 24 FPS

4 Interactions

1 Interaction

0 Interactions

Figure 2.10: Simulation rate of a Neuraminidase system in OpenMM, using different software
in or based on Narupa.

31

ASE is comparable to that of NarupaXR, however it is more modular and modifiable than

NarupaXR. When run through OpenMM directly, performance is close to native performance

when not interacting with the system. This indicates that at 24 frames per second, streaming

the simulation does not incur a significant performance cost.

For the ASE runners, it can be seen that each interaction results in a similar cost. However,

for the pure OpenMM systems, the initial introduction of interactions significantly lowers the

rate, after which additional interactions have a smaller effect. This is because when interactions

need to be applied, the positions must be copied off the GPU. The forces are then calculated in

Python, and then these new parameters must be reuploaded to the GPU. As this must occur

after every molecular dynamics step, this massively reduces the benefit of running simulations

using CUDA and OpenMM.

A possible way of reducing the overhead of interactions is to not recalculate them at every

timestep. Instead, the interactive forces can be chosen to only be updated at a fixed interval,

for example every 10 dynamics steps. This reduces the accuracy of the interaction, but may be

acceptable when the exact force applied by the interaction is not important. This is enabled by

default in Narupa iMD. This approach is similar to that of multiple time-step method (MTS)

of Streett, Tildesley, and Saville79. Here, forces are split into those between nearby neighbours

and long-range forces. As long-range forces vary less, these can be recalculated at a lower

frequency than short-range forces.

32

Network Traffic

Assuming that the simulation is not bottlenecked by the speed at which it can run the sim-

ulation, then the amount of network traffic that can be exchanged between the server and

client may become a limitation. This is referred to as bandwidth, and is usually measured in

megabits per second, or Mbps.

For example, YouTube recommends that a 4K video requires 20 Mbps, whilst a 1080p video

requires 5 Mbps.a Between November 2019 and March 2021, the median download speed in

the United Kingdom was 50.4 Mbps, whilst the median upload speed was 9.8 Mbps.

Figure 2.11 shows the bandwidth measured from the server using the same system as for

figure 2.10. It can be seen that Narupa iMD has a rate of approximately 15 Mps, whilst

NarupaXR had a lower rate of 7 Mbps. The vast majority of network traffic can be accounted

for as the transmission of atomic coordinates from the server to the client. For this sytem,

there are 5988 atoms, each with a three-dimensional position consisting of a 4 byte float for

each component. Therefore, transmitting the positions for each frame requires 0.57 Mbps. At

a rate of 24 FPS, this will require 13.8 Mbps.

The factor of half difference between NarupaXR and Narupa iMD can be explained by

the different precisions the two use. NarupaXR converts each 4 byte float value to a 2 byte

half-precision floating point number, and hence only 6.9 Mbps is required for 24 frames per

second. Utilising half-precision floating point numbers is a common approach in computer

graphics and neural networks where high precision is not required. Converting Narupa iMD

to use half-precision is a possibility in the future, though protocol buffers do not support this

natively.

ahttps://support.google.com/youtube/answer/78358

0 2 4 6 8 10 12 14

Transfer Rate (Megabits per second)

NarupaXR

Narupa iMD
[ASE/OpenMM]

Narupa iMD
[OpenMM]

Network Rate of Neuraminidase Simulation at 24 FPS

Download

Upload

Figure 2.11: Network transfer rate of a Neuraminidase system in OpenMM, using different
software in or based on Narupa.

33

2.6 Integrations and Expansions

The Narupa framework is not intended to replace existing molecular dynamics software. It

is instead meant to act as the glue which ties together existing frameworks and allow the

exploration of these systems using a new medium.

One of the flaws of NarupaXR is that it reimplements many of the methods and techniques

found in other packages, such as Verlet integration and harmonic restraints. In comparison,

Narupa iMD can interface with any molecular dynamics package where custom forces may be

passed to the simulation engine. Currently, Narupa iMD supports the OpenMM78, LAMMPS67

and ASE76 packages natively. Chapter 5 goes into more detail on how interactive molecular

dynamics is made possible with this simulation engines.

Unit Consistency

The wide range of molecular simulation software available has lead to a corresponding breadth

of different unit systems in use, as shown in Table 2.2.

Both NarupaXR and Narupa iMD use the unit system used by OpenMM, namely the

nanometer, picosecond and atomic mass unit.

As energy is a derived quantity based upon the distance, time and mass, it is important

that the four units are internally consistent. This is important for molecular dynamics as

it involves quantities such as forces, which may be expressed either as a gradient of an energy

or a product of a mass and the acceleration. For example, in Narupa a force calculated as a

gradient would have units of kJ mol−1 nm−1 whilst a force calculated using Newton’s second

law would have units of Da nm2 ps−2. As this system of units is internally consistent, these

two units are the same. However, in other packages such as mdanalysis, the use of �A as the

unit of distance would result in these two calculations having different units.

Distance Time Mass Energy Consistent

OpenMM nm ps Da kJ mol−1 Yes

CHARMM �A † Da kcal mol−1 Yes
GROMACS nm ps Da kJ mol−1 Yes

NAMD �A † Da kcal mol−1 Yes

ASE �A † Da eV Yes
MDTraj nm ps Da -

MDAnalysis �A ps Da kJ mol−1 No

LAMMPS �A fs g mol−1 kcal mol−1 No

XYZ File �A - - - -

PDB File �A - - - -

Table 2.2: Units used by different software, packages, and file formats.

34

RDKit integration

RDKit80 is a popular cheminformatics package written in C++, with a Python wrapper. As

part of its functions, it can perform geometry minimisation using two forcefields, the Universal

Force Field (UFF)81 and the Merck Molecular Force Field (MMFF94).82,83 As well as exposing

methods for minimising the structure using these two force fields, RDKit also provides ways of

getting the energy and gradients associated with the two forcefields. narupatools implements

an ASE calculator, exposing the UFF and MMFF94 forcefields can be used to run molecular

dynamics.

RDKit also supports generating 3D molecular structures from a SMILES string. SMILES,

or simplified molecular-input line-entry system, is a common notation for writing a chemical

formula, which defines atoms and bonds but not 3D structure.84 These two features make it

very easy to generate simple molecular systems that support a wide variety of elements and

bonding patterns. This will make this an easy option for preparing simple teaching material

and demos for arbitrary molecules.

Dynamic Visualisation using nglview

NGL viewer is a popular Javascript-based molecular visualiser for the browser.85 It also has a

Python interface called nglview,86 which allows molecular visualisation to be embedded directly

into a Jupyter notebook. These visualisations can normally show either a static structure or

a predetermined trajectory. narupatools provides additional nglview integration, by allowing

dynamics to be viewed directly. The function show dynamics takes a dynamics object and

returns an NGL widget showing the current structure. However, it has also attached a callback

to the dynamics, such that when a dynamics step is taken, the widget is refreshed with the

latest structure. This interactive NGL widget allows users to view the dynamics of their

simulation before entering virtual reality, to confirm the system has been set up correctly.

Narupa Builder

One offshoot project I was involved in was the Narupa Builder.7 This is an offline VR applica-

tion (without the need for a server) which allowed users to create small molecules, in a similar

manner to 2D software programs such as GaussView.

My main contribution to Narupa Builder was to transition it to use a shared codebase

with Narupa iMD, and a corresponding overhaul in its user interface. I heavily used radial

menus, where pressing a button opens the various options (such as adding an atom or removing

a bond) as a circle of menu items around the user’s controller. They can then select an option by

physically moving their hand over the desired option. This is contrasted with other approaches

involving a laser pointer emerging from the controller to interact with a more traditional 2D

menu floating at a distance from the user.

35

An achievable and interesting future project would be enabling the builder to be used in

a multiplayer context, enabling it to be used to modify a molecule stored on a server. Given

the great strides made in Narupa iMD and narupatools to make the client-server framework

extensible, it would even be possible to seamlessly integrate the building mechanics directly

into Narupa iMD. One can imagine a situation where a simulation may be paused midway, a

ligand modified using a molecular builder, and the simulation resumed with these new atoms

— all within the same piece of software.

Figure 2.12 illustrates several screenshots of the Narupa builder in use. A video showing

the operation of the Narupa Builder may be found at the following link: https://doi.org/

10.6084/m9.figshare.22083554.v1.

Figure 2.12: Various screenshots of the Narupa Builder in use.

36

https://doi.org/10.6084/m9.figshare.22083554.v1.
https://doi.org/10.6084/m9.figshare.22083554.v1.

2.7 Visualisation

As discussed in depth in Chapters 3 and 4, there are many different methods for molecular

visualisation. With the wealth of systems and properties that can be explored, there is a

corresponding abundance of visualisation styles available.

Regarding the general style of representation, these may be broken down into three general

categories. Firstly, there are the simple geometric styles most exemplified by ball-and-stick.

This is the de facto representation of molecules. Variations upon this include the stick or

liquorice representation, where the spheres are not prominent, or the simpler sphere represen-

tation, where the bonds are not present.

The second category of representations would be the cartoon or ribbon diagrams, commonly

used to represent proteins and nucleic acids. These representations are aimed at highlighting

the general arrangement and structure of a polymer, without atomistic details.

Finally, there is the category of molecular surfaces. These representations highlight the

overall three dimensional shape of a large macromolecule, and highlight the existence of cavities

and pores which are so important in drug docking.

General molecular representations such as ball-and-stick as well as molecular surfaces are

discussed in Chapter 3. Chapter 4 goes into detail on ribbon diagrams, their history and their

implementation.

These representations are influenced by the atomic positions, as well as bonding between

the atoms. Some of these representations may also be scaled to represent different data. For

example, the spheres representing individual atoms may be scaled to denote a variety of atomic

radii, including the Van der Waals radii, the covalent radii or the ionic radii. Together, this

describes the physical geometry of the representation.

In order to convey additional information, colour is employed. This allows per-atom data

to be conveyed in a way independent of the representation used. For atomistic representa-

tions, the element of each atom is often conveyed using specific colours. These colours are

generally shared between different software, yielding a common language that different scien-

tists can understand. Molecular surfaces may be coloured to convey important information for

interactivity, such as molecular charges, while a ribbon diagram may be coloured to provide

information about the residues involved in the structure.

37

Existing Software

Presenting the wide variety of options available for visualisation is a problem encountered by

all molecular visualisation software. For example, VMD allows the colouring and render style

to be varied separately, but does not give fine-grained control over the radii of the individual

atoms. As visualisations can often feature many options, all possibilities may not be covered

by the graphical user interface. Often, advanced visualisation options may be controlled by an

additional scripting language or command line built into the software. VMD, ChimeraX and

PyMol all feature this approach, using scripting languages such as Python or TCL.

Some attempts have been made at defining specific visualisation languages to allow greater

customisation. Palmer87 and Hultquist and Raible88 defined the Pdbq and SuperGlue lan-

guages respectively. These were interpreted languages which allowed rapid development of

new visualisation techniques. ViSlang89 is a more recent approach at developing a language

for describing scientific visualisations.

These are examples of domain-specific languages (DSL). In contrast to a general language

such as Python or C++, a DSL is a language specialised for a specific task. For example,

markup languages such as HTML can be considered to be a DSL, as its a language for writing

web pages specifically. Using a DSL to control the visualisation allows a maximal amount of

flexibility, but generally has not been widely adopted in molecular visualisation software.

Another approach is to define a format expressed in JSON which describes the visualisation

setup, such as DXR. DXR is a toolkit for Unity for immersive data visualisations for AR and

VR.90 This was developed to encapsulate the low-level programming required to perform data

visualisation, such as parsing data, creating objects and updating visualisations based on new

data.90 DXR encodes a visualisation specification, inspired by similar approaches to language-

agnostic visualisations such as Vega-Lite.91

The approach used by DXR is similar to that adopted by the visualisation system I have

developed in Narupa iMD. This approach used in Narupa iMD is designed to be modular,

allowing the reuse of specific components between different visualisations. It also acts as a

testbed for rapid development of new representations, and hence was very useful in developing

the novel visualisation approaches described in Chapters 3 and 4.

In NarupaXR, each user could explore different visualisations independently. Whilst this

can be a useful feature, it can lead to confusion where different users are discussing the same

system but with different visualisations. In the Narupa framework, visualisation is instead

set up at the server level and synchronised globally. As servers are often run using Jupyter

interactive notebooks, which can execute arbitrary Python code, there is no need for there to be

a scripting language built into the visualisation frontend. Through use of the narupa-server

and narupatools Python libraries, complex visualisations can be set up through Python and

synchronised to the clients using the shared state.

38

Visualisation in Narupa iMD

The visualisation system I have implemented in Narupa iMD is conceptually a node-based

system. Each individual logic block is a node, which take in arrays of data and either generates

new data or renders specific objects to the screen. For example:

1. A van der Waals node would take in the atomic elements (an array of integers with

the name particle.elements) and outputs an equally sized array of floats with name

particle.scales, where the nth value is the van der Waals radii of the nth atom.

2. A ball and stick node takes the positions of each atom as well as atom-specific data, such

as radii and colours. It uploads this data to the GPU and renders the various shapes

making up the representation, namely spheres and cylinders.

The input to the visualisation system consists of a specification of parameters for each node,

as well as the FrameData representing the system to be rendered. These nodes can therefore

be seen as transformations applied to a source frame, reinterpreting raw data in various ways

{

"color": {

"type": "cpk",

"scheme": "narupa"

},

"scale": "vdw",

"render": {

"type": "ball and stick",

"particle.scale": 0.06,

"bond.scale": 0.03

}

}

(a) Example of a visualisation input for Narupa iMD, in JSON format.

FrameData

elements

elements

"narupa" scheme
colors

elements radii

positions

radii

scale

colors

bonds

bond radius

bonds

0.06

0.03

positions

ball and stick

vdw

cpk

(b) Example of a visualisation pipeline generated from Figure 2.13a.

Figure 2.13: Standard ball-and-stick visualisation as defined in Narupa iMD, given both in
its JSON form which is transmitted from the server to the client, and the subsequent nodes
generated on the frontend which results in a visualisation of a caffeine molecule.

39

and using it to drive a set of primitive visualisation nodes. These primitive visualisation nodes

include visualising spheres, cylinders and hyperboloids.

An example of a visualisation pipeline consisting of four nodes is given in Figure 2.13. Two

of the nodes are responsible for the scaling and colour of each atom. These nodes get the

corresponding data from the source frame, which in this case is the element of each atom.

The final node takes information from the others and renders specific geometric primitives to

represent the system.

The use of a node based system allows several optimisations to be made. As the flow of

information is well defined, when certain data is changed only the corresponding nodes are

refreshed. For example, in a general simulation the elements and bonds are invariant. If a

visualisation such as Figure 2.13 is used, when the positions are altered the vdw and cpk nodes

do not require recalculation. This prevents nodes with a high computational cost from being

executed when their input has not changed. Similarly, this pipeline can avoid unnecessary

uploading of data to the GPU. In this case, only the positions array has to be reuploaded,

whilst the radii, bonds and colours remain unchanged

The nodes which actually render specific objects to the screen are adapted to only use data

if it is available. For example, if van der Waals radii are specified, an array of scales will be

uploaded to the GPU and each sphere will then be scaled individually. If no radii are specified,

a fixed value will be uploaded instead. These optimisations are made in the shader programs

which dictate how the nodes render objects to the screen, and avoid uploading redundant data

to the GPU.

This node-based approach to visualisation is seeing increasing use within software geared

towards rendering (Figure 2.14 shows some examples in relevant software). Software such as

Unreal, Unity and Blender all provide node-based approaches allowing non-technical users to

create rendering code. Unreal also allows node-based programming for general game logic.

The advantages of using nodes is that it allows the encapsulating and reusing of small logical

pieces, each representing a transformation or generation of one or more pieces of data. This

is well suited to molecular visualisation, where there are separate parts that may be varied

including the scale, colour and shape of the final render.

40

(a) Blender nodes.

(b) Unity Shader Graph.

(c) Unity Visual Scripting.

(d) Unreal Engine Blueprints.

Figure 2.14: Examples of node-based visual programming in modern software for 3D modelling
and game development.

41

2.8 Conclusions

This chapter has been a summary of the work over the past three years on the next generation

of Narupa. Though a great proof of concept, NarupaXR carried technical debt due to its

development history, as well as existing in a programming language not familiar to many

scientists.

Narupa iMD has from its origins been written to be extensible, easy to understand and

widely available. In addition to its use for interactive molecular dynamics, which will be

explored in Chapter 5, work is also being done in applying it to various other use cases.

The Narupa builder was not optimised for large systems, and scales poorly with the number

of atoms. This is mostly due to the lack of any spatial hashing or other structures that would

allow for efficient calculation of collisions between atoms, which are computed when large

fragments are moved together. Other groups are exploring interfacing protein design codes

such as ISAMBARD92 and Rosetta93 with visual frontends using the Narupa framework, and

would greatly benefit from development work on the performance of the builder.

As part of my PhD, I also was involved in developing an offshoot of Narupa iMD in

collaboration with Hyundai. This work interfaced with Monte Carlo simulations for examining

nanoparticles. The ease with which this project was completed is a testament to the extreme

flexibility that the Narupa framework provides, by allowing certain parts of the pipeline to be

readily interchanged.

As shown by figure 2.11, small choices such as the choice of encoding a position in either

2 or 4 bytes can have a dramatic effect on the amount of data that needs to be transmitted.

The protocol buffer serialisation format does not natively support half-precision floating point

numbers, however, the gRPC communication layer is encoding agnostic. This means that in

the future we could move to using a more efficient encoding strategy for sending data between

servers and clients. Possibilities include adopting formats that more closely resemble binary

formats used to store molecular dynamics strategies, such as HDF94. As is often the case in

network communication, a balance must be found between minimising the amount of data

transmitted and minimising the performance cost of packing and unpacking these messages.

Whilst Narupa iMD more readily supports different kinds of interactions (and narupatools

expands this with stateful interactions), they incur a significant performance penalty. One

possibility is to shift the commonly used interactions to be implemented in C++. A further step

could be to create an OpenMM plugin (also in C++) that would interact with the simulation

on a lower level. Currently, interactions are applied using the CustomExternalForce class of

OpenMM, which whilst very generic, suffers in performance relative to bespoke force classes.

In conclusion, the work myself and others have contributed in the development of the

Narupa framework has lead to an extensible and modifiable suite of software that can be used

for performing interactive molecular dynamics, viewing immersive trajectories in co-located

virtual reality and building molecules intuitively.

42

Chapter 3

Molecular Visualisation

A fundamental part of Narupa is the display of molecular systems, specifically in virtual reality.

Molecular visualisation is the field describing how we portray our numerical simulations in an

intuitive and visually distinct manner. The challenges of molecular visualisation are only

amplified when considered in virtual reality, where a drop in frame rate can lead to motion

sickness. Taking full advantage of the parallel and programmable nature of the GPU is therefore

essential when visualising dynamic molecular systems. The large range of scales that a user

may resize their system to be, often over a short period of time, provides additional challenges

when considering the resolution of the graphics that must be produced.

In this chapter, I will start with an overview of the history of molecular visualisation, rooted

in its origins in the physical models of the 19th and 20th centuries. These early pioneers have

shaped the graphical representations we now use to view molecules.

I will discuss how the computer graphics pipeline operates and the application of the ray

casting technique to molecular visualisation. I will start with the common shapes where their

intersection with a ray can be solved analytically, including spheres, cylinders and hyperboloids.

I will then describe other techniques used for more complex shapes, such as signed distance

fields.

Much work has been done in the field of visualisation for biomolecules, however the field of

materials science has seen relatively fewer advances. Periodic systems pose unique challenges

for visualisations, as atoms may pass from one side of the simulation box to another by crossing

these boundaries. This gives the appearance of sudden and unexpected movement, which is

particularly an issue in virtual reality. I will discuss my implementation of a visualisation tech-

nique for periodic boundaries which, while often used to portray periodic systems in chemistry

textbooks, is yet to be employed in digital visualisation software.

43

3.1 Introduction

Molecular Representations

The field of molecular visualisation is the digital analogue of the physical models we build

to represent the atomic world. From the early works of Dalton in the 19th century, atoms

have often been represented as spheres or circles. These spheres would come to be joined

by lines, giving us the basis of structural formulae used today. While the circles have since

been dropped when writing structural formulae on paper, these diagrams became the direct

inspiration for physical models.95 These early models, aptly described as ball-and-stick, are the

de facto representation of molecules in 3D, being ubiquitous in chemistry textbooks, research

papers and molecular modelling kits. Whilst originally rigid constructions (such as Figure 3.1),

later approaches to these physical models allowed flexibility for rotation of these models about

certain bonds.96

Later, another representation appeared — that of the space-filling model.97,98 Here, the

spheres are scaled up to represent the van der Waals radii of each atom, hence obscuring the

bonds. The larger radii of each atom can better indicate the volume of the molecular structure.

Finally, another common representation of molecules is the so-called liquorice represen-

tation, which emphasises bonds instead of atoms. This can be seen as a three-dimensional

analogue of the 2D stick diagrams and models. Irving Geis’s painting of myoglobin is a great

Figure 3.1: Molecular model of penicillin by Dorothy Hodgkin, built in 1945. Used under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence.

44

example of an early liquorice diagram before the advent of widespread computer visualisation.99

With these early models, the association of elements with certain colours originated with

Hoffmann using a set of croquet balls during a lecture at the Royal Institution.95 This con-

vention is commonly referred to as the CPK scheme, after Corey, Pauling and Koltun, who

stated the colours in their papers on physical space-filling models.97,98 These colours include

oxygen as red, nitrogen as blue and carbon as grey or black. Consistent colours across many

applications and visualisations provide a common visual language that allows users to identify

common elements.

Crucially, representations must not unduly bias our opinions. For example, von Baeyer’s

argument that cyclohexane must adopt a strained planar structure (rather than the conforma-

tions that it is now known to adopt such as chair and boat) may have been influenced by his

interaction with molecular models with flexible bonds that allowed such a structure.100

As graphical capabilities of computers have evolved in the latter half of the 20th century,

these physical models have transitioned into the digital domain. Figure 3.2 illustrates the three

most common atomistic representations, as rendered in Narupa iMD. Early software such as

ORTEP101–103, RasMol104,105, Raster3D106 and Molscript107 gave researchers the ability to

create illustrations of their systems. These static renders have evolved further, with modern

techniques allowing the visualisation of millions of atoms at once. This evolution has also al-

lowed the visualisation of dynamic systems and trajectories. The current forerunners in molec-

ular visualisation include desktop applications such as VMD64, PyMOL and Chimera108,109,

and web-based programs such as NGL Viewer85,86, Jmol110 and the Mol* Viewer111.

(a) Ball and Stick (b) Liquorice (c) Space Filling

Figure 3.2: Illustration of a caffeine molecule represented using the three common atomistic
visualisations. The atoms are coloured based on the CPK color scheme.

45

Complex Visualisations

The family of simple atomistic representations (ball-and-stick, liquorice and space-filling), while

well suited to smaller molecules, can become confused and busy when visualising large macro-

molecules such as proteins. This has led to representations that are specifically designed to

highlight various larger-scale features. Two methods commonly employed for protein visual-

isation are ribbon diagrams, which highlight the protein backbone and secondary structure,

and molecular surfaces, which highlight the cavities within the protein structure.

Ribbon diagrams highlight the general structure and alignment of the polymer chains that

make up a protein. This structure can be most simply seen by stripping out all atoms except the

alpha carbons at the centre of each element of the polymer. These may then be connected by

straight bonds using the liquorice representation, depicting the protein structure as an angular

series of lines. From this representation, various techniques have been developed to render a

smooth curve that illustrates the protein’s conformation.112 Chapter 4 goes into greater detail

of the history, development and application of such ribbon diagrams.

Molecular surface representations highlight the structures at the surface of the protein,

as well as cavities that may host a substrate. Here, the steric arrangement and molecular

makeup of the surface are of vital importance, revealing areas in which the substrate might

bind both chemically and sterically. A good approximation of the molecular surface is to use

the aforementioned space-filling model, with the spheres of each atom overlapping to give an

indication of the overall surface.

(a) Solvent-excluded Surface. (b) Molecular Skin Surface. (c) Gaussian surface.

Figure 3.3: Comparison of three molecular surfaces used in visualisation: the solvent excluded
surface (SES), obtained by rolling a probe sphere over the van der Waals surface; the molecular
skin surface (MSS), defined from a weighted set of points and the Gaussian surface, defined as
an isosurface of a set of atom-centred Gaussians. Adapted from B. Kozĺıková et al. “Visualiza-
tion of Biomolecular Structures: State of the Art Revisited”. In: Computer Graphics Forum
36.8 (Dec. 1, 2017). Publisher: Blackwell Publishing Ltd, pp. 178–204. issn: 01677055. doi:
10.1111/cgf.13072 under the Creative Commons Attribution 4.0 license.

46

https://doi.org/10.1111/cgf.13072

Surface representations are often used to illustrate the permeability of the protein’s struc-

ture to a solvent. This is achieved by modelling the solvent as a probe sphere, which is rolled

across the van der Waals surface. The centre of this probe sphere defines a new surface, called

the solvent accessible surface (SAS).114 This can be seen to be the same as increasing the

radius of the space-filling representation by the probe radius.

A related surface to the SAS is the solvent excluded surface (SES) seen in Figure 3.3a.115,116

Here, the surface is defined as the region carved out by the probe’s surface as it rolls across

the van der Waals surface. This has the effect of filling in gaps in the surface where a solvent

molecule would not be able to access.

Analytic approaches to computing the SES involve decomposing the surface into the various

geometric patches that make it up: spheres, where the probe is in contact with a single atom;

torus ‘spindles’, where the probe is simultaneously touching two atoms; and spherical patches,

where the probe is in contact three atoms at once. The SES is geometrically well-defined but

due to its shape it can result in sharp points or singularities that can make them challenging

to render. Algorithms for generating analytic SES surfaces include contour buildup117–119 and

reduced surfaces120–122.

The evaluation of molecular surfaces can proceed either algebraically or via numerical

discretization. In the latter approach, a grid of points is evaluated to determine if they lie within

or outwith the surface. Given a grid of values, the marching cubes algorithm is commonly used

to convert this into a triangular mesh.123 This approach is commonly used to render volumetric

data such as isosurfaces. However, marching cubes scales poorly with the resolution of the

mesh, and hence a trade-off between appearance and speed must be made.

To avoid the issues of singularities that appear in the SES, alternative surfaces may be

used. One such surface is the molecular skin surface (MSS) (Figure 3.3b), which is defined

using a weighted combination of spheres.124 Algebraically, the surface may be decomposed into

quadric surfaces and hence is well suited for GPU ray casting that is discussed further in this

chapter.118,125

Another surface-like approach is to use a Gaussian isosurface (Figure 3.3c), consisting of a

set of Gaussians positioned at each atom. This approach is similar to the visualisation known

as metaballs. Recent work has shown how screen-space calculations can render the Gaussian

surface of large systems in real-time.126

The MSS and the Gaussian surface are purely mathematical surfaces and do not have any

biological meaning. However, the parameters used to define them may be tweaked such that

they provide a good approximation of a more rigorously defined surface such as the SES.

Lastly, the ligand-excluded surface (LES) is a more advanced form of the SES, where in

place of a spherical probe representing the solvent, the full dynamic structure of the ligand is

used to carve out the surface.127 However, the complexities involved in calculating this prohibit

its use in dynamic visualisation.

Even with earlier visualisation software, it was possible to create images incorporating

47

many thousands of atoms with computationally-demanding effects such as translucency and

shadows. However, creating a still image can take as much time as one is willing to allow,

whilst an dynamic display of molecules must render each image at interactive frame rates. We

can draw parallels between this and the link between computer graphics in movies and video

games. A movie has many months to render all of its frames, which it can distribute over

many computers. In comparison, video games must produce graphics at interactive rates on

a personal computer. Therefore, there is a lag between when cutting-edge visual effects can

be applied to static renders and these techniques being incorporated into real-time trajectory

visualisation.

48

The Graphics Pipeline

Rendering is the process in which a computer generates an image to display to the user.

On modern computers, the later stages of rendering take place on specialised hardware known

as Graphical Processing Units (GPUs). Unlike the core hardware on which most computer

software runs (the Central Processing Unit, or CPU), GPUs are specifically designed for the

highly parallel task of generating images to display to the user. The sequence of steps which

the GPU takes to render an image, based on instructions received from the CPU, is known as

the graphics pipeline.128 Whilst some of these are low-level processes that are inaccessible

to the user, many stages of the pipeline can be modified by writing small programs known

as shaders. Figure 3.4 shows the main steps involved, highlighting the step which can be

modified by shaders.

The first step of the pipeline involves defining what geometry should be rendered. When

defining the 3D objects in our scene, the standard method is to use a data structure known

as a mesh. This is a representation of a 3D object and consists of vertices and triangles.

The use of triangles is fundamental in rendering, as they are planar and lend themselves to

interpolation. Interpolation is the process in which data that is assigned to each vertex (such

Vertices and triangles uploaded to GPUVertex Specification

Vertex Shader
Transform vertices from object space to
clip space (screen space)

Tesselation Optionally subdivide triangles to create
more vertices

Geometry Shader
Optionally modify triangles or create new
geometry

Rasterization
Generate pixels (fragments) which lie
within each triangle

Fragment Shader Calculate color and depth that each pixel
should appear

Finalize
Generate image using color and depth
information from fragments

Figure 3.4: Overview of the steps in the graphics pipeline. Steps that can be modified using a
shader are designated in green, whilst other steps are designated in yellow.

49

as a colour or a surface normal direction) is used to calculate data at any point within the

triangle, by weighting each corner depending on how close the point is. The interpolation of

surface normals allows a smooth shape such as a sphere to be represented by discrete polyhedra

made of triangular faces.

It is important to note that the concept of a vertex in rendering is related but not identical

to the standard mathematical one. For example, a mesh of a cube requires 24 vertices, though

the mathematical object of the cube has only 8. This is because at each vertex three faces meet,

each with a separate surface normal. For each square face, the square requires two triangles,

giving a total count of 12 triangles and 24 vertices as shown in Figure 3.5. This duplication of

vertices is required because we are using triangles as our primitives.

The first programmable part of the graphics pipeline is the vertex shader. Shaders

are small programs that are compiled and run on the GPU, with the vertex shader being

responsible for manipulating the vertices that have been uploaded as part of the mesh. If

our scene contained many cubes, it would be inefficient to define the position of every vertex.

Instead, a mesh is usually defined in some internal coordinate system known as object space.

For example, we may define a model cube with sides of length 1 and centred about the origin.

To render other cubes, we transform our model cube by rotating, translating and scaling

each vertex. This transformation is performed within the vertex shader and takes each vertex

from object space (relative to its internal coordinate system) into world space (relative to

a global coordinate system), as shown in the first step of Figure 3.6a. More details on the

transformations used within the graphics pipeline may be found in Appendix A.

We also need to define from what angle and direction we are viewing our virtual world.

This is defined by a camera, which is also positioned and rotated relative to the global world

coordinate system. This is our view into this scene and is used to project the 3D scene as

defined within the computer onto the 2D grid of coloured pixels that is presented to the user.

Therefore, further transformations are performed on the vertices of our mesh. Firstly, the

Figure 3.5: Mesh of a cube broken down into 12 triangles and 24 vertices. Each of the six faces
consists of two triangles.

50

vertices in world space are transformed to be defined relative to the camera (the second part

of Figure 3.6a). Like the human eye, the camera has a field of view, which defines the amount

of the scene in front of the camera that is visible. For rendering purposes, there also has

to be two clip planes — cutoffs defining the minimum and maximum distances objects are

viewable from. Together, the field of view and clip planes define a rectangular frustum (see

Figure 3.6b). Up to this point, the transformations generally do not distort the meshes, merely

translate, rotate and uniformly scale them. The next transformation however is a perspective

transformation, which transforms the camera’s frustum into a unit cube. This results in

objects further away from the camera being scaled smaller than those closer to the camera,

hence causing objects further away to appear smaller as is expected. More information on how

this transformation is carried out may be found in Appendix A. This final space is known as

clip space. In clip space, the objects are now correctly positioned for rendering, with them

being projected onto the flat face towards the camera to yield an image. The depth of each

vertex within clip space is used to determine which objects are closer to the camera, and hence

which objects appear in front of each other.

The above steps are all computed by the vertex shader, which takes in data from the CPU

and outputs a vertex defined in clip space, along with any other data the shader requires. The

pipeline then takes each triangle (which has now been projected onto a 2D screen) and works

out which pixels would be inside it. This step is known as rasterisation. Finally, for each

pixel within each triangle, another program known as the fragment shader is run (see Figure

3.6c). This takes in the interpolated data from the three vertices that form the triangle, such

as the surface normal and colour, as well as global data such as the viewing angle and the

direction of the lighting, and calculates what colour to set the pixel to. This calculation can

use simple approximations of how surfaces are shaded, or complex calculations to give effects

such as specular highlights or rim lighting.

In recent years a new form of rendering has been finding increasing use within video games

and visualisation — ray tracing. Unlike traditional rendering, where each object is drawn

onto the screen one by one, ray tracing adopts an approach that acts like human vision in

reverse. Everything we can see with our eyes has originated at a light source, which has then

reflected and refracted through the objects around us before reaching our eyes. Ray tracing

seeks to emulate this, by firing a ray for each pixel from the camera into the three-dimensional

scene we have defined. The intersections of these rays with the objects are calculated, reflected

and propagated through the scene. This allows advanced techniques such as realistic lighting,

reflections and shadows to be incorporated into a scene. There have also been special GPUs

designed specifically with hardware aimed at optimising this kind of approach.129–131

Although ray tracing has been applied to visualise molecular systems,132,133 it is still limited

by performance. Ray tracing can often be sped up by using voxel-based approaches.134,135 This

approach is best used for static structures, with the space occupied by the molecule subdivided

into a 3D grid, with each cell being called a voxel. Therefore, to compute a ray intersection

51

with the molecule, only the spheres that lie within voxels passed through by the ray need to

be considered. The use of this approach can allow the visualization of billions of atoms but is

ill-suited for dynamic visualization.134

The rate-limiting step in traditional triangle-based rendering may lie either with the upload-

ing and processing of vertices or with the individual processing of each fragment. Determining

where this bottleneck lies can be done by varying the resolution of the final image. Here, the

number of fragments will be reduced, and hence if performance is still an issue then the first

part of the shader is the limiting factor. This is usually optimized by reducing the number

Object Space World Space Camera Space

CameraMesh

(a) Transformation of a mesh from object space (relative to its own internal coor-
dinate system) to camera space (relative to the camera).

Frustrum

Perspective

Transformation

Clip Space

(b) Transformation of the mesh from camera space to clip space. This accounts for
perspective, where objects further away are shrunk relative to objects closer to the
camera.

Image
Depth

Final Image

(c) Interpretation of clip space as a two-dimensional image, with the z coordinate
representing depth. The final image is obtained by sampling the xy face of clip
space on a discrete grid of pixels.

Figure 3.6: Various steps involved in transforming a triangle to a set of pixels on the screen.

52

of draw calls, which are instructions from the CPU to the GPU specifying what to draw and

where. Therefore, the aim is to reduce the number of vertices used, and where possible group

them into batches that can be rendered in one call.

When rendering many copies of the same mesh, a common technique is geometry in-

stancing. This can be used to render the same mesh many times, with the exact position and

rotation of the mesh determined on the GPU within the vertex shader. This is very optimal

for objects where a full 4×4 transformation matrix would be overkill. For example, a sphere is

uniquely defined by a position and a single scaling factor. Defining a full 4× 4 transformation

matrix for each sphere is therefore unnecessary. Instancing reduces the number of draw calls

required by the GPU, however, the vertex shader must still run for every vertex of the mesh

for every instance that needs to be rendered. Hence minimising the number of vertices is also

of vital importance.

An approach to deal with this is texture-based impostors, which are often used within

video games to handle a large number of distant 3D objects. Instead of rendering these objects

fully, when viewed at a distance they are replaced by a 2D square containing a picture that is

at approximately the correct angle. A range of pictures of the model are precomputed from

various directions, and the appropriate one is chosen to display on the screen.136

Using the programmable nature of the modern graphics pipeline, a middle-ground can be

applied that uses similar concepts to ray-tracing within the traditional graphics pipeline. This

approach, known as ray-casting impostors137 or true impostors,138 has found widespread

use in molecular visualisation.35,36,85,118,122,125,139–145 It is well suited for simple algebraic sur-

faces, for which there is an analytic solution for their intersection with a ray. This category

includes spheres, cylinders, cones and hyperboloids, all of which are commonly used in molecu-

lar visualisation. Ray casting also allows certain effects to be easily applied, such as outlines.35

Even for polyhedra, standard instancing can be slower than ray casting when the number of

particles enters the millions.146

53

3.2 Ray casting

In principle, ray casting combines the two common pathways for rendering a scene — triangle-

based rasterisation and ray tracing. The first stage of the pipeline is unchanged, with a mesh

made of triangles transformed from object space to clip space. However, at this point we can

leverage the fact that the fragment shader can return other data apart from the color of the

pixel. It can also return a custom depth, which is normally calculated from the position of

the triangle. The position of the triangle on the screen is unchanged (and cannot be within

the fragment shader), but by changing its depth we can change how it intersects with other

objects. We are effectively pulling or pushing each pixel into or out of the screen.

Another feature of a fragment shader is that it may discard a pixel. This effectively skips

rendering this point, and is often employed for cutting holes in textures using alpha clipping.

In ray casting, it can be used to discard points that would lie within the low-vertex mesh, but

not within the object we wish to render. Combining depth modification and discarding pixels,

arbitrary shapes can be created as long as they lie within the bounds of the original triangle.

Figure 3.7 shows how these two techniques work, in reference to projecting an image in clip

space as shown in Figure 3.6c.

Modifying per-pixel depth Discarding specific pixelsStandard fragment shader

Figure 3.7: Techniques used in the fragment shader to perform ray casting.

Ray casting therefore trades off the number of vertices by making the calculations per-

formed per pixel more complex. However, for simple shapes, there is a performance gain when

considering ray casting yields perfectly smooth surfaces, which would require an excessive

number of vertices to reproduce with standard shading.147 As the amount of intersections cal-

culated is proportional to how many pixels the shape occupies on the screen, a shape such as a

sphere can be viewed at short distances without artifacts. This contrasts with the traditional

representation of a sphere as a many-faced polyhedron, as when viewed at short distances the

sharp edges may become apparent. This is especially important in virtual reality, where the

ability of the user to manipulate the size and position of the system at speed means that the

system can vary very quickly from occupying a small fraction of the screen to occupying a

majority of it.

The containing shape (referred to as the ray-tracing area by Toledo and Lévy137) should

enclose every point which would lie in the surface. The two approaches are to use a simpler mesh

54

such as a cube to enclose the surface, or to utilise a rectangular quad that is rotated to always

face the camera. The goal is to achieve a balance that results in the best performance. If the

mesh is not tight-fitting enough, there will be many pixels where the ray casting calculations

will occur and not result in any intersections. However, using a more complex tight-fitting

mesh results in more vertices that will slow down the pipeline. Figure 3.8 demonstrates a

couple of common approaches.

Bounding Box Bounding Polyhedra Camera-facing Quad

Figure 3.8: Various approaches to enclosing a surface within a bounding mesh.

Given a surface that we wish to render (such as a sphere) and a low-vertex mesh that

encloses it on-screen, we must now determine two things — should we discard or keep the

pixel, and if we keep it, how much should we adjust the depth. This can be determined using

the principle of ray tracing. We define a ray, which originates at the camera and proceeds

towards a point on the bounding mesh’s surface. A ray is a representation of an infinite

line, with an origin ~p and direction ~d. The ray is parameterised by a scalar t, measuring the

progression along the ray:

~r(t) = ~p+ t~d (3.1)

To answer our two questions, we may simply compute the value of t at which an intersection

occurs with our surface. If no such value exists, there is no intersection and we discard the

pixel. If such an intersection exists, we adjust the depth of that pixel to match the intersection.

We may also calculate the normal of the surface at this point, and use this to calculate the

shading based on the direction of a light source. All together, these gives us a pixel-accurate

representation of our surface.

In general, a surface S can be written as a general form:

S(~x) = 0 (3.2)

where ~x is a general point in space. Therefore, to find where a ray would intersect the

surface, points must be found that satisfy both the ray equation (equation 3.1) and the surface

55

equation (equation 3.2). This is shown pictorially in Figure 3.9. The points at which the two

intersect are given by the solutions of the equation:

S(~p+ t~d) = 0 (3.3)

S(~x) = 0

~p+ t ~d~d

~p

Figure 3.9: Intersection of a ray with an arbitrary surface.

Solving equation 3.3 depends on the form that S(~x) takes. An infinite plane is the most

simple surface, as it yields a linear equation in t that results in one intersection. The next set

of surfaces are those that have at most two intersections, which are a common use case for

ray casting.137,148 One important category of surfaces that has at most two intersections are

the quadric surfaces, and include spheres, ellipsoids, hyperboloids, paraboloids and cones.

Quadric surfaces are the three-dimensional analogues of the conic sections (circles, ellipses,

parabolas and hyperbolas), and can be generally expressed in terms of a 3 × 3 matrix ~Q, a

vector ~P , and a scalar R:

S(~x) = ~xTQ~x+ ~P · ~x+R = 0

The solution of equation 3.3 for this category of surfaces yields a quadratic in t, which can

be solved analytically. This is why ray casting is a common solution employed in molecular

visualisation — the spheres and cylinders commonly used for atomistic representations can be

intersected with rays analytically.

For more complex functions, the solution to equation 3.3 may lead to cubics and other

higher-order polynomials. For example, ray casting a torus (which appear in the geometric

form of the solvent-excluded surface) involves solving a quartic in t. Commonly, a numeric

solution must be sought for these higher order equations, using root-finding methods such as

Newton-Rhapson or root-isolation methods such as Sturm’s theorem.149

The equations for visualising spheres, cylinders and other quadric surfaces are well described

in the literature, and find widespread use in modern molecular visualisation. In the following

section, I will discuss the equations used for some simple shapes, and further work I have

performed in defining new shapes to enhance molecular visualisation.

56

Sphere

One of the simplest surfaces to calculate a ray intersection with is a sphere. A sphere is a

surface consisting of all points that lie some distance R (the radius) from its centre ~c:

S(~x) = ‖~x− ~c‖2 −R2 = 0 (3.4)

Therefore, the two intersections occur when the distance between the centre and the ray

(equation 3.1) is equal to R:

(~p− ~c) · (~p− ~c) + 2t(~p− ~c) · ~d+ t2~d · ~d−R2 = 0 (3.5)

R

~c~d

~p

~p+ t ~d

Figure 3.10: Intersection of a ray with a sphere. The sphere is defined by a radius R and centre
~c, whilst the ray is defined in terms of its origin ~p and direction ~d.

Figure 3.10 shows the relevant quantities for this problem. To simplify matters, the offset

between the ray’s origin and the centre of our surface (~p − ~c) can be condensed as a single

vector ~q. This yields the ray-sphere intersection equation in the form as computed by Narupa,

which is quadratic in t.

(~d · ~d)t2 + 2(~q · ~d)t+ ~q · ~q −R2 = 0 (3.6)

The number of solutions to equation 3.6 is equal to the number of intersections the ray

would have with the surface. For a sphere, the only possibilities are 0 (the ray misses the

sphere), 1 (the ray passes by the sphere at a tangent) or 2 (the ray enters and leaves the

sphere). Generally in rendering, we do not need to consider the edge case (in this case,

where the intersection touches the surface), as the likelihood that there is exactly 1 solution

is extremely small. To determine the values of t at which an intersection occurs, equation 3.6

can be solved using the quadratic equation:

t = −~q ·
~d

~d · ~d
±

ŒÇ
~q · ~d
~d · ~d

å2

− ~q · ~q −R2

~d · ~d︸ ︷︷ ︸
∆

(3.7)

57

Depending on the sign of the discriminant ∆, there are either two real values of t (∆ > 0)

or two complex values (∆ < 0). As t cannot take complex values, this corresponds to the case

where the ray did not intersect the sphere. Therefore, in an implementation of a ray-sphere

intersection, the discriminant is calculated first. If it is negative, then the ray has missed the

sphere and hence that pixel should be discarded. If it is positive, then the intersection occurs

at the closer of the two intersections (where equation 3.7 has a negative second term).

Performance

Now that I have laid out how to perform ray casting using the example of a sphere, we can

compare its performance to traditional mesh-based rendering.

The approaches to visualising a sphere include:

1. Ray casting a sphere contained within a cube. As we do not require surface normals, we

can represent each corner as a single vertex and hence this shape has 8 vertices.

2. Ray casting a sphere using a quad (a square made of 2 triangles and 4 vertices) that

faces the camera.

3. A mesh of an icosahedron, with 12 vertices. This makes a poor approximation of a sphere

except at great distance, and is included purely as a benchmark.

4. Two successive iterations of an icosphere, with 42 and 205 vertices respectively. This is

achieved by taking an icosahedron and subdividing each face into four triangles, before

Figure 3.11: Time taken to render each frame using various representations of spheres.

58

projecting out onto a sphere. This is a common approach to generating spheres of

arbitrary resolution, and was employed in NanoSimbox.

Figure 3.11 illustrates the time taken to render a single 1024 × 1024 image of a regular

cubic lattice of particles, each with a randomly assigned scale and colour. The graph shows

that a log-log plot produces a straight line fit, with approximately equal gradients but differing

intercepts. This is indicative of the linear relationship between frame times and the number

of particles — doubling the number of particles doubles the amount of work the GPU has to

perform. These lines plateau at around 200 FPS, as there is an upper limit on the number of

frames that the program allows to be produced per second.

By inspecting where these lines cross a given line, we can compare their relative performance

by seeing how many particles can be rendered at a given frame rate. Figure 3.12 shows how

many spheres can be rendered using procedural instancing, using both ray casting approaches

and standard mesh approaches. The results clearly show that reducing the number of vertices

has a large effect on performance than the decrease due to a more complex fragment shader

required for ray casting.

Figure 3.12: Number of spheres that can be rendered at 90 FPS using various approaches.

59

Cylinder

~c
~a

~p+ t ~d

R

Figure 3.13: General problem for the intersection of a ray with a cylinder. The cylinder is
defined in terms of its centre ~c, its radius R and its axis ~a, whose length determines the length
of the cylinder.

With just spheres, space-filling models can be implemented in a molecular visualiser. How-

ever, to incorporate bonds into our picture we must implement cylinders. The equations used

for a cylinder are superficially similar to that of a sphere, but the radius is now the distance

of the ray from an axis, rather than a single point. A cylinder is defined by not just a centre ~c

and a radius R, but an axis ~a which determines its direction. The component of the ray that

is perpendicular to the axis may be found from the vector rejection of ~r from the axis ~a:

~q⊥ + t~d⊥ = ~q + t~d− (~q + t~d) · ~a
~a · ~a

~a (3.8)

Here, ~q⊥ indicate the component of ~q that is not parallel to the axis ~a.

By projecting the ray onto its component perpendicular to the cylinder’s axis, it can be

treated in the same manner as the sphere and hence solved using equation 3.7 (using ~q⊥ and
~d⊥ instead of ~q and ~d). However, this defines an infinite cylinder that stretches to infinity in

both directions. This can lead to graphical artifacts when viewed at angles along the axis of

the cylinder. To ensure the cylinder has a finite length, the two end planes of the cylinder can

be used to determine the range of values of t that are valid. This is then used to crop the

calculated values for an infinite cylinder such that they lie between the two. The length of the

axis ~a is used to determine the distance from the centre to each of the two planes marking the

ends of the cylinder.

60

Hyperballs

In two dimensions, instead of quadric surfaces we have the conic sections, traditionally thought

of as slices of a double cone. These are namely the circle, ellipse, parabola and hyperbola.

The three-dimensional generalisation of a hyperbola is known as a hyperboloid (we shall be

considering the degenerate case of a hyperboloid of revolution). Depending on the shape of

the hyperbola, there are two different possible hyperboloids: either a hyperboloid of one sheet

or a hyperboloid of two sheets. These can be seen in Figure 3.14.

A novel use of hyperboloids is as a representation of a bond between two atoms.142 These

hyperballs are a representation that has seen adoption in some common molecular visualisation

packages.36,85,150,151 By smoothly blending between a connected state (the hyperboloid of one

sheet) to a disconnected state (the hyperboloid of two sheets), they are ideal for representing

systems in which bonds can be broken.142

The expression for a hyperboloid that connects two spheres can be reduced to a two dimen-

sional problem, as there is a cylindrical axis of symmetry passing through the centre of both

spheres. In this two dimensional problem as given in Figure 3.15, the spheres become circles

positioned at ±d
2 along the z axis: Å

z +
d

2

ã2

+ r2 = R2
1 (3.9)Å

z − d

2

ã2

+ r2 = R2
2 (3.10)

Without loss of generality, we can define a hyperbola that is symmetric about the r axis

using the following equation:

r2 = γ2(z − z0)2 + Γ (3.11)

(a) Hyperboloid of one sheet (b) Hyperboloid of two sheet

Figure 3.14: Three-dimensional plots of the two general cases for hyperboloids of revolution.

61

r

z

z0

d

R2
R1

Figure 3.15: Reduction of the problem to two dimensions, with cylindrical (z) and radial (z)
axes. The problem is now connecting two circles by a hyperbola.

This hyperboloid has three parameters: Γ, γ and z0. These parameters can be fixed by

considering that the hyperbola must touch each sphere at only one value of z. This yields two

equations that fix two of the parameters. We choose γ to be the free parameter that will define

the shape of the hyperbola, with the other two values determined by:

ε =
γ2

1 + γ2

z0 =
R2

1 −R2
2

2dε
+
d

2
(3.12)

Γ = R2
1 − εz2

0 (3.13)

Projecting this result back into three dimensions, we can consider the hyperboloid to be

defined in terms of a centre ~c, an axis ~a and a parameter γ. Equation 3.11 now becomes:∥∥∥~q + t~d
∥∥∥2
− (1 + γ2)

∥∥∥~q‖ + t~d‖

∥∥∥2
− Γ (3.14)

This adopts a similar form to that for a sphere or cylinder, and again results in a quadratic

equation in t that can be solved analytically. One useful simplification is to note that the

parallel projection of a vector is given by ~q‖ = (~q ·~a)/(~a ·~a)~a. We also note that the magnitude

of ~a is irrelevant, as it cancels on top and bottom. Given this, we choose the magnitude of ~a

to be equal to
√

1 + γ2. This simplifies the resultant quadratic equation to not contain γ:

t2(~d · ~d− (~d · ~a)2) + 2t(~q · ~d− (~d · ~a)(~q · ~a) + ~q · ~q − (~q · ~a)2 − Γ (3.15)

Like in the case of the cylinder, we have to crop the shape at either end to prevent it

continuing to infinity.

Figure 3.16 shows how the hyperballs visualisation appears for a caffeine molecule. Hyper-

balls can be used for covalent bonds purely as an aesthetic choice over the more traditional ball

and stick, however it is especially suited for systems where bonds are created and destroyed as

it can maintain visual continuity.

62

(a) γ = 0.2 (b) γ = 0.6 (c) γ = 0.9

Figure 3.16: Caffeine molecule represented using the hyperballs visualisation.

63

Chain of Spheres

Up to this point, I have described common ray casting shapes employed in existing molecular

visualisation. I will now move on to new primitives that I feel can be employed effectively

to communicate additional information. These approaches can be easily incorporated into

software that already employs ray casting for its other primitives.

In the case of a sphere, I propose a novel extension that can be used to visualise an infinite

chain of spheres. This is a novel application that allows three-dimensional dashed and dotted

lines to be visualised, which are often used to draw rulers and partial bonds between atoms.

Instead of a single sphere with radius R and centre ~c, now consider an infinite number of

spheres parameterised by some integer n ∈ Q. The centre of each of these spheres is given by:

~cn = ~c+ n~a

The intersection of the ray with the n-th sphere yields a quadratic equation not only in t

but also in n:

‖~r(t)− ~cn‖2 = R2

0 = n2~a · ~a− 2n~a · ~q + ~q · ~q − 2nt~a · ~d+ 2t~d · ~q + t2~d · ~d−R2

As before, the values of t in which an intersection can occur can be found by:

t = −(~q − n~a) · ~d
~d · ~d

±

ŒÇ
(~q − n~a) · ~d

~d · ~d

å2

−
~(~q − n~a) ·~(~q − n~a)−R2

~d · ~d︸ ︷︷ ︸
∆

(3.16)

In the case of a single sphere, the discriminant was a fixed value in terms of the ray and the

centre ~c. The sphere was only intersected if this discriminant was greater than 0. Therefore,

as equation 3.7 has a discriminant that depends on n, there are only certain values of n for

which an intersection occurs. The discriminant ∆ is a quadratic in n:

R

~a

~c

~d
~p

Figure 3.17: The intersection of a ray with an infinite number of spheres spaced at integer
multiples of ~a from a centre ~c

64

∆ = n2

Ç
(~a · ~d)2

(~d · ~d)2
− ~a · ~a
~d · ~d

å
+ 2n

Ç
~q · ~a
~d · ~d
− (~a · ~d)(~q · ~d)

(~d · ~d)2

å
+

R2

~d · ~d
+

(~q · ~d)2

(~d · ~d)2
− ~q · ~q
~d · ~d

(3.17)

= −n2

∥∥∥~a× ~d
∥∥∥2

∥∥∥~d∥∥∥4 − 2n
~d · (~a× (~q × ~d))∥∥∥~d∥∥∥4 +

R2∥∥∥~d∥∥∥2 −

∥∥∥~q × ~d
∥∥∥4

∥∥∥~d∥∥∥2 (3.18)

where vector identities have been applied to simplify the terms. This quadratic is always

‘concave-up’ (due to the negative coefficient of the n2 term), and hence either there are no

intersections (∆ < 0 for all n) or there is a finite range of n in which there are intersections

(∆ > 0).

Solving equation 3.18 for when the discriminant is 0 determines the range of n over which

an intersection occurs, [n0, n1]. Given this range, it is then simple to compute which sphere

was hit first. If the direction of ~a (in which n increases) and ~d are aligned, then the lowest

integer value of n indicates which sphere is hit first. If ~a and ~d are in opposite directions,

then the largest integer of n would be hit first. Given this value of n, the problem is now of

intersection of a single sphere, which was handled previously.

Three-dimensional dotted lines can be employed to indicate various types of special bonds,

such as hydrogen or ionic bonding. It is also possible to animate these bonds, by having the

spheres slowly scroll in a certain direction. This can be used to show the directionality of a

hydrogen bond, with the movement indicating the direction of charge from negative to positive.

Dotted lines may also be used to indicate partial bond orders. Figure 3.18 gives one example

of using three-dimensional dashed bonds, to indicate hydrogen bonds within a protein-ligand

complex.

65

Figure 3.18: Example of a use for a ray casted chains of spheres, to visualise hydrogen bonds
in a protein-ligand system. Unlike a flat dotted line, using three-dimensional spheres gives a
more consistent visual style, and makes bonds appear more tangible. The spheres can be made
to move along the bond edge, indicating the directionality of the hydrogen bonds.

66

Signed Distance Fields

Instead of calculating an intersection between a ray and the surface by solving the intersection

equation, numeric techniques may also be applied even when the intersection cannot be solved

analytically. For certain surfaces, we may be able to calculate the signed distance function,

which is a function f(~x) which indicates the distance from the closest point on the surface

to the point ~x, and is positive outside the shape and negative inside. We may then apply

the technique of ray marching to calculate an intersection. Whilst not a widely employed in

molecular visualisation, signed distance fields have been used for protein visualisation.152

To perform ray marching, we start with a ray at its origin (with t = 0) and calculate the

closest distance to the surface. We can then advance this ray in small increments until either

the signed distance field becomes negative or the ray has travelled too far. However, a far

more optimal method is sphere tracing.153 Here, we use the fact that the signed distance

function gives us the distance to the closest point, and hence gives us a minimum bound on

how far we can advance before hitting the surface. Therefore, at each point we evaluate the

signed distance field, and advance by this amount along the ray (as shown in Figure 3.19). By

repeating this process, we can trace a wide range of surfaces including cones, capsules, torii

and prisms. Various geometric techniques such as volumes of revolutions and elongation may

also be performed with minor modifications. The surface may also be ‘inflated’ by an arbitrary

radius, allowing various curved shapes such as rounded boxes to be generated.

Figure 3.19: Example of sphere marching a signed distance field.

Sphere marching is an effective technique, though it performs poorly near the edges of

objects. As seen in Figure 3.20a, as the ray passes tangentially to a surface, sphere tracing can

result in many iterations spent passing by the surface without intersection.

For convex shapes, sphere tracing may be improved. By computing the closest point

(either directly or by using the gradient of the signed distance field), we know that there are

no intersections on this side of the tangent plane.153 Figure 3.21 compares standard sphere

tracing to convex sphere tracing for the wheel shape. The large number of iterations that

occur at the edge of objects in sphere tracing is a well-known pitfall of sphere tracing.154

67

(a) Sphere tracing missing a surface, but taking many iterations.

(b) Sphere tracing a convex object using tangent planes, taking minimal iterations.

Figure 3.20: Comparison of ray tracing using standard sphere tracing and exploting the prop-
erty of a convex shape using tangent planes.

In the oxDNA coarse-grained model of proteins, each DNA base is often visualised as three

parts: a spherical backbone, a connecting cylinder and an ellipsoid representing the DNA

base. One of the terms in the oxDNA forcefield is a stacking interaction, which is related to

the relative horizontal alignments of subsequent DNA pairs.

An alternative approach to the spheroid commonly used for depicting the DNA base in an

oxDNA simulation would be to use a wheel shape, as shown in Figure 3.22b. This shape is

a short cylinder with rounded sides, or equivalently it can be seen as a torus with the center

filled in. Mathematically, there is no easy method for determining the exact intersection of a

Sphere Tracing Tangent TracingRaycast Shape

It
er

a
ti

o
n

s

0

25

50

Figure 3.21: Comparison of sphere tracing and tangent tracing for a wheel shape. The colour
of the image indicates the number of iterations required before conversion to a given accuracy.

68

ray and this shape. This could be done by considering it a combination of a cylinder and a

torus, but the solution for the torus would require solving a quartic equation.

A better approach to this shape is ray marching. The shape can be seen as the set of

points which are some distance d from a disk embedded in three-dimensional space. As we

can determine the closest point on the surface, we may employ the tangent tracing method

proposed in the previous section. As shown in Figure 3.21, tangent tracing for this shape

involves far fewer iterations when the curved edges of the shape are considered.

Figures 3.22a and 3.22b compare these two approaches for visualising DNA bases for

oxDNA. As the wheel shape has two large flat surfaces, it is far clearer where the top and

bottom of the base are. In comparison, it can be difficult to determine the exact orientation of

the ellipsoids, and hence it is less clear how subsequent bases are aligned. This is important in

the oxDNA force field, as there are forcefield terms which are based on the relative alignment

of subsequent base pairs.

(a) Spheroid-shape base pairs. (b) Wheel-shaped base pairs.

Figure 3.22: Comparison of spheroid- and wheel-shaped base pairs for visualising a DNA helix.
The flat faces of the wheel shapes gives a stronger visual indication of their direction compared
to the smooth spheroids.

69

3.3 Periodic Boundary Conditions

Whilst molecular dynamics can simulate systems that contain millions of individual particles,

generally they still must lie within a finite volume (called the simulation box). The use of this

finite box results in boundary-related issues when attempting to simulate bulk or long-range

properties. How these boundaries of the simulation are handled can be broken down into three

approaches:

1. free, where there are no boundaries and particles move freely. If looking at a single

molecule in isolation, this is the default. However, in a diffuse system, the particles will

gradually spread apart.

2. hard, where the particles are limited to the simulation box, either by preventing particles

from moving outside the box or by reflecting their velocities when they reach the edge.

3. periodic, where the simulation box is treated as one of an infinite number of identical

copies tessellated together. A particle leaving one side of the box can be considered to

be entering from the other side.

Using periodic boundary conditions, each particle now interacts with an infinite lattice of

other particles, which means each pairwise interaction potentials is an infinite sums. However,

if these interatomic potentials are short-ranged and can be truncated at a distance less than

half that of the shortest box side, each particle can be considered to interact only with the

closest copy of each other particle. This is known as the minimum image convention.

∞ ∞

Figure 3.23: Illustration of a 2D periodic system consisting of four coloured particles. The
orange lines indicate the minimum image convention for determining the atoms with which
the red atom will interact with.

70

Figure 3.23 illustrates this approach for a simple two-dimensional system of four atoms. Here,

though all four atoms exist within the core simulation box, the red atom interacts with periodic

images of the green and purple atoms.

The implementation of periodic boundary conditions within a molecular dynamics software

can involve either automatically wrapping the particle coordinates back within the unit cell

after each timestep, or leaving them unrestricted. In the second case, the wrapping of particles

to lie within the simulation box occurs only when they are visualised, rather than within the

logic of the simulation.

Though widespread in molecular simulations, the visualisation of periodic systems has

several issues. These artifacts include:

1. Particles (often visualised as spheres) which cross the boundary teleport instantaneously

from one side of the simulation box to the other as they cross the periodic boundary.

2. Bonds between particles that are initially close by may suddenly span the simulation

boundary when one of the two bonded particles crosses the boundary, as illustrated in

Figure 3.24.

The first issue does not exist for static structures, and can be tolerated for dynamic tra-

jectories when viewed on a two-dimensional screen. However, in virtual reality, sudden jarring

movements of objects may lead to disorientation and confusion. The second issue is often

tackled on the visualisation end, by removing bonds that are above a certain cutoff. However,

I argue that this is a dangerous decision to allow a visualisation software without user input,

as the existence of bonds within a system may be very important. By removing certain bonds

Figure 3.24: Ball-and-stick representation of an BRE zeolite unit cell, illustrating the issue
of bonds that are linking two atoms at opposite ends of the cell. When viewed as a dynamic
simulation, atoms will also teleport from one side of the cell to the other. These issues appear
not just in Narupa iMD, but other visualisation software such as VMD, PyMOL and ChimeraX.
Oxygen atoms are in red and silicon atoms in beige.

71

that cross periodic boundaries, atoms that are normally tetrahedrally arranged may suddenly

have three bonds. The user must then have to understand why these bonds are not visible and

remember they still exist.

Another way to approach the second issue is to simply draw more copies of the simulation

box. This approach can be used in most existing applications such as VMD, PyMOL, ChimeraX

and nglview. However, this still will have to omit bonds that lie at the edge of the unit cell.

Duplicating the cell also does not prevent the issue of atoms appearing and disappearing,

instead merely shifting these problems to the edges of the furthest cells. Therefore, a different

approach is required.

For inspiration, we may turn to the depictions often used to describe atomic packing frac-

tions in undergraduate textbooks.155–157 and illustrated in Figure 3.25. In this approach, the

atoms are cropped to be within the unit cell, resulting in slices such as hemispheres. This

approach aids in the understanding of how many atoms appear in the unit cell, as the total

volume of the atomic spheres is unchanged from that of a non-periodic system. In the case

of dynamic systems, it also has the advantage of avoiding the sudden movement of atoms.

Instead, as a sphere moves across the boundary, it is smoothly sliced away whilst the removed

section slowly reappears at the opposing side of the cell.

This novel approach to visualising periodic systems is made possible by the use of ray-

casting impostors to represent atoms and bonds. To implement this, the following three mod-

ifications can be made to existing ray casting shaders to enable this functionality.

(a) Uncropped. (b) Cropped.

Figure 3.25: Comparison between a cropped and uncropped simulation box for a typical BCC
unit cell. The cropped approach contains exactly two spheres by volume, whilst the uncropped
version gives an erroneous impression there are 9 atoms in the cell.

72

Minimum image convention for bonding

The common representation of a bond is a simple pair of integers, indicating the indices or

IDs of the two atoms that the bond connects. Therefore, the actual direction and length of

the bond are not explicitly stated, and instead implied by the current positions of its two

endpoints. In a non-periodic system, the standard method for defining the vector ~b along

which a bond lies would be to take the difference in positions of the two atoms:

~b = ~pB − ~pA (3.19)

To handle bonds in a periodic system, however, we may consider bonds in a similar way

that interactions are considered in periodic systems — using the minimum image convention.

The reason to do this is that bonds are usually just an indication of the topology of a molecule.

However, the bonds that appear in a topology are also often representing a corresponding term

in a forcefield (which would be applying the minimum image convention).

Therefore, a more correct bond vector would also utilise the minimum image convention.

First, we must define the periodic simulation box. The box is defined by an origin ~p and three

lattice vectors: ~a1, ~a2 and ~a3. We can group these vectors together into an affine transformation

matrix (see Appendix A) H:

H =

(
~a1 ~a2 ~a3 ~p

0 0 0 1

)
(3.20)

This transformation matrix converts a unit cube (with side lengths of 1 and a corner at

(0, 0, 0). This matrix and its inverse hence allows conversion between positions in simulation

space and positions in fractional coordinates, which are measured relative to the unit cube.

−→a1

−→a2

−→a3

~p(0, 0, 0) (1, 0, 0)

(0, 0, 1)

(0, 1, 0)

H

H−1

Figure 3.26: Conversion between fractional coordinates (unit cube) and simulation coordinates
(simulation box) using H.

In a periodic system, the point ~pB may be translated by any integer multiple of the three

primitive vectors and still represent the same particle. The minimum image convention would

be to define the bond vector to be the shortest possible vector ~b such that:

~b = ~pB + u1~a1 + u2~a2 + u3~a3 − ~pA (3.21)

73

Calculating the minimum image convention for the bond is therefore a minimisation prob-

lem, minimising the length of ~b in equation 3.21 with respect to the image vectors u1, u2 and

u3. To perform this for arbitrary triclinic simulation boxes, three steps are required

1. Transform the vector ~pB−~pA into fractional coordinates using H−1. This is the coordinate

system of the simulation box, which now takes the form of the unit cube with a corner

at (0, 0, 0) and side lengths 1.

2. Wrap this vector to be in the interval [−0.5, 0.5) along each axis. This can be achieved

by rounding each component to the nearest integer and subtracting this from the value.

3. Transform this vector back into real space using the matrix H.

Figure 3.27 illustrates the application of the minimum image convention for bonds. Com-

pared to Figure 3.24, there are no longer bonds that stretch across the whole periodic cell.

However there are still issues, with the bonds only being attached at one end. To fix this, we

must render duplicates of objects near the simulation box faces around the other side.

Figure 3.27: Ball-and-stick representation of an BRE zeolite unit cell, with bonds using the
minimum image convention. This ensures that bonds no longer cross the whole cell when
instead they should cross the boundary. Oxygen atoms are in red and silicon atoms in beige.

74

Repeated rendering of objects

Instead of stretching across the simulation box, the above method will ensure that each particle

A connects to the nearest copy of particle B. However, this only shows the bond across one

boundary, where it should ideally be shown both crossing one side and emerging on the other

side. To address this, objects which are spanning periodic boundaries need to be duplicated

and visualised on the other side of the simulation box.

For this duplication, the geometry shader will be used. This stage of the graphics pipeline

acts after the triangles of the mesh have been generated but before individual pixels have been

shaded. It allows the duplication and manipulation of individual triangles before rasterization

and is well suited for simple duplication and translation of the various mirrors.

In a naive approach, we would have to generate 26 duplicates of each object. Not only is

this expensive and wasteful (as we intend to later crop any part of an object not in the cell),

this is also limited by hardcoded limits on how much additional geometry can be created by

the geometry shader. Therefore, only the duplicates which would lie within the simulation box

should be created.

By determining across how many faces of the unit cell an object lies across, we can determine

which duplicates need to be drawn. As different geometries may be drawn, such as spheres,

cylinders and hyperboloids, it is desirable to use a method that is applicable in a wide variety

of cases. Therefore, we can abstract away the exact geometry of an object by determining a

bounding volume, which is a volume that completely contains the object in question. The

idea behind this is that it is better to be overzealous and draw some unnecessary copies than

it is to omit ones that are important. By definition, if an object’s (perhaps complex) geometry

intersects with another volume, then so will its bounding volume.

1

1

H−1

~c

R

~c′ 2R|~h2|

2R|~h1|

Figure 3.28: 2D example of how an object (yellow) in a non-orthorhombic simulation box can
be enclosed within a bounding sphere in simulation space (red), which when transformed into
scaled coordinates becomes an ellipse. In turn, this ellipse can be enclosed within an AABB
(blue).

75

For the class of geometry that we deal with, a bounding sphere is most easily determined.

This is a sphere (of centre ~c and radius R), in which the object we wish to draw is entirely

contained. When transformed into fractional coordinates by the matrix H−1, this becomes an

ellipse as shown in Figure 3.28.

For determining which edges are crossed by the object, the axis-aligned bounding box

(AABB) that contains this ellipsoid can be determined. This is a cuboid that encloses the

ellipsoid and defines the minimal and maximal coordinates along the three axes. The central

value is defined by the transformed centre of the sphere, and the bounds can be defined in

terms of the lengths of the rows of H−1:

H−1 =

Ö
~h1

~h2

~h3

è
(H−1~c)x −

∥∥∥~h1

∥∥∥R ≤ x ≤ (H−1~c)x +
∥∥∥~h1

∥∥∥R
(H−1~c)y −

∥∥∥~h2

∥∥∥R ≤ y ≤ (H−1~c)y +
∥∥∥~h2

∥∥∥R
(H−1~c)z −

∥∥∥~h3

∥∥∥R ≤ z ≤ (H−1~c)z +
∥∥∥~h3

∥∥∥R
For each of the 26 possible duplicates, we can determine if their AABB would overlap with

the simulation box and hence should this duplicate be drawn. By filtering this out, the amount

of additional geometry is minimised as shown in Figure 3.29.

Figure 3.29: Ball-and-stick representation of an BRE zeolite unit cell, indicating the original
geometry (blue) as well as additional geometry (yellow) drawn using the geometry shader. Note
this does not correspond to drawing 26 duplicate cells, and only geometry near the border is
duplicated.

76

Intersection with simulation box

Using the above techniques, all geometry that should appear in the simulation box is rendered

correctly. However, it both fails to solve the problem with objects teleporting from one side

to another and introduces a new issue where duplicates of atoms at either side of a periodic

cell give an incorrect impression about the number of atoms present to the user. This is an

issue that also appears when visualising unit cells when taught to undergraduates. Naively, a

body-centred cubic cell contains 9 atoms, with one at each corner and one at the centre of the

cell. However, of each atom in the corners, only 1/8th of the atom actually would lie within

this specific cell. Therefore, the correct number of atoms that lie in a body-centred cell would

be 2.

The approach used to visualise this in some textbooks is to clip the sphere, such that the

only part of the sphere which appears is that which lies within the cell. This can be performed

by using concepts from constructive solid geometry (CSG).158 In CSG, simple primitive

objects are combined using Boolean operations, namely union, difference and intersection. This

is commonly used in modelling software, as it treats objects as solid entities rather than simple

surfaces.

Treating both the simulation box (a parallelepiped) and the object we are rendering (a

sphere, cylinder or other simple surfaces) as solid objects, we wish to compute a new object

which represents the intersection of these two. The intersection of two solids will be the portion

of the solid that lies within both solids. Specifically, here we will only consider objects that

have two intersections (namely spheres, cubes, cylinders, hyperboloids and parallelepipeds).

We can define their extent purely by two values — the value of t when the ray enters the shape,

and the value of t when the ray exits the shape.

In most of these cases, the ray will always enter the solid before leaving it. This broad cat-

egory will be labelled finite shapes, and include spheres, cubes, parallelepipeds and cylinders.

Even in the case of a cylinder of infinite length, there is only one viewing direction (directly

along the axis) where the ray would never leave or enter the solid. These shapes are contrasted

with the hyperboloid, where at certain angles the ray would exit the solid and enter at a later

point. In these situations, the points at t → ±∞ should be considered to also lie within the

solid.

This distinction between the two categories is important when it comes to calculating

intersections. Firstly, intersections between two finite solids will always yield a new finite

solid. However, the intersection of a hyperboloid with a finite solid may actually yield a

complex set of intersections. As the hyperboloids are already clipped (they are clipped at

either end to prevent them from tending to infinity), a second clipping with the box will lead

to graphical artifacts when rendering hyperballs.

This issue can be resolved by computing the intersection of the hyperboloids clipping planes

with the simulation box (yielding a new pair of intersections with a finite object), followed

77

by the intersection test with the hyperboloid itself. At this final stage, it is unimportant that

there are now four intersection points, as only the closest point is needed for rendering.

To perform the clipping, a general solution for the intersection of two objects (where both

have two intersections, and one is finite) needs to be computed. Labelling the two objects A

(our geometry in question) and B (a finite object such as the simulation box), there are four

intersection points to consider:

1. tinA , the value of t when the ray enters object A.

2. toutA , the value of t when the ray exits object B.

3. tinB , the value of t when the ray enters object B.

4. toutB , the value of t when the ray exits object B.

Assuming the ray intersections both A and B, then the possible geometry of the intersection

may be one of 12 possibilities. These are laid out in Figure 3.30. As highlighted above, there

is one specific case (the fourth along on the second row) in which the intersection may not be

written as a simple entry and exit value of t. However, here the only goal is to determine the

value of t of the first intersection, designated tinA∩B, as well as which shape was intersected.

If the entry point tinA∩B = tinA , then the clipping has had no effect. However, if tinA∩B = tinB ,

then the object has been clipped. The normal should be replaced by that of object B to ensure

the lighting is correct.

tinA toutA toutBtinB tinA toutAtoutBtinB tinA toutA toutBtinB tinA toutAtoutBtinB

tinA toutAtoutBtinB tinA toutBtinB tinAtoutA toutBtinB tinAtoutA toutBtinB

tinAtoutA toutBtinB tinAtoutA toutBtinB tinAtoutA toutBtinB tinAtoutAtoutBtinB

toutA

Figure 3.30: Possible intersections (striped region) between two objects A (blue) and B (red),
assuming the ray passes through both objects.

78

Figure 3.31: A periodic cell of the BRE zeolite structure, showing which parts will be clipped
(red) and which lie inside the unit cell (green).

This technique can be applied to my periodic boundary visualisation by replacing each

shape with the geometric intersection of it with the parallelepiped of the simulation box.

Figure 3.31 illustrates how objects which lie partly across the periodic boundaries will be split.

By discarding the clipped parts, we finally have the full result of applying my periodic

boundary visualisation as shown in Figure 3.32. This brings together all three techniques —

the bonds have been replaced by their minimum image convention; geometry near the edges

of the simulation box has been duplicated on the other side; and finally, the geometry has all

been flipped such that it lies in the simulation box.

For viewing this approach in motion, see the video at https://doi.org/10.6084/m9.

figshare.22083572 for a short simulation without my modifications applied, and the video

at https://doi.org/10.6084/m9.figshare.22083575

Figure 3.32: A periodic cell of the BRE zeolite structure, using all above-described techniques
to implement periodic systems. Oxygen atoms are in red and silicon atoms in beige.

79

https://doi.org/10.6084/m9.figshare.22083572
https://doi.org/10.6084/m9.figshare.22083572
https://doi.org/10.6084/m9.figshare.22083575

Summary

Up to this point, Narupa iMD and its predecessors have predominantly been employed in the

study of small systems or protein-ligand complexes. As such, the visualisations techniques

have been developed with an emphasis on protein visualisation. The technique described in

this section aims to improve the experience and usability of interactive virtual reality when

applied to periodic systems often encountered in the material science domain.

The periodic nature of these systems has often been a challenge for visualisation software,

which adopts approaches such as duplicating geometry outside the unit cell, or wrapping entire

molecules such that they are not broken across a boundary. Not only does this obscure where

the well-defined limits of the simulation box are, it also leads to sudden teleportation of atoms

and fragments from one side of the simulation box to the other as the system evolves with

time. These sudden movements can be disorientating and confusing, especially when a user is

immersed in their system in virtual reality.

When bonds are involved, there is also the issue of bonds that should cross the periodic

boundaries, but instead stretch across the whole unit cell. Common approaches to this are to

simply remove the bonds in question, which removes valuable chemical insight and can give a

false impression of the coordination of chemical species.

This technique of periodic box clipping addresses the above issues. It leverages a familiar

technique commonly used to illustrate unit cell occupancy, and is compatible with the ray

casting technique employed in the rest of Narupa iMD.

(a) Perovskite structure of SrTiO3. (b) Two fullerene molecules.

Figure 3.33: Two examples of systems visualised using periodic boundaries

80

3.4 Conclusions

Molecular visualisation is one of the most important uses of computers in chemistry. Through

visualisation, we can produce representations of complex systems in a reproducible and well-

defined manner.

I have described the graphics pipeline in detail, and illustrated why ray casting and geome-

try instancing are ideal techniques for molecular visualisation. By illustrating with the relevant

examples of spheres and cylinders, I have shown how simple intersection formulae make them

ideal primitives to build molecular geometries. To this, I have given a novel approach to ray

casting an infinite chain of spheres, which has applications for rendering three-dimensional

dotted and dashed lines that can be used for illustrating non-covalent bonds within a system.

And finally, I have discussed shapes for which there is no analytic solution, where approaches

such as ray marching must be utilised instead. I have illustrated this with an example of a

DNA helix, showing how simply adjusting the shape used to represent something can make

the three-dimensional layout of a molecule clearer.

I have also described a novel implementation for visualising systems using periodic bound-

ary conditions. By applying the minimum image conventions to bonds, I prevent the issues

that faces many visualisation platforms where bonds are drawn across the whole unit cell. As

ray tracing is used for many of the primitives in Narupa iMD, I combine this with constructive

solid geometry principles to then crop the geometry to be inside the simulation box. Given

that ray casting is found in other visualisation packages, it is possible that in the future this

technique will be adopted in other software programs. The periodic clipping technique also

reduces sudden movements in the users’ view, which can be distracting especially virtual re-

ality. Reducing these visual artifacts is also an important goal of the next chapter, which will

go into detail about ribbon diagrams and their visualisation.

81

Chapter 4

Continuity in Secondary Structure

Rendering

In this chapter, I will describe my contributions to the rendering of protein secondary structure.

I will first lay out the history and development of the ribbon visualisation of protein secondary

structure and how it is currently implemented in modern molecular visualisation packages.

Specific emphasis will be placed on the interpolation between points, describing the variety of

methods employed by available software. Whilst the various approaches to molecular surfaces

have been extensively covered in excellent reviews such as Kozĺıková et al.113, ribbon diagrams

have been relatively underexplored by reviews of biomolecular visualisation. This extends to

the software itself, with papers and documentation often neglecting to describe how exactly

the ribbon diagrams are generated. I will therefore review the methods employed in a range

of modern software, and how their different approaches can affect the shape of the diagram.

I will then outline the issue of visual continuity that occurs when using ribbon representa-

tions for dynamic protein data, and propose a new algorithm I developed that addresses these

issues. This method, which I shall refer to as double-normal interpolation, defines an el-

lipsoid ribbon which does not suffer from sudden twists that occur in software such as PyMol,

VMD and ChimeraX. I have previously published this method in the Frontiers of Computer

Science journal.24 This chapter discusses the same algorithm, however the text of this chapter

is original and goes into greater depth.

83

4.1 Protein Structure

Proteins are large biomolecules that perform many functions within living organisms, such as

providing structure, transport and catalysis. They consist of one or more polymer chains, each

formed of a sequence of amino acids connected by peptide bonds. Each amino acid consists

of a central carbon (denoted the α carbon or Cα), connected to an amide group, carboxylic

acid group and a variable side chain. The amide of one amino acid and the carboxylic group of

another can undergo a condensation reaction to form a peptide bond, as illustrated in Figure

4.1. A chain of amino acids connected by these peptide bonds is known as a polypeptide.

Proteins are three-dimensional assemblies of one or more of these polypeptides.

H2N

R1

O

OH

+ H2N

R2

O

OH
H2N

R1

O

HN

R2

O

OH

Figure 4.1: Condensation reaction between two amino acids to yield a peptide bond. The
amine groups are coloured blue, the carboxylic groups red and the resultant peptide bond
purple.

Each amino acid is defined by the contents of its sidegroup. Of the possible amino acids,

22 are considered ‘natural’ or proteinogenic, such as arginine, lysine or glycine. This select

group of amino acids make up the polypeptides that form the vast majority of proteins. The

exact sequence of amino acids that occur with a given chain describes the primary structure

of the protein. Due to interactions between the various amino acids in the sequence, such as

hydrogen bonding, electrostatic attraction and disulfide bridges, the polymer chain folds itself

into a unique three-dimensional structure that determines the role of the protein. The large

number of combinations of proteinogenic amino acids allows proteins to cover a multitude of

different forms and fulfil many roles.

The overall three-dimensional structure that a protein folds into is known as the tertiary

structure of the protein. However, throughout the numerous proteins whose structures have

been identified, certain substructures or motifs have been found to occur repeatedly. These

motifs were predicted a full decade before the first structures of proteins were determined by

Pauling, Corey and Branson (for which Pauling later won the 1954 Nobel Prize in Chem-

istry).159–161 By looking at the properties of the individual amino acids, they were able to

predict the existence and stability of polypeptide helices, formed by hydrogen bonds between

the carbonyls of the amino acids and the amines of amino acids further along the chain. This

stabilisation causes the chain to adopt a regular helical shape. They proposed the existence

of the α-helix,161 where each amino acid is hydrogen-bonded to the residue which lies four

84

residues further along the chain. Figure 4.2b illustrates the general appearance of an α-helix.

Other helices are also possible, including the π-helix (with each residue bonded to one five

further along) and the 310-helix (with each residue bonded to one three further along), how-

ever, the α-helix is the most common. For the purpose of visualisation, we shall refer to all

three collectively as helices.

The second motif predicted by Pauling and Corey160 was the β-sheet. Here, different parts

of the chain run parallel or anti-parallel to one another, with hydrogen bonds forming between

the strands similar to rungs of a ladder. Figure 4.2a illustrates a β-sheet consisting of three

anti-parallel strands, with the hydrogen bonds forming rungs between each strand. In reality,

β-sheets tend to curve gently rather than lie completely flat. This leads to larger-scale motifs

such as beta barrels, where many β-strands form the surface of a larger-scale cylinder.

(a) β-sheet. (b) α-helix.

Figure 4.2: Depiction of the two common secondary structure motifs, both as their protein
backbone and as their common shorthand as arrows and coiled ribbons respectively. Image is
© 2017 Thomas Shafee under the Creative Commons Attribution-Share Alike 4.0 International
License: http://creativecommons.org/licenses/by-sa/4.0

Together, these motifs of helices and sheets are referred to as secondary structure. They

occur in part because of inherent rigidity along the protein backbone enforced by the peptide

bonds. Due to steric clashes between the side groups, the four constituent atoms of the peptide

bonds are constrained to a plane (termed the peptide plane), with the alpha carbons forming

the diagonal vertices of the connected sheets. There is hence only two angles per amino

acid that are generally needed to describe the conformation of the protein backbone — the φ

dihedral angle (C-N-Cα-C) and the ψ dihedral angle (N-Cα-C-N). Figure 4.3 illustrates how

these peptide planes connect adjacent amino acids, spanning the peptide bonds between them.

The orientation of the peptide bonds about an alpha carbon can therefore be described

in a two-dimensional Ramachandran plot.162,163 On these plots, only certain areas are ener-

85

http://creativecommons.org/licenses/by-sa/4.0

Hydrogen

Carbon

Alpha Carbon

Nitrogen

Oxygen

Side Group

Peptide Plane

φ ψ

φ ψ

Figure 4.3: Illustration of three peptide planes. The six atoms of each peptide bond are
constrained to be coplanar, leaving the conformation of the backbone to be dictated by the
two dihedral angles describing how subsequent planes are rotated relative to each other. The
alpha carbons form the joining vertices between adjacent peptide planes. The dashed lines
divide the backbone into its individual amino acids, illustrating that each amino acid has a φ
and ψ dihedral angle associated with it.

getically favourable due to steric constraints. Whilst these areas can be broadly partitioned

into secondary structure motifs of β-sheets and α-helices, there is some overlap and ambiguity.

We therefore require some better-defined approach to deciding if and where these motifs are

present.

Determining Secondary Structure

The assignment of each residue to a certain motif is inherently arbitrary, as they are defined by

criteria such as hydrogen bonding or geometric proximity in which there is no exact cutoff. Dis-

covered protein structures were being stored in the Protein Data Bank,164 with the secondary

structure being determined by a crystallographer. To ensure consistent assignment, algorithms

have been developed that assign secondary structures consistently based upon atomic coordi-

nates.

Early approaches utilised the dihedral angles that appear on Ramachandran plots. How-

ever, this is at odds with the hydrogen-bond approach most often used in the manual assign-

ment by crystallographers and used to define the motifs themselves..165 Instead, approaches

which approximate the direction and strength of the hydrogen bonds are commonly used. The

first such complete algorithm was proposed by Levitt and Greer165. Their approach used only

the atomic coordinates of the alpha carbons as input, as they were more available and easier

to determine. To calculate the hydrogen bonds, they predicted the positions of the carbonyl

and amine atoms based upon the positions of the alpha carbons.

The de facto standard method is the DSSP (Define Secondary Structure of Proteins)

algorithm.166 This uses the atomic positions of not just the backbone carbons, but the nitrogen

of the amine and oxygen of the carbonyl. The algorithm starts by first determining the lowest

energy hydrogen bond for each carbonyl and amine of the residues. The energy of a hydrogen

bond between a carbonyl C O and an amine N H in DSSP is given by:

86

E = q1q2f

Å
1

rON
+

1

rCH
− 1

rOH
− 1

rCN

ã
where q1 = 0.42e, q2 = 0.20e, f is a dimensionless factor with value 332, and r is the distance

between the pair of atoms measured in angstroms. This gives an energy E in kJ mol−1. A

hydrogen bond is deemed to exist if this energy E < −0.5 kJ mol−1.

Now that the hydrogen bonds have been assigned for each residue, small structures such as

turns (where a residue is linked to another a couple of indices further up the chain) and bridges

(where two strands are linked by two adjacent hydrogen bonds) are determined. Helices and

sheets are then predicted based upon sequences of adjacent turns and bridges.

Other algorithms exist to determine the secondary structure, such as STRIDE167 (STRuc-

tural IDEntification), which has a more complex hydrogen bond definition but predicts longer

structural motifs that may be split by DSSP due to minor deviations. Some other methods

utilise alpha carbon distances and dihedral angles, such as DEFINE168 and KAKSI169. Gener-

ally, the disagreement between the various algorithms for determining secondary structure lies

in their classification of residues which lie towards the ends of the secondary structure motifs,

whilst agreeing on residues clearly in the middle of helices and sheets.169

In Narupa iMD, I implemented the DSSP algorithm to calculate the secondary structure

assignments for each residue. The advantage of DSSP is that it uses the atomic positions of

atoms other than the alpha carbons, such as the amino hydrogen and carbonyl oxygen. In an

atomistic simulation of a protein, these positions are available, whereas in a crystallographic

study they may be difficult to determine. As the calculation of the assignments is expensive

and involves an iteration along the entire length of each polypeptide chain, the assignments

are recalculated at second-long intervals. The blending of subsequent assignments to avoid

sudden changes is discussed later in this chapter.

87

4.2 History of the ribbon diagram

Generally, proteins consist of many thousands of atoms. Fully atomistic representations such as

ball-and-stick can be visually overwhelming and difficult to interpret for this number of atoms.

As discussed in Chapter 3, another family of representations are surface-based approaches.

These describe the general shape of the tertiary structure but obscure the internal structure of

the protein. Between these two extremes lie representations that elucidate the structure of the

protein backbone — ribbon diagrams (also known as cartoon diagrams). This representation

traces the path of the protein backbone, whilst using a ribbon surface to highlight the presence

and orientation of secondary structure motifs. They are ubiquitous when depicting proteins,

and hence are an important feature in any molecular visualisation software.

The origin of ribbon diagrams lies in earlier attempts to distil the complexity of a full

ball-and-stick representation of a protein into something where the backbone could be clearly

seen. Ribbon diagrams were developed by Jane Richardson and were inspired by drawings by

M.C. Escher,170 whose series of lithographs171–174 involving ribbons illustrate that a series of

parallel and aligned ribbons can imply the existence of a larger surface, whilst giving negative

space through which depth can be perceived. These ribbons were used when drawing the two

motifs common to proteins — β-sheets and helices.

Early ribbon diagrams were hand-drawn, being traced over printouts of the alpha carbon

traces determined by x-ray crystallography.112 Through these diagrams, Richardson developed

(a) M.C. Escher. Spirals. 1953 (b) Beta barrel structure.

Figure 4.4: Comparison between an artwork by M.C. Escher and the structure of a Beta barrel
visualised using a ribbon structure. Both use the negative space created by the spaces between
the aligned ribbons to allow a view to the other side of the structure, whilst still implying
the full surface. Spirals is © M.C. Escher and used under fair use. The beta barrel image is
© 2007 Opabinia Regalis under the Creative Commons Attribution-Share Alike 3.0 Unported
license: https://creativecommons.org/licenses/by-sa/3.0.

88

https://creativecommons.org/licenses/by-sa/3.0

many of the features that would determine how these diagrams appear to this day. She

used arrowheads to indicate the direction of β-sheets, helping to distinguish between parallel

and anti-parallel sheets. By only drawing the β-sheets and helices using these wide ribbon

representations, whilst leaving the rest of the backbone as a thin tube representation, the

secondary structure was emphasised over the tertiary structure. Figure 4.5 illustrates an

example of her hand-drawn ribbon style. It illustrates features which we still attempt to

capture today, such as regular helices and smooth curving β-sheets.

One of the first computer programs to generate these diagrams was developed by Lesk and

Hardman176, though helices were rendered as solid cylinders. It was Carson and Bugg177–181

who developed a detailed method for generating ribbon diagrams. Their ribbons did not pass

through the alpha carbons, but instead used guide points positioned midway between adjacent

alpha carbons. The choice of using guide points between the alpha carbons is partly to address

the natural ‘wave’ shape of a β-sheet.182 Parallel to the work by Carson and Bugg, Priestle183

developed an alternative method for smoothing out the alpha carbon positions to give a smooth

curve. This technique was used in the MOLSCRIPT program,107 though for helices a standard

Hermite spline was used.

The flat faces of the ribbon are aligned to illustrate the directionality of the hydrogen bonds

Figure 4.5: Illustration of Ribonuclease A by Jane Richardson, from The Anatomy and Tax-
onomy of Protein Structure.175

89

that link parallel or antiparallel β-sheets. A common issue encountered when rendering ribbons

is that this alignment may flip up to 180 degrees between two adjacent residues.107,177,184,185

This is often addressed by flipping the normal (to which the flat face of the ribbon will be

aligned) if the angle between two adjacent normals is greater than 90 degrees.107,177,185 This

quirk and how it has been addressed is the raison d’être for my double-normal interpolation

algorithm, and will be discussed at length later in this chapter.

Ribbon diagrams are present in practically all modern molecular visualisation software,

second only to ball-and-stick in their ubiquity. With the increase in computational power, espe-

cially the power of modern GPUs and consumer graphics, ribbon diagrams of large biomolecules

can be generated with ease. Generally, the mesh of the ribbon diagram is generated as a whole

on the CPU. This is ideal for static structures, but can lead to performance issues when visu-

alising dynamic trajectories. Zamborsky, Szabo, and Kozlikova186 addresses this by creating

small mesh sections to represent a section of a ribbon and deforming them dynamically on the

GPU. This approach was also taken by Hermosilla et al.185, who explicitly called out modern

software such as PyMol or VMD as generating the 3D geometry of the entire ribbon on the

CPU. These approaches are similar to that used for other large-scale rendering as discussed in

Chapter 3, using the programmable nature of the GPU to avoid generating the entire mesh

explicitly.

Ribbon diagrams are not unique to proteins. The same approaches used for polypeptides

may be applied to other biologically important polymers such as polysaccharides38,187 and

nucleic acids.188

Unlike the original hand drawn ribbon diagrams, we must define exactly how to draw a

curve that represents the protein backbone. This is usually achieved by breaking the curve

down into small segments, each with a simple polynomial form. The next section will go into

detail about how the path of the protein backbone is converted into a smooth curve.

90

4.3 Splines and Curves

The simplest way in which to display the backbone of a protein is to use a liquorice-style

representation, with consecutive alpha carbons connected by straight segments. However, the

sharp and angular nature of this representation is often considered at odds with the mental

image of a smooth and flexible peptide chain. Hence, the underlying backbone structure of

proteins is normally represented by a smooth curve. A curve may be specified parametrically,

in which it is taken to be a vector-valued function ~p(t) of a scalar t. As t is varied smoothly

between two values, the curve is traced out by the function ~p(t).

Commonly, a curve may be broken up into separate shorter segments, usually defined as

polynomials in t. A curve created by the piecewise assembly of polynomial segments is called

a spline. Each segment’s parameter may be scaled such that it is defined over the range [0, 1],

and hence a general spline of N segments may be expressed as:

~S(x) =

~s0(x) 0 ≤ x < 1

~s1(x− 1) 1 ≤ x < 2
...

~sN−2(x− (N − 2)) N − 2 ≤ x < N − 1

Figure 4.6 illustrates a spline with each segment defined over the range [0, 1]. As each

segment itself is a polynomial and hence smoothly varying, how these curves connect at their

endpoints defines the continuity of the curve as a whole. Generally, the minimum criteria we

enforce is that the endpoints of each segment are connected, and hence the curve possesses C0

continuity. If the tangents of each pair of subsequent segments are equal, there are no discon-

tinuities in gradients and hence the curve possesses C1 continuity. Finally, if the curvature is

smooth between segments, the spline possesses C2 continuity. Figure 4.7 illustrates C0 and C1

continuity for a spline consisting of four segments. Higher order continuity is often difficult to

see visually.

~s0(t)

~s1(t)

~s2(t)

t = 0

t = 0.2
t = 0.7

t = 0.1
t = 0.7 t = 0.9

t = 0.5

t = 1

Figure 4.6: Division of a curve into spline segments ~s0(t), ~s1(t) and ~s2(t). As t is increased
from 0 to 1, Each segment ~si(t) traces out a smooth curve.

91

~s0(t)

~s1(t)

~s2(t)
~s3(t)

~s0(t)

~s1(t)

~s2(t)

~s3(t)

~s0(t)

~s1(t)

~s2(t)

~s3(t)

No continuity C0 continuity C1 continuity

Figure 4.7: Continuity of splines consisting of piecewise polynomial segments ~si(t).

Splines find widespread application in interpolating or approximating data points. They

are usually defined by a set of points, called control points. Two general categories exist for

splines based upon a set of points — interpolating and approximating. Interpolating splines

pass through each point (with each segment connecting two consecutive points), whilst approx-

imating splines are influenced by, but do not necessarily pass through, the points. The choice

of interpolating or approximating spline depends on the application and desired properties.

Generally, a low-order polynomial is chosen for each segment, as higher order polynomials

require more operations to determine each point. The order of the polynomial also relates

to how many parameters we have to define our curve by. For example, each linear segment

requires two parameters, whilst a cubic segment requires four. In a simple case, connecting

each pair of consecutive points with a straight line requires two parameters per segment. These

parameters are the initial and final point, with the linear spline segment passing between them

as shown in Figure 4.9.

Cubic Hermite Spline

If we wish to define a C1 continuity spline, then each segment requires knowledge of not just its

endpoints but also the tangents at its endpoints. Therefore, a common curve for interpolating

points is a cubic spline. Appendix B illustrates that if each segment must be a cubic polynomial

that connects ~pi to ~pi+1, with associated tangents ~mi and ~mi+1, it must take the form:

~si(t) = (2t3 − 3t2 + 1)~pi + (t3 − 2t2 + t)~mi + (−2t3 + 3t2)~pi+1 + (t3 − t2)~mi+1 (4.1)

A spline of this nature is depicted in Figure 4.8. The four polynomial coefficients of this

cubic are known as the Hermite basis functions, with the spline itself being a cubic Her-

mite spline. This method of smoothly connecting a set of points with associated tangents

can be contrasted with simple linear interpolation as shown in Figure 4.9:

~si(t) = (1− t)~pi + t~pi+1 (4.2)

92

~s0(t)

~s1(t)

~s2(t)
~s3(t)

~p0 ~p1 ~p2

~p3

~p4
~m0

~m1

~m2

~m3
~m4

Figure 4.8: Cubic Hermite curve for a set of points {~pi} and their corresponding tangents {~mi}

The cubic Hermite spline is the general form for any C1 interpolating cubic spline. The

set of tangents {~mi} are parameters — we have not yet defined how to calculate these. The

common choice of tangents is to define them relative to the positions of nearby points. A

Cardinal spline takes the gradient of the i-th point to be proportional to the vector between

the preceding and subsequent point:

~mi = (1− c)(~pi+1 − ~pi−1) (4.3)

The size of these tangents is determined by a parameter c. When c = 1, this yields tangents

of zero length, and hence devolves to the linear interpolation spline as laid out in Equation 4.2

and Figure 4.9. When c = 0.5, this curve is referred to as a Catmull-Rom spline189, with

gradients:

~mi =
1

2
(~pi+1 − ~pi−1) (4.4)

More complex forms such as the Kochanek-Bartels190 spline have parameters such as tension

and bias. However, they still assume that the gradient at ~mi is purely a function of ~pi−1, ~pi

and ~pi+1. Catmull-Rom splines are the archetypal example of an interpolating spline — the

curve by definition passes through all the control points ~pi.

~s0(t) ~s1(t) ~s2(t)

~s3(t)

~p0
~p1

~p2

~p3

~p4

Figure 4.9: Simple linear interpolating spline between a set of points {~pi}, as described in
Equation 4.2

93

Natural Cubic Splines

Instead of determining the tangents by considering nearby points, they may be determined

by applying further constraints on the curve. The general form for a cubic Hermite curve

was obtained by enforcing C0 and C1 continuity. It may be additionally enforced that C2

continuity is also required. Appendix B shows that if we additionally enforce C2 continuity

for a spline over N points, we obtain N − 2 equations that constrain the values of the tangent

vectors {~mi}. Therefore, we require two additional conditions to uniquely define a cubic spline

that has C2 continuity. One solution is to enforce natural boundary conditions, which

state that the curvature at each end of the full spline must equal ~0. With these additional

conditions, a unique C2 spline for a set of points can be determined, known as a natural

cubic curve.

In a natural cubic curve, the tangents and positions are related by a matrix equation

which must be solved to calculate the tangents. Therefore, each tangent ~mi is influenced

by the positions of all the points {~pi}. This is referred to as global support, where each

tangent is a function of all points within the curve. In contrast, the Catmull-Rom spline has

local support, as each tangent is a function of the preceding point, the current point and the

subsequent point only. This is important if single data points are manipulated — a spline with

global support must be completely recalculated, whilst a spline with local support need only

recalculate segments near the altered point. Generally, for a ribbon diagram all the atoms are

moving at once, and hence global support is not much of an issue.

The derivation of natural cubic splines may be found in Appendix B.

94

B-Splines

The above examples are interpolating splines — given a set of points, the splines pass through

every one. The other broad category of splines is that of approximating splines. The points are

here referred to as control points, as they influence the shape of the curve whilst not necessarily

lying on it.

A classic example of a non-interpolating spline is a B-spline. The B of B-spline stands for

basis, as they can be considered to form a basis for all other splines. The exact definition of

B-splines can be found in Appendix B. In the cubic case, the uniform cubic B-splines are C2

continuous, but do not pass through the control points. The uniform cubic B-spline may be

written as:

1− 3t+ 3t2 − t3

6
~pi−1 +

4− 6t2 + 3t3

6
~pi +

1 + 3t+ 3t2 − 3t3

6
~pi+1 +

t3

6
~pi+2 (4.5)

Figure 4.10 illustrates a B-spline for a set of points. Given a set of N control points {~pi},
a uniform cubic B-spline does not pass through the points but instead consists of segments

connecting a new set of N points {~qi}. Therefore, we could invert the problem and instead

calculate some new control points such that, if a B-spline is defined using these points, the

resultant B-spline actually passes through our original control points. This approach results in

a curve that is functionally identical to the natural cubic spline, and requires solving a similar

matrix problem. This is expected, as for C2 continuous splines that pass through a set of

points, there are only two free parameters (defining how the endpoints behave). B-splines and

natural cubic curves are therefore closely related, but B-splines have local support and are

approximating splines, whilst natural cubic curves have global support and are interpolating

splines.

B-splines also form the basis of non-uniform rational B-splines, also known as NURBS.

These are B-splines where each point also has a corresponding weight, and find wide applica-

tions in defining smooth surfaces in 3D modelling.191,192

~s0(t)

~s1(t)

~s2(t)

~s3(t)
~p0

~p1

~p2

~p3

~p4
~p5

~p6

Figure 4.10: Example of a uniform cubic B-spline with control points {~pi}. The spline is still
made of separate cubic sections based on four consecutive points, but it does not pass through
any of them.

95

Splines in Molecular Visualisation

As the origins of ribbon diagrams lie in hand-drawn curves with no exact mathematical defini-

tion, it is unsurprising that in current molecular visualisation several different spline formalisms

are used. Table 4.1 lays out the variety of spline approaches used, with about half choosing

interpolating splines and half using approximating splines.

The early work by Carson and Bugg177–180 utilised B-splines passing through the midpoints

of the peptide sheets (taken to be the midpoints between alpha carbons). B-splines were also

used for DNA helices in UCSF Chimera.193

The technique of solving a B-spline to find control points to make it an interpolating

spline can be found in software such as DRAWNA program for rendering nucleic acids.194

and BioBrowser195. As mentioned above, this is functionally identical to using natural cubic

splines, which are utilised in ChimeraX.109

Software such as SETOR196 and VMD64 provide a choice between an interpolating (Car-

dinal) and approximating (B-spline) spline when rendering ribbons.

The alternative method proposed by Priestle183 involves multiple interpolation passes in

which the alpha carbon positions are progressively smoothed out. This approach was later

adapted by MolScript,107 though generally this technique has not been widely adopted in

comparison to cubic spline approaches.

An issue with approximating curves is raised when side chains are visualised in addition to

the protein backbone. Here, the chains may appear to be disconnected if the curve does not

pass through the alpha carbon. Two common ways of addressing this are to stretch the bond

from the side chain to the curve, or to draw an additional ‘tether’ connecting the alpha carbon

to the curve. This second approach is adopted by ChimeraX.109

PyMol uses a unique approach for calculating the spline used for its ribbon diagrams, with

Software Spline Control Points Passes through Cα?

Narupa iMD Catmull-Rom Cα Yes
VMD 1.9.4 Catmull-Rom Cα Yes

B-Spline Cα No
Avogadro 1.95.0 B-Spline Cα No

Mol* 3.0.2 Catmull-Rom Cα Yes
NGL Viewer 2.0.0 Cardinal (c = 0) Cα Yes

ChimeraX 1.3 Natural Cubic Spline Cα Yes
PyMol Custom Implementation Cα No

JSMol 14.31.23 Cardinal (c = 1/8) Cα Yes
UnityMol 1.1.3 B-Spline Cα No

Table 4.1: Summary of spline fits used in various molecular visualisation packages, highlighting
the variety of methods used.

96

each segment given by:

~si(t) = (1− t)~pi + t~pi+1 + τs(t)s(1− t)‖~pi+1 − ~pi‖(s(1− t)~mi − s(t)~mi+1)

where τ is a user-controlled factor, s(t) is a smoothing function:

s(t) =

 1√
2

√
t t < 1

2

1− 1√
2

√
1− t t ≥ 1

2

and the tangents are given by:

~mi =
1∥∥∥ ~pi+1−~pi

‖~pi+1−~pi‖ + ~pi−~pi−1

‖~pi−~pi−1‖

∥∥∥
Å
~pi+1 − ~pi
‖~pi+1 − ~pi‖

+
~pi − ~pi−1

‖~pi − ~pi−1‖

ã
Due to the presence of square roots, the PyMol implementation is the only implementation

examined that does not utilise cubic splines. The choices here have clearly been made to yield

a visually pleasing ribbon, but it is difficult to compare to other algorithms and is poorly

documented.

The dichotomy between interpolating and approximating splines is evident when the two

main secondary structure motifs are considered — β-sheets and helices. When visualising

helices, using approximating curves such as B-splines can lead to them appearing artificially

thinner than they should.177 However, the opposite occurs when considering β-sheets. Though

considered to be approximately flat, when considered purely in terms of the positions of the

alpha carbons, a β-sheet appears to zig-zag along its length. This is where using approxi-

mating curves such as B-splines or using the midpoints between alpha carbons (which would

approximate the centre of the peptide bonds) would lead to a more aesthetically pleasing result.

Figure 4.11 compares the three common approaches of ribbon fitting for a standard alpha

helix. The Catmull-Rom approach fails to capture the symmetry of the helix, giving a mis-

shapen appearance with sharper corners. It is important to be able to identify areas where

a helix is kinked or deviates from the idealised structure,188 which the Catmull-Rom spline

complicates by deviating from an exact helix. The natural cubic approach fairs much better,

forming a near perfect circle when viewed from above. This is in part due to its enforcement

of C2 continuity between its cubic segments. A perfect helix has a constant non-zero curva-

ture and torsion, and hence a cubic curve with higher continuity requirements is a better fit.

Finally, the B-spline approach also captures the correct shape of the helix, however as it is not

an interpolating spline, the overall radius of the helix is underestimated. This issue has been

observed since Carson and Bugg177, who suggested a 1.5�A translation to avoid slender helices.

Whilst in helices it is desirable to capture the shape and size of the helix, defined by the

positions of the α-carbons, in a β-sheet the opposite is the case. Naturally, the α-carbons

of a β-sheet zig-zag, when viewed in the direction of their hydrogen bonds. When using an

interpolating spline, this yields ribbons which adopt a wavy appearance. For β-sheets, it is

97

(a) Pure Helix (b) Catmull-Rom (c) Natural Cubic (d) B-Spline

Figure 4.11: Comparison of the three common curve approaches fitted to an ideal α-helix,
as seen from the side and from above. 4.11a illustrates a pure helical curve, which appears
sinusoidal from the side and as a circle from above. The stick diagrams indicate the backbone
atoms of the peptide chain, namely the alpha carbon, amine nitrogen and carbonyl carbon and
oxygen. The α-helix was generated using the PeptideBuilder 1.1.0 Python package,197 using
dihedral angles of φ = −60° and ψ = −45°.

the overall direction and orientation that are important factors. Therefore, most software such

as ChimeraX and JSMol will apply some smoothing modification to the positions used for

β-sheets, whilst using the raw alpha carbon positions for helices and other structures.

98

(a) Catmull-Rom

(b) Natural Cubic

(c) B-Spline

Figure 4.12: Side-view of different splines fitted to a β-sheet. The β-sheet was generated using
the PeptideBuilder 1.1.0 Python package,197 using dihedral angles of φ = −135° and ψ = 135°.

99

4.4 Extruding the curve

Until this point, we have defined a space curve — a one-dimensional parameterised path

through space. We can extrude this path to give a constant-thickness cylinder, creating a tube

representation that illustrated the path of the protein backbone. Figure 4.13 illustrates this

representation in Narupa iMD.

Figure 4.13: Tube representation of a small protein (Code 1CTF) along a natural cubic spline,
and coloured according to the secondary structure motifs.

However, a core part of the diagrams developed by Richardson is the ribbon part used to

illustrate the secondary structure motifs, both to show their orientation and differentiate them

from more general turns and curves. Here, we use ribbon in the sense of a two-dimensional

sheet which follows the curve. In the field of differential geometry, a ribbon is defined as the

combination of a smooth curve with a unit normal ~n assigned at every point along the curve.

Therefore, defining a ribbon requires assigning some normal vector ~n to every point along our

curve.

Together with the tangent vector of the curve (which is simply given by the derivative of

the curve’s parameterised equation ~p(t)), the normal and tangent form a pair of orthogonal

vectors. We may also define a third axis at each point, called the binormal ~b, which lies

perpendicular to both tangent and normal. Hence, at every point along the curve we now have

an orthogonal set of basis vectors (the tangent, normal and binormal), which form a set of

coordinate axes. This assignment of a coordinate frame to each point along a curve is referred

to as curve framing, an example of which is given in Figure 4.14.

100

Figure 4.14: Illustration of a Frenet-Serret frame along a cubic Hermite curve. At each point
along the curve (black), there is an orthonormal basis set given by the tangent (blue), normal
(green) and binormal (red).

Defining Orientation

Whilst there are techniques such as Frenet-Serret which define a normal at every point along

a curve purely based on its parameterised form, this neglects the meaning of the orientation

of the ribbon — they highlight the orientation of the peptide planes.

To do this, we adopt a method similar to how tangents work for a Hermite spline. At each

atom, we calculate some normal ~ni that describes the direction the ribbon will face. Carson

and Bugg177 took the component of the Cα-O bond which is perpendicular to the Cα-Cα bond

as their normal, as it lies on the peptide plane. Krone, Bidmon, and Ertl198 suggest normals

of the form:

~ni =
~Oi − ~Cαi∥∥∥ ~Oi − ~Cαi

∥∥∥ (4.6)

Due to the peptide plane’s structure, the C O bond is approximately antiparallel to the

N H bond. Therefore, using the carbonyl bond is a good approximation of the direction of

the hydrogen bond and correctly aligns the ribbon with the direction of helices and sheets.198

Given a set of normals {~ni} defined at the control points, we need a method for propagating

them along each spline segment. This must be a technique which reproduces the correct

normals at the endpoints, but smoothly interpolates between them along the spline segment.

One method for calculating normals at all points along the spline is to define a second spline.

This second spline will be defined in the same manner as the main spline, but each control

point will be shifted by some distance ∆ along its normal. By evaluating both the main spline

~p(t) and this second spline ~q(t) for a given value t, a normal can be calculated.

This approach can be used to generate a sequence of closely spaced splines using various

values of ∆ (both positive and negative). This visualisation is sometimes referred to as the

strands representation, and was originally described by Carson and Bugg177. Figure 4.15

illustrates an example produced by Carson. It was an effective technique to illustrate ribbons

101

where hardware was better suited for visualising lines rather than three-dimensional meshes,

but is rarely used in modern software.

ChimeraX assigns normals differently to helices and β-sheets. Helical segments used a

geometry-based normal, based on the preceding and subsequent points. Sheets instead align

the normal with the intersection line between subsequent peptide planes. To blend between

the normals, parallel transport is used. This is a technique which propagates a vector along a

curve, minimising the amount of twisting. However, at the end of the segment the smoothly

propagated normal may not align with the desired value of ~ni+1. To address this, the normals

along the segment are twisted evenly such that the final normal is aligned with ~ni+1. Generally,

this method is less performant than other methods, as the parallel transport algorithm is not

well suited for GPUs.198

VMD utilises a similar method to Carson and Bugg, but takes the normal ~ni to be the

average of the peptide normals of the preceding and subsequent peptide chains. It uses simple

linear interpolation to blend between the initial and final normals between the start and end.

Regardless of the method used, we now have a normal ~n(t) that varies smoothly along each

segment and across the endpoints of each segment. If all that’s desired is a flat ribbon, then

this is sufficient to draw the two-dimensional surface which follows the curve and is aligned

with the normals. However, a three-dimensional ribbon is often preferable, and to do this we

now need to extrude a cross-section along the curve.

Figure 4.15: Example of a strands representation of FMET t-RNA, reproduced from Carson178.

102

Cross-sections

The technique of moving a 2D cross-section along a three-dimensional curve is a common

technique in modelling, and is referred to as extruding or sweeping.199 The normal and binormal

at every point along the curve define a two-dimensional plane perpendicular to the curve, and

onto this surface we can align a shape to be our cross-section. There are a variety of cross-

sections we can choose, with common choices being either ellipse or oval representations, or

a boxy representation. The box cross-section is the one used by Richardson in her original

diagrams, presumably as it is the easiest to draw by hand in the absence of shading. Another

common cross-section is the barbell or dumbbell shape, consisting of two circular cross-sections

joined by a flat ribbon. This representation highlights the edges of the ribbon, and can be

easier to implement than an oval cross-section. Programs such as VMD, ChimeraX and PyMol

all provide these three common cross-sections. Narupa iMD supplements this to two additional

cross-sections — a bevelled cross-section and a rounded cross-section. Figure 4.16 illustrated

how this cross-sections appear for various ribbon widths.

(a) Bevelled (b) Box (c) Oval

(d) Rounded (e) Barbell

Figure 4.16: Some of the possible cross-sections that can be used for ribbons.

103

4.5 Ribbon Flipping

Consider holding a belt between your hands, and slowly twisting one end of the belt around.

The belt will slowly become more and more twisted, as illustrated in Figure 4.17a. As a ribbon

diagram is calculated at a specific point in time, and does not account for previous timesteps

or diagrams, we do not end up with an overly twisted ribbon as for the example of the belt.

Instead, the direction of the twist will either be clockwise or anticlockwise, depending on which

would involve twisting through a smaller angle as illustrated in Figure 4.17b. When the initial

and final normals are exactly 180° apart, then there is an ambiguity.

The salient feature of the normals in ribbon diagrams is that they indicate the alignment of

the ribbon. Hence, flipping a normal by inverting it gives the same alignment at the endpoints,

but could result in a less twisted appearance. This was first employed by Carson and Bugg177,

who noted that β-sheets commonly had normals which were antiparallel as you pass down the

β-sheet. This leads to an overly twisted β-sheet, where the desired appearance is flat. They

proposed flipping the final normal when ~ni · ~ni+1 < 0 to give a less twisted appearance as

illustrated in Figure 4.17c.

Figure 4.17c shows that the maximum amount of twist possible between endpoints is now

90°. This yields static diagrams which have minimal twisting, and hence illustrate the sec-

ondary structure motifs most clearly. However, when applied to dynamic visualisation, where

each ribbon diagram is a continuation of the previous one, the phenomenon of ribbon flip-

ping occurs. Figure 4.18 illustrates this for consecutive frames of a protein trajectory as seen

in major visualisation software. These are often seen as small flickering parts of the diagrams

when viewed as a trajectory, often at the edges of secondary structure motifs.

Visual continuity

The issue of ribbon flipping in Narupa iMD is exacerbated by two properties — the use of

immersive virtual reality, and the relative speed of the simulation. The use of immersive

environments has been previously observed to help identify graphical issues that were less

obvious on a two-dimensional screen. For example, Akkiraju et al.200 only noticed the severity

and frequency of self-intersections in their visualisation of a protein molecular surface when

immersed in the CAVE environment. The immersive element of virtual reality means that

glitches and changes which appear nonphysical (referred to here as visual artifacts) have more

of an effect on the user.

An example of this is discussed in Chapter 3, when discussing the visualisation of periodic

systems. There, the sudden movement of atoms from one side of the unit cell to the other

does not agree with our mental picture of how these objects should behave. As molecular

visualisations are the natural progression of physical three-dimensional models, we expect them

to behave in a similar physical way. Unlike Monte Carlo simulations, in molecular dynamics

104

(a) Rotating a ribbon by always rotating clockwise from the start normal to the end normal. This
leads to a ribbon that becomes progressively more twisted, with the twist ranging from 0 degrees to
360 degrees.

(b) Rotating a ribbon either clockwise or anticlockwise, depending on which is a smaller angle. This
results in a less twisted appearance, but there is a flip at 180 degrees. The twist ranges from −180
degrees to 180 degrees.

flipped normals

(c) As above, but flipping the final normal if it is not in the same direction as the initial normal. This
limits the twist to −90 degrees to 90 degrees, but contains flips at 90 degrees and −90 degrees.

Figure 4.17: Illustration of three ways to interpolate a ribbon, given an initial and final orien-
tation.

simulations the system varies in a smooth time-varying fashion, further contributing to the

view that the atomic system being simulated can be compared to a physical model in real life.

In the world around us, physical objects tend to move slowly, at a timescale in which we

can observe their motion. Natural phenomena which are sudden or abrupt, such as lightning

strikes or explosions, are associated with unpleasant or dangerous experiences. To a lesser

extent, this concept should also apply when immersed in a virtual world. This extends to

concepts such as the user interface, where smoothly fading menus in and out is more desirable

than sudden transitions.

The other reason I postulate that ribbon flipping has not been considered a major issue

before is due to the difference in time resolution between a pre-recorded trajectory and a live

simulation. When using interactive molecular dynamics, the simulation is normally throttled

at a certain rate to ensure the user has time to react to changes as they happen. Therefore,

105

(a) PyMol

(b) VMD 1.9.4

(c) ChimeraX 1.3

(d) Mol* 3.0.2

Figure 4.18: Ribbon flipping as it occurs in consecutive frames of a protein trajectory in major
visualisation software.

106

the relative simulation time per real-time second is smaller, and hence in real space terms, the

atoms move more slowly than for watching back a trajectory. This gives the appearance of

smoother, more continuous motion of the atoms.

Compare this to viewing a pre-recorded trajectory, where normally the positions are not

recorded at every frame for performance and storage reasons. Here, atoms may move larger

distances between each frame, as the interest here lies more within the global motion of the

system rather than the small individual motions of each atom. Due to this large time separa-

tion, it appears less as the continuous motion of a system and more as a series of snapshots.

Any visual discontinuities of the ribbon are therefore conflated with the large displacement of

the ribbon between frames. We can therefore define a good measure of what would be consid-

ered a visual artefact in interactive simulations — a visual artifact is a sudden movement or

displacement that occurs even in the limit of smaller timesteps between frames.

This is an issue which I have addressed in Narupa iMD by developing the double-normal

interpolation technique. This technique does not suffer from these sudden flips, and hence

provides visual continuity in secondary structure visualisation.

Double-normal method

Fundamentally, the discontinuity we are considering is caused by a change between a clockwise

and anticlockwise twist. This twist’s direction is directly related to how we interpolate the

ribbon’s normal between its initial and final value, as depending on their relative orientations

either a clockwise or anticlockwise twist will be preferred. To prevent this artifact, we need

an approach where two properties hold — smoothly changing either normal leads to a smooth

change in the cross-section, and inverting either the initial or final normals does not alter the

shape of the ribbon.

For this explanation, we will ignore the curving of the actual space curve, and instead

consider a simple straight ribbon. The approach will be equally applicable to space curves.

With this in mind, the problem now becomes a two-dimensional problem of rotating a cross-

section from an initial rotation to a final rotation.

Our two-dimensional problem is defined by two normals, ~ni and ~ni+1. These represent the

initial and final orientations of this ribbon section. As we vary t from 0 to 1, the standard

approach would be to interpolate between the two normals. Figure 4.19a shows an example of

performing this using simple linear interpolation, followed by renormalising the normal. This

normal can then be used to create a cross-section. For reasons that will become evident when

describing the double-normal method, we will consider the case of an ellipsoid cross section.

Here, some radius R is added to the normal, as well as used to widen the ribbon by the same

amount as shown in Figure 4.19b.

It is clear to see that inverting ~ni+1 would cause the interpolation to switch from a clockwise

rotation to an anticlockwise rotation. The double-normal method posits that instead of one

107

t~ni

~ni+1

(a) Linear interpolation between ~ni and
~ni+1.

R

R

(b) Ellipse created from radius R and in-
terpolated normal.

Figure 4.19: Steps involved in simple linear interpolation of normals to create an ellipsoid
cross-section.

normal, we instead define two separate normals:

1. An interpolation from ~ni to ~ni+1 (or equivalently, −~ni to −~ni+1).

2. An interpolation from ~ni to −~ni+1 (or equivalently, −~ni to ~ni+1).

Therefore, for any situation, one of these normals will be the clockwise normal and one

will be the anticlockwise normal. For simplicity, I will define these two normals as ~η+
i (t) and

~η−i (t), which will be given by linear interpolation:

~η+
i (t) = (1− t)~ni + t~ni+1

~η−i (t) = (1− t)~ni − t~ni+1

Figure 4.20 illustrates how these two normals interpolate from ~ni to ~ni+1. These two

normals and their negatives define a parallelogram which will define our cross section, with

corners ~η+
i , −~η+

i , ~η−i and −~η−i . For our two normals, we instead choose the midpoints of the

sides of this parallelogram, as these will be the directions in which we create our cross section.

These normals are given by:

~di =
1

2
(~η+
i + ~η−i) = (1− t)~ni

~di+1 =
1

2
(~η+
i − ~η

−
i) = t~ni+1

As shown above, these two normals can be interpreted in two different ways. The first is

as the midpoints of the sides of the parallelogram as derived above. The other is that this is

108

t
~ni

~ni+1

~η+i

~η−i

Figure 4.20: Linear interpolation of the two normals in the double-normal method.

simply a partition of a linear interpolation (lerp) into its two vector components (one along

~ni, one along ~ni+1):

lerp(~ni, ~ni+1; t) = (1− t)~ni︸ ︷︷ ︸
~di

+ t~ni+1︸ ︷︷ ︸
~di+1

(4.7)

Therefore, ~di represents the diminishing contribution of ~ni, and ~di+1 represents the increas-

ing contribution of ~ni+1.

An ellipse can be defined as the action of a 2 × 2 matrix on the unit circle. Therefore,

by calculating this matrix for each point along the ribbon, a circular cross-section can be

deformed to give the corresponding elliptical cross-section. The 2 × 2 matrix M defines the

axes of the ellipse, with the eigenvalues being the length of the major and minor axes, and

their corresponding (orthogonal) eigenvalues their directions.

1

1

λ1
~v1
|~v1|

λ2
~v2
|~v2|M

~p

M ~p

Figure 4.21: Transformation of a circle with radius 1 into an ellipse using a matrix M. The
major and minor axes have lengths and directions dictated by the eigenvalues λi and corre-
sponding eigenvectors ~vi of the matrix M.

Going back to the case for a single normal, the matrix M which converts a circular cross-

section into an ellipse should have a major axis of length W + R and a minor axis of length

R, with the major axis being aligned along the normal ~n. Here, W is the width of the ribbon,

109

and R the radius. This can be done using the matrix:

M =
W

|~n|

(
R|~n|
W + n2

x nxny

nxny
R|~n|
W + n2

y

)
= RI +W

~n⊗ ~n
|~n|

(4.8)

where ⊗ indicates the outer product of two vectors, and I is the 2×2 identity matrix. This

matrix transforms a point ~p on the unit circle to the point:

M~p 7→ R~p+W
~n · ~p
|~n|

~n (4.9)

Our matrix M can be split into two parts — a scaling of the cross-section by a radius R,

and a stretching of the cross-section in the direction of the normal ~n, weighted by how much

the point and the normal are aligned. The resulting ellipse has the desired major and minor

axes lengths, and is aligned with ~n.

In my double-normal method, we simply extend this equation by applying both normals
~di and ~di+1 into the equation as two individual stretches:

M = RI +W

®
~di ⊗ ~di

|~di|
+
~di+1 ⊗ ~di+1

|~di+1|

´
(4.10)

We’ve shown that these normals are simply scalings of the initial and final normals, so the

final matrix for my double-normal interpolation matrix can be written in terms of the initial

(a) Clockwise rotation

(b) Double-normal interpolation

Figure 4.22: Comparison of my double-normal interpolation technique to standard ribbon
rotation for a 30 degree ribbon rotation. At these small angles, my technique is virtually
indistinguishable from a standard ribbon rotation.

110

and final normals as:

M = RI +W

ß
(1− t)~ni ⊗ ~ni

|~ni|
+ t

~ni+1 ⊗ ~ni+1

|~ni+1|

™
(4.11)

This highlights another interpretation of the difference between a simple single-normal in-

terpolation and my double-normal interpolation. In a single-normal interpolation, the normal

is interpolated from the initial normal to the final normal, and then a single stretch is per-

formed along this intermediate direction. The double-normal method can be interpeted as

an interpolation between two separate stretches — a stretch along the initial normal, and a

stretch along the final normal. The factors of t ensure that at the start and end points, my

method exactly matches that of the single-normal method. At intermediate points, it results in

an ellipse which is aligned somewhere between ~ni and ~ni+1. However, depending on the angle

between ~ni and ~ni+1, the ribbon is also inflated to become less elliptical and more circular.

This is visible in Figure 4.23. At small angles, the double-normal method is approximately

equal to the single-normal method, as shown in Figure 4.22.

Importantly, when the initial and final normals are at 90° to each other, the ellipse shrinks

and forms a circular cross section midway along the ribbon. This entire transition involves

shrinking and stretching the cross section along the ribbon, with no rotation. This is why my

double-normal method avoids the flipping ambiguity - at the point the flip would occur, my

method no longer involves any rotation.

(a) Clockwise rotation

(b) Double-normal interpolation

Figure 4.23: Comparison of my double-normal interpolation technique to standard ribbon
rotation for a 60 degree ribbon rotation. As the angle approaches 90 degrees, my technique
begins to taper inwards at the centre.

111

One argument against this method is that the cross-section is no longer constant, and hence

information about the alignment is lost. However, I believe the circular cross-section that arises

actually has an important physical meaning. Consider Figure 4.24, where the ribbon could

equally be seen as twisting clockwise or anticlockwise. Therefore, at the midpoint, there are

arguably two possible interpretations of the orientation, which are at 90° to one another. The

circular cross-section of the double-normal method clearly illustrates this as being a degenerate

case, and by becoming circular is indicating that there is no longer a well-define direction of

the ribbon. The double-normal method can be seen as not only a geometric trick, but as a

way of encoding the uncertainty of the ribbon’s orientation between well-defined endpoints as

an appropriate morphing of an elliptical cross-section to a circular cross-section.

It can also be seen visually that the method gives similar images to that of a single-normal

approach. Whilst Figure 4.24 may make it seem like a radical change, in practice I believe

(a) Clockwise rotation

(b) Double-normal interpolation

(c) Anticlockwise rotation

Figure 4.24: Comparison of my double-normal interpolation technique in comparison to stan-
dard ribbon rotation for the degenerate case where the angle between the initial and final
normals is 90 degrees. My method avoids the ambiguity of which direction to rotate by in-
stead using a squeeze-stretch approach.

112

our eyes trick us into accepting that the ribbon is twisting normally. Therefore unless the

user is looking very closely at the exact part of the ribbon, the double-normal technique does

not massively alter the appearance of a ribbon diagram in comparison to methods in which

ribbon-flipping is an issue. Figure 4.26 illustrates that at a distance the diagrams are virtually

indistinguishable.

As Figure 4.25 illustrates, using this method Narupa iMD can render dynamic ribbon

diagrams where the geometry of the ribbon does not undergo any sudden changes. Due to the

discrete categorisation of secondary structure (as calculated via DSSP), parts of the ribbon

may suddenly change colour and size in a dynamic simulation. We must therefore use a method

which prevents sudden changes when residues transition between secondary structure motifs.

Videos illustrating the double-normal method may be found in the supporting information

of the 2021 paper of Jamieson-Binnie and Glowacki24.

(a) Example of a β-sheet flip using existing vi-
sualisations.

(b) Example of β-sheet flip using my double-
normal method.

(c) Another example of aβ-sheet flip using ex-
isting visualisations.

(d) The same example using my double-normal
method.

Figure 4.25: Examples of flipping artifacts between adjacent timesteps that now are continuous
thanks to my double-normal method.

113

(a) Neuraminidase visualised using linear interpolation of a single normal.

(b) Neuraminidase using my double-normal interpolation method.

Figure 4.26: Comparison of neuraminidase rendered using a standard single-normal interpola-
tion and my double-normal interpolation method, illustrating their similarities at a distance.

114

Smooth Blending

The assignment of DSSP is used to determine the secondary structure of each residue, and

hence the colour, width and shape of the ribbon at that point. For example, β-sheets are

conventionally depicted in yellow and as long smooth ribbons; α-helices may be depicted in

pink, but must not be smoothed too much to obscure the shape of the helix; and general turns

and bends are often depicted as white tubes rather than ribbons. Whilst the above algorithm

can blend between these different states smoothly, sudden changes occur when the movement

of certain atoms causes a residue that was previously assigned to one secondary structure to

be assigned to another.

This manifests itself as sudden changes in colour or size when DSSP is run. I address this

by introducing a time delay on changes in these variables. When a new colour is assigned, the

colour that is displayed is not instantly changed — instead, the colour is smoothly varied from

the previous state to the new state. Figure 4.27 illustrates this technique, showing how there

are no discontinuities in colour or size over time.

Time
DSSP Calculations

D
is

cr
et

e
S

m
o
ot

h

Figure 4.27: Comparison of discrete changes, where the DSSP calculation changes the colour
and size directly; and smoothed, where the calculated changes are delayed to give a smooth
transition.

115

4.6 Conclusions

Whilst many excellent reviews exist that go into detail on molecular surfaces,113,201,202 the

current usage of ribbon diagrams is comparatively less explored. I have therefore presented

an overview of the current approaches found in various molecular software packages. As Table

4.1 illustrates, different software has adopted different types of splines to depict their rib-

bon diagrams. They are broadly split into three categories: Catmull-Rom or Cardinal spline

approaches, which go through the α-carbons but can fail to capture the curved shape of he-

lices; B-Splines, which are smoother but do not pass through the α-carbons; and natural cubic

splines, which interpolate through the α-carbons and capture curvature well, but are more com-

plicated to calculate. By analysing how these three cases handle ideal helices and β-sheets, we

can draw some broad conclusions about their effectiveness. For helices, Catmull-Rom splines

fail to accurately describe the helical geometry, whilst B-splines artificially reduce the radii

of the helix. In this case, a natural cubic spline performs best. For β-sheets, the oscillating

nature of the α-carbons can give a wavy appearance that is considered undesirable. In this

case, a B-spline is often the better choice. Therefore, it is generally useful to combine different

spline types, to successfully capture both the helix and β-sheet shapes.

Ribbon diagrams, whilst ideal for static structures, have certain features that make them

ill-suited for dynamic visualisation — the discrete assignment of secondary structure elements

and discrete flips between clockwise and anticlockwise twists. I address this first issue using

a simple blending over time, to avoid sudden changes in colour or scale. For the ribbon, I

have proposed a new double-normal algorithm that can generate an elliptical cross-section

that never experiences a flip. The smooth nature of the shape means visually it is similar to

an unmodified ribbon diagram. The nature of the blending also has a deeper meaning, as it

adopts a circular cross section where the initial and final orientation are perpendicular. This

can be taken as an indication of the uncertainty of the ribbons orientation at this point.

As Figure 4.11 illustrates, certain cubic ribbons can approximate helices rather well. How-

ever, even when the data points lie on a perfect helix, this cubic interpolation will not match

exactly. Recent work by Yuksel203 addressed a similar problem in two dimensions, fitting a

spline through a set of points on a perfect circle. They showed that a technique based on

blending circular segments could replicate circular arcs if the data points themselves lay on an

arc. A similar approach could in principle be applied here, with helices fitted to consecutive

sets of points, and a blending function used to smoothly combine them.

116

Chapter 5

Interactive Molecular Dynamics

In this final chapter, I will discuss the main application of the Narupa framework — interactive

molecular dynamics. This involves the application of user-driven forces to parts of a simulation,

which can be used to explore chemical pathways or as an educational tool.

I start this chapter with a more detailed overview of molecular dynamics, including force-

fields and integrators. I will contextualise interactive molecular dynamics compared to other

rare event sampling methods, such as metadynamics, umbrella sampling and steered molecular

dynamics. This will segue into how we implement IMD into the molecular dynamics packages

we employ, and examine how their different implementations present different challenges.

Interactive molecular dynamics requires defining a potential energy function to perturb the

system. I overview the current methods of Gaussian and harmonic wells, and discuss their

advantages and disadvantages

Finally, I will discuss preliminary work I have done on implementing a rotational interac-

tive force. This addresses issues currently encountered when attempting to apply fine-grained

rotations to small molecules without deformation, allowing the user to more precisely manoeu-

vre a ligand into a binding pocket. It also opens up Narupa to be applied to simulations with

finite-sized or asymmetric particles, where interactive molecular dynamics cannot currently

cause rotations.

117

5.1 Introduction

Molecular dynamics is the propagation of a molecular system through time, commonly through

the application of classical dynamics. Most systems are approximated as a set of point-mass

particles, with masses {mi}, positions {~qi} and momenta {~pi}. The dynamics of the system is

governed by Newton’s law, which may be written as the second order differential equation in

terms of the atomic coordinates:

mi
d2~qi
dt2

= ~Fi(~q1, ~q2, · · · , ~qN) (5.1)

Here, ~Fi is the force experienced by the i-th particle. This force is often taken to be the

gradient of some global potential energy function U , which itself is a function of the atomic

coordinates:

~Fi(~q1, ~q2, · · · , ~qN) = −∇~qiU(~q1, ~q2, · · · , ~qN) (5.2)

Except for certain small systems, equation 5.1 has to be addressed numerically. For a

system of N atoms, this requires solving a system of N coupled differential equations. This

is commonly achieved as an initial value problem — given a set of initial conditions, the

differential equations are used to propagate the system forward in time in discrete steps. When

tackling molecular dynamics in this manner, the problem may be broken down into three tasks:

1. The initial conditions of the system, including the positions and velocities for each atom.

2. A forcefield, which determines the potential energy function and hence force to be

applied to each atom.

3. An integrator, which propagates the system forward in time under the influence of the

forcefield.

Initial conditions

As Equation 5.1 is a second order differential equation, the initial positions {~qi} and velocities

{~vi} of the atoms must be specified. The initial positions of the system can be obtained

from experimental data such as crystallography. The velocities are normally sampled from

a Maxwell-Boltzmann distribution, derived from the kinetic theory of gases. As each

velocity is random and independent, a given choice may result in the entire system having an

initial momentum. This can cause the simulation to drift in a general direction in the absence

of a thermostat. This can be countered by either modifying the initial velocities, or performing

an extra step during the integration to cancel out any centre of mass velocity.

118

Forcefields

The choice of molecular dynamics forcefields are broad, and can span from simple classical po-

tentials to machine-learned potentials. There is a fine balance between increased accuracy and

validity of more complex forcefields, and the computational cost that this imposes. Generally,

a forcefield can be specified in terms of a potential energy function U({~qi}), with the forces

given as the gradients with respect to each atom’s position. The calculation of the energies

and gradients is the most computationally expensive part of a molecular dynamics simulation.

The potential energy U({~qi}) is usually broken down into various terms, with various levels

of experimental and theoretical justifications for their existence. These terms in turn are often

dependent on relative atomic vectors ~rij = ~qj − ~qi. If a potential energy term may be written

as a function of these relative distances (for example, distances, angles and dihedrals), then

it is invariant under translation and rotation. This invariance in the potential leads to the

conservation of linear and angular momentum in our system.

Forcefield are generally broken down into various two-, three- and four-body terms. Pair

potentials are terms which apply between all pairs of atoms in the system, regardless of any

bonds defined for the system. One example of a pair potential is a Coulombic potential between

charged particles. This electrostatic attraction is modelled according to Coulomb’s law:

~U({~qi}) =
∑
i>j

qiqj
εrij

(5.3)

where qi is the charge of the i-th atom and ε is an appropriate dielectric constant.

Another pair interaction that can be modelled are van der Waals interactions. In reality,

these occur due to electrostatic interactions due to instantaneous dipoles forming on each

atom. As the shape and distribution of the electrons around each atom are not modelled in

most molecular simulations, simple models are used to represent this low-level attraction. One

of the most common and studied potentials for these forces is the Lennard-Jones or 12-6

potential:

~U({~qi}) =
∑
i>j

4ε

ñÅ
σ

rij

ã12

−
Å
σ

rij

ã6
ô

(5.4)

where ε and σ are appropriate constants (that may depend on i and j) which determine the

depth and location of the potential well. The pairwise van der Waals force fulfils an important

role within a molecular forcefield, as its strong repulsive force at short distances prevents atoms

from overlapping or colliding.

Pairwise potentials by themselves are only suited for simulating atoms or fluids consisting

of single atoms or ionic bonds. In reality, certain atoms may form covalent bonds by the

sharing of electrons. This yields a strong attractive force that hold certain atoms together.

Generally, molecular dynamics is not concerned with the creation or destruction of covalent

bonds, as this requires a large amount of energy. However, if the covalent bonds are instead

modelled as rigid connections, this will not account for vibrational motion that can occur.

119

The compromise is to model bonds between covalently bonded atoms using a Taylor series.

Commonly, this is taken to quadratic order and yields the harmonic potential:

U({~qi}) =
∑
i

∑
j∈B(i)

kij
2
‖~rij − dij‖2 (5.5)

The harmonic potential is quadratic about the idealised bond length dij , allowing fluctu-

ations but preventing dissociation. Higher order polynomials such as quartics and sextics are

also employed.

The interaction of covalent bonds with each other also lead to higher-order terms that

affect three- and four-bodies. Between adjacent bonds, harmonic potentials are often used to

enforce an ideal angle between three atoms. Likewise, dihedral potentials (often chosen to

be sinusoidal to account for the rotational symmetry) affect the geometries of chains of four

atoms. When greater accuracy is desired, these potentials may also be extended with higher

order polynomial terms.

Some of the earlier forcefields were those proposed by Allinger for use with hydrocarbons,

namely the MM1, MM2204, MM3205–208 and MM4209–211 forcefields. These forcefields used

higher order polynomials for their bonding interactions, such as a 6th-order polynomial for

the bonding term. These forcefields also contain coupling terms between adjacent bonds and

angles, which leads them to be often classified as Class II forcefields. This makes them bet-

ter suited for calculating vibrational properties, which are influenced by coupling between

vibrational modes.

In comparison to forcefields optimised for specific categories of molecule, others may aim

to be a universal force field. Examples of this are the Merck Molecular Force Field (MMFF)82,

the Universal Force Field (UFF)81 or the Generalized Amber Force Field (GAFF)212. While

lacking in accuracy,213 they are useful for geometry optimisation for a wide range of molecules.

It is this feature that results in them often being implemented in general chemistry libraries

for cheminformatics, such as RDKit80 and Open Babel60.

Integrators

An integrator is the method with which we propagate the positions and velocities forward

in time, by making approximations that allow the calculation of {~qi(t+ δt)} and {~vi(t+ δt)}
given {~qi(t)} and {~vi()}. Generally, we track both positions and velocities during a simulation,

which yields 2N first-order differential equations:

d~qi
dt

= ~vi (5.6)

d~vi
dt

=
1

mi

~Fi (5.7)

120

The simplest algorithm for propagating these equations is the Euler method. This uses

a first-order Taylor expansion for both velocities and positions:

~qi(t+ δt) = ~qi(t) + ~qi(t) δt (5.8)

~vi(t+ δt) = ~vi(t) +
1

m
~Fi(t) δt (5.9)

Whilst simple, the Euler method performs poorly when conserving energy over long periods

of time. One method to address this is to use the semi-implicit Euler method:

~vi(t+ δt) = ~vi(t) +
1

m
~Fi(t) δt (5.10)

~qi(t+ δt) = ~qi(t) + ~vi(t+ δt) δt (5.11)

In this method, the velocities are propagated first, and the velocity at t + δt is used to

propagate the positions. This simple change results in more stable dynamics, as this integrator

is symplectic. Symplectic integrators work well for Hamiltonian systems (of which molecular

dynamics is an example), where volume in phase space should be conserved.

Another common symplectic integrator is the velocity Verlet integration scheme. The

equations of the velocity Verlet scheme are:

~qi(t+ δt) = ~qi(t) + ~vi(t) δt+
~Fi(t)

2mi
(δt)2 (5.12)

~vi(t+ δt) = ~vi(t) +
~Fi(t) + ~Fi(t+ δt)

2mi
δt (5.13)

Equation 5.12 can be understood to be the Taylor series for {~qi(t)} to second order, and

Equation 5.13 is the midpoint method for {~vi(t)} (with the assumption that ~Fi does not depend

on the velocities). These symplectic algorithms allow for NVE ensemble simulations, where

the energy, volume and number of particles is approximately constant.

For most simulations however we wish to run NVT ensembles, where now temperature

instead of energy is conserved. Modifications to our integrator to allow for this are referred

to as thermostats, and include the Berendsen, Andersen and Nose-Hoover. The Andersen

thermostat randomly selects a subset of particles at each timestep, and assigns to these a

new velocity sampled from a Maxwell-Boltzmann distribution. Meanwhile, the Berendsen

thermostat scales the velocities in order to modify the temperature.

Another common way of running NVT ensembles is to modify Newton’s law in a method

known as Langevin dynamics. In Langevin dynamics, the core equation that is used for

propagation of the system is:

mi
d2~qi(t)

dt2
= ~Fi(t)−miγ

d~qi(t)

dt
+
√

2miγkBT ~R(t) (5.14)

Langevin systems are therefore defined by two additional parameters, namely the damping

constant γ and the desired temperature T . The two additional terms that appear to the right

121

of equation 5.14 are a drag force which opposes and is proportional to the velocity of the

atom, and a random force which moves the atom in random directions. To this end, ~R(t) is a

random direction which is uncorrelated in time. These forces are meant to treat the atoms as

if they were moving through some gas, where collisions with other molecules would slow them

down and also impart random kicks. The size of these kicks is chosen such that over time, the

temperature of the system will tend towards the desired temperature T .

122

5.2 Interactive Molecular Dynamics

Since its inception at the turn of the millennium,66 interactive molecular dynamics (IMD)

(sometimes referred to as interactive molecular simulation or IMS214) has been used in a range

of applications, from drug docking23,25,215 and molecular transport216 to molecular modeling217

and exploring reaction networks27. The traditional workflow of molecular dynamics involves

visualising a simulation post-execution. Therefore, if an issue has occurred the entire simulation

may have to be run again, costing both the user’s time and compute cycles.214 Interactive

simulations can limit this by giving a user real-time direct feedback on the simulation.

One of the earliest examples of interactive simulations is the Sculpt program218, used for

continuous energy minimisation of a protein. Using a two-dimensional interface, small parts of

a protein could be adjusted whilst the system was minimised. This prevented issues that may

occur when making modifications using a simpler molecular builder.218

Building upon the concepts of Sculpt, the field of steered molecular dynamics219 intro-

duced the concept of time-varying predefined restraints to drive a molecular system to undergo

a particular transition. By utilising the full breadth of molecular simulation, rather than just

energy minimisation, SMD allows the exploration of time-based properties such as temperature

and entropy.219

For example, when inspecting a ligand-receptor system Grubmüller, Heymann, and Ta-

van220 observed for low restraint velocities, the rupture force could be extrapolated backwards

to yield a result which agreed with atomic force microscopy experiments.219

Another approach similar to SMD is self-guided molecular dynamics (SGMD).221 In-

stead of some user-defined acceleration, SGMD accelerates the existing motion of the system.

The force experienced by each particle is time-averaged over a short period prior to the cur-

rent timestep, which gives an indication of their overall motion. This time-averaged force is

then scaled by a factor λ and reincorporated into the equations of motion. Therefore, SGMD

measures overall motions occurring in the system and accelerates them. This technique has

been applied to systems such as alanine dipeptide,221 a β-hairpin,222 as well as being applied

to helix folding,223 the isothermal-isobaric ensemble,224 and Langevin dynamics.225

SMD involves defining ahead of time the biasing force and how it will vary, often by moving

a harmonic constraint at a constant velocity along a pre-defined path. Interactive molecular

dynamics aims to introduce human intuition by allowing a user to alter the forces on the fly

while observing the system. The advantage of IMD over SMD are that it also allows exploration

of the dynamics of a system.70

In order to accurately apply interactive forces in three dimensions, appropriate control

over the interaction site is required. Two pieces of technology commonly used to perform

IMD are haptic feedback devices226 and virtual reality.23 Using a haptic feedback device, a

pen-like controller is suspended physically in space and can be moved by a user, manipulating

a corresponding point in 3D space within the simulation. It hence grants the user three

123

translational degrees of freedom. Virtual reality on the other hand often features wireless

controllers held by the user, which can be orientated in space for a total of six degrees of

freedom. Up to now, the forces applied using existing IMD-VR implementations use only the

position of the controller, analogous to the haptic devices that preceded it. The additional

control that a user may exert by rotating their hand is therefore absent.

An example of software capable of performing interactive molecular dynamics in virtual

reality (IMD-VR) is the Narupa framework. Like common SMD forces, one or more particles

can be pulled towards a point in space with a harmonic potential controlled by the user. In

lieu of a harmonic well, a Gaussian well can be employed to avoid excessive forces at larger

distances.23 To apply a force to a group of atoms, the force to be applied is calculated as if a

single point mass were located at the group’s center of mass, which is then distributed between

each atom weighted by their mass.23 When the interaction is ended, there is also the option to

reset the velocities of the affected particles to velocities sampled from the Maxwell-Boltzmann

distribution, in order to cancel any net momentum they have built up.23

Rare Event Sampling

Generally, we calculate properties of our system based on the concept of ergocity — that

given enough time our system will visit all parts of its potential energy landscape. However,

the timescale over which chemically relevant processes may occur often limit what is explorable

using unbiased molecular dynamics. Therefore, a wealth of methods collectively referred to as

biased molecular dynamics have evolved to accelerate the simulation of rare events, whilst

not unduly modifying the result. Optimising the time it takes to complete these calculations

not only saves researchers’ time, but reducing the computational load required to achieve the

same result reduces the energy needed by the computing resources used.

These methods generally require the definition of a reaction coordinate. The reaction co-

ordinate is a function of the current state of the system, and projects this into a low-dimensional

space (commonly one-dimensional). This value characterises the particular reaction we wish

to occur, with progression along the coordinate representing the path we wish to observe.

Umbrella sampling227 is a method where multiple simulations are run, each fixed about

a particular reaction coordinate. A potential well in reaction coordinate space limits the

simulation to a particular region of the potential energy surface.

Metadynamics228,229 is a method that is aims to prevent the repeated sampling of the

same regions. It achieves this by accumulating small biasing potentials (usually Gaussian in

shape) at the current point along the reaction coordinate of a simulation. Over time, this has

the effect of filling in the wells in the potential energy surface the system may currently occupy,

and encourages it to explore other regions.

Another method is boxed molecular dynamics230 (BXD). In BXD, the reaction coordi-

nate is sliced into boxes, defining a minimum and maximum value the reaction coordinate may

124

U U U

(a) Umbrella Sampling. Separate simulations are run with biasing potentials positioned at different
collective variables.

UUU

(b) Boxed Molecular Dynamics. The simulation is constrained to successive regions of CV space, with
reflective barriers keeping the trajectory constrained.

U U U

(c) Steered Molecular Dynamics. A constraining potential is moved at constant velocity across CV
space, pulling the trajectory with it.

U U U

(d) Metadynamics. As the trajectories spents time in a region, Gaussians are deposited to fill in
potential wells and allow the trajectory to escape.

Figure 5.1: Comparison of various rare event sampling techniques.

125

take. The simulation proceeds freely, but every time the system’s dynamics would cause it to

cross a boundary, all velocities within the system are reflected. Therefore, over a period of

time, the relative rates at which the simulation attempts to cross the boundary either side can

be measured. By then allowing the simulation to evolve to the next partition and repeating,

the overall reaction coordinate is discretised, with rates describing how the system would like

to evolve between these bins. By renormalising the results, BXD allows the computation of

free energy profiles. BXD has been applied to a variety of systems,231 as well as modified to

be carried out in energy space.232,233

These methods are all based on a reaction coordinate, which must be predefined in some

manner. There are many ways that this process can be automated, such as applying principal

component analysis (PCA)234,235 or time-structure independent component analysis (tICA)236–238

to a trajectory. However, these approaches still require an original trajectory to be made.

For example, Sultan and Pande239 used tICA to generate collective variables to drive meta-

dynamics. Interactive molecular dynamics, whilst similar to steered molecular dynamics in how

it can pull the simulation into new regions, finds better use as a tool to explore a system and

define a reaction path before employing other techniques. This effectively uses IMD to establish

an appropriate reaction coordinate. PCA has been successfully used by Deeks et al.25 to study

the binding pathways produced in a user study utilising interactive molecular dynamics. In a

subsequent study Deeks et al.240 showed that calculating the free energy along paths created

in virtual reality can distinguish between favourable and unfavourable pathways.

It is in this niche that interactive molecular dynamics can find its home. Due to the large

amount of simulation time and replications required, it is unsuitable for directly probing rare

events in a similar manner to steered molecular dynamics. But instead, it can be used to explore

systems, to build intuition for how they react to perturbations and to create trajectories that

can go on to form the basis for other sampling techniques.

Molecular Dynamics in Narupa iMD

Narupa iMD is an adaptable framework that can support a wide range of MD software through

a Python interface. The exact implementation of IMD therefore depends on the methods and

techniques available in the relevant packages.

OpenMM

OpenMM is a popular GPU-accelerated library for running molecular simulations, especially

protein systems.

A forcefield in OpenMM is split into discrete terms, each which specifies the force, energy

and which atoms the force acts upon. Each term is implemented in a separate class, such as

HarmonicBondForce or PeriodicTorsionForce. OpenMM supports extending these possible

forces in two different ways. Firstly, a plugin may be written in C++, which allows complex

126

forces to be programmed directly for the GPU. However, it also provides a family of so called

custom forces. These are forces which accept as an argument an arbitrary function defining

the potential energy.. This expression can consist of simple mathematical operations (such

as exponentials, powers and trigonometric functions) and refer to various properties such as

atomic position, bond lengths and dihedral angles. OpenMM can then calculate the forces by

differentiating these expressions.

If we have already computed a force ~F Ii to apply to each atom, we can define a custom

OpenMM force with energy given by:

U({~qi}) = −
∑
i

~F Ii · ~qi (5.15)

This potential is chosen such that the force on the i-th atom is ~F Ii . OpenMM custom forces

allow the specification of per-atom parameters, so the interactive force can be controlled by

supplying the 3N parameters required to define
¶
~F Ii

©
.

This approach is not without its issues. In Narupa, OpenMM is invoked from Python one

integration step at a time. The forcefield parameters of the custom force however cannot be

altered during the step. Generally, in an integration scheme such as velocity Verlet the forces¶
~Fi(t+ δt)

©
must be calculated midway during the step.

~qi(t+ δt) = ~qi(t) + ~vi(t)δt+
1

2mi

ñ
~Fi(t) + ~F I

i (t)︸ ︷︷ ︸
ô
δt2

~vi(t+ δt) = ~vi(t) +
1

2mi

ñ
~Fi(t) + ~F I

i (t)︸ ︷︷ ︸+ ~Fi(t+ δt) + ~F I
i (t+ δt)︸ ︷︷ ︸

ô
δt

The calculation of
¶
~Fi(t+ δt)

©
proceeds between these two steps, as it relies on the value

of {~qi(t+ δt)} and is required to calculate {~vi(t+ δt)}.
Most forces in OpenMM are calculated when requested by OpenMM itself, and hence can

be incorporated into the dynamics correctly. When adopting the approach of equation 5.15,

the calculation of
¶
~F Ii

©
is performed outside of OpenMM, and hence cannot occur during

the integration step. Instead, the interactive part of the force is not recalculated between the

position step and the velocity step:

~qi(t+ δt) = ~qi(t) + ~vi(t)δt+
1

2mi

[
~Fi(t) + ~F I

i (t)
]
δt2

~vi(t+ δt) = ~vi(t) +
1

2mi

[
~Fi(t) + ~Fi(t+ δt) + 2~F I

i (t)
]
δt

Generally, with the timesteps in question this is not a major issue. As interactions are

large artificial forces anyway, it is not important if there is a slight deviation due to their

incorporation into the integration scheme. Addressing this issue could only be solved by

implementing a custom force in OpenMM directly in C++, by writing a plugin. However,

127

as separate versions have to be written for the various platforms OpenMM supports, such as

CUDA and OpenCL, it is simpler to accept the slight deviations and only update the interactive

forces between the timesteps.

ASE

The Atomic Simulation Environment (ASE)76 is written entirely in Python, and hence well

suited for prototyping and modification. Instead of the separate force terms that OpenMM

employs, ASE attaches a Calculator object to the system of interest. This object’s role is to

provide the forces and potential energy when requested. Importantly, it is informed when the

positions have changed and hence knows when a force needs to be recalculated. This calculator-

based approach allows ASE to be easily integrated with a wide range of other packages such

as OpenMM and LAMMPS.

More importantly, it allows interactive forces to be propagated in the same manner as the

non-interactive forces. As both ASE and the interactive forces are calculated through Python,

the interactive forces can be recalculated on demand at the right point during the integration

step.

LAMMPS

When LAMMPS67 is compiled with the PYTHON package, it enables LAMMPS to execute

arbitrary python code. LAMMPS can execute code either through its own interpreter, or

using the driving Python interpreter. This arbitrary code may be executed at two points —

at the end of each timestep or after each force computation. This second approach (called the

post force callback) allows the incorporation of interactive forces at the correct point.

The implementation of LAMMPS integration in Narupa iMD utilises this function. In that

case, LAMMPS is run directly, with a Narupa server created within the Python interpreter

used by LAMMPS. However, this requires direct modification of the LAMMPS input scripts,

and is ill-suited for modification. In narupatools, LAMMPS is instead called from Python.

This also uses the post force callback, but this invokes the calculation in the calling Python

library. The extensible nature of LAMMPS means that it supports a wider variety of systems

than OpenMM. Of note are simulations that involve particles which may have orientations or

non-uniform sizes. An example of a model implemented in LAMMPS is the ox-DNA coarse-

grained model for DNA. Visualisation of these systems requires the extraction of data such as

size and orientation from LAMMPS, to be transmitted to the frontend. narupatools uses the

feature-rich LAMMPS API to extract this data and add it to the frames sent to the user.

Interactive Potentials

The incorporation of user interactions into an existing molecular dynamics workflow involves

adding additional forces to the system. These interactive forces should be easy to control by

128

the user, and be applicable to a wide range of simulations.

In current implementations of IMD, interactions are point-based. Here, the user applies

an interaction at a specific point ~c in space, and the target particles are pulled towards this

point. This point could be controlled by the position of a haptic pen, or by the location of a

virtual reality controller. This approach is similar to SMD, where ~c is a position which moves

along a predesignated path.

In SMD, the attractive potential used is usually chosen to be a harmonic potential, of the

form:

U(~qi) =
1

2
k‖~qi − ~c‖2 (5.16)

Here, the constant k is the spring constant determining the strength of the interaction and

~c is the interaction site.

This appeal of using this potential in IMD is its simplicity and similarity to other applica-

tions, such as SMD and harmonic restraints. However, in these other applications an implicit

assumption is that ~c and ~qi are close together. This is why the harmonic potential is used —

at the local minimum of a potential surface, we can approximate it as a harmonic well. By

using a large value of k and using a static or slowly varying ~c, techniques such as SMD and

harmonic restraints ensure that the interacted particle is always kept close to the interaction

site ~c.

However, in IMD this can break down, either because the user is moving ~c at large speed

or because the user has started an interaction at a great distance from ~qi. In these situations,

the potential has a very large value, and hence leads to correspondingly large forces. This is

because the force increases linearly as we increase the distance between ~qi and ~c. This makes

a harmonic interaction potential ill-suited for long-range interactions as it can lead to extreme

forces that crash a simulation.

This issue was addressed in Narupa iMD by introducing a second potential, the Gaussian

r

U(r)

r

F (r)

Figure 5.2: Harmonic Potential U(r) and corresponding force F (r).

129

r

U(r)

r

F (r)

Figure 5.3: Gaussian Potential U(r) and corresponding force F (r).

well.23 The Gaussian well has the potential energy:

U(~qi) = −ke−
‖~qi−~c‖2

2

The Gaussian potential has the same quadratic behaviour at small distances, but tends to a

constant value at larger distances. The corresponding force as a function of distance therefore

initially increases linearly, but at large distances tends to 0. Therefore, at large distances a

Gaussian potential has no effect, and the user has to deliberately keep their interactions close

to the targeted atoms to have an effect.

Narupa iMD allows the user to counter the unstable nature of the harmonic force by

specifying a maximum force, Fmax. This clipped harmonic potential applies the same force

as the harmonic potential, but the magnitude of the force cannot exceed Fmax. This has the

effect of limiting the slope of the potential, and hence preventing abnormally large forces at

large distances. The potential energy of this interaction is given by:

U(~qi) =

1
2k‖~qi − ~c‖

2 ‖~qi − ~c‖ < Fmax
k

−1
2
F 2
max
k + Fmax‖~qi − ~c‖ ‖~qi − ~c‖ ≥ Fmax

k

(5.17)

r

U(r)

r

F (r)

Figure 5.4: Clipped Harmonic Potential U(r) and corresponding force F (r).

130

In Narupa iMD, the user can alter the value of k to achieve an interactive force which

applies enough force to alter the simulation sufficiently whilst not enough to cause excessive

perturbations. Note that the units of k depends on the type of interaction — in the standard

Narupa unit system, k has units of kJ mol−1 nm−1 for the harmonic and clipped harmonic

potentials, and kJ mol−1 for the Gaussian potential.

Multi-particle interactions

~c

(a) Forces applied individually to each particle.

~c

(b) Forces distributed using mass-weighting.

Figure 5.5: Comparison of applying an interaction to each particle individually, or applying it
to a composite particle at the centre of mass and then redistributing the forces using mass-
weighting.

The previous potentials work well for single particles, but often we wish to interact with

whole fragments or molecules. In this situation, applying the interaction individually to each

atom causes each atom to move towards the same point in space as shown in Figure 5.5a. This

results in the molecule deforming as they are brought closer together.

In SMD, restraining multiple particles is achieved by restraining their centre of mass. The

potential for this kind of interaction now becomes:

U({~ri}) = Ur

(∥∥∥∥∥ 1

M

∑
i

mi(~ri − ~c)

∥∥∥∥∥
)

Here, Ur is the potential in terms of a distance r, and M is the total mass of the interacting

particles. Calculating the force on each participant atom yields:

~Fi = −∇~qiUr(‖~qCOM − ~c‖) (5.18)

= −mi

M
∇~qCOM

Ur(‖~qCOM − ~c‖) (5.19)

=
mi

M
~FCOM (5.20)

Therefore, this approach can be considered as approximating the set of interacted particles

as one virtual particle — located at the centre of mass and with mass equal to the total mass

of the interacted particles. After calculating this force ~FCOM that the composite particle would

experience, this can then be redistributed amongst the other atoms by mass-weighting.

This equation is also derivable from the criteria that each particle must experience the

same acceleration as the composite particle, such that they do not experience any force that

would cause them to move relative to one another.

131

Note that in the Narupa paper by O’Connor et al.23, Equation 5.20 is incorrectly given with

a division by the number of atoms N , instead of the total molecular mass M . This mistake

was repeated within Narupa iMD.a Whilst this does not have an effect on the calculations

themselves, it means a benzene molecule (with molecular mass of 78 g mol−1) would be affected

by a significantly weaker force than a single Selenium atom (with an atomic mass of 79 g mol−1).

This is rectified in the narupatools implementation of IMD.

aAs of version 0.1.2118

132

5.3 Rotational Interactions

Using the interactions described thus far, we can apply a translational force on a set of atoms,

causing them to collectively move towards a point in space. However, using the existing

framework for interactive molecular dynamics, we are unable to easily induce rotations of a

fragment. This is vitally important in many chemically significant situations, such as the

geometry-dependent docking of a ligand molecule into a protein. Implementing an ability to

rotate molecules gives the user far greater control over its movement and orientation.

Previous approaches performing rotations within steered molecular dynamics have involved

rotating a reference set of positions, and using standard linear harmonic restraints to affect

the system.241–244 This approach can be found in various packages such as NAMD65 and

GROMACS.58 By specifying an initial reference arrangement and an axis of rotation (with

corresponding angular velocity), reference positions at a later time t are given by rotating the

initial reference positions. Each atom is pulled towards this new reference position by a linear

spring force.

To rotate long molecular chains within pores, an improved SMD approach known as the

flexible-axis approach has also been developed.245 Here, different fragments of a longer chain

are rotated around different axes, allowing an overall rotation around a curve. However, all

these approaches have a common flaw — they pull each atom towards a reference position that

freezes the molecule in a certain arrangement. Therefore, this approach limits the ability of

the molecule to have internal degrees of freedom as it is rotated.

~ω

~ω

Figure 5.6: Example of rotational SMD, with each atom linearly attracted to a rotating con-
straint position, which rotates about an axis at constant velocity ~ω.

Whilst standard translational SMD is transitioned to IMD by replacing the pre-defined

constraint point by the position of the controller, this existing approach to rotational SMD has

no clear way to be adapted to IMD. Applying rotations to molecules in the existing framework

of IMD involves applying a standard translational interaction to one or more particles near

the edge of the molecule. By moving these particles in an arc, the internal forces holding the

molecule together will cause the overall molecule to rotate as well.

However, this as several disadvantages. As Figure 5.7a illustrates, this approach causes the

molecule to deform. This is because we are applying unbalanced forces on the molecule. It

133

also relies on the internal forces of the molecule to prevent the atoms from moving apart, and

hence is not applicable to non-bonded or weakly-bonded sets of particles.

Up to this point, when IMD has been applied to protein-ligand docking,23,25,215 the ligand

evolves freely with no constraints. This is termed flexible docking. In contrast, rigid body

docking fixes the internal motion (bond lengths, angles and dihedrals) of the ligand, such

that it acts as a single undeformable object. This approach of freezing the ligand to a single

inflexible conformation treats the ligand as a rigid body — an arrangement of atoms whose

relative positions and angles are fixed. Incorporating rigid bodies into dynamics relies on

modifications to the equations of motion.246–248 Ideally, we would like a method that combines

the best of both flexible and rigid docking — the molecule would be free to vibrate and change

conformation, whilst allowing us to apply overall translations and rotations.

In this section, I will discuss a new class of forces for interactive molecular dynamics

that induce rotations within a molecular fragment. These interactions will be termed rigid

motion interactions, to be contrasted with the harmonic and Gaussian interactive potentials

described in the previous section. The term rigid motion refers to transformations which

translate or rotate an object. The interactive force will apply a per-atom force which will induce

overall rotation and translation of a molecule, without deforming the internal structure. In this

manner, it will act similarly to rigid body docking, but still allow for internal motion within

the fragment. By using per-atom forces rather than rigid body dynamics, this approach can

also be incorporated easily within the existing molecular dynamics ecosystem, with packages

such as ASE,76 OpenMM78 and LAMMPS67 allowing custom forces to be defined and applied.

Interactions in IMD are usually applied to a specific subset of atoms within the system,

usually a small molecule such as a ligand which is not chemically bonded to any other part of

the system. This set of atom indices will be denoted I, with {mi} and ~()Ri denoting the mass

and absolute position (relative to the global origin) of each particle. Likewise, ~Vi and ~Ai are

the velocity and acceleration of the i-th particle relative to the global origin.

When discussing rotations, it is useful to consider the positions of the atoms involved in

the interaction relative to their centre of mass. The centre of mass ~Rcom is defined by:

~Rcom ≡
∑

i∈I mi
~Ri

M
(5.21)

where M =
∑

i∈I mi is the total mass of the selection.

The coordinates of each atom may therefore be expressed relative to the centre of mass:

~ri ≡ ~Ri − ~RCOM (5.22)

Likewise, ~vi and ~ai are the velocity and acceleration of the particle relative to the velocity

and acceleration of the centre of mass. From now on, we will refer to this subset of particles I as

a molecule or fragment, though in general the atoms could be attached to other non-interacted

atoms and not bonded to each other.

134

(a) Example of rotating a small molecule using an interactive force on one particle
(red). This causes rotation due to internal forces (green), but deforms the molecule.

(b) Example of rotating a small molecule by applying interactive force to all par-
ticles. This causes a smooth rotation with no deformations.

Figure 5.7: Comparison of rotating a small molecule using a single interaction on an atom and
by applying a set of interactive forces to induce a rotation.

In the rest of this chapter, I will describe the rigid motion interaction that will apply

rotational forces such as Figure 5.7b. It will be applicable to not just sets of point masses, be

also finite and asymmetric particles often encountered in coarse-grained potentials.

Rotational Dynamics

Molecular dynamics is usually carried out under the assumption of isotropic point masses. Un-

der these assumptions, though commonly depicted as spheres, each atom is located at a single

point in space, with all its mass located at at one point. As such, it has no defined orientation

or direction, and its dynamics are uniquely specified by its position and momentum/velocity.

A rigid body is obtained if we fix some of these atoms such that they are rigidly connected

together, and cannot move closer or further apart from one another. This composite body can

only move in two ways — translation of the body as a whole, or rotation about its centre of

mass. If this object rotates, the atoms further from the centre of mass have further to travel,

and hence must move at a higher relative velocity. Whilst each constituent atom of the rigid

body may be moving at a different velocity, the overall rotational motion may be described by

an angular velocity ~ω — a vector that passes through the centre of mass, whose direction

determines the axis of rotation. The magnitude of this vector determines the speed of the

rotation, in radians per second.

The velocity of each constituent atom therefore consists of two terms — an overall transla-

135

tional motion ~VCOM of the centre of mass and a rotational velocity about the centre of mass:

~Vi = ~VCOM + ~ω × ~ri (5.23)

Another quantity used to describe a rotating object is the angular momentum ~Li. When

talking about angular momentum, we must also specify the pivot point. For example, this

contrasts the orbital angular momentum of an electron about a nucleus to the spin angular

momentum of the electron about its own axis. Here, we are talking about an orbital angular

momentum of each particle about the centre of mass, which is given by the cross product of

the relative position to the centre of mass and its momentum relative to the centre of mass:

~Li = mi~ri × ~vi (5.24)

Like linear momentum, the total angular momentum of the rigid body is given as the sum

over the angular momentum of its constituent atoms:

~L =
∑
i

mi~ri × ~vi (5.25)

As shown in equation 5.23, for a rigid body the relative velocity ~vi is given by the cross

product ~ω × ~ri. Hence, for a rigid set of atoms the total angular momentum is given by:

~L =
∑
i

mi~ri × (~ω × ~ri) (5.26)

By denoting the action ~ri× as the skew-symmetric matrix [~ri], the total angular momentum

~L is expressible as a matrix multiplication of the angular velocity ~ω:

~L = I~ω, I ≡ −
∑
i

mi[~ri]
2 (5.27)

This matrix I is known as the moment of inertia tensor, and acts as a rotational

analogue to mass. In this manner, equation 5.27 is the rotational analogue of the equation

~p = m~v for linear momentum. Like mass, it is the proportionality between a momentum and

a velocity, however it is a 3 × 3 symmetric matrix. This reflects the anisotropic nature of

rotation, where motion about different axes may not be considered equal. For example, a long

cylinder such as a broom has a larger angular momentum when rotating perpendicular to its

length than it does rotating along its length at the same angular velocity.

Linear momentum is expressed as ~pi = mi~vi, and its time derivative yields Newton’s second

law (assuming constant mass):

~Fi =
d~pi
dt

= mi~ai (5.28)

As there are two ways of expressing the angular momentum (Equations 5.25 and 5.27),

there are two expressions for the time derivative of angular momentum (referred to as the

136

torque ~τ):

~τ =
∑
i

~ri × ~Fi (5.29)

= I~α+
dI

dt
~ω (5.30)

The first of these equations expresses the torque as a sum over the individual torques on

each particle (where the cross product of ~ri × ~Fi represents the component of the force on

the particle that would cause a rotation). This expression illustrates the classical result that

applying a force at a point further away from the centre of mass causes a larger torque to be

applied. The second equation expresses it in terms of the overall motion of the set of particles,

namely the angular velocity and its time derivative, the angular acceleration ~α. Note that

unlike mass, we cannot assume that the moment of inertia tensor is constant. Even for a rigid

body, as an object rotates, its moment of inertia tensor may change.

All these expressions have dealt with a finite set of discrete point-like atoms. However,

they can be generalised for a continuous distribution of mass, which could now be seen as an

infinite distribution of infinitesimal point masses. In this situation, our rigid body of many

particles now acts as a single particle, and we no longer discuss its constituent parts. The

more general expressions for angular momenta and torques that involve the moment of inertia

still hold, and the moment of inertia is now treated as an intrinsic property of the particle, in

a similar manner to its mass.

An important point that will be relevant later is that whilst we have a well-defined position

for each atom (from which velocity, acceleration, momentum and force may be derived), we

do not have a unique way to choose the orientation of a set of points. However, we still can

calculate the rotational analogues of these other quantities (respectively, the angular velocity,

angular acceleration, angular momentum and torque).

Definition of moving coordinate frame

The previous section discusses the kinematics of rigid bodies — discrete objects with no in-

ternal motion. As discussed previously, whilst rigid bodies can be incorporated into molecular

dynamics, they require specific changes to the equations of motion. They also limit the internal

degrees of freedom which may be important in the current task. To describe how to apply

rotational interactive forces to molecules, we must first generalise the mathematics for rigid

bodies to general sets of particles.

The centre of mass still gives a good well-defined reference point which describes the trans-

lational motion of a molecule over the simulation. By looking at its time derivatives, it also

allows us to define exactly what is meant by the position, velocity and acceleration of the

molecule as a whole. Describing the rotational motion of the molecule however is not as

trivial. The problem of tracking the rotation of a molecule can be considered equivalent to

137

assigning a coordinate frame (consisting of an origin and a right-hand triple of orthonormal

axes) to the molecule at each point of the trajectory. By describing the motion of this coordi-

nate frame, we therefore are describing the translation and rotation of the molecule. This is

similar to the challenge of curve framing discussed in the previous chapter.

Given two consecutive timesteps, the translation and rotation between the two can be

considered from two perspectives: as an active transformation, in which the molecule itself at

the later step is translated and rotated to align it with the molecule at the previous step; and as

a passive transformation, in which a coordinate system centred on the molecule at an earlier

step is transformed to align with the molecule at a subsequent step.249 This first interpretation

of aligning two molecules is a common task in crystallography and cheminformatics,250 usually

performed using the Kabsch algorithm.251,252 Here, the algorithm translates the molecules

to share the same centre of mass, and determines a rotation matrix C that minimises the

mass-weighted root-mean-square-deviation (RMSD) between the two conformations a and b:

∑
i

mi

∥∥∥C~rai − ~rbi∥∥∥2
(5.31)

This rotation matrix C describes how to rotate the molecule in conformation a to align

it best with conformation b. Therefore, by considering a and b to be subsequent timesteps

of a simulation, the Kabsch algorithm allows the calculation of the rotation the molecule has

undergone from one timestep to the next, by finding the value of C that minimises:

∑
i

mi‖C~ri(t)− ~ri(t+ δt)‖2 (5.32)

From here, we note that the matrix C represents a rotation from an initial orientation R(t)

to a subsequent orientation R(t+δt), where both orientations are represented as 3×3 rotation

matrices. We can hence represent this as:

C = R(t+ δt)R(t)−1 (5.33)

In the limit of small timestep, we may Taylor expand this to first order:

C =
(
R(t) + [~ω]R(t) +O(δt2)

)
R(t)−1 = 1 + [~ω]δt+O(δt2) (5.34)

The ~ω arises from the time-derivative of the rotation matrix, and represents the angular

velocity of the orientation at time t.

Inserting this back into the Kabsch algorithm, we arrive at a new minimisation problem

that requires finding the angular velocity ~ω which minimises the expression:

∑
i

mi|~vi − ~ω × ~ri|2 (5.35)

138

The problem has now been reduced to a minimisation problem defined not in terms of the

rotation matrix C, but in terms of the rate of change of the orientation ~ω. By taking the

gradient with respect to ~ω, we can determine the value of ~ω that minimises this expression:

~ω =

(
−
∑
i

mi[~ri]
2

)−1(∑
i

mi~ri × ~vi

)
= I−1~L (5.36)

The resultant expression is exactly that for a rigid body, with the same expressions for the

momentum of inertia tensor and for the angular momentum. However, we note that at no

point have we said these atoms are rigidly bound — we have simply determined what angular

velocity captures the most motion when using RMSD. Therefore, equation 5.36 describes both

a rigid set of points, but also the angular velocity which minimises equation 5.35 for a non-rigid

set of points

It is interesting to note that equation 5.35 is exactly the kinetic energy of the atoms, ignoring

the motion due to the overall translation and rotation of the molecule. This minimisation hence

finds the angular velocity ~ω that best describes the motion of the particles by capturing the

most kinetic energy.

In the field of spectroscopy, the Eckart frame is a coordinate frame for a molecule that

minimises the coupling between rotational and vibrational motion. It has been shown that

this problem is closely related to the rotational superposition problem solved by the Kabsch

algorithm.253,254 A detailed explanation for their relation can be found in Chevrot et al.255.

Dynamics of the coordinate frame

With this, we now have a way of describing the position, velocity and acceleration of a molecule

(through the motion of its centre of mass), as well as its angular velocity and acceleration (by

using the same expressions as for a rigid collection of atoms). The evolution of the molecule

through time is influenced by the forces applied to each atom, denoted
¶
~Fi
©

. As the moving

coordinate frame follows the molecule, these forces influence the motion of the coordinate

frame. We will now stop considering the coordinate frame itself, and talk about the motion of

the molecule as a whole. We hence consider ~ω (as defined in equation 5.36) to be not just the

Force Translational Rotational Internal
~Fi = mi

~G ~G ~0 ~0
~Fi = mi

~H × ~ri ~0 ~H ~0

Table 5.1: Various accelerations caused by the two forces described in equations 5.41 and
5.42. From left to right, the accelerations describe the translational acceleration applied to
the molecule as a whole, rotational acceleration applied to the molecule as a whole, and the
acceleration as it appears in the moving coordinate frame that follows the molecule.

139

angular velocity of the coordinate frame that follows the molecule, but the angular velocity of

the molecule itself.

The acceleration of the molecule is equal to the acceleration of the centre of mass, which

is given by a sum over the individual forces:

~A =
1

M

∑
i

~Fi (5.37)

Here we note that generally, all internal forces in the molecule due to the forcefield cancel

out due to Newton’s third law. Therefore, the molecule will only accelerate when external

forces are applied to it.

Likewise, the angular acceleration of the molecule is given by the time derivation of equation

5.27:

~α =

Å
dI

dt

ã−1
~L+ I−1

(∑
i

~ri × ~Fi

)
(5.38)

As both equations 5.37 and 5.38 are linear in ~Fi, if an external force ~F add
i , such as that

used in IMD, is applied to the system, the additional translational and rotational accelerations

caused by this force are given by:

~Aadd =
1

M

∑
i

~F add
i (5.39)

~αadd = I−1

(∑
i

~ri × ~F add
i

)
(5.40)

The existing class of forces as applied in current IMD implementations all take the form of

some mass-weighted constant vector:

~F add
i = mi

~G (5.41)

Using equations 5.39 and 5.40, forces of the form given in equation 5.41 cause an acceleration

of ~G whilst not causing any angular acceleration.

I propose a second class of interactive forces, which cause explicit rotational motion of the

whole molecule and with the general form:

~F add
i = mi

~H × ~ri (5.42)

Again, using equations 5.39 and 5.40, forces of this form cause an angular acceleration of

~H whilst not causing any translational acceleration. This is summarised in Table 5.1.

140

Internal motion of the molecule

In addition to causing overall translations and rotations of the molecule, forces may also

influence its internal motion. Given our moving coordinate frame, we can consider the atomic

positions (relative to the centre of mass) in three different frames — the global coordinate

frame (denoted ~Ri) relative to the origin; the centre-of-mass frame (denoted ~ri); or the moving

coordinate frame (denoted ~rMi), which is both centred at the centre of mass and also rotating.

The latter two are related by the current rotational matrix R that defines the rotation of the

moving coordinate frame:

~rMi = R−1~ri (5.43)

The velocity of each particle in the moving frame is given by the time derivative of equation

5.43, noting that R also has a time dependence:

~vMi = R−1(~vi − ~ω × ~ri) (5.44)

The second term that appears in equation 5.44 removes the component of the velocity that

is captured by the rotational velocity of the coordinate frame.256

The acceleration of each particle as observed in the moving frame is given by the time

derivative of equation 5.44, giving:

~aMi = R−1(~ai − ~α× ~ri − 2~ω × ~vi − ~ω × (~ω × ~ri)) (5.45)

The above equation illustrates the three additional accelerations (and hence forces) that a

particle experiences as a consequence of rotational motion. These are the Euler force, Coriolis

force and centrifugal force respectively.256 Forces which appear in a rotating (also referred to

as non-inertial) frame of reference are commonly described as fictitious or pseudo forces.

As was the case for equations 5.37 and 5.38, the acceleration can be decomposed into terms

associated with each force applied to the system. The magnitude of the acceleration caused

on each atom in the rotating frame due to some additional external force ~F add
i can therefore

be expressed as:

∥∥∥~aM,add
i

∥∥∥ =

∥∥∥∥∥ ~F add
i

mi
− ~Aadd − ~αadd × ~ri

∥∥∥∥∥ (5.46)

Equation 5.46 describes the magnitude of the acceleration applied to an individual atom

by an external force, as observed in the molecule-centered rotating frame of reference. It

captures any ‘left-over’ force that does not cause an overall translation or rotation of the entire

molecule. It can be confirmed that both proposed forces (equations 5.41 and 5.42) result in no

additional acceleration occurring in the internal frame of reference, and hence these forces do

not directly perturb the internal structure of the molecule. This can be contrasted with the

141

existing approach of applying forces to only certain particles near the outside of the molecule.

Here, this force will cause accelerations within the rotating frame of reference, and the molecule

will deform.

We have now established that a good basis for a rotating and translating force should have

the form:

~Fi = mi
~G+mi

~H × ~ri (5.47)

Any force of this form will cause a translational acceleration ~G and an angular acceleration

~H, whilst not causing accelerations within the internal frame of the molecule. However, we

must now establish how the user may control ~G and ~H from within virtual reality.

Driving Interactions with Virtual Reality

In interactive molecular dynamics, the approach to interactions involves specifying an interac-

tion site, which acts as a target position or goal. Here, the interactive force pulls the target

molecule towards this pivot point which is controlled by the user, using devices such as haptic

feedback devices or virtual reality controllers. This force depends on the distance between the

current centre of mass and the pivot point. For this, we will consider the harmonic potential

as described in equation 5.16. Here, we have some variable ξ(t) (the centre of mass) and a

target value ξ0(t) (the interaction point). The harmonic potential with force constant k has a

potential energy given by:

U(t) =
k

2
(ξ(t)− ξ0(t))2 (5.48)

This equation clearly frames the problem as based on the difference between a desired target

value and a current value. However, when considering rotations, we wish to avoid having to

define an exact orientation of the molecule. This can be avoided by rephrasing equation 5.48

to be in terms of different variables: the desired overall change ∆0ξ(t), and the change that

has happened so far ∆ξ(t). Equation 5.48 now takes the form:

U(t) =
k

2
(∆0ξ(t)−∆ξ(t))2 (5.49)

The reason to perform this change is that ∆ξ(t) may be calculated based upon its time

derivative:

∆ξ(t) ≡
∫ t

t0

ξ′(t) dt (5.50)

This simple shift means that instead of measuring an exact state of our system, we need

only be able to describe how much it has changed so far and how much we wish it to change.

This is ideal for rotational motion, as we can define the angular velocity. By accumulating

142

the angular velocity over the course of the interaction, we can measure the total rotation

the molecule has undergone, without having to define the orientation of the molecule at any

point. By comparing this to the amount of rotation the controller has performed during the

interaction, we know how much rotation still needs to be applied for the two to match.

When discussing rotations, it is important to note that there are several representations,

each with benefits and drawbacks:

1. Any rotation may be represented by a 3 × 3 rotation matrix. These matrices are the

members of the special orthogonal group SO(3), which is the group of all orthogonal

matrices (with inverses equal to their transposes) with determinant 1.

2. The axis-angle or rotation vector representation stores a rotation as a vector in R3,

whose direction indicates the rotation axis and whose magnitude indicates the magnitude.

They are useful for storing angular velocities, and have the property that multiplication

by a scalar k scales the rotation by that amount. Unlike rotation matrices or quaterions,

they can represent rotations of greater than 360 degrees.

3. Euler angles represent a rotation as a vector, where each component is a rotation about

one of the primary axes. The order in which these rotations are performed depends on

the context. These are often encountered as the concept of yaw, pitch and roll in aviation.

4. Finally, quaternions, which can be viewed as a higher-order version of complex numbers

(with one real part and three imaginary parts), can be employed as rotations. Appendix

C goes into more detail on quaternions.

For example, within Unity, rotations are internally represented by quaternions, whilst being

presented to the user in the user interface as Euler angles. Generally, we use quaternions to

represent rotations and rotation vectors to represent angular velocities.

With this, we are equipped to define our rigid motion force. The controller has initial

position and rotation ~Tcontroller(t0) and qcontroller(t0), where t0 is the time of the interaction

starting and q is a quaternion. At some later point t, the controller may have moved to

~Tcontroller(t) and qcontroller(t). From this, we can define the overall translation and rotation we

wish to apply to the molecule as:

~Tdesired(t) ≡ ~Tcontroller(t)− ~Tcontroller(t0) (5.51)

qdesired(t) ≡ qcontroller(t)qcontroller(t0)−1 (5.52)

Note that while translations are compared using addition and subtraction, rotations (rep-

resented as quanterions) are multiplied.

143

We also have accumulated the total translation and rotation of the molecule since the

interaction has begun:

~Taccum(t0) = ~0 (5.53)

~Taccum(t+ δt) = ~Taccum(t) +
~v(t) + ~v(t+ δt)

2
δt (5.54)

qaccum(t0) = 0 (5.55)

qaccum(t+ δt) = quat

Å
~ω(t) + ~ω(t+ δt)

2
δt

ã
qaccum(t) (5.56)

Here, quat converts from the rotation vector representation used for angular velocities to

a quaternion representation.

From this, we can calculate the remaining translation and rotation that must be applied

such that the molecule will have undergone the same motion as that of the controller:

~Tremaining(t) = ~Tdesired(t)− ~Taccum(t) (5.57)

~θremaining(t) = rot(qdesired(t)qaccum(t)−1) (5.58)

Note that now we use rot to convert a quaternion back to the rotation vector representation,

which is more suited for defining torques.

The force for this interaction will consist of two terms, one linear in the remaining trans-

lation and one linear in the remaining rotation:

~F =
mi

M
k~Tremaining +

mi

M
k~θremaining × ~ri (5.59)

The first part of this force is exactly the same as the existing harmonic interaction widely

used in IMD. The second part is the corresponding angular term, applying forces which rotate

each particle about the centre of mass, proportional to its distance from the axis of rotation.

The setup of this force allows a user to use all six degrees of freedom available to them

when performing an interaction. Figure 5.8 illustrates how the position and rotation of the

VR controller is used to drive the interactive forcefield.

144

(a
)

T
h

e
u

se
r

h
ig

h
li

gh
ts

th
e

fr
ag

m
en

t
th

ey
w

is
h

to
in

te
r-

ac
t

w
it

h
an

d
p

u
ll

th
e

tr
ig

ge
r,

st
ar

ti
n

g
th

e
in

te
ra

ct
io

n
.

(b
)

A
s

th
e

u
se

r
m

ov
es

a
n

d
ro

ta
te

s
th

ei
r

co
n

-
tr

ol
le

r
in

3D
sp

a
ce

,
a

tr
a
n

sl
u

ce
n
t

co
p
y

o
f

th
e

m
ol

ec
u

le
is

d
ra

w
n

to
in

d
ic

a
te

th
e

ri
g
id

m
o
-

ti
on

ab
ou

t
to

b
e

a
p

p
li

ed
.

(c
)

T
h
e

in
te

ra
ct

io
n

fo
rc

es
tr

a
n

sl
a
te

a
n

d
ro

-
ta

te
s

th
e

m
o
le

cu
le

to
w

a
rd

s
th

e
ta

rg
et

p
o
si

-
ti

o
n

a
n

d
o
ri

en
ta

ti
o
n

w
it

h
o
u

t
p

er
tu

rb
in

g
th

e
in

te
rn

a
l

st
ru

ct
u

re
d

ir
ec

tl
y.

(d
)

In
te

rn
al

m
ot

io
n

is
st

il
l

al
lo

w
ed

,
w

h
et

h
er

ca
u

se
d

b
y

in
te

rn
al

v
ib

ra
ti

on
s

or
ot

h
er

n
ea

rb
y

m
ol

ec
u

le
s.

T
h

es
e

ch
an

ge
s

ar
e

re
fl

ec
te

d
in

re
al

ti
m

e
in

th
e

tr
an

sl
u

ce
n
t

ta
rg

et
m

ol
ec

u
le

.

(e
)

D
u

ri
n

g
th

e
in

te
ra

ct
io

n
,

th
e

u
se

r
is

fr
ee

to
co

n
ti

n
u

e
m

ov
in

g
a
n

d
ro

ta
ti

n
g

th
ei

r
co

n
-

tr
o
ll

er
.

T
h

is
u

p
d

a
te

s
th

e
ta

rg
et

co
n
ti

n
u

-
o
u

sl
y.

(f
)

T
h

e
m

o
le

cu
le

w
il

l
st

o
p

w
h

en
it

re
a
ch

es
th

e
ta

rg
et

d
u

e
to

th
e

d
a
m

p
in

g
fo

rc
es

a
p

-
p

li
ed

.
T

h
e

u
se

r
ca

n
n

ow
re

-
le

a
se

th
e

tr
ig

g
er

.

F
ig

u
re

5.
8:

S
te

p
s

in
vo

lv
ed

in
ap

p
ly

in
g

th
e

ri
gi

d
m

ot
io

n
in

te
ra

ct
io

n
in

v
ir

tu
al

re
al

it
y.

145

Rotations and Centripetal Force

We now have a basic definition of the force we wish to use. Given some distance ~T to translate

and rotation vector ~θ to rotate through, the force on the i-th atom will be given by:

~Fi =
mi

M
k(~T + ~θ × ~ri) (5.60)

To compare this to the existing approach to rotation, we will use the example system of

alanine dipeptide, as provided in the openmmtools test systems. This system consists of two

alanines connected by a peptide bond, and contains 22 atoms. The forcefield is AMBER ff96

and the molecule is in OBC GBSA implicit solvent. For integration, we use a Velocity-verlet

scheme, with a timestep of 0.5 fs. No thermostat is used, as the aim of the simulations are to

illustrate the kinetic energy placed into the system.

Figure 5.9 illustrates four methods to rotate a molecule. First, Figures 5.9a and 5.9b

illustrate how rotations would be performed in the existing IMD-VR paradigm, by applying

interactive forces to single atoms. As already stated, this approach causes deformation of the

molecule by relying on the internal forces within the molecule to cause it to rotate to follow

the manipulated atoms.

Applying Equation 5.60 gives us a rotation that appears in Figure 5.9c. This illustrates

that applying a pure rotational force causes the atoms to spiral outwards. To see why this is,

consider at some point t the molecule is moving as a rigid body in unison. At this point, the

relative velocity ~vi of each particle is equal to ~ω × ~ri. If we wish to maintain the shape of the

molecule, we wish that all internal angles and distances are unchanged. We can express this

as conservation of all dot products of the form ~ri · ~rj . First, we can confirm that the rate of

change of these dot products is 0 if we assume our molecule is acting as a rigid body:

d~ri · ~rj
dt

= ~vi · ~rj + ~ri · ~vj

= ~rj · (~ω × ~ri) + ~ri · (~ω × ~rj)

= 0

The next step is to ensure that the second derivative of this value is also 0:

d2~ri · ~rj
dt2

= ~ai · ~rj + ~ri · ~aj + 2~vi · ~vj

= ~ai · ~rj + ~ri · ~aj + 2(~ω × ~ri) · (~ω × ~rj)

= (~ai − ~ω × (~ω × ~ri)) · ~rj + ~ri · (~aj − ~ω × (~ω × ~rj))

The highlighted terms are exactly the centripetal acceleration experienced by the particles,

causing them to spiral outwards. This can be addressed by adding a centripetal force inwards,

that pulls the atoms towards the axis of rotation.

146

(a) Rotating the molecule by applying a force on a single atom. This causes a large deformation in the
molecule.

(b) Rotating the molecule by applying a force on two atoms. Deformation still occurs, but is less of an
issue than when a single atom is moved.

(c) Rotating the molecule by applying a force of Equation 5.60. Whilst each atom is rotated individually,
the angular velocity causes the molecule to be stretched.

(d) Rotating the molecule by applying a force of Equation 5.3, which includes a centripetal term. There
is now no deformation of the molecule.

Figure 5.9: Comparison of various methods to rotate an alanine dipeptide molecule.
147

Including this term, our force is:

~Fi =
mi

M
k(~T + ~θ × ~ri) +mi~ω × (~ω × ~ri)

Figure 5.9d shows how including this term prevents the molecule from being stretched as

it is rotated. This allows large values of k to be used, ensuring a fast rotation to the desired

orientation, without distorting the molecule.

In order to better quantify what is meant by ‘deformation’, consider the kinetic energy

of the molecule. This can be split into three terms — a translational kinetic energy due to

the overall velocity of the molecule; a rotational kinetic energy due to the overall rotational

motion; and the remaining kinetic energy, which can be thought of as the ‘internal’ kinetic

energy of vibration.

The internal kinetic energy is measured by removing from the total kinetic energy the

kinetic energy associated with overall translations and rotations of the molecule:

K int
i =

1

2
miV

2
i −

1

2
MV 2

COM −
1

2
~ωT I~ω (5.61)

In a standard NVT simulation, the thermostat will cause the internal kinetic energy to con-

verge to an appropriate value for the given temperature. However, the sudden influx of internal

kinetic energy that can occur when rotating a molecule can cause unwanted conformational

changes before it is reduced by the thermostat.

Figure 5.10 shows the internal, rotational and translational kinetic energies for the three

approaches. First, it can be seen that the one-atom rotation performs poorly, both increasing

the internal kinetic energy whilst also imbuing the molecule with rotational and translational

kinetic energy that lasts even after the rotation is complete. These issues are similarly observed

in the two-atom rotation.

It is clear that my rigid motion interactions do not cause any translation when only a

rotation is required. This is one of the main aims of the interactive force. It is also notable

that after the rotation is complete the rigid motion force reduces the rotational kinetic energy

back towards 0. The internal kinetic energy graph (Figure 5.10a) shows the importance of

the centripetal term in the rigid motion force. With the centripetal term, the internal kinetic

energy is identical to that of the baseline (where no rotation is applied).

These graphs clearly show that the rigid motion force as defined in Equation 5.3 rotates a

molecule in the ideal way — it leads to neither additional internal motion or any translations,

with all the interaction energy going into the rotational kinetic energy. However, unlike treating

the whole molecule as a rigid body, the molecule still vibrates with a similar kinetic energy to

when no interaction is applied.

148

0.0 0.2 0.4 0.6 0.8 1.0

Time (ps−1)

20

30

40

K
(k

J
m

ol
−
1
)

Baseline

With Centripetal

Without Centripetal

Two Atom Rotation

One Atom Rotation

(a) Internal kinetic energy for each of the approaches of Figure 5.9

0.0 0.2 0.4 0.6 0.8 1.0

Time (ps−1)

0

50

100

150

K
(k

J
m

ol
−
1
)

Baseline

With Centripetal

Without Centripetal

Two Atom Rotation

One Atom Rotation

(b) Rotational kinetic energy for each of the approaches of Figure 5.9

0.0 0.2 0.4 0.6 0.8 1.0

Time (ps−1)

0

10

20

K
(k

J
m

ol
−
1
)

Baseline

With Centripetal

Without Centripetal

Two Atom Rotation

One Atom Rotation

(c) Translational kinetic energy for each of the approaches of Figure 5.9

Figure 5.10: Breakdown of kinetic energies for the rotation of alanine dipeptide, for the four
methods of rotation shown in Figure 5.9

149

Damping

As currently applied in existing IMD implementations,23,29 the harmonic potential used to

apply interactions can lead to overshooting of the target position. This problem can be avoided

by the use of a damped spring, which applies an additional dissipative force that is proportional

and opposed to the motion of the object in question. For a spring constant k and damping

constant γ, the equation of motion for an object displaced from its equilibrium position by

some vector ~x is given by:

m
d2~x(t)

dt2
= −k~x(t)− γd~x(t)

dt
By varying the value of γ, there are four regimes that can arise:

1. undamped (γ = 0) causes pure oscillatory motion around the target position.

2. underdamped (γ < γC) involves oscillatory motion about the target position that

slowly decreases exponentially.

3. critically damped (γ = γC) is the point where there are no oscillations, and the system

converges to the target point as fast as possible.

4. overdamped (γ > γC) involves exponential decay towards the target position, with no

oscillations. As γ increases, the time taken to get close to the target position increases.

The value of γ at which critical damping occurs is a function of both the strength of the

spring and the mass of the object:

~γC = 2
√
km

0 100 200 300 400 500 600 700 800 900 1,000

0

50

100

150

Timestep

T
ot

a
l

R
ot

a
ti

o
n

(d
eg

re
es

)

1
5γC
1
2γC
γC
2γC

Figure 5.11: Effect of various damping coefficients on the rotation of an alanine dipeptide
by 90°. Damping constants under the critical damping constant γC have oscillations, whilst
damping constants larger than γC take longer to reach the target rotation.

150

This is the value to use for a damping constant that will prevent overshooting of the

desired target. Figure 5.11 illustrates the effect that different values of γ have on the rotation

of alanine dipeptide, showing that critical damping is the ideal choice for balancing the speed

to the interaction whilst preventing oscillations.

The damping terms in the force are similar to those in the equation for Langevin dynamics,

which is characterised by an additional damping constant (from here called γL). The difference

between the two is that the friction as it appears in the interactive force only damps collective

motion (either overall translation or rotational velocity), whilst Langevin friction damps all

velocities. Using this force in a Langevin system yields an overdamped interaction, as there

is damping from both the force and the Langevin thermostat. This can be addressed by

modifying the damping constant γ to account for the existing Langevin thermostat, whilst

ensuring that it never falls below 0:

γ = max(2
√
km− γL, 0)

In our force, we require damping for both the translational and rotational motion. This

damping forces will be proportional to the velocity of the centre of mass and the angular

velocity respectively, giving:

~Fi =
mi

M

î
k(~T + ~θ × ~ri)− γ(~V + ~ω × ~ri)

ó
+mi~ω × (~ω × ~ri) (5.62)

This is the full equation for rigid motion interactions. Figure 5.12 illustrates graphically

how these five terms combine to affect a molecule.

151

~ω
~ω

~θ

~T

~V
C

F
igu

re
5
.12:

B
reak

d
ow

n
o
f

th
e

total
force

in
to

its
fi

ve
com

p
on

en
ts:

(A
)

th
e

tra
n

sla
tio

n
a
l

fo
rc

e
(b

lu
e
)

w
h

ich
p

u
lls

th
e

m
olecu

le
a
lo

n
g

th
e

d
esired

tran
slation

∆
~T

;
(B

)
th

e
ro

ta
tio

n
a
l

fo
rc

e
(b

lu
e
)

w
h

ich
rotates

th
e

m
olecu

le
arou

n
d

th
e

d
esired

rotation
ax

is
∆
~θ;

(C
)

th
e

tra
n

sla
tio

n
a
l

d
ra

g
(o

ra
n

g
e
)

w
h

ich
op

p
oses

th
e

overall
velo

city
~V
C

of
th

e
m

olecu
le;

(D
)

th
e

ro
ta

tio
n

a
l

d
ra

g
(o

ra
n

g
e
)

w
h

ich
o
p

p
o
ses

th
e

overa
ll

a
n

g
u

lar
velo

city
~ω

of
th

e
m

olecu
le

an
d

(E
)

th
e

c
e
n
trifu

g
a
l

fo
rc

e
(p

u
rp

le
)

w
h

ich
p

u
lls

th
e

atom
tow

ard
s

th
e

a
x
is

ab
ou

t
w

h
ich

th
e

m
o
lecu

le
is

rotatin
g.

152

5.4 Finite and Asymmetric Particles

Up until this point, we have only considered point masses. A point mass has a mass distribution

of a Dirac delta function, with all its mass concentrated at one single point in space. We can

extend this concept by considering particles that can be considered as objects with some

distribution of mass. If we treat these particles as solid and undeformable, then they are an

example of a rigid body.

Asymmetric and finite-sized particles can be found in coarse-grained forcefields such as

oxDNA257 and UNRES258. Unlike the point particles discussed previously, these particles have

orientations, moments of inertias and angular momenta about their centre of mass. Because

of this, modifications have to be made to the rotational forces to ensure they rotate correctly.

As interactive simulations are limited by the amount of time a user can be immersed in a

simulation, coarse-grained simulations are better suited for IMD-VR.70

Potentials which rely on particle orientation include the Gay-Berne259, Everaers260 and

Kern-Frenkel261. The LAMMPS package supports aspherical particles, including the Gay-

Berne pairwise force and running NVT, NPT and NVE molecular dynamics incorporating

orientations, angular momenta and torques. These potentials have been used to address prob-

lems involving liquid crystals262 and nanoassembly263. One approach to speed up molecular

simulations is to apply rigid constraints on certain bonds and angles. Usually, these restraints

are implemented using modifications to the integration, including SHAKE and RATTLE.

However, another approach to enforcing these rigid constraints is to replace each set of rigidly

connected bodies by a single composite particle. The interactions between these composite

particles are calculated by the summing over all interactions between their components.

The LAMMPS package has several packages well-suited for performing molecular dynamics

with asymmetric particles.264 One such model supported by LAMMPS is the oxDNA model,

a coarse-grained model where each nucleotide is represented as a single oriented bead.265 The

orientated nature of this force field is important, as the bead represents a whole nucleotide

with its base and sugar backbone.

Coarse-grained techniques often abstract multiple point masses of the atomistic system into

a single point mass. However, this loses the information on orientation, and fails to account for

the uneven distribution of mass.266 This can be addressed by performing rigid-body quaternion

dynamics, where the orientations of each particle are propagated in a similar manner to that

of the Cartesian positions of the particles.

153

Quaternion Dynamics

The point masses used in regular molecular dynamics have three translational degrees of free-

dom, which are propagated using Newton’s second law. When the particles also possess orien-

tation, their rotational dynamics must also be propagated.

The moment of inertia tensor, as described for a set of particles previously, is a 3×3 matrix

which describes the distribution of mass about a specific point. Each finite-sized particle

will have a moment of inertia about its own centre of mass, denoted Iintr
i . If the particle is

asymmetric, then its moment of inertia will vary as the particle rotates. As this matrix is a

real symmetric matrix, it may be decomposed into a rotation matrix R and a diagonal inertia

matrix Λi:

Iintr
i (t) = R(t)ΛiR(t)−1 (5.63)

For an asymmetric particle, this implies the existence of a natural definition of the orien-

tation of the particle — the body frame of reference in which the moment of inertia tensor is

a diagonal matrix Λi. Assuming our particles are rigid and nondeformable, Λi is a constant

property of each particle, in a similar manner to its mass. Therefore, for rotational dynamics

the orientation R and the diagonal elements of Λi are stored, with the moment of inertia tensor

in the laboratory frame calculated using Equation 5.63 when required.

In order to propagate the rotational degrees of freedom for each particle, we require a

rotational analogue to Newton’s second law. We can obtain this by considering the angular

momentum of each particle about its own centre of mass:

~Lintr
i = Iintr

i ~ωi (5.64)

Note that point masses have a moment of inertia of 0, and hence cannot possess an angular

momenta about their own position. This angular momentum of each particle can be seen as a

‘spin’ angular momentum, as opposed to the orbital angular momentum of the particle about

another point. Taking the time derivative of this yieldsa :

d~Lintr
i

dt
= [~ωi]RΛiR

−1~ωi + R
dΛi

dt
R−1~ωi −RΛiR

−1[~ω]~ωi + RΛiR
−1~αi (5.65)

= ~ωi × Iintr
i ~ωi + Iintr

i ~αi (5.66)

This time derivative of the angular momentum is equal to the torque ~τi applied to the

particle, in the same manner that force is the time derivative of linear momentum. This

equation is often referred to as Euler’s equation for rigid body dynamics, and can be seen

as a rotational analogue for Newton’s second law. It contains a term that appears similar

to m~ai (Ii~α), but also an additional term. Unlike Newton’s second law, this equation is not

aThe time derivative of a rotation matrix R is related to the angular velocity ~ω by dR
dt

= [~ω]R, where [~ω] is
the skew-symmetric matrix representing a cross product from the left

154

easily invertible to calculate the angular acceleration and velocity required to propagate the

rotational dynamics through time.

This problem can be addressed by propagating the rotation and angular momentum instead.

This yields two equations:

d~Li
dt

= ~τi (5.67)

dRi

dt
= [I−1

i
~Li]Ri (5.68)

Instead of propagating the full rotation matrices Ri, rotational dynamics is usually per-

formed using another formalism. Early approaches to solving rigid body dynamics numerically

used Euler angles, however this suffer from singularities that may lead to numerical insta-

bilities.267,268 Generally, this is done using a quaternion formalism instead of using rotation

matrices. Miller et al.247 proposed a symplectic method known as the NOSQUISH algorithm

for propagating these dynamics using quanterions. This approach is used by HOOMD-blue for

NVE calculations.

In the quaternion case, the first-order differential equation relating the angular velocity ~ω

to the quaternion q is given by:268

dqi
dt

=
1

2
~ωiqi, ~ωi = I−1

i
~Li (5.69)

In addition to performing NVE calculations, NVT for rotational dynamics can be performed

by modifying Langevin dynamics to include the rotational degrees of freedom.269

155

Rotation Interactions

In the case for point masses, we calculate the angular momentum and moment of inertia tensor

for the set of particles we interact with, in order to calculate the overall angular velocity.

To apply my method of rotating interactions to asymmetric particles, we must consider the

additional effects of finite-sized particles to these equations.

The angular momentum of a non-point mass about another point is equal to the sum of

its angular momentum about that point, plus the angular momentum it possess itself:

~L =
∑

~Li, ~Li = mi~ri × ~vi + ~Lintr
i (5.70)

This first part is akin to orbital angular momentum, whilst the second term is the spin

angular momentum which we propagate directly through rotational dynamics.

Likewise, the moment of inertia tensor could be considered to consist of an orbital part

(about the centre of mass of the interacted system) and a spin part (about the centre of mass

of the particle):

I =
∑
i

Ii, Ii = −mi[~ri]
2 + Iintr

i (5.71)

If particles are symmetric, then their moment of inertia Λi are a multiple of the identity

matrix. In this case, their moment of inertia can be expressed as a single scalar Ii, and is now

independent of their rotation. This greatly simplifies their equations:

~Li = mi~ri × ~vi + Ii~ωi (5.72)

Ii = Ii1−mi[~ri]
2 (5.73)

As before, the total angular momentum and moment of inertia tensor for a set of particles

is the sum of their individual contributions.

The angular component of the rigid motion force is equal to:

~Fi =
mi

M
(k~θ − γ~ω)× ~ri (5.74)

This corresponds to an angular acceleration ~α being applied to the positions of the particles

being equal to:

~α =
1

M
(k~θ − γ~ω) (5.75)

As the positions of the particles rotate, the particles themselves must also rotate in order to

keep the entire system aligned. Just as an equal acceleration has to be applied to all particles

when translating them, when rotating we must apply an equal angular acceleration on each

particle to keep them aligned. Figure From Equation 5.66, this torque must be:

~τi =
Ii
M

(k~θ − γ~ω) + ~ωi × (Ii~ωi) (5.76)

156

~α
~α

~α

~α

~a

~a

~a

Figure 5.13: Illustration that when rotating a set of asymmetric particles, an angular accel-
eration must be applied to each particle in addition to the acceleration applied to rotate the
three particles about their centre of mass.

For symmetric finite-sized particles, this takes the simpler form:

~τi =
Ii
M

(k~θ − γ~ω) (5.77)

Figure 5.14 illustrates the importance of this per-particle torque when rotating asymmetric

particles. This example uses a small double helix using the oxDNA model, with internal forces

switched off. In the absence of the centripetal force, the helices spiral outwards as they are

rotated. However, Figure 5.14b shows that even with the forces described in the previous

section, the base pairs no longer face each other as the helix is rotated. This is because as we

rotate the helix, we must also rotate each individual particle such that they continue to face

the same way. The correct approach of applying per-particle torques as described in Equation

5.77 is shown in Figure 5.14d, where the correct motion is observed.

157

(a) Without per-particle torques or centripetal force.

(b) Without per-particle torques, but with centripetal force.

(c) With per-particle torques, but without centripetal force.

(d) With per-particle torques and centripetal force.

Figure 5.14: Rotation of an oxDNA duplex using my rotational force, illustration the effect of
the centripetal force and the per-particle torques.

158

5.5 Conclusions

Interactive molecular dynamics is a technique that allows human intuition and guidance to

be incorporated into simulations. However, it is important to understand its limitations.

Although it shares many commonalities with steered molecular dynamics, due to the instant

feedback required IMD uses forces which are orders of magnitude higher than SMD. The

extreme perturbations this applies to the simulations means that direct interpretation of IMD-

VR pathways is difficult.

However, as Lanrezac, Férey, and Baaden270 and others have said, where IMD shines is as a

tool for exploring hypotheses. It enables a user to understand their simulation, as dynamically

probing the molecular system and its reaction to your perturbation gives insight into the forces

involved. Authors such as Deeks et al.240 have used IMD-VR pathways as a starting point for

other enhanced sampling techniques such as metadynamics.

Harmonic restraints, ubiquitous in steered molecular dynamics, are generally ill-suited

where the location of the constraint is moved quickly. This lead to the adoption of a Gaussian

well as a second form of interaction in Narupa iMD. However, this comes with its own issue

of having no effect at large distances. Another approach used in Narupa iMD is to clip the

maximum force possible, though the potential energy must also be modified.

Deeks et al.25 showed that using IMD-VR, novices with little training could recover crys-

tallographic binding poses. This highlights the power that IMD-VR has to allow detailed

atomistic manipulations to facilitate flexible drug docking. However, a fundamental limitation

of IMD-VR as previously implemented is that it was simply a mirror of existing SMD ap-

proaches — the user merely controls a point to which the current fragment is pulled towards. I

believe that this fails to capitalise on the far greater control possible using the full six degrees

of freedom available with a VR controller.

To this end, I have developed an interaction paradigm where rotational and translational

forces can be applied to a fragment, without perturbing its internal structure. By utilising a

critically-damped harmonic spring, I also avoid a common issue in IMD-VR where a molecule

‘overshoots’ the target position and oscillates. As my approach applies forces, rather than

rigidly fix the target fragment in one conformation, it both permits easy integration into our

existing IMD-VR framework and allows internal motion of the molecule to still occur. By

looking at the partition of kinetic energy, I have shown that my interaction rotates a molecule

without altering the translational or internal kinetic energy.

Rigid motion interactions also allow IMD to be extended to molecular simulations where

particles are no longer point masses, but can have their own orientation and rotational dy-

namics. The derivation for the interactions effectively treated the collection of point masses

that were interacted with as a single body, and hence is easily applicable to individual rigid

body particles. This is achieved by incorporating the individual particles’ angular momenta

and moment of inertia into the expressions. With this, IMD-VR can be extended to systems

159

where it was not previously possible, such as coarse-grained simulations of DNA.

These interactions provide precise control over the motion of molecular fragments amd

bring the user closer to experiencing a kind of ‘molecular surgery’ — a concept that has often

been espoused as a goal for IMD-VR.23 Rigid motion interactions also form a core part of the

message of this thesis — adapting tools and visualisations for interactive molecular dynamics

to the technology of virtual reality. By using both the position and rotation of the user’s

controller, the interaction provides control over the 6 degrees of rotational and translation

freedom simultaneously.

160

Chapter 6

Conclusions

The overarching message of this thesis is that the tools and visualisations we use must not

simply be transferred but adapted when transitioning from a 2D interface to VR. Partly this

is because VR presents unique challenges, such as requiring efficient and robust rendering al-

gorithms to prevent frame drops and motion sickness. However, we should also take advantage

of the freedom and control the user has over the simulation within their virtual world. With

two controllers tracking both the position and orientation of their hands, we have access to

many possible manipulations that can mimic real motions, and hence feel more intuitive than

corresponding movements of a cursor on a screen.

Whilst our research has predominantly been focused on biochemical systems, there are

great possibilities in applying IMD-VR to other domains such as materials science. These

systems present unique and interesting challenges, such as periodic lattices contained within

a well-defined region. I have developed and implemented an approach I hope can be adopted

for visualising these systems, allowing new insight into periodic lattices. IMD-VR can be used

to explore dynamic problems such as diffusion of small molecules through zeolite networks,

which has vital importance for fuel storage and catalysis. Further engagement with industrial

collaborators will lead to increased adoption and highlight the utility of this technology in a

non-research capacity.

The sphere of rendering biological systems has seen a lot of progress in the previous decades,

due to their relevance to the pharmaceutical industry. However, there is scope for improvement

for developing ways of rendering solid state systems. Whilst most visualisation software has the

capacity to render ribbon diagrams, fewer have the ability to render the polyhedral coordination

spheres often used for crystal structures. I have aimed to include this visualisations within

Narupa to ensure it provides utility to both biochemists and material scientists.

In addition to research applications, IMD-VR has applications in public engagement and

education. The relatively easy setup and hardware required for a multi-user experience makes

the technology well-suited for open days and other public events. In my experience, it’s a

technology that interests and excites people. This engagement with people who may one day

161

become computational chemists is a vital part of ensuring IMD-VR is a sustainable technology

which continues to be used. I believe that a core goal in science should be to present research

and discovery in new and exciting ways, in order to inspire the next generation of scientists.

In the spirit of this thesis, I also challenge the simple transplantation of the harmonic

constraint approach of SMD directly into IMD-VR, by simply allowing the user to manipulate

a single point at which the interaction is centred. Whilst overall translations to the molecule

can be applied, tt gives the appearance of ‘throwing’ the molecules around and small changes

to the molecule’s rotation are hence difficult to achieve precisely. The rigid motion interaction

which I propose in Chapter 5 grants the user precise control over the motion of the molecule,

leveraging the full six degrees of freedom that a virtual reality controller affords us. The minute

and accurate control that IMD-VR offers over a simulation also would make it a valuable tool

for studying the motion of molecular machines, such as rotors and switches.

My extension to the IMD-VR paradigm to allow rotational interactions also opens the door

to applying the technology to simulations where traditionally these techniques have not been

used. By allowing the rotation of asymmetric coarse-grained particles, we can use IMD-VR

to interact with models such as the oxDNA model of DNA. The helices of DNA can fold to

adopt a wide range of nanostructures, which makes it an ideal target for exploring in a fully

immersive 3D environment.

Whilst IMD-VR shares some similarities with SMD, it is unwise to interpret the direct

results as physically meaningful. The magnitude of the forces commonly used in IMD are

often magnitudes larger than those used in SMD. As noted by Lanrezac, Férey, and Baaden270

and others, this is an inherent limitation of IMD — the forces must be large enough such that

a user can perturb the simulation over a short time period, in the order of tens of seconds.

Whilst SMD can be used to determine free energies, it requires many replications and the use

of small pulling velocities.

The trajectories obtained by IMD-VR must be interpreted carefully, however they can be

used to determine routes which are more or less likely. The pathways may then guide more

detailed calculations. Using techniques such as PCA, the IMD-VR pathways can define the

collective variables used to run another enhanced-sampling technique such as metadynamics

or BXD. It is in this way that IMD shines — as a method for exploring possible hypotheses.

Another possible remedy to the limited simulation time of a typical user session is to

distribute the task. Great success has been had with itizen science projects such as Foldit271

and UDock272. This gamification of scientific research taps into an inherent competitiveness

in human nature, and is an exciting future avenue of research.33 Narupa itself has been used

for this kind of research, with Shannon et al.27 showing that allowing a small cohort of users

time to explore a reactive system using gamified form of IMD-VR generated similar reaction

networks to existing literature.

The increasing overlap of serious scientific software with computer gaming also addresses

another issue facing the field — that these projects are only a possibility due to the multi-

162

disciplinary collaborations between computer scientists and biochemists. As the video game

industry addresses the visualisation and user interface challenges of the future and adapts to

new technology, it is vital that we allow this to bleed through into our scientific software.

By leveraging the software and game engines developed to make game development more

streamlined, we reduce development time and enable scientists to focus on their research.33 As

someone with experience in both game development and scientific research, I believe it is this

marriage of the two disciplines that makes IMD-VR an exciting and innovative technology.

163

Appendix A

Transformations & Affine

Coordinates

Linear transformations of points and directions are involved in a vast majority of this thesis,

from transforming points between the various points of the graphics pipeline, defining periodic

unit cells and defining rotating frames. Here I will lay out the basics of transformations and

affine coordinates within the context of this thesis.

A.1 Linear Transformations

Points and directions are represented in three-dimensional space by column vectors:

~v =

Ö
x

y

z

è
(A.1)

This vector can be considered as the sum of three unit vectors, êx, êy and êz:

~v = x êx + y êy + z êz (A.2)

Linear transformations are transformations f(~v) for which the following two identities

hold:

f(~v + ~w) = f(~v) + f(~w) (A.3)

f(a~v) = af(~v) (A.4)

As any vector can be written as a linear combination of three unit vectors, any linear

transformation need only describe how each unit vector maps to the other unit vectors. This

is equivalent to saying that any linear transformation can be written as a 3 × 3 matrix. The

165

columns of this matrix describe where each unit axis are mapped to by the transformation:Ö
mxx mxy mxz

myx myy myz

mzx mzy mzz

èÖ
a

b

c

è
=

Ö
mxxa+mxyb+mxzc

myxa+myyb+myzc

mzxa+mzyb+mzzc

è
(A.5)

= a

Ö
mxx

myx

mzx

è
+ b

Ö
mxy

myy

mzy

è
+ c

Ö
mxz

myz

mzz

è
(A.6)

As linear transformations map points in space to other points, they can be interpreted as

geometric transformations of space. If the matrix M is a multiple of the identity matrix, then

it scales all points by a given value. If the matrix has determinant 1 and is orthogonal (its

inverse is equal to its transpose), it can be interpreted as a rotation around the origin.

A.2 Affine Transformations

Whilst rotations, scalings and shears can all be represented as linear transformations, transla-

tions cannot. This is because a 3 × 3 matrix cannot map the zero vector (the origin) to any

other point except ~0. However, this can be addressed using affine coordinates. Here, we

extend our vectors to be four-dimensional, with a fourth component w. This fourth component

is set to 1 for points, and 0 for directions. Our transformation matrices are now also 4 × 4

matrices, of the general form: (
R ~v

~0T 1

)
(A.7)

Here, R is the 3 × 3 linear transformation as before, and ~v is a 3-dimensional vector that

will translate the points. For points, they therefore transform as follows:(
R ~v

~0T 1

)(
~p

1

)
=

(
R~p+ ~v

1

)
(A.8)

Meanwhile, for directions we use a 0 as the w component for the affine vector:(
R ~v

~0T 1

)(
~p

0

)
=

(
R~p

0

)
(A.9)

Our choice in matrices and w components ensures that:

1. Points are mapped to other points, and are translated appropriately.

2. Directions are mapped to other directions, and are unaffected by translations.

Affine transformations find widespread use in computer graphics, where they are employed

in the graphics pipeline to convert between different coordinate systems.

166

Normals

In the graphics pipeline, it is important to not just transform points but also surface normals.

However, there is an important distinction to be made when non-uniform scaling is applied to

normals. This is because normals are defined as the cross product of two tangent directions on

the surface, and hence are an example of a pseudovector. Another example is angular velocity.

Consider a surface normal ~n defined as being tangent to a direction ~a:

~n · ~a = 0 (A.10)

As a is a tangent to the surface, it transforms normally by some transformation R. If we

wish for the above equation to still hold, we presume some transformation W will have to be

applied to ~n to ensure the above equation still holds:

(W~n) · (R~a) = 0 (A.11)

~nWTR~a = 0 (A.12)

For this to hold irregardless of ~n and ~a, the matrix product must be the identity. Therefore:

W = R−T (A.13)

Therefore, pseudovectors such as normals must transform according to the inverse trans-

pose of the transformation matrix applied normally. If no scaling is involved and R is a

rotation matrix, then this distinction is irrelevant as the inverse transpose of a rotation matrix

is itself. However, when scaling is involved this is an important distinction.

Generally, we renormalise normals before using them, so we only need to specify W up to a

multiplicative constant. Therefore, we can avoid calculating a full inverse transpose by noting

that:

R−T =
1

det R
cof(R) (A.14)

Here, cof(R) is the cofactor matrix of R, where each element is the determinant of R when

the corresponding row and column are removed. Hence, we can transform normals by the

cofactor of the transformation matrix we use for directions.

167

A.3 Perspective Transformations

Affine transformations by definition preserve both the straightness of lines and parallelism — if

two lines are parallel, then the affine transformation of the two lines are also parallel. However,

one of the stages of rendering requires a perspective transformation, where objects further

away from the camera are made smaller. In this case, lines may no longer stay parallel (consider

a road getting thinner as it passes into the horizon).

To achieve a perspective transformation, we wish to have a matrix which divides the x and

y coordinates by the z coordinate. Generally, this is not possible using a matrix, which can

only achieve a linear combination of the three components. However, by using the 4th affine

component, we can achieve this.

Consider the matrix: à
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

í
(A.15)

When transforming a point (x, y, z), this gives a new point:à
1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

íà
x

y

z

1

í
=

à
x

y

z

z

í
(A.16)

However, we expect a point to have an affine component of 1. To correct this, we perform

a perspective division by dividing all the components by the last components, to give:Ä
x/z, y/z, 1, 1

ä
(A.17)

Perspective transformations are therefore achieved by modifying the last row of a transfor-

mation matrix, and then dividing through by the last component of the resulting vector.

168

Appendix B

Splines

Splines are curves made of individual segments, each of which is a polynomial in a parameter t.

They are a wide field with many possible parameterisations and forms, and readers interested

in more details can find information in the various textbooks on the subject. This appendix

will summarise the main splines used for computer graphics, with particular interest to those

utilised in ribbon diagrams.

B.1 Bezier Curves

Though not commonly employed directly in ribbon diagrams, Bezier curves are a fundamental

curve which appear in many aspects of computer graphics.

The most common way of introducing Bezier curves is to consider linear interpolation.

Linear interpolation takes a start point and an end point, and a parameter t in the range [0, 1].

As this parameter goes from 0 to 1, linear interpolation gives a point that linearly passes from

the start to the end. A linear Bezier curve is defined in terms of two control points, and is

exactly the same as linear interpolation.

Higher order Bezier curves are defined recursively using the de Casteljau algorithm. This

algorithm can be seen graphically as repeated linear interpolation. For example, a quadratic

Bezier curve requires three control points, ~p0, ~p1 and ~p2. Given a parameter t in the range of

0 to 1, we can consider two different linear interpolations: from p0 to p1, and from p1 to p2.

We could then linearly interpolate between these two new points, using the same value of t.

As t varies from 0 to 1, this traces out a quadratic curve in t:

~B(t) = (1− t)2~p0 + 2(1− t)t~p1 + t2~p2 (B.1)

In terms of the linear interpolation function, we have:

~B(t) = lerp(lerp(~p0, ~p1; t), lerp(~p1, ~p2; t); t) (B.2)

This is a quadratic Bezier curve, and is defined in terms of three control points {~p0, ~p1, ~p2}.
Figure B.1 graphically shows how a quadratic Bezier is calculated. We may continue adding

169

t = 0.3 t = 0.8

Figure B.1: Illustration of a quadratic Bezier based on three control points. Each point on the
curve consists of a linear interpolation between two successive linear interpolations, all using
the same value of t.

control points, increasing the order of the Bezier curve. For example, if we scale up to four

control points, then we will have a three successive linear interpolations. This yields a cubic

Bezier curve:

~B(t) = (1− t)3~p0 + 3(1− t)2t~p1 + 3(1− t)t2~p2 + t3~p3 (B.3)

The polynomial coefficients of each control point for a degree n Bezier curve are the Bern-

stein basis polynomials of degree n, expressible as:

bν,n(t) =

(
n

ν

)
tν(1− t)n−ν , ν = 0, ..., n (B.4)

Bezier curves are widespread in computer graphics. The outline of computer fonts are

stored as Bezier curves, ensuring they can be scaled up to arbitrary size.

170

B.2 Cubic Hermite Spline

We will now move on to the derivation of the form of the cubic Hermite spline. The following

derivation of the form of a cubic Hermite spline is based on Chapter 3 of Bartels, Beatty, and

Barsky273.

We wish to connect a set of control points {~pi} together with piecewise splines, which will

be cubic in a parameter t from 0 to 1. As we have N control points, we define a set of N − 1

cubic curves ~si(t) with the general form:

~si(t) = ~ai +~bit+ ~cit
2 + ~dit

3 (B.5)

We have not yet specified the form of
¶
~ai,~bi,~ci, ~di

©
, but they will be some function of the

control points {~pi}. Equation B.5 is therefore the general form for any cubic piecewise spline.

If we wish the spline segments to connect subsequent points (namely, be an interpolating C0

spline), then each spline ~si(t) must pass from ~pi to ~pi+1. Therefore:

~si(0) = ~pi = ~ai (B.6)

~si(1) = ~pi+1 = ~ai +~bi + ~ci + ~di (B.7)

If continuity in the tangents at each curve is also enforced, then at each point ~pi a tangent

~mi must exist, that is shared by the end of the preceding segment and the start and the next

segment. This requirement enforces additional constraints:

~s′i(0) = ~mi = ~bi (B.8)

~s′i(1) = ~mi+1 = ~bi + 2~ci + 3~di (B.9)

Combining these four equations determines the values for the four unknowns for the cubic

spline:

~ai = ~pi

~bi = ~mi

~ci = −3~pi + 3~pi+1 − 2~mi − ~mi+1

~di = 2~pi − 2~pi+1 + ~mi + ~mi+1

When inserted back into Equation B.5 for a general cubic spline, this yields the general

form of the cubic Hermite spline:

~si(t) = (2t3 − 3t2 + 1)~pi + (−2t3 + 3t2)~pi+1 + (t3 − 2t2 + t)~mi + (t3 − t2)~mi+1 (B.10)

The cubic Hermite spline therefore represents the most general case of a cubic spline, that

passes through a set of points and has C1 continuity. However, it requires the specification of

an additional N tangent values {~mi}.

171

The polynomials that appear as coefficients in Equation B.10 are known as the Hermite

basis functions. One useful parallel to draw is that there is a relationship between the cubic

Hermite curve and a cubic Bezier curve. Instead of considering two points ~pi and ~pi+1 and

their tangents ~mi and ~mi+1, define four control points as ~pi, ~pi + ~mi
3 , ~pi+1 − ~mi

3 and ~pi+1.

These four control points define a cubic Bezier curve that is exactly the same as the cubic

Hermite curve. This emphasises that cubic Hermite curves and cubic Bezier curves are not

fundamentally different — they are merely two different ways of describing the same curve,

either as two endpoints and two tangents, or as two endpoints and two control points.

Catmull-Rom

Cubic Hermite splines require both a set of control points {~pi} and a set of tangents {~mi}. A

common technique is to calculate the tangents based on nearby points, with the most common

approach being the Catmull-Rom spline:

~mi =
1

2
(~pi+1 − ~pi−1) (B.11)

With this, each spline segment is a weighted sum of four control points (those forming the

endpoints of the segment and the two preceding and following the segment):

~si(t) =

Å
− t

2
+ t2 − t3

2

ã
~pi−1 +

Å
1− 5t2

2
t2 +

3t3

2

ã
~pi +

Å
t

2
+ 2t2 − 3t3

2

ã
~pi+1 +

Å
− t

2

2
+
t3

2

ã
~pi+2

(B.12)

Note that these four polynomials sum to 1 for all t.

172

B.3 Natural Cubic Spline

If second order continuity is also enforced, then at each point ~pi there must exist a second

derivative ~ni, which is shared by the end of the previous segment and the start of the next.

As was the case for the tangents {~mi}, this constraint yields additional equations:

~s′′i (0) = ~ni = 2~ci

~s′′i (1) = ~ni+1 = 2~ci + 6~di

These equations hence link together gradients due to the relationship between consecutive

~ci and ~di:

2~ci =2~ci−1 + 6~di−1

2(−3~pi + 3~pi+1 − 2~mi − ~mi+1) =2(−3~pi−1 + 3~pi − 2~mi−1 − ~mi)

+ 6(2~pi−1 − 2~pi + ~mi−1 + ~mi)

3(~pi+1 − ~pi−1) = ~mi−1 + 4~mi + ~mi+1

The requirement of C2 continuity therefore leads to N − 2 equations that determine the

set of N gradients {~mi}. To uniquely define the gradients, two additional constraints are

required. The natural boundary condition is to assert that the second derivative tends to 0 at

the endpoints:

~n0 = ~nN−1 = 0 (B.13)

The first of these leads to:

~c0 = 0 → −3~p0 + 3~p1 − 2~m0 − ~m1 = 0

3(~p1 − ~p0) = 2~m0 − ~m1

The second boundary conditions yields:

~cN−1 = 0 → ~cN−2 + 3~dN−2 = 0

3(~pN−1 − ~pN−2) = ~mN−2 + 2~mN−1

Therefore, there are a set of N equations to determine the values of the tangents {~mi}.
These may be collected into a matrix of the form

2 1

1 4 1

1 4 1

. . .

1 4 1

1 2

~m0

~m1

~m2

...

~mN−2

~mN−1

= 3

~p1 − ~p0

~p2 − ~p0

~p3 − ~p1

...

~pN−1 − ~pN−3

~pN−1 − ~pN−2

173

Solving the above matrix yields the tangents mi that determine a natural cubic spline.

The tangents {~mi} are therefore completely determined by the control points {~pi}. How-

ever, solving the above problem means that each tangent does depend on all the control points.

This means that if a single control point is altered, every segment of the entire spline will be

affected.

174

B.4 B-Splines

The following derivation is based on Chapter 4 of Bartels, Beatty, and Barsky273.

B-splines are a broad category of splines that generalise a lot of the features of other splines.

Here we will specifically consider the uniform B-spline.

To start, consider how the Catmull-Rom spline segment is a cubic in t that depends on four

points: ~pi−1, ~pi, ~pi+1 and ~pi+2. Consider the general case for any cubic spline which depends

on these four points:

~si(t) = b0(t)~pi−1 + b1(t)~pi + b2(t)~pi+1 + b3(t)~pi+2 (B.14)

Each of these basis function bk(t) will be a cubic in t, and hence there are 16 coefficient that

determine the shape of the spline. We are inherently forcing our result to have local support

— we presume that each segment can only depend on four points. We now seek to find the

cubic factors bk(t) that will define the spline.

First, requiring C0 continuity requires that ~si(1) = ~si+1(0) and ~si(0) = ~si−1(1). This

results in two requirements:

b0(1)~pi−1 + b1(1)~pi + b2(1)~pi+1 + b3(1)~pi+2 = b0(0)~pi + b1(0)~pi+1 + b2(0)~pi+2 + b3(0)~pi+3

b0(0)~pi−1 + b1(0)~pi + b2(0)~pi+1 + b3(0)~pi+2 = b0(1)~pi−2 + b1(1)~pi−1 + b2(1)~pi + b3(1)~pi+1

As these must hold for any value that {~pi} can take, this gives:

b0(1) = 0 (B.15)

b3(0) = 0 (B.16)

b1(1) = b0(0) (B.17)

b2(1) = b1(0) (B.18)

b3(1) = b3(0) (B.19)

Our next requirement of C1 continuity applies similar requirements, but on the derivatives

of the basis functions. This yields another set of 5 constraints:

b′0(1) = 0 (B.20)

b′3(0) = 0 (B.21)

b′1(1) = b′0(0) (B.22)

b′2(1) = b′1(0) (B.23)

b′3(1) = b′3(0) (B.24)

175

Finally, if we require C2 continuity, then applying the same logic yields a third set of 5

constraints:

b′′0(1) = 0 (B.25)

b′′3(0) = 0 (B.26)

b′′1(1) = b′′0(0) (B.27)

b′′2(1) = b′′1(0) (B.28)

b′′3(1) = b′′3(0) (B.29)

All together, we require 16 coefficients to define our basis functions. Simply by assuming

a C2 continuity cubic spline with local support, we have 15 constraints to determine these

coefficients. A final constraint is to assert that summing these four basis functions equals 1 for

all t:

b0(t) + b1(t) + b2(t) + b3(t) = 1 (B.30)

With these 16 constraints, we can solve this for the uniform cubic B-spline basis functions:

b0(t) =
1

6
t3 (B.31)

b1(t) =
1

6
(1 + 3t+ 3t2 − 3t3) (B.32)

b2(t) =
1

6
(4− 6t2 + 3t3) (B.33)

b3(t) =
1

6
(1− 3t+ 3t2 − t3) (B.34)

This derivation shows that B-splines arise naturally from our requirements — all we have

enforced is C1 continuity, local support and ensured the weights summed to 1. As a conse-

quence, the spline is no longer interpolating. This is a fundamental fact — enforcing a spline

to go through the control points and have C2 continuity results in global support (for example

the natural cubic spline), whilst enforcing local support causes the spline to no longer pass

through the control points.

176

Appendix C

Quaternions

As a brief reminder, complex numbers may be expressed in terms of the imaginary unit i,

which fulfils the following identity:

i2 = −1 (C.1)

From this, we define the complex numbers as numbers constituting a real part and an

imaginary part, which is a multiple of i:

z = x+ yi (C.2)

To define quaternions, we define three separate units: i, j and k. These fulfil the identity:

i2 = j2 = k2 = ijk = −1 (C.3)

Analogously to complex numbers, we can define a quaternion as having four components

— a real component and three imaginary components:

q = q0 + q1i+ q2j + q3k (C.4)

It can therefore be taken to be similar to a complex number, but with a three-dimensional

imaginary part:

Re q = q0, Im q =

Ö
q1

q2

q3

è
= ~q (C.5)

We may chose to to represent a quaternion as a column vector:

q =

[
q0

~q

]
(C.6)

177

The multiplication of two quaternions q and p may be expanded out using Equation C.3:

(q0 + q1i+ q2j + q3k)(p0 + p1i+ p2j + p3k) =(p0q0 − q1p1 − q2p2 − q3p3)

+ (q1p0 + q0p1 + q2p3 − q3p2)i

+ (q2p0 + q0p2 + q3p1 − q1p3)j

+ (q3p0 + q0p3 + q1p2 − q2p1)k

This may be simplified by considering vector identities, and expressing each quaternion in

column vector form: [
q0

~q

][
p0

~p

]
=

[
q0p0 − ~q · ~p

q0~p+ p0~q + ~q × ~p

]
(C.7)

Importantly, the multiplication of two quaternions is non-commutative — qp is not the

same as pq.

Like complex numbers, the complex conjugate can be defined by negating the imaginary

part of the quaternion:

q̄ =

[
q0

−~q

]
(C.8)

Also, the length of a quaternion may be defined in a similar manner:

|q| =
»
q2

0 + |~q|2 (C.9)

Each quaternion does commute with its complex conjugate, ans the same relationship

between conjugates and magnitudes holds:

qq̄ = q̄q = |q|2 (C.10)

C.1 Quaternions as rotations

Firstly, we will invoke (without proof) Rodrigues’ rotation formula, which states that the

rotation of ~v about a unit vector ~k by an angle θ is given by:

~v′ = ~v cos θ + (~k × ~v) sin θ + ~k(~k · ~v)(1− cos θ) (C.11)

Now consider some arbitrary vector ~x. We can project a 3D vector ~x into a quaternion

by using it as the imaginary part, and setting the real part to 0. By doing this, we can

define multiplications of quaternions and vector. Now, we consider the expression obtained by

178

sandwiching our vector ~v between the quaternion and its conjugate:

q̄~xq =

[
q0

−~q

][
0

~x

][
q0

~q

]

=

[
q0

−~q

][
−~x · ~q

q0~x+ ~x× ~q

]

=

[
0

2(~q · ~x)~q + q2
0~x+ 2q0(~x× ~q)− |~q|2~x

]

The result of sandwiching a vector ~x like this yields a quaternion with 0 real part, which can

be interpreted as another vector. We can therefore interpret this action as a transformation of

a vector ~x to another ~x′ by the quaternion q.

Now, consider the following quaternion expressed in terms of a unit vector ~k and angle θ

as:

q =

[
cos θ2
sin θ

2
~k

]
(C.12)

Note that the magnitude of this quaternion is 1, and hence we refer to this as a unit

quaternion. If we transform a vector ~x by this quaternion, we obtain:

q̄~xq = 2 sin
θ

2
(~k · ~x) sin

θ

2
~k + cos2 θ

2
~x+ 2 cos

θ

2
sin

θ

2
~x× ~k − sin2 θ

2
~x

= ~x cos θ + (~k × ~x) sin θ + ~k(~k · ~x)(1− cos θ)

This is exactly Equation C.11. Therefore, a unit quaternion of the form Equation C.12

may be used to rotate a vector.

The inverse of this rotation is obtained by flipping either ~k or θ. This evidently flips the

imaginary part of Equation C.12, and hence if a unit quaternion represents a rotation, its

conjugate represents the inverse rotation.

179

Bibliography

[1] E. J. Maginn and J. R. Elliott. “Historical Perspective and Current Outlook for Molecu-

lar Dynamics As a Chemical Engineering Tool”. In: Industrial & Engineering Chemistry

Research 49.7 (Apr. 7, 2010). Publisher: American Chemical Society, pp. 3059–3078.

issn: 0888-5885. doi: 10.1021/ie901898k.

[2] Neal E. Seymour et al. “Virtual Reality Training Improves Operating Room Perfor-

mance”. In: Annals of Surgery 236.4 (Oct. 2002), pp. 458–464. issn: 0003-4932.

[3] Christian Moro et al. “The effectiveness of virtual and augmented reality in health

sciences and medical anatomy”. In: Anatomical Sciences Education 10.6 (Nov. 2017),

pp. 549–559. issn: 1935-9780. doi: 10.1002/ase.1696.

[4] Wee Sim Khor et al. “Augmented and virtual reality in surgery—the digital surgical

environment: applications, limitations and legal pitfalls”. In: Annals of Translational

Medicine 4.23 (Dec. 2016), p. 454. issn: 2305-5839. doi: 10.21037/atm.2016.12.23.

[5] Sangsu Choi, Kiwook Jung, and Sang D Noh. “Virtual reality applications in manufac-

turing industries: Past research, present findings, and future directions”. In: Concurrent

Engineering-Research and Applications 23.1 (2015). ISBN: 1063-293x, pp. 40–63. doi:

10.1177/1063293x14568814.

[6] Abraham Anderson and Zhiping Weng. “VRDD: applying virtual reality visualization

to protein docking and design”. In: Journal of Molecular Graphics and Modelling 17.3

(June 1, 1999), pp. 180–186. issn: 1093-3263. doi: 10.1016/S1093-3263(99)00029-7.

[7] Rebecca K. Walters et al. Interactivity: the missing link between virtual reality technology

and drug discovery pipelines. Feb. 8, 2022. arXiv: 2202.03953.

[8] Xiao-Huan Liu et al. “Using virtual reality for drug discovery: a promising new outlet

for novel leads”. In: Expert Opinion on Drug Discovery 13.12 (Dec. 2, 2018). Publisher:

Taylor & Francis eprint: https://doi.org/10.1080/17460441.2018.1546286, pp. 1103–

1114. issn: 1746-0441. doi: 10.1080/17460441.2018.1546286.

181

https://doi.org/10.1021/ie901898k
https://doi.org/10.1002/ase.1696
https://doi.org/10.21037/atm.2016.12.23
https://doi.org/10.1177/1063293x14568814
https://doi.org/10.1016/S1093-3263(99)00029-7
https://arxiv.org/abs/2202.03953
https://doi.org/10.1080/17460441.2018.1546286

[9] Andrea Salvadori et al. “Immersive virtual reality in computational chemistry: Applica-

tions to the analysis of QM and MM data”. In: International Journal of Quantum Chem-

istry 116.22 (2016). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.25207,

pp. 1731–1746. issn: 1097-461X. doi: 10.1002/qua.25207.

[10] Jeremy N. Block et al. “KinImmerse: Macromolecular VR for NMR ensembles”. In:

Source Code for Biology and Medicine 4.1 (Feb. 17, 2009), p. 3. issn: 1751-0473. doi:

10.1186/1751-0473-4-3.

[11] Maria Limniou, David Roberts, and Nikos Papadopoulos. “Full immersive virtual envi-

ronment CAVETM in chemistry education”. In: Computers & Education 51.2 (Sept. 1,

2008), pp. 584–593. issn: 0360-1315. doi: 10.1016/j.compedu.2007.06.014.

[12] J. Georgiou, K. Dimitropoulos, and A. Manitsaris. “A Virtual Reality Laboratory for

Distance Education in Chemistry”. In: International Journal of Educational and Peda-

gogical Sciences 1.11 (Nov. 20, 2007), pp. 617–624.

[13] Alan Richardson et al. “Use of a Three-Dimensional Virtual Environment to Teach

Drug-Receptor Interactions”. In: American Journal of Pharmaceutical Education 77.1

(Feb. 12, 2013). Publisher: American Association of Colleges of Pharmacy. doi: 10.

5688/ajpe77111.

[14] Simon J. Bennie et al. “Teaching Enzyme Catalysis Using Interactive Molecular Dy-

namics in Virtual Reality”. In: Journal of Chemical Education 96.11 (Nov. 12, 2019).

Publisher: American Chemical Society, pp. 2488–2496. issn: 19381328. doi: 10.1021/

acs.jchemed.9b00181.

[15] E. Moritz and J. Meyer. “Interactive 3D protein structure visualization using virtual

reality”. In: Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineer-

ing. Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering. May

2004, pp. 503–507. doi: 10.1109/BIBE.2004.1317384.

[16] Mart́ın Calvelo, Ángel Piñeiro, and Rebeca Garcia-Fandino. “An immersive journey to

the molecular structure of SARS-CoV-2: Virtual reality in COVID-19”. In: Computa-

tional and Structural Biotechnology Journal 18 (Jan. 1, 2020). Publisher: Elsevier B.V.,

pp. 2621–2628. issn: 20010370. doi: 10.1016/j.csbj.2020.09.018.

[17] Ching-Man Tse et al. “Interactive Drug Design in Virtual Reality”. In: 2011 15th Inter-

national Conference on Information Visualisation. 2011 15th International Conference

on Information Visualisation. ISSN: 2375-0138. July 2011, pp. 226–231. doi: 10.1109/

IV.2011.72.

[18] Laura J. Kingsley et al. “Development of a virtual reality platform for effective commu-

nication of structural data in drug discovery”. In: Journal of Molecular Graphics and

Modelling 89 (June 1, 2019). Publisher: Elsevier Inc., pp. 234–241. issn: 18734243. doi:

10.1016/j.jmgm.2019.03.010.

182

https://doi.org/10.1002/qua.25207
https://doi.org/10.1186/1751-0473-4-3
https://doi.org/10.1016/j.compedu.2007.06.014
https://doi.org/10.5688/ajpe77111
https://doi.org/10.5688/ajpe77111
https://doi.org/10.1021/acs.jchemed.9b00181
https://doi.org/10.1021/acs.jchemed.9b00181
https://doi.org/10.1109/BIBE.2004.1317384
https://doi.org/10.1016/j.csbj.2020.09.018
https://doi.org/10.1109/IV.2011.72
https://doi.org/10.1109/IV.2011.72
https://doi.org/10.1016/j.jmgm.2019.03.010

[19] Benjamin N. Doblack, Tim Allis, and Lilian P. Dávila. “Novel 3D/VR Interactive Envi-

ronment for MD Simulations, Visualization and Analysis”. In: JoVE (Journal of Visu-

alized Experiments) 94 (Dec. 18, 2014), e51384. issn: 1940-087X. doi: 10.3791/51384.

[20] Zhuming Ai and Torsten Fröhlich. “Molecular Dynamics Simulation in Virtual Envi-

ronments”. In: Computer Graphics Forum 17.3 (Aug. 1, 1998). Publisher: Blackwell

Publishing Ltd., pp. 267–273. issn: 01677055. doi: 10.1111/1467-8659.00273.

[21] Joseph J. LaViola. “A discussion of cybersickness in virtual environments”. In: ACM

SIGCHI Bulletin 32.1 (Jan. 1, 2000), pp. 47–56. issn: 0736-6906. doi: 10.1145/333329.

333344.

[22] Michael O’Connor et al. “Sampling molecular conformations and dynamics in a mul-

tiuser virtual reality framework”. In: Science Advances 4.6 (June 29, 2018). Publisher:

American Association for the Advancement of Science, eaat2731. issn: 2375-2548. doi:

10.1126/sciadv.aat2731.

[23] Michael B. O’Connor et al. “Interactive molecular dynamics in virtual reality from

quantum chemistry to drug binding: An open-source multi-person framework”. In: The

Journal of Chemical Physics 150.22 (June 14, 2019). Publisher: American Institute of

Physics Inc., p. 220901. issn: 0021-9606. doi: 10.1063/1.5092590.

[24] Alexander D. Jamieson-Binnie and David R. Glowacki. “Visual Continuity of Protein

Secondary Structure Rendering: Application to SARS-CoV-2 Mpro in Virtual Reality”.

In: Frontiers in Computer Science 0 (July 12, 2021). Publisher: Frontiers, p. 63. issn:

2624-9898. doi: 10.3389/FCOMP.2021.642172.

[25] Helen M. Deeks et al. “Interactive molecular dynamics in virtual reality for accurate

flexible protein-ligand docking”. In: PLOS ONE 15.3 (Mar. 11, 2020). Ed. by Emanuele

Paci. Publisher: Public Library of Science, e0228461. issn: 1932-6203. doi: 10.1371/

journal.pone.0228461.

[26] Silvia Amabilino et al. “Training atomic neural networks using fragment-based data

generated in virtual reality”. In: The Journal of Chemical Physics 153.15 (Oct. 21,

2020). Publisher: American Institute of Physics, p. 154105. issn: 0021-9606. doi: 10.

1063/5.0015950.

[27] Robin J. Shannon et al. “Exploring human-guided strategies for reaction network explo-

ration: Interactive molecular dynamics in virtual reality as a tool for citizen scientists”.

In: The Journal of Chemical Physics 155.15 (Oct. 21, 2021). Publisher: American In-

stitute of Physics, p. 154106. issn: 0021-9606. doi: 10.1063/5.0062517.

[28] Rhoslyn Roebuck Williams et al. “Subtle Sensing: Detecting Differences in the Flex-

ibility of Virtually Simulated Molecular Objects”. In: Extended Abstracts of the 2020

CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM,

Apr. 25, 2020, pp. 1–8. isbn: 978-1-4503-6819-3. doi: 10.1145/3334480.3383026.

183

https://doi.org/10.3791/51384
https://doi.org/10.1111/1467-8659.00273
https://doi.org/10.1145/333329.333344
https://doi.org/10.1145/333329.333344
https://doi.org/10.1126/sciadv.aat2731
https://doi.org/10.1063/1.5092590
https://doi.org/10.3389/FCOMP.2021.642172
https://doi.org/10.1371/journal.pone.0228461
https://doi.org/10.1371/journal.pone.0228461
https://doi.org/10.1063/5.0015950
https://doi.org/10.1063/5.0015950
https://doi.org/10.1063/5.0062517
https://doi.org/10.1145/3334480.3383026

[29] Alexander D Jamieson-Binnie et al. “Narupa iMD: A VR-Enabled Multiplayer Frame-

work for Streaming Interactive Molecular Simulations”. In: ACM SIGGRAPH 2020

Immersive Pavilion. New York, NY, USA: ACM, Aug. 17, 2020, pp. 1–2. isbn: 978-1-

4503-7968-7. doi: 10.1145/3388536.3407891.

[30] David R. Glowacki et al. “danceroom Spectroscopy: Interactive quantum molecular

dynamics accelerated on GPU architectures using OpenCL”. In: UK Many Core Devel-

opment Conference 2012 (UKMAC. ’12). 2012.

[31] D. R. Glowacki. “Sculpting molecular dynamics in real-time using human energy fields”.

In: Molecular Aesthetics. Ed. by Peter Weibel and Ljiljana Fruk. In collab. with Phillip

Tew et al. MIT Press, Sept. 2013. isbn: 978-0-262-01878-4.

[32] David R. Glowacki et al. “A GPU-accelerated immersive audio-visual framework for

interaction with molecular dynamics using consumer depth sensors”. In: Faraday Dis-

cuss. 169.0 (Oct. 23, 2014). Publisher: The Royal Society of Chemistry, pp. 63–87. issn:

1359-6640. doi: 10.1039/C4FD00008K.

[33] Zhihan Lv et al. “Game On, Science - How Video Game Technology May Help Biologists

Tackle Visualization Challenges”. In: PLoS ONE 8.3 (Mar. 6, 2013). Ed. by Paul Taylor.

Publisher: Public Library of Science, e57990. issn: 1932-6203. doi: 10.1371/journal.

pone.0057990.

[34] Martin Mittring. “Finding next gen: CryEngine 2”. In: ACM SIGGRAPH 2007 courses

on - SIGGRAPH ’07. New York, New York, USA: Association for Computing Machinery

(ACM), 2007, p. 97. doi: 10.1145/1281500.1281671.

[35] Marco Tarini, Paolo Cignoni, and Claudio Montani. “Ambient Occlusion and Edge

Cueing for Enhancing Real Time Molecular Visualization”. In: IEEE Transactions on

Visualization and Computer Graphics 12.5 (Sept. 2006), pp. 1237–1244. issn: 1077-2626.

doi: 10.1109/TVCG.2006.115.

[36] Sébastien Doutreligne et al. “UnityMol: Interactive scientific visualization for integrative

biology”. In: IEEE Symposium on Large Data Analysis and Visualization 2014, LDAV

2014 - Proceedings. Institute of Electrical and Electronics Engineers Inc., Jan. 16, 2014,

pp. 109–110. isbn: 978-1-4799-5215-1. doi: 10.1109/LDAV.2014.7013213.

[37] Sebastien Doutreligne et al. “UnityMol: interactive and ludic visual manipulation of

coarse-grained RNA and other biomolecules”. In: 2015 IEEE 1st International Work-

shop on Virtual and Augmented Reality for Molecular Science (VARMS@IEEEVR).

2015 IEEE 1st International Workshop on Virtual and Augmented Reality for Molecular

Science (VARMS@IEEEVR). Mar. 2015, pp. 1–6. doi: 10.1109/VARMS.2015.7151718.

184

https://doi.org/10.1145/3388536.3407891
https://doi.org/10.1039/C4FD00008K
https://doi.org/10.1371/journal.pone.0057990
https://doi.org/10.1371/journal.pone.0057990
https://doi.org/10.1145/1281500.1281671
https://doi.org/10.1109/TVCG.2006.115
https://doi.org/10.1109/LDAV.2014.7013213
https://doi.org/10.1109/VARMS.2015.7151718

[38] S. Perez et al. “Three-dimensional representations of complex carbohydrates and polysaccharides–

SweetUnityMol: A video game-based computer graphic software”. In: Glycobiology 25.5

(May 1, 2015). Publisher: Oxford University Press, pp. 483–491. issn: 0959-6658. doi:

10.1093/glycob/cwu133.

[39] Joseph Laureanti et al. “Visualizing biomolecular electrostatics in virtual reality with

UnityMol-APBS”. In: Protein Science 29.1 (Jan. 25, 2020). Publisher: Blackwell Pub-

lishing Ltd, pp. 237–246. issn: 0961-8368. doi: 10.1002/pro.3773.

[40] X. Martinez and M. Baaden. “UnityMol prototype for FAIR sharing of molecular-

visualization experiences: from pictures in the cloud to collaborative virtual reality ex-

ploration in immersive 3D environments”. In: Acta Crystallographica Section D: Struc-

tural Biology 77.6 (June 1, 2021). Number: 6 Publisher: International Union of Crys-

tallography, pp. 746–754. issn: 2059-7983. doi: 10.1107/S2059798321002941.

[41] Magnus Norrby et al. “Molecular Rift: Virtual Reality for Drug Designers”. In: Journal

of Chemical Information and Modeling 55.11 (Nov. 23, 2015). Publisher: American

Chemical Society, pp. 2475–2484. issn: 1549-9596. doi: 10.1021/acs.jcim.5b00544.

[42] Alexander von Wedelstedt, Gunther Goebel, and Grit Kalies. “MOF-VR: A Virtual

Reality Program for Performing and Visualizing Immersive Molecular Dynamics Sim-

ulations of Guest Molecules in Metal–Organic Frameworks”. In: Journal of Chemical

Information and Modeling (Feb. 21, 2022). Publisher: American Chemical Society. issn:

1549-9596. doi: 10.1021/acs.jcim.2c00158.

[43] Oscar Legetth et al. “CellexalVR: A virtual reality platform to visualize and analyze

single-cell omics data”. In: iScience 24.11 (Nov. 19, 2021), p. 103251. issn: 2589-0042.

doi: 10.1016/j.isci.2021.103251.

[44] David G. Doak et al. “Peppy: A virtual reality environment for exploring the principles

of polypeptide structure”. In: Protein Science 29.1 (Jan. 11, 2020). Publisher: Blackwell

Publishing Ltd, pp. 157–168. issn: 0961-8368. doi: 10.1002/pro.3752.

[45] Jimmy F. Zhang et al. “BioVR: A platform for virtual reality assisted biological data

integration and visualization”. In: BMC Bioinformatics 20.1 (Feb. 15, 2019). Publisher:

BioMed Central Ltd., p. 78. issn: 14712105. doi: 10.1186/s12859-019-2666-z.

[46] Michael Wiebrands et al. “Molecular Dynamics Visualization (MDV): Stereoscopic 3D

Display of Biomolecular Structure and Interactions Using the Unity Game Engine”.

In: Journal of Integrative Bioinformatics 15.2 (June 26, 2018). issn: 1613-4516. doi:

10.1515/jib-2018-0010.

[47] Heta A. Gandhi et al. “Real-Time Interactive Simulation and Visualization of Organic

Molecules”. In: Journal of Chemical Education 97.11 (Nov. 10, 2020). Publisher: Amer-

ican Chemical Society, pp. 4189–4195. issn: 0021-9584. doi: 10.1021/acs.jchemed.

9b01161.

185

https://doi.org/10.1093/glycob/cwu133
https://doi.org/10.1002/pro.3773
https://doi.org/10.1107/S2059798321002941
https://doi.org/10.1021/acs.jcim.5b00544
https://doi.org/10.1021/acs.jcim.2c00158
https://doi.org/10.1016/j.isci.2021.103251
https://doi.org/10.1002/pro.3752
https://doi.org/10.1186/s12859-019-2666-z
https://doi.org/10.1515/jib-2018-0010
https://doi.org/10.1021/acs.jchemed.9b01161
https://doi.org/10.1021/acs.jchemed.9b01161

[48] Stefan Seritan et al. “InteraChem: Virtual Reality Visualizer for Reactive Interactive

Molecular Dynamics”. In: Journal of Chemical Education (Oct. 8, 2021). Publisher:

American Chemical Society. issn: 0021-9584. doi: 10.1021/acs.jchemed.1c00654.

[49] Kevin C. Cassidy et al. “ProteinVR: Web-based molecular visualization in virtual real-

ity”. In: PLOS Computational Biology 16.3 (Mar. 31, 2020). Ed. by Dina Schneidman-

Duhovny. Publisher: Public Library of Science, e1007747. issn: 1553-7358. doi: 10.

1371/journal.pcbi.1007747.

[50] Kui Xu et al. “VRmol: an Integrative Cloud-Based Virtual Reality System to Explore

Macromolecular Structure”. In: bioRxiv (Mar. 28, 2019). Publisher: Cold Spring Harbor

Laboratory, p. 589366. doi: 10.1101/589366.

[51] Henrique S. Fernandes, Nuno M. F. S. A. Cerqueira, and Sérgio F. Sousa. “Developing

and Using BioSIMAR, an Augmented Reality Program to Visualize and Learn about

Chemical Structures in a Virtual Environment on Any Internet-Connected Device”. In:

Journal of Chemical Education 98.5 (May 11, 2021). Publisher: American Chemical

Society, pp. 1789–1794. issn: 0021-9584. doi: 10.1021/acs.jchemed.0c01317.

[52] Fabio Cortés Rodŕıguez et al. “MoleculARweb: A Web Site for Chemistry and Structural

Biology Education through Interactive Augmented Reality out of the Box in Commodity

Devices”. In: Journal of Chemical Education 98.7 (July 13, 2021). Publisher: Ameri-

can Chemical Society, pp. 2243–2255. issn: 0021-9584. doi: 10.1021/acs.jchemed.

1c00179.

[53] Ikuo Kamei et al. “CoVR: Co-located Virtual Reality Experience Sharing for Facilitating

Joint Attention via Projected View of HMD Users”. In: SIGGRAPH Asia 2020 Emerg-

ing Technologies. SA ’20. New York, NY, USA: Association for Computing Machinery,

Dec. 4, 2020, pp. 1–2. isbn: 978-1-4503-8110-9. doi: 10.1145/3415255.3422883.

[54] Jan Gugenheimer et al. “ShareVR: Enabling Co-Located Experiences for Virtual Reality

between HMD and Non-HMD Users”. In: Proceedings of the 2017 CHI Conference on

Human Factors in Computing Systems. CHI ’17. New York, NY, USA: Association

for Computing Machinery, May 2, 2017, pp. 4021–4033. isbn: 978-1-4503-4655-9. doi:

10.1145/3025453.3025683.

[55] Jan Gugenheimer et al. “FaceDisplay: Towards Asymmetric Multi-User Interaction for

Nomadic Virtual Reality”. In: Proceedings of the 2018 CHI Conference on Human Fac-

tors in Computing Systems. New York, NY, USA: Association for Computing Machin-

ery, Apr. 19, 2018, pp. 1–13. isbn: 978-1-4503-5620-6.

[56] Akira Ishii et al. “ReverseCAVE experience: providing reverse perspectives for sharing

VR experience”. In: SIGGRAPH Asia 2017 VR Showcase. SA ’17. New York, NY, USA:

Association for Computing Machinery, Nov. 27, 2017, pp. 1–2. isbn: 978-1-4503-5408-0.

doi: 10.1145/3139468.3139482.

186

https://doi.org/10.1021/acs.jchemed.1c00654
https://doi.org/10.1371/journal.pcbi.1007747
https://doi.org/10.1371/journal.pcbi.1007747
https://doi.org/10.1101/589366
https://doi.org/10.1021/acs.jchemed.0c01317
https://doi.org/10.1021/acs.jchemed.1c00179
https://doi.org/10.1021/acs.jchemed.1c00179
https://doi.org/10.1145/3415255.3422883
https://doi.org/10.1145/3025453.3025683
https://doi.org/10.1145/3139468.3139482

[57] Jordan M. McGraw. “Implementation and Analysis of Co-located Virtual Reality for

Collaborative Scientific Data Visualization”. thesis. Purdue University Graduate School,

May 7, 2020. doi: 10.25394/PGS.12252797.v1.

[58] H. J.C. Berendsen, D. van der Spoel, and R. van Drunen. “GROMACS: A message-

passing parallel molecular dynamics implementation”. In: Computer Physics Communi-

cations 91.1 (Sept. 2, 1995). Publisher: North-Holland, pp. 43–56. issn: 00104655. doi:

10.1016/0010-4655(95)00042-E.

[59] B.R. Brooks et al. “CHARMM: The Biomolecular Simulation Program”. In: Journal

of computational chemistry 30.10 (July 30, 2009), pp. 1545–1614. issn: 0192-8651. doi:

10.1002/jcc.21287.

[60] Noel M. O’Boyle et al. “Open Babel: An open chemical toolbox”. In: Journal of Chem-

informatics 3.1 (Oct. 7, 2011), p. 33. issn: 1758-2946. doi: 10.1186/1758-2946-3-33.

[61] Naveen Michaud-Agrawal et al. “MDAnalysis: A toolkit for the analysis of molecular

dynamics simulations”. In: Journal of Computational Chemistry 32.10 (July 30, 2011).

Publisher: John Wiley & Sons, Ltd, pp. 2319–2327. issn: 01928651. doi: 10.1002/jcc.

21787.

[62] Richard Gowers et al. “MDAnalysis: A Python Package for the Rapid Analysis of Molec-

ular Dynamics Simulations”. In: Proceedings of the 15th Python in Science Conference.

2016, pp. 98–105. doi: 10.25080/Majora-629e541a-00e.

[63] Mark Nelson et al. “MDScope - a visual computing environment for structural biology”.

In: Computer Physics Communications 91.1 (Sept. 2, 1995). Publisher: North-Holland,

pp. 111–133. issn: 00104655. doi: 10.1016/0010-4655(95)00045-H.

[64] William Humphrey, Andrew Dalke, and Klaus Schulten. “VMD: Visual molecular dy-

namics”. In: Journal of Molecular Graphics 14.1 (Feb. 1, 1996). Publisher: Elsevier Inc.,

pp. 33–38. issn: 02637855. doi: 10.1016/0263-7855(96)00018-5.

[65] James C. Phillips et al. “Scalable molecular dynamics with NAMD”. In: Journal of

Computational Chemistry 26.16 (Dec. 2005), pp. 1781–1802. issn: 0192-8651, 1096-

987X. doi: 10.1002/jcc.20289.

[66] John E. Stone, Justin Gullingsrud, and Klaus Schulten. “A system for interactive molec-

ular dynamics simulation”. In: Proceedings of the 2001 symposium on Interactive 3D

graphics - SI3D ’01. New York, New York, USA: ACM Press, Mar. 1, 2001, pp. 191–194.

isbn: 1-58113-292-1. doi: 10.1145/364338.364398.

[67] Aidan P. Thompson et al. “LAMMPS - a flexible simulation tool for particle-based

materials modeling at the atomic, meso, and continuum scales”. In: Computer Physics

Communications 271 (Feb. 1, 2022), p. 108171. issn: 0010-4655. doi: 10.1016/j.cpc.

2021.108171.

187

https://doi.org/10.25394/PGS.12252797.v1
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002/jcc.21787
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1016/0010-4655(95)00045-H
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1145/364338.364398
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171

[68] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer. “HOOMD-blue: A Python

package for high-performance molecular dynamics and hard particle Monte Carlo sim-

ulations”. In: Computational Materials Science 173 (Feb. 15, 2020), p. 109363. issn:

0927-0256. doi: 10.1016/j.commatsci.2019.109363.

[69] Athina Meletiou, James Gebbie-Rayet, and Charles Laughton. “Tios: The Internet of

Simulations. Turning Molecular Dynamics into a Data Streaming Web Application”.

In: Journal of Chemical Information and Modeling 59.8 (Aug. 26, 2019). Publisher:

American Chemical Society, pp. 3359–3364. issn: 15205142. doi: 10.1021/acs.jcim.

9b00351.

[70] Olivier Delalande et al. “Complex molecular assemblies at hand via interactive simula-

tions”. In: Journal of Computational Chemistry 30.15 (Nov. 30, 2009). Publisher: John

Wiley and Sons Inc., pp. 2375–2387. issn: 01928651. doi: 10.1002/jcc.21235.

[71] Johanna K. S. Tiemann et al. “MDsrv: viewing and sharing molecular dynamics sim-

ulations on the web”. In: Nature Methods 14.12 (Dec. 2017). Number: 12 Publisher:

Nature Publishing Group, pp. 1123–1124. issn: 1548-7105. doi: 10.1038/nmeth.4497.

[72] HTMoL: full-stack solution for remote access, visualization, and analysis of molecu-

lar dynamics trajectory data — SpringerLink. url: https://link.springer.com/

article/10.1007/s10822-018-0141-y (visited on 03/03/2022).

[73] Matthew Wright and Adrian Freed. “Open SoundControl: A New Protocol for Com-

municating with Sound Synthesizers”. In: International Computer Music Conference

(ICMC). 1997, pp. 101–104.

[74] gRPC. gRPC. url: https://grpc.io/ (visited on 03/20/2022).

[75] Stefan Seritan et al. “TeraChem: Accelerating electronic structure and ab initio molec-

ular dynamics with graphical processing units”. In: The Journal of Chemical Physics

152.22 (June 14, 2020). Publisher: American Institute of Physics, p. 224110. issn: 0021-

9606. doi: 10.1063/5.0007615.

[76] Ask Hjorth Larsen et al. “The atomic simulation environment—a Python library for

working with atoms”. In: Journal of Physics: Condensed Matter 29.27 (July 12, 2017).

Publisher: IOP Publishing, p. 273002. issn: 0953-8984. doi: 10.1088/1361- 648X/

aa680e.

[77] Peter Eastman et al. “OpenMM 4: A Reusable, Extensible, Hardware Independent

Library for High Performance Molecular Simulation”. In: Journal of Chemical Theory

and Computation 9.1 (Jan. 8, 2013). Publisher: American Chemical Society, pp. 461–

469. issn: 1549-9618. doi: 10.1021/ct300857j.

188

https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1021/acs.jcim.9b00351
https://doi.org/10.1021/acs.jcim.9b00351
https://doi.org/10.1002/jcc.21235
https://doi.org/10.1038/nmeth.4497
https://link.springer.com/article/10.1007/s10822-018-0141-y
https://link.springer.com/article/10.1007/s10822-018-0141-y
https://grpc.io/
https://doi.org/10.1063/5.0007615
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1021/ct300857j

[78] Peter Eastman et al. “OpenMM 7: Rapid development of high performance algorithms

for molecular dynamics”. In: PLOS Computational Biology 13.7 (July 26, 2017). Pub-

lisher: Public Library of Science, e1005659. issn: 1553-7358. doi: 10.1371/journal.

pcbi.1005659.

[79] W.B. Streett, D.J. Tildesley, and G. Saville. “Multiple time-step methods in molecular

dynamics”. In: Molecular Physics 35.3 (Mar. 1, 1978). Publisher: Taylor & Francis

eprint: https://doi.org/10.1080/00268977800100471, pp. 639–648. issn: 0026-8976. doi:

10.1080/00268977800100471.

[80] RDKit: Open-source cheminformatics.

[81] A. K. Rappé et al. “UFF, a Full Periodic Table Force Field for Molecular Mechanics

and Molecular Dynamics Simulations”. In: Journal of the American Chemical Society

114.25 (Dec. 1, 1992). Publisher: American Chemical Society, pp. 10024–10035. issn:

15205126. doi: 10.1021/ja00051a040.

[82] Thomas A. Halgren. “Merck molecular force field. I. Basis, form, scope, parameteri-

zation, and performance of MMFF94”. In: Journal of Computational Chemistry 17.5

(Apr. 1, 1996). Publisher: John Wiley and Sons Inc., pp. 490–519. issn: 01928651. doi:

10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.

[83] Paolo Tosco, Nikolaus Stiefl, and Gregory Landrum. “Bringing the MMFF force field

to the RDKit: implementation and validation”. In: Journal of Cheminformatics 6.1

(July 12, 2014), p. 37. issn: 1758-2946. doi: 10.1186/s13321-014-0037-3.

[84] David Weininger. “SMILES, a chemical language and information system. 1. Introduc-

tion to methodology and encoding rules”. In: Journal of Chemical Information and

Computer Sciences 28.1 (Feb. 1, 1988). Publisher: American Chemical Society, pp. 31–

36. issn: 0095-2338. doi: 10.1021/ci00057a005.

[85] Alexander S. Rose and Peter W. Hildebrand. “NGL Viewer: a web application for

molecular visualization”. In: Nucleic Acids Research 43 (W1 July 1, 2015), W576–

W579. issn: 0305-1048. doi: 10.1093/nar/gkv402.

[86] Hai Nguyen, David A Case, and Alexander S Rose. “NGLview–interactive molecular

graphics for Jupyter notebooks”. In: Bioinformatics 34.7 (Apr. 1, 2018). Publisher:

Oxford Academic, pp. 1241–1242. issn: 1367-4803. doi: 10.1093/BIOINFORMATICS/

BTX789.

[87] T.C. Palmer. “A language for molecular visualization”. In: IEEE Computer Graphics

and Applications 12.3 (May 1992). Conference Name: IEEE Computer Graphics and

Applications, pp. 23–32. issn: 1558-1756. doi: 10.1109/38.135911.

189

https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1080/00268977800100471
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1186/s13321-014-0037-3
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1093/nar/gkv402
https://doi.org/10.1093/BIOINFORMATICS/BTX789
https://doi.org/10.1093/BIOINFORMATICS/BTX789
https://doi.org/10.1109/38.135911

[88] J.P.M. Hultquist and E.L. Raible. “SuperGlue: a programming environment for scientific

visualization”. In: Proceedings Visualization ’92. Proceedings Visualization ’92. Oct.

1992, pp. 243–250. doi: 10.1109/VISUAL.1992.235202.

[89] Peter Rautek et al. “ViSlang: A System for Interpreted Domain-Specific Languages

for Scientific Visualization”. In: IEEE Transactions on Visualization and Computer

Graphics 20.12 (Dec. 2014). Conference Name: IEEE Transactions on Visualization

and Computer Graphics, pp. 2388–2396. issn: 1941-0506. doi: 10.1109/TVCG.2014.

2346318.

[90] Ronell Sicat et al. “DXR: A Toolkit for Building Immersive Data Visualizations”. In:

IEEE Transactions on Visualization and Computer Graphics 25.1 (Jan. 2019). Confer-

ence Name: IEEE Transactions on Visualization and Computer Graphics, pp. 715–725.

issn: 1941-0506. doi: 10.1109/TVCG.2018.2865152.

[91] Arvind Satyanarayan et al. “Vega-Lite: A Grammar of Interactive Graphics”. In: IEEE

Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017). Conference

Name: IEEE Transactions on Visualization and Computer Graphics, pp. 341–350. issn:

1941-0506. doi: 10.1109/TVCG.2016.2599030.

[92] Christopher W. Wood et al. “ISAMBARD: an open-source computational environment

for biomolecular analysis, modelling and design”. In: Bioinformatics (Oxford, England)

33.19 (Oct. 1, 2017), pp. 3043–3050. issn: 1367-4811. doi: 10.1093/bioinformatics/

btx352.

[93] Andrew Leaver-Fay et al. “ROSETTA3: an object-oriented software suite for the simu-

lation and design of macromolecules”. In: Methods in Enzymology 487 (2011), pp. 545–

574. issn: 1557-7988. doi: 10.1016/B978-0-12-381270-4.00019-6.

[94] The HDF Group. Hierarchical Data Format, version 5. 1997. url: https://www.

hdfgroup.org/hdf5/ (visited on 01/15/2022).

[95] James A Perkins. “A history of molecular representation. Part one: 1800 to the 1960s”.

In: The Journal of Biocommunication 31.1 (2005), p. 1.

[96] Martin Turner. “Ball and stick models for organic chemistry”. In: Journal of Chemical

Education 48.6 (June 1, 1971). Publisher: American Chemical Society, p. 407. issn:

0021-9584. doi: 10.1021/ed048p407.

[97] Robert B. Corey and Linus Pauling. “Molecular Models of Amino Acids, Peptides, and

Proteins”. In: Review of Scientific Instruments 24.8 (Aug. 1, 1953). Publisher: American

Institute of Physics, pp. 621–627. issn: 0034-6748. doi: 10.1063/1.1770803.

[98] Walter L. Koltun. “Precision space-filling atomic models”. In: Biopolymers 3.6 (1965).

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360030606, pp. 665–679.

issn: 1097-0282. doi: 10.1002/bip.360030606.

190

https://doi.org/10.1109/VISUAL.1992.235202
https://doi.org/10.1109/TVCG.2014.2346318
https://doi.org/10.1109/TVCG.2014.2346318
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1093/bioinformatics/btx352
https://doi.org/10.1093/bioinformatics/btx352
https://doi.org/10.1016/B978-0-12-381270-4.00019-6
https://www.hdfgroup.org/hdf5/
https://www.hdfgroup.org/hdf5/
https://doi.org/10.1021/ed048p407
https://doi.org/10.1063/1.1770803
https://doi.org/10.1002/bip.360030606

[99] Martin Kemp. “Kendrew constructs; Geis gazes”. In: Nature 396.6711 (Dec. 1998).

Bandiera abtest: a Cg type: Nature Research Journals Number: 6711 Primary atype:

Comments & Opinion Publisher: Nature Publishing Group, pp. 525–525. issn: 1476-

4687. doi: 10.1038/25019.

[100] Eric Francoeur. “Beyond dematerialization and inscription: Does the materiality of

molecular models really matter?” In: HYLE – International Journal for Philosophy of

Chemistry 6.1 (2000), pp. 63–84.

[101] C. K. Johnson. ORTEP: a FORTRAN Thermal-Ellipsoid Plot Program for Crystal

Structure Illustrations. ORNL-3794. Oak Ridge National Lab., Tenn., Jan. 6, 1965.

[102] C. K. Johnson. ORTEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal

structure illustrations. ORNL-5138. Oak Ridge National Lab., Tenn., Jan. 3, 1976. doi:

10.2172/7364501.

[103] M N Burnett and C. K. Johnson. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Pro-

gram for crystal structure illustrations. ORNL-6895. Oak Ridge National Lab. (ORNL),

Oak Ridge, TN, Jan. 7, 1996.

[104] R Sayle and A Bissell. “RasMol: A Program for Fast Realistic Rendering of Molecular

Structures with Shadows”. In: Proceedings of the 10th Eurographics UK ’92 Conference.

10th Eurographics UK ’92. University of Edinburgh, Scotland, 1992.

[105] R Sayle and E. James Milner-White. “RASMOL: biomolecular graphics for all”. In:

Trends in Biochemical Sciences 20.9 (Sept. 1, 1995). Publisher: Elsevier Current Trends,

pp. 374–376. issn: 09680004. doi: 10.1016/S0968-0004(00)89080-5.

[106] E. A. Merritt and D. J. Bacon. “Raster3D: photorealistic molecular graphics”. In: Meth-

ods in Enzymology 277 (1997), pp. 505–524. issn: 0076-6879. doi: 10.1016/s0076-

6879(97)77028-9.

[107] Per J. Kraulis. “MOLSCRIPT: a program to produce both detailed and schematic

plots of protein structures”. In: Journal of Applied Crystallography 24.5 (Oct. 1, 1991),

pp. 946–950. issn: 00218898. doi: 10.1107/S0021889891004399.

[108] Eric F. Pettersen et al. “UCSF Chimera?A visualization system for exploratory research

and analysis”. In: Journal of Computational Chemistry 25.13 (Oct. 1, 2004). Publisher:

John Wiley & Sons, Ltd, pp. 1605–1612. issn: 0192-8651. doi: 10.1002/jcc.20084.

[109] Thomas D. Goddard et al. “UCSF ChimeraX: Meeting modern challenges in visual-

ization and analysis”. In: Protein Science 27.1 (Jan. 1, 2018). Publisher: Blackwell

Publishing Ltd, pp. 14–25. issn: 09618368. doi: 10.1002/pro.3235.

[110] Angel Herráez. “Biomolecules in the computer: Jmol to the rescue”. In: Biochemistry

and Molecular Biology Education 34.4 (2006). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bmb.2006.494034042644,

pp. 255–261. issn: 1539-3429. doi: 10.1002/bmb.2006.494034042644.

191

https://doi.org/10.1038/25019
https://doi.org/10.2172/7364501
https://doi.org/10.1016/S0968-0004(00)89080-5
https://doi.org/10.1016/s0076-6879(97)77028-9
https://doi.org/10.1016/s0076-6879(97)77028-9
https://doi.org/10.1107/S0021889891004399
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/pro.3235
https://doi.org/10.1002/bmb.2006.494034042644

[111] David Sehnal et al. “Mol* Viewer: modern web app for 3D visualization and analysis

of large biomolecular structures”. In: Nucleic Acids Research 49 (W1 July 2, 2021),

W431–W437. issn: 0305-1048. doi: 10.1093/nar/gkab314.

[112] Jane S. Richardson. “Schematic drawings of protein structures”. In: Methods in Enzy-

mology. Vol. 115. Issue: C ISSN: 15577988. Academic Press, Jan. 1, 1985, pp. 359–380.

doi: 10.1016/0076-6879(85)15026-3.

[113] B. Kozĺıková et al. “Visualization of Biomolecular Structures: State of the Art Revis-

ited”. In: Computer Graphics Forum 36.8 (Dec. 1, 2017). Publisher: Blackwell Publish-

ing Ltd, pp. 178–204. issn: 01677055. doi: 10.1111/cgf.13072.

[114] B. Lee and F. M. Richards. “The interpretation of protein structures: Estimation of

static accessibility”. In: Journal of Molecular Biology 55.3 (Feb. 14, 1971), 379–IN4.

issn: 0022-2836. doi: 10.1016/0022-2836(71)90324-X.

[115] F M Richards. “Areas, Volumes, Packing, and Protein Structure”. In: Annual Review

of Biophysics and Bioengineering 6.1 (June 28, 1977). Publisher: Annual Reviews 4139

El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA, pp. 151–176. issn:

0084-6589. doi: 10.1146/annurev.bb.06.060177.001055.

[116] J. Greer and B. L. Bush. “Macromolecular shape and surface maps by solvent ex-

clusion”. In: Proceedings of the National Academy of Sciences of the United States of

America 75.1 (Jan. 1978), pp. 303–307. issn: 0027-8424. doi: 10.1073/pnas.75.1.303.

[117] Maxim Totrov and Ruben Abagyan. “The Contour-Buildup Algorithm to Calculate the

Analytical Molecular Surface”. In: Journal of Structural Biology 116.1 (Jan. 1, 1996),

pp. 138–143. issn: 1047-8477. doi: 10.1006/jsbi.1996.0022.

[118] Norbert Lindow et al. “Accelerated Visualization of Dynamic Molecular Surfaces”. In:

Computer Graphics Forum 29.3 (Aug. 12, 2010). Publisher: John Wiley & Sons, Ltd

(10.1111), pp. 943–952. issn: 01677055. doi: 10.1111/j.1467-8659.2009.01693.x.

[119] Michael Krone, Sebastian Grottel, and Thomas Ertl. “Parallel Contour-Buildup algo-

rithm for the molecular surface”. In: 2011 IEEE Symposium on Biological Data Visu-

alization (BioVis). 2011 IEEE Symposium on Biological Data Visualization (BioVis).

Oct. 2011, pp. 17–22. doi: 10.1109/BioVis.2011.6094043.

[120] M F Sanner, A J Olson, and J C Spehner. “Reduced surface: an efficient way to compute

molecular surfaces.” In: Biopolymers 38.3 (Mar. 1996), pp. 305–20. issn: 0006-3525. doi:

10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y.

[121] M. F. Sanner and A. J. Olson. “Real time surface reconstruction for moving molecular

fragments”. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocom-

puting (1997), pp. 385–396. issn: 2335-6928.

192

https://doi.org/10.1093/nar/gkab314
https://doi.org/10.1016/0076-6879(85)15026-3
https://doi.org/10.1111/cgf.13072
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1073/pnas.75.1.303
https://doi.org/10.1006/jsbi.1996.0022
https://doi.org/10.1111/j.1467-8659.2009.01693.x
https://doi.org/10.1109/BioVis.2011.6094043
https://doi.org/10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y

[122] Michael Krone, Katrin Bidmon, and Thomas Ertl. “Interactive Visualization of Molecu-

lar Surface Dynamics”. In: IEEE Transactions on Visualization and Computer Graphics

15.6 (Nov. 2009). Conference Name: IEEE Transactions on Visualization and Computer

Graphics, pp. 1391–1398. issn: 1941-0506. doi: 10.1109/TVCG.2009.157.

[123] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high resolution 3D sur-

face construction algorithm”. In: Proceedings of the 14th annual conference on Computer

graphics and interactive techniques. SIGGRAPH ’87. New York, NY, USA: Association

for Computing Machinery, Aug. 1, 1987, pp. 163–169. isbn: 978-0-89791-227-3. doi:

10.1145/37401.37422.

[124] H. Edelsbrunner. “Deformable smooth surface design”. In: Discrete and Computational

Geometry 21.1 (1999). Publisher: Springer New York, pp. 87–115. issn: 01795376. doi:

10.1007/PL00009412.

[125] Matthieu Chavent, Bruno Levy, and Bernard Maigret. “MetaMol: High-quality visu-

alization of molecular skin surface”. In: Journal of Molecular Graphics and Modelling

27.2 (Sept. 2008). Publisher: J Mol Graph Model, pp. 209–216. issn: 10933263. doi:

10.1016/j.jmgm.2008.04.007.

[126] Stefan Bruckner. “Dynamic Visibility-Driven Molecular Surfaces”. In: Computer Graph-

ics Forum 38.2 (May 7, 2019). Publisher: Blackwell Publishing Ltd, pp. 317–329. issn:

0167-7055. doi: 10.1111/cgf.13640.

[127] Norbert Lindow, Daniel Baum, and Hans-Christian Hege. “Ligand Excluded Surface: A

New Type of Molecular Surface”. In: IEEE Transactions on Visualization and Computer

Graphics 20.12 (Dec. 2014). Conference Name: IEEE Transactions on Visualization

and Computer Graphics, pp. 2486–2495. issn: 1941-0506. doi: 10.1109/TVCG.2014.

2346404.

[128] Steve Marschner and Peter Shirley. Fundamentals of Computer Graphics. Fourth edi-

tion. Nov. 18, 2015. 748 pp.

[129] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. “SaarCOR: a hardware architecture

for ray tracing”. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference

on Graphics hardware. HWWS ’02. Goslar, DEU: Eurographics Association, Sept. 1,

2002, pp. 27–36. isbn: 978-1-58113-580-0.

[130] Nate Oh. NVIDIA Announces RTX Technology: Real Time Ray Tracing Acceleration

for Volta GPUs and Later. Mar. 19, 2018. url: https://www.anandtech.com/show/

12546/nvidia-unveils-rtx-technology-real-time-ray-tracing-acceleration-

for-volta-gpus-and-later (visited on 05/22/2022).

[131] Introducing the NVIDIA RTX Ray Tracing Platform. NVIDIA Developer. Running

Time: 64. Mar. 6, 2018. url: https://developer.nvidia.com/rtx/ray-tracing

(visited on 05/22/2022).

193

https://doi.org/10.1109/TVCG.2009.157
https://doi.org/10.1145/37401.37422
https://doi.org/10.1007/PL00009412
https://doi.org/10.1016/j.jmgm.2008.04.007
https://doi.org/10.1111/cgf.13640
https://doi.org/10.1109/TVCG.2014.2346404
https://doi.org/10.1109/TVCG.2014.2346404
https://www.anandtech.com/show/12546/nvidia-unveils-rtx-technology-real-time-ray-tracing-acceleration-for-volta-gpus-and-later
https://www.anandtech.com/show/12546/nvidia-unveils-rtx-technology-real-time-ray-tracing-acceleration-for-volta-gpus-and-later
https://www.anandtech.com/show/12546/nvidia-unveils-rtx-technology-real-time-ray-tracing-acceleration-for-volta-gpus-and-later
https://developer.nvidia.com/rtx/ray-tracing

[132] Lukas Marsalek et al. “Real-Time Ray Tracing of Complex Molecular Scenes”. In:

2010 14th International Conference Information Visualisation. 2010 14th International

Conference Information Visualisation. ISSN: 2375-0138. July 2010, pp. 239–245. doi:

10.1109/IV.2010.43.

[133] John E. Stone, William R. Sherman, and Klaus Schulten. “Immersive molecular vi-

sualization with omnidirectional stereoscopic ray tracing and remote rendering”. In:

Proceedings - 2016 IEEE 30th International Parallel and Distributed Processing Sym-

posium, IPDPS 2016. Institute of Electrical and Electronics Engineers Inc., July 18,

2016, pp. 1048–1057. isbn: 978-1-5090-2140-6. doi: 10.1109/IPDPSW.2016.121.

[134] N. Lindow, D. Baum, and H.-C. Hege. “Interactive Rendering of Materials and Biolog-

ical Structures on Atomic and Nanoscopic Scale”. In: Computer Graphics Forum 31.3

(June 1, 2012). Publisher: Wiley, pp. 1325–1334. issn: 01677055. doi: 10.1111/j.1467-

8659.2012.03128.x.

[135] Finian Mwalongo et al. “Visualization of molecular structures using state-of-the-art

techniques in WebGL”. In: Proceedings of the 19th International ACM Conference on

3D Web Technologies, Web3D 2014. New York, New York, USA: Association for Com-

puting Machinery, 2014, pp. 133–141. isbn: 978-1-4503-3015-2. doi: 10.1145/2628588.

2628597.

[136] Stefan Guthe, Stefan Gumhold, and Wolfgang Straßer. “Interactive Visualization of

Volumetric Vector Fields Using Texture Based Particles”. In: Journal of WSCG. Vol. 10.

Jan. 1, 2002, pp. 33–42.

[137] Rodrigo Toledo and Bruno Lévy. Extending the graphic pipeline with new GPU-accelerated

primitives. INRIA, 2004.

[138] Eric Risser. “True Impostors”. In: GPU Gems 3. Addison-Wesley Professional, 2007.

isbn: 978-0-321-51526-1.

[139] Chandrajit Bajaj et al. “TexMol: Interactive visual exploration of large flexible multi-

component molecular complexes”. In: IEEE Visualization 2004 - Proceedings, VIS 2004.

2004, pp. 243–250. isbn: 0-7803-8788-0. doi: 10.1109/visual.2004.103.

[140] Guido Reina and Thomas Ertl. “Hardware-Accelerated Glyphs for Mono- and Dipoles

in Molecular Dynamics Visualization.” In: Visualization (EuroVis), EG/IEEE VGTC

Symposium on. Jan. 1, 2005, pp. 177–182. doi: 10.2312/VisSym/EuroVis05/177-182.

[141] Christian Sigg et al. “GPU-based ray-casting of quadratic surfaces”. In: SPBG’06: Pro-

ceedings of the 3rd Eurographics / IEEE VGTC conference on Point-Based Graphics.

July 2006, pp. 59–65. doi: 10.5555/2386388.2386396.

194

https://doi.org/10.1109/IV.2010.43
https://doi.org/10.1109/IPDPSW.2016.121
https://doi.org/10.1111/j.1467-8659.2012.03128.x
https://doi.org/10.1111/j.1467-8659.2012.03128.x
https://doi.org/10.1145/2628588.2628597
https://doi.org/10.1145/2628588.2628597
https://doi.org/10.1109/visual.2004.103
https://doi.org/10.2312/VisSym/EuroVis05/177-182
https://doi.org/10.5555/2386388.2386396

[142] Matthieu Chavent et al. “GPU-accelerated atom and dynamic bond visualization us-

ing hyperballs: A unified algorithm for balls, sticks, and hyperboloids”. In: Journal

of Computational Chemistry 32.13 (Oct. 2011), pp. 2924–2935. issn: 01928651. doi:

10.1002/jcc.21861.

[143] Pranav D. Bagur, Nithin Shivashankar, and Vijay Natarajan. “Improved quadric surface

impostors for large bio-molecular visualization”. In: Proceedings of the Eighth Indian

Conference on Computer Vision, Graphics and Image Processing - ICVGIP ’12. New

York, New York, USA: ACM Press, 2012, pp. 1–8. isbn: 978-1-4503-1660-6. doi: 10.

1145/2425333.2425366.

[144] Mathieu Le Muzic et al. “cellVIEW: a Tool for Illustrative and Multi-Scale Render-

ing of Large Biomolecular Datasets”. In: Eurographics Workshop on Visual Computing

for Biology and Medicine. Accepted: 2015-09-14T04:48:59Z ISSN: 2070-5786. The Eu-

rographics Association, 2015. isbn: 978-3-905674-82-8.

[145] Adam Jurč́ık et al. “Accelerated visualization of transparent molecular surfaces in

molecular dynamics”. In: IEEE Pacific Visualization Symposium. Vol. 2016-May. ISSN:

21658773. IEEE Computer Society, May 4, 2016, pp. 112–119. isbn: 978-1-5090-1451-4.

doi: 10.1109/PACIFICVIS.2016.7465258.

[146] Sebastian Grottel et al. “Particle-based Rendering for Porous Media”. In: Proceedings

of SIGRAD 2010. Jan. 1, 2010, pp. 45–51.

[147] Sebastian Grottel, Guido Reina, and Thomas Ertl. “Optimized Data Transfer for Time-

dependent, GPU-based Glyphs”. In: Proceedings of IEEE Pacific Visualization Sympo-

sium. Vol. 2009. Apr. 1, 2009, pp. 65–72. doi: 10.1109/PACIFICVIS.2009.4906839.

[148] Stefan Gumhold. “Splatting Illuminated Ellipsoids with Depth Correction.” In: Proceed-

ings of the Vision, Modeling, and Visualization Conference 2003 (VMV 2003). Jan. 1,

2003, pp. 245–252.

[149] “Real Closed Fields”. In: Algorithms in Real Algebraic Geometry. Ed. by Saugata Basu,

Richard Pollack, and Marie-Françoise Roy. Algorithms and Computation in Mathe-

matics. Berlin, Heidelberg: Springer, 2006, pp. 29–82. isbn: 978-3-540-33099-8. doi:

10.1007/3-540-33099-2_3.

[150] David Sehnal et al. “Mol*: towards a common library and tools for web molecular

graphics”. In: Proceedings of the workshop on molecular graphics and visual analysis

of molecular data. Ed. by J. Byška, M. Krone, and B. Sommer. The Eurographics

Association, 2018, pp. 29–33. doi: 10.2312/molva.20181103.

[151] Matthieu Dreher et al. “ExaViz: a flexible framework to analyse, steer and interact

with molecular dynamics simulations”. In: Faraday Discussions 169.0 (Oct. 23, 2014).

Publisher: The Royal Society of Chemistry, pp. 119–142. issn: 1364-5498. doi: 10.

1039/C3FD00142C.

195

https://doi.org/10.1002/jcc.21861
https://doi.org/10.1145/2425333.2425366
https://doi.org/10.1145/2425333.2425366
https://doi.org/10.1109/PACIFICVIS.2016.7465258
https://doi.org/10.1109/PACIFICVIS.2009.4906839
https://doi.org/10.1007/3-540-33099-2_3
https://doi.org/10.2312/molva.20181103
https://doi.org/10.1039/C3FD00142C
https://doi.org/10.1039/C3FD00142C

[152] Sergei Borzov. “Use of signed distance functions for the definition of protein cartoon

representation”. Masters. Brno: Masaryk University, 2021.

[153] John C. Hart. “Sphere tracing: a geometric method for the antialiased ray tracing of

implicit surfaces”. In: The Visual Computer 12.10 (Dec. 1, 1996), pp. 527–545. issn:

1432-2315. doi: 10.1007/s003710050084.

[154] Benjamin Keinert et al. “Enhanced Sphere Tracing”. In: Accepted: 2014-12-16T07:17:30Z.

The Eurographics Association, 2014. isbn: 978-3-905674-72-9. doi: 10.2312/stag.

20141233.

[155] Peter Atkins, Julio de Paula, and James Keeler. Atkins’ Physical Chemistry. Eleventh

Edition. Oxford, New York: Oxford University Press, Dec. 28, 2017. 944 pp. isbn: 978-

0-19-876986-6.

[156] Mark Weller et al. Inorganic Chemistry. Seventh Edition. Oxford, New York: Oxford

University Press, June 6, 2018. 968 pp. isbn: 978-0-19-876812-8.

[157] Andy Burrows et al. Chemistry³: Introducing inorganic, organic and physical chemistry.

Oxford ; New York: OUP Oxford, Apr. 9, 2009. 1416 pp. isbn: 978-0-19-927789-6.

[158] James D. Foley et al. Computer Graphics: Principles and Practice. Addison-Wesley

Professional, 1996. 1294 pp. isbn: 978-0-201-84840-3.

[159] David Eisenberg. “The discovery of the -helix and -sheet, the principal structural fea-

tures of proteins”. In: Proceedings of the National Academy of Sciences 100.20 (Sept. 30,

2003). Publisher: National Academy of Sciences, pp. 11207–11210. issn: 0027-8424. doi:

10.1073/pnas.2034522100.

[160] L. Pauling and R. B. Corey. “The Pleated Sheet, A New Layer Configuration of Polypep-

tide Chains”. In: Proceedings of the National Academy of Sciences 37.5 (May 1, 1951).

Publisher: National Academy of Sciences, pp. 251–256. issn: 0027-8424. doi: 10.1073/

pnas.37.5.251.

[161] L. Pauling, R. B. Corey, and H. R. Branson. “The structure of proteins: Two hydrogen-

bonded helical configurations of the polypeptide chain”. In: Proceedings of the National

Academy of Sciences 37.4 (Apr. 1, 1951). Publisher: National Academy of Sciences,

pp. 205–211. issn: 0027-8424. doi: 10.1073/pnas.37.4.205.

[162] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. “Stereochemistry of

polypeptide chain configurations”. In: Journal of Molecular Biology 7.1 (July 1, 1963),

pp. 95–99. issn: 0022-2836. doi: 10.1016/S0022-2836(63)80023-6.

[163] G. N. Ramachandran and V. Sasisekharan. “Conformation of Polypeptides and Pro-

teins”. In: Advances in Protein Chemistry. Ed. by C. B. Anfinsen et al. Vol. 23. Aca-

demic Press, Jan. 1, 1968, pp. 283–437. doi: 10.1016/S0065-3233(08)60402-7.

196

https://doi.org/10.1007/s003710050084
https://doi.org/10.2312/stag.20141233
https://doi.org/10.2312/stag.20141233
https://doi.org/10.1073/pnas.2034522100
https://doi.org/10.1073/pnas.37.5.251
https://doi.org/10.1073/pnas.37.5.251
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1016/S0022-2836(63)80023-6
https://doi.org/10.1016/S0065-3233(08)60402-7

[164] Frances C. Bernstein et al. “The protein data bank: A computer-based archival file

for macromolecular structures”. In: Journal of Molecular Biology 112.3 (May 25, 1977).

Publisher: Academic Press, pp. 535–542. issn: 00222836. doi: 10.1016/S0022-2836(77)

80200-3.

[165] Michael Levitt and Jonathan Greer. “Automatic identification of secondary structure

in globular proteins”. In: Journal of Molecular Biology 114.2 (Aug. 5, 1977). Publisher:

Academic Press, pp. 181–239. issn: 00222836. doi: 10.1016/0022-2836(77)90207-8.

[166] Wolfgang Kabsch and Christian Sander. “Dictionary of protein secondary structure:

Pattern recognition of hydrogen-bonded and geometrical features”. In: Biopolymers

22.12 (Dec. 1, 1983). Publisher: John Wiley & Sons, Ltd, pp. 2577–2637. issn: 0006-

3525. doi: 10.1002/bip.360221211.

[167] Dmitrij Frishman and Patrick Argos. “Knowledge-based protein secondary structure

assignment”. In: Proteins: Structure, Function, and Genetics 23.4 (Dec. 1, 1995). Pub-

lisher: John Wiley & Sons, Ltd, pp. 566–579. issn: 0887-3585. doi: 10.1002/prot.

340230412.

[168] F. M. Richards and C. E. Kundrot. “Identification of structural motifs from protein

coordinate data: secondary structure and first-level supersecondary structure”. In: Pro-

teins 3.2 (1988), pp. 71–84. issn: 0887-3585. doi: 10.1002/prot.340030202.

[169] Juliette Martin et al. “Protein secondary structure assignment revisited: A detailed

analysis of different assignment methods”. In: BMC Structural Biology 5.1 (Sept. 15,

2005). Publisher: BioMed Central, p. 17. issn: 14726807. doi: 10.1186/1472-6807-5-

17.

[170] Jane S. Richardson, David C. Richardson, and David S. Goodsell. “Seeing the pdb”.

In: Journal of Biological Chemistry 296.0 (May 2021). Publisher: Elsevier, p. 100742.

issn: 1083351X. doi: 10.1016/J.JBC.2021.100742.

[171] M.C. Escher. Spirals. 1953.

[172] M.C. Escher. Rind. 1955.

[173] M.C. Escher. Bonds of Union. 1956.

[174] M.C. Escher. Sphere Spirals. 1958.

[175] Jane S. Richardson. “The Anatomy and Taxonomy of Protein Structure”. In: Advances

in Protein Chemistry. Vol. 34. ISSN: 00653233. Academic Press, Jan. 1, 1981, pp. 167–

339. doi: 10.1016/S0065-3233(08)60520-3.

[176] A. Lesk and K. Hardman. “Computer-generated schematic diagrams of protein struc-

tures”. In: Science 216.4545 (Apr. 30, 1982). Publisher: American Association for the

Advancement of Science, pp. 539–540. issn: 0036-8075. doi: 10.1126/science.7071602.

197

https://doi.org/10.1016/S0022-2836(77)80200-3
https://doi.org/10.1016/S0022-2836(77)80200-3
https://doi.org/10.1016/0022-2836(77)90207-8
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/prot.340230412
https://doi.org/10.1002/prot.340230412
https://doi.org/10.1002/prot.340030202
https://doi.org/10.1186/1472-6807-5-17
https://doi.org/10.1186/1472-6807-5-17
https://doi.org/10.1016/J.JBC.2021.100742
https://doi.org/10.1016/S0065-3233(08)60520-3
https://doi.org/10.1126/science.7071602

[177] Mike Carson and Charles E. Bugg. “Algorithm for ribbon models of proteins”. In:

Journal of Molecular Graphics 4.2 (June 1, 1986). Publisher: Elsevier, pp. 121–122.

issn: 02637855. doi: 10.1016/0263-7855(86)80010-8.

[178] Mike Carson. “Ribbon models of macromolecules”. In: Journal of Molecular Graphics

5.2 (June 1, 1987). Publisher: Elsevier, pp. 103–106. issn: 02637855. doi: 10.1016/

0263-7855(87)80010-3.

[179] M. Carson and C. E. Bugg. “BSRIBBON – program for producing 3D ribbon models of

macromolecules suitable for interactive graphics display”. In: Journal of Applied Crys-

tallography 21.5 (Oct. 1, 1988). Publisher: Wiley-Blackwell, pp. 578–578. issn: 0021-

8898. doi: 10.1107/S0021889888005825.

[180] Mike Carson. “RIBBONS 2.0”. In: Journal of Applied Crystallography 24.5 (Oct. 1,

1991). Publisher: International Union of Crystallography, pp. 958–961. issn: 00218898.

doi: 10.1107/S0021889891007240.

[181] Mike Carson. “Ribbons”. In: Methods in Enzymology. Vol. 277. ISSN: 00766879. Aca-

demic Press, Jan. 1, 1997, pp. 493–505. doi: 10.1016/S0076-6879(97)77027-7.

[182] Lawrence D. Bergman, Jane S. Richardson, and David C. Richardson. “An algorithm for

smoothly tessellating β-sheet structures in proteins”. In: Journal of Molecular Graphics

13.1 (Feb. 1, 1995). Publisher: Elsevier, pp. 36–45. issn: 02637855. doi: 10.1016/0263-

7855(94)00003-B.

[183] J. P. Priestle. “RIBBON : a stereo cartoon drawing program for proteins”. In: Journal

of Applied Crystallography 21.5 (Oct. 1, 1988). Publisher: Wiley-Blackwell, pp. 572–576.

issn: 0021-8898. doi: 10.1107/S0021889888005746.

[184] Jane S. Richardson. “Early ribbon drawings of proteins”. In: Nature Structural Biology

7.8 (Aug. 2000). Publisher: Nature Publishing Group, pp. 624–625. issn: 10728368. doi:

10.1038/77912.

[185] P Hermosilla et al. “Instant visualization of secondary structures of molecular models”.

In: Eurographics Workshop on Visual Computing for Biology and Medicine. Publica-

tion Title: VCBM 15: Eurographics Workshop on Visual Computing for Biology and

Medicine. The Eurographics Association, 2015, pp. 51–60. isbn: 978-3-905674-82-8. doi:

10.2312/VCBM.20152018.

[186] Matus Zamborsky, Tibor Szabo, and Barbora Kozlikova. “Dynamic visualization of

protein secondary structures”. In: Proceedings of the 13th Central European Seminar

on Computer Graphics (CESCG). Corpus ID: 7882516. 2009, pp. 147–152.

[187] Simon Cross et al. “Visualisation of cyclic and multi-branched molecules with VMD”. In:

Journal of Molecular Graphics and Modelling 28.2 (Sept. 1, 2009). Publisher: Elsevier,

pp. 131–139. issn: 10933263. doi: 10.1016/j.jmgm.2009.04.010.

198

https://doi.org/10.1016/0263-7855(86)80010-8
https://doi.org/10.1016/0263-7855(87)80010-3
https://doi.org/10.1016/0263-7855(87)80010-3
https://doi.org/10.1107/S0021889888005825
https://doi.org/10.1107/S0021889891007240
https://doi.org/10.1016/S0076-6879(97)77027-7
https://doi.org/10.1016/0263-7855(94)00003-B
https://doi.org/10.1016/0263-7855(94)00003-B
https://doi.org/10.1107/S0021889888005746
https://doi.org/10.1038/77912
https://doi.org/10.2312/VCBM.20152018
https://doi.org/10.1016/j.jmgm.2009.04.010

[188] Lincong Wang et al. “An accurate model for biomolecular helices and its application

to helix visualization”. In: PLoS ONE 10.6 (June 30, 2015). Ed. by Freddie Salsbury.

Publisher: Public Library of Science, e0129653. issn: 19326203. doi: 10.1371/journal.

pone.0129653.

[189] Edwin Catmull and Raphael Rom. “A Class of Locally Interpolating Splines”. In: Com-

puter Aided Geometric Design. Elsevier, Jan. 1, 1974, pp. 317–326. doi: 10.1016/B978-

0-12-079050-0.50020-5.

[190] Doris H. U. Kochanek and Richard H. Bartels. “Interpolating splines with local tension,

continuity, and bias control”. In: ACM SIGGRAPH Computer Graphics 18 (July 1984).

ISBN: 0897911385, pp. 33–41. doi: 10.1145/800031.808575.

[191] Gerald E. Farin. NURBS for Curve and Surface Design. USA: Society for Industrial

and Applied Mathematics, 1991. 161 pp. isbn: 978-0-89871-286-5.

[192] G. Farin. “From conics to NURBS: A tutorial and survey”. In: IEEE Computer Graphics

and Applications 12.5 (Sept. 1992). Conference Name: IEEE Computer Graphics and

Applications, pp. 78–86. issn: 1558-1756. doi: 10.1109/38.156017.

[193] Gregory S. Couch, Donna K. Hendrix, and Thomas E. Ferrin. “Nucleic acid visualization

with UCSF Chimera”. In: Nucleic Acids Research 34.4 (Feb. 1, 2006), e29. issn: 0305-

1048. doi: 10.1093/nar/gnj031.

[194] C. Massire, C. Gaspin, and E. Westhof. “DRAWNA: A program for drawing schematic

views of nucleic acids”. In: Journal of Molecular Graphics 12.3 (Sept. 1, 1994), pp. 201–

206. issn: 0263-7855. doi: 10.1016/0263-7855(94)80088-X.

[195] Lars Offen and Dieter Fellner. “BioBrowser — Visualization of and Access to Macro-

Molecular Structures”. In: Springer, Berlin, Heidelberg, 2008, pp. 257–273. doi: 10.

1007/978-3-540-72630-2_15.

[196] Stephen V. Evans. “SETOR: Hardware-lighted three-dimensional solid model repre-

sentations of macromolecules”. In: Journal of Molecular Graphics 11.2 (June 1, 1993),

pp. 134–138. issn: 0263-7855. doi: 10.1016/0263-7855(93)87009-T.

[197] Matthew Z. Tien et al. PeptideBuilder. Version 1.1.0.

[198] Michael Krone, Katrin Bidmon, and Thomas Ertl. “GPU-based visualisation of pro-

tein secondary structure”. In: Theory and Practice of Computer Graphics 2008, TPCG

2008 - Eurographics UK Chapter Proceedings. Ed. by Ik Soo Lim and Wen Tang. The

Eurographics Association, 2008, pp. 115–122. isbn: 978-3-905673-67-8. doi: 10.2312/

LocalChapterEvents/TPCG/TPCG08/115-122.

[199] Fopke Klok. “Two moving coordinate frames for sweeping along a 3D trajectory”. In:

Computer Aided Geometric Design 3.3 (Nov. 1, 1986), pp. 217–229. issn: 0167-8396.

doi: 10.1016/0167-8396(86)90039-7.

199

https://doi.org/10.1371/journal.pone.0129653
https://doi.org/10.1371/journal.pone.0129653
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1145/800031.808575
https://doi.org/10.1109/38.156017
https://doi.org/10.1093/nar/gnj031
https://doi.org/10.1016/0263-7855(94)80088-X
https://doi.org/10.1007/978-3-540-72630-2_15
https://doi.org/10.1007/978-3-540-72630-2_15
https://doi.org/10.1016/0263-7855(93)87009-T
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG08/115-122
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG08/115-122
https://doi.org/10.1016/0167-8396(86)90039-7

[200] Nataraj Akkiraju et al. “Viewing geometric protein structures from inside a CAVE”.

In: IEEE Computer Graphics and Applications 16.4 (July 1996). Publisher: IEEE Com-

puter Society, pp. 58–61. issn: 02721716. doi: 10.1109/38.511855.

[201] M. Krone et al. “Visual Analysis of Biomolecular Cavities: State of the Art”. In:

Computer Graphics Forum 35.3 (June 1, 2016). Publisher: Blackwell Publishing Ltd,

pp. 527–551. issn: 01677055. doi: 10.1111/cgf.12928.

[202] Xavier Martinez et al. “Molecular Graphics: Bridging Structural Biologists and Com-

puter Scientists”. In: Structure 27.11 (Nov. 5, 2019). Publisher: Cell Press, pp. 1617–

1623. issn: 18784186. doi: 10.1016/j.str.2019.09.001.

[203] Cem Yuksel. “A Class of C 2 Interpolating Splines”. In: ACM Transactions on Graphics

39.5 (Sept. 4, 2020). Publisher: Association for Computing Machinery (ACM), pp. 1–14.

issn: 0730-0301. doi: 10.1145/3400301.

[204] Norman L. Allinger. “Conformational analysis. 130. MM2. A hydrocarbon force field

utilizing V1 and V2 torsional terms”. In: Journal of the American Chemical Society

99.25 (Dec. 1977). Publisher: UTC, pp. 8127–8134. issn: 0002-7863. doi: 10.1021/

ja00467a001.

[205] Norman L. Allinger, Young H. Yuh, and Jenn-Huei Lii. “Molecular Mechanics. The

MM3 Force Field for Hydrocarbons. 1”. In: Journal of the American Chemical Society

111.23 (1989). Publisher: American Chemical Society, pp. 8551–8566. issn: 0002-7863.

doi: 10.1021/ja00205a001.

[206] Jenn-Huei Lii and Norman L. Allinger. “Molecular Mechanics. The MM3 Force Field

for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics”. In: Journal of

the American Chemical Society 111.23 (1989). Publisher: American Chemical Society,

pp. 8566–8575. issn: 15205126. doi: 10.1021/ja00205a002.

[207] Jenn-Huei Lii and Norman L. Allinger. “Molecular mechanics. The MM3 force field

for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and

aromatic hydrocarbons”. In: Journal of the American Chemical Society 111.23 (Nov.

1989). Publisher: UTC, pp. 8576–8582. issn: 0002-7863. doi: 10.1021/ja00205a003.

[208] Norman L. Allinger, Fanbing Li, and Liqun Yan. “Molecular Mechanics. The MM3

Force Field for Alkenes”. In: Journal of Computational Chemistry 11.7 (1990). eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540110708, pp. 848–867. issn: 1096-

987X. doi: 10.1002/jcc.540110708.

[209] Norman L. Allinger, Kuohsiang Chen, and Jenn-Huei Lii. “An improved force field

(MM4) for saturated hydrocarbons”. In: Journal of Computational Chemistry 17.5

(Apr. 1, 1996). Publisher: John Wiley and Sons Inc., pp. 642–668. issn: 01928651.

doi: 10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U.

200

https://doi.org/10.1109/38.511855
https://doi.org/10.1111/cgf.12928
https://doi.org/10.1016/j.str.2019.09.001
https://doi.org/10.1145/3400301
https://doi.org/10.1021/ja00467a001
https://doi.org/10.1021/ja00467a001
https://doi.org/10.1021/ja00205a001
https://doi.org/10.1021/ja00205a002
https://doi.org/10.1021/ja00205a003
https://doi.org/10.1002/jcc.540110708
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U

[210] Neysa Nevins, Kuohsiang Chen, and Norman L. Allinger. “Molecular mechanics (MM4)

calculations on alkenes”. In: Journal of Computational Chemistry 17.5 (1996). eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291096-987X%28199604%2917%3A5/6%3C669%3A%3AAID-

JCC7%3E3.0.CO%3B2-S, pp. 669–694. issn: 1096-987X. doi: 10.1002/(SICI)1096-

987X(199604)17:5/6<669::AID-JCC7>3.0.CO;2-S.

[211] Neysa Nevins and Norman L. Allinger. “Molecular mechanics (MM4) vibrational fre-

quency calculations for alkenes and conjugated hydrocarbons”. In: Journal of Computa-

tional Chemistry 17.5 (1996). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291096-

987X%28199604%2917%3A5/6%3C730%3A%3AAID-JCC9%3E3.0.CO%3B2-V, pp. 730–

746. issn: 1096-987X. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<730::AID-

JCC9>3.0.CO;2-V.

[212] Junmei Wang et al. “Development and testing of a general amber force field”. In: Journal

of Computational Chemistry 25.9 (July 15, 2004). Publisher: John Wiley and Sons Inc.,

pp. 1157–1174. issn: 0192-8651. doi: 10.1002/jcc.20035.

[213] Hendrik Heinz et al. “Force Field for Mica-Type Silicates and Dynamics of Octade-

cylammonium Chains Grafted to Montmorillonite”. In: Chemistry of Materials 17.23

(Nov. 1, 2005). Publisher: American Chemical Society, pp. 5658–5669. issn: 0897-4756.

doi: 10.1021/cm0509328.

[214] Alex Tek et al. “Advances in Human-Protein Interaction - Interactive and Immersive

Molecular Simulations”. In: Protein-Protein Interactions. Publication Title: Protein-

Protein Interactions - Computational and Experimental Tools. IntechOpen, Mar. 30,

2012. isbn: 978-953-51-0397-4. doi: 10.5772/36568.

[215] Helen M. Deeks et al. “Interactive Molecular Dynamics in Virtual Reality Is an Effective

Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease”.

In: Journal of Chemical Information and Modeling 60.12 (Dec. 28, 2020). Publisher:

American Chemical Society, pp. 5803–5814. issn: 1549-9596. doi: 10.1021/acs.jcim.

0c01030.

[216] Matthieu Dreher et al. “Interactive molecular dynamics: Scaling up to large systems”.

In: Procedia Computer Science. Vol. 18. ISSN: 18770509. Elsevier B.V., Jan. 1, 2013,

pp. 20–29. doi: 10.1016/j.procs.2013.05.165.

[217] Nathan Luehr, Alex G.B. Jin, and Todd J. Mart́ınez. “Ab Initio Interactive Molecular

Dynamics on Graphical Processing Units (GPUs)”. In: Journal of Chemical Theory and

Computation 11.10 (Sept. 2, 2015). Publisher: American Chemical Society, pp. 4536–

4544. issn: 15499626. doi: 10.1021/acs.jctc.5b00419.

[218] Mark C. Surles et al. “Sculpting proteins interactively: Continual energy minimization

embedded in a graphical modeling system”. In: Protein Science 3.2 (1994). Publisher:

John Wiley & Sons, Ltd, pp. 198–210. issn: 09618368. doi: 10.1002/pro.5560030205.

201

https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<669::AID-JCC7>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<669::AID-JCC7>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<730::AID-JCC9>3.0.CO;2-V
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<730::AID-JCC9>3.0.CO;2-V
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/cm0509328
https://doi.org/10.5772/36568
https://doi.org/10.1021/acs.jcim.0c01030
https://doi.org/10.1021/acs.jcim.0c01030
https://doi.org/10.1016/j.procs.2013.05.165
https://doi.org/10.1021/acs.jctc.5b00419
https://doi.org/10.1002/pro.5560030205

[219] J. Leech, J.F. Prins, and J. Hermans. “SMD: visual steering of molecular dynamics for

protein design”. In: IEEE Computational Science and Engineering 3.4 (1996). Confer-

ence Name: IEEE Computational Science and Engineering, pp. 38–45. issn: 1558-190X.

doi: 10.1109/99.556511.

[220] H. Grubmüller, B. Heymann, and P. Tavan. “Ligand binding: molecular mechanics

calculation of the streptavidin-biotin rupture force”. In: Science (New York, N.Y.)

271.5251 (Feb. 16, 1996), pp. 997–999. issn: 0036-8075. doi: 10.1126/science.271.

5251.997.

[221] Xiongwu Wu and Shaomeng Wang. “Self-Guided Molecular Dynamics Simulation for

Efficient Conformational Search”. In: The Journal of Physical Chemistry B 102.37

(Sept. 1, 1998). Publisher: American Chemical Society, pp. 7238–7250. issn: 1520-6106.

doi: 10.1021/jp9817372.

[222] Xiongwu Wu, Shaomeng Wang, and Bernard R. Brooks. “Direct Observation of the

Folding and Unfolding of a β-Hairpin in Explicit Water through Computer Simula-

tion”. In: Journal of the American Chemical Society 124.19 (May 1, 2002). Publisher:

American Chemical Society, pp. 5282–5283. issn: 0002-7863. doi: 10.1021/ja0257321.

[223] Xiongwu Wu and Shaomeng Wang. “Helix Folding of an Alanine-Based Peptide in Ex-

plicit Water”. In: The Journal of Physical Chemistry B 105.11 (Mar. 1, 2001). Publisher:

American Chemical Society, pp. 2227–2235. issn: 1520-6106. doi: 10.1021/jp004048a.

[224] Wataru Shinoda and Masuhiro Mikami. “Self-guided molecular dynamics in the isother-

mal–isobaric ensemble”. In: Chemical Physics Letters 335.3 (Feb. 23, 2001), pp. 265–

272. issn: 0009-2614. doi: 10.1016/S0009-2614(01)00054-9.

[225] Xiongwu Wu and Bernard R. Brooks. “Self-guided Langevin dynamics simulation method”.

In: Chemical Physics Letters 381.3 (Nov. 14, 2003), pp. 512–518. issn: 0009-2614. doi:

10.1016/j.cplett.2003.10.013.

[226] Michal Koutek et al. “Virtual Spring Manipulators for Particle Steering in Molecular

Dynamics on the ResponsiveWorkbench”. In: Accepted: 2014-01-27T10:15:24Z ISSN:

1727-530X. The Eurographics Association, 2002. isbn: 978-1-58113-535-0. doi: 10 .

2312/EGVE/EGVE02/053-062.

[227] G. M. Torrie and J. P. Valleau. “Nonphysical sampling distributions in Monte Carlo

free-energy estimation: Umbrella sampling”. In: Journal of Computational Physics 23.2

(Feb. 1, 1977), pp. 187–199. issn: 0021-9991. doi: 10.1016/0021-9991(77)90121-8.

[228] Alessandro Laio and Michele Parrinello. “Escaping free-energy minima”. In: Proceedings

of the National Academy of Sciences 99.20 (Oct. 2002). Publisher: Proceedings of the

National Academy of Sciences, pp. 12562–12566. doi: 10.1073/pnas.202427399.

202

https://doi.org/10.1109/99.556511
https://doi.org/10.1126/science.271.5251.997
https://doi.org/10.1126/science.271.5251.997
https://doi.org/10.1021/jp9817372
https://doi.org/10.1021/ja0257321
https://doi.org/10.1021/jp004048a
https://doi.org/10.1016/S0009-2614(01)00054-9
https://doi.org/10.1016/j.cplett.2003.10.013
https://doi.org/10.2312/EGVE/EGVE02/053-062
https://doi.org/10.2312/EGVE/EGVE02/053-062
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1073/pnas.202427399

[229] Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. “Well-Tempered Meta-

dynamics: A Smoothly Converging and Tunable Free-Energy Method”. In: Physical

Review Letters 100.2 (Jan. 18, 2008). Publisher: American Physical Society, p. 020603.

doi: 10.1103/PhysRevLett.100.020603.

[230] David R. Glowacki, Emanuele Paci, and Dmitrii V. Shalashilin. “Boxed molecular dy-

namics: A simple and general technique for accelerating rare event kinetics and map-

ping free energy in large molecular systems”. In: Journal of Physical Chemistry B

113.52 (Dec. 31, 2009). Publisher: American Chemical Society, pp. 16603–16611. issn:

15206106. doi: 10.1021/jp9074898.

[231] Jonathan Booth et al. “Recent applications of boxed molecular dynamics: A simple

multiscale technique for atomistic simulations”. In: Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences 372.2021 (Aug. 6,

2014). Publisher: Royal Society. issn: 1364503X. doi: 10.1098/rsta.2013.0384.

[232] Robin J. Shannon et al. “Adaptively Accelerating Reactive Molecular Dynamics Using

Boxed Molecular Dynamics in Energy Space”. In: Journal of Chemical Theory and

Computation 14.9 (Sept. 11, 2018). Publisher: American Chemical Society, pp. 4541–

4552. issn: 15499626. doi: 10.1021/acs.jctc.8b00515.

[233] Rafael A. Jara-Toro et al. “Enhancing Automated Reaction Discovery with Boxed

Molecular Dynamics in Energy Space”. In: ChemSystemsChem 2.1 (Jan. 23, 2020).

Publisher: arXiv, e1900024. issn: 2570-4206. doi: 10.1002/syst.201900024.

[234] A. Amadei, A. B. Linssen, and H. J. Berendsen. “Essential dynamics of proteins”.

In: Proteins 17.4 (Dec. 1993), pp. 412–425. issn: 0887-3585. doi: 10.1002/prot.

340170408.

[235] Stephanie R. Hare et al. “Low dimensional representations along intrinsic reaction co-

ordinates and molecular dynamics trajectories using interatomic distance matrices”. In:

Chemical Science 10.43 (2019). Publisher: Royal Society of Chemistry, pp. 9954–9968.

doi: 10.1039/C9SC02742D.

[236] L. Molgedey and H. G. Schuster. “Separation of a mixture of independent signals using

time delayed correlations”. In: Physical Review Letters 72.23 (June 6, 1994). Publisher:

American Physical Society, pp. 3634–3637. doi: 10.1103/PhysRevLett.72.3634.

[237] Yusuke Naritomi and Sotaro Fuchigami. “Slow dynamics of a protein backbone in

molecular dynamics simulation revealed by time-structure based independent compo-

nent analysis”. In: The Journal of Chemical Physics 139.21 (Dec. 7, 2013). Publisher:

American Institute of Physics, p. 215102. issn: 0021-9606. doi: 10.1063/1.4834695.

203

https://doi.org/10.1103/PhysRevLett.100.020603
https://doi.org/10.1021/jp9074898
https://doi.org/10.1098/rsta.2013.0384
https://doi.org/10.1021/acs.jctc.8b00515
https://doi.org/10.1002/syst.201900024
https://doi.org/10.1002/prot.340170408
https://doi.org/10.1002/prot.340170408
https://doi.org/10.1039/C9SC02742D
https://doi.org/10.1103/PhysRevLett.72.3634
https://doi.org/10.1063/1.4834695

[238] Steffen Schultze and Helmut Grubmüller. “Time-Lagged Independent Component Anal-

ysis of Random Walks and Protein Dynamics”. In: Journal of Chemical Theory and

Computation 17.9 (Sept. 14, 2021). Publisher: American Chemical Society, pp. 5766–

5776. issn: 1549-9618. doi: 10.1021/acs.jctc.1c00273.

[239] Mohammad M. Sultan and Vijay S. Pande. “tICA-Metadynamics: Accelerating Meta-

dynamics by Using Kinetically Selected Collective Variables”. In: Journal of Chemical

Theory and Computation 13.6 (June 13, 2017). Publisher: American Chemical Society,

pp. 2440–2447. issn: 1549-9618. doi: 10.1021/acs.jctc.7b00182.

[240] Helen Deeks et al. Virtual reality sampled pathways guide free energy calculation of

protein-ligand binding. Apr. 19, 2022. doi: 10.26434/chemrxiv-2022-w89tc.

[241] S. Izrailev et al. “Molecular dynamics study of unbinding of the avidin-biotin complex”.

In: Biophysical Journal 72.4 (1997). Publisher: Biophysical Society, pp. 1568–1581. issn:

00063495. doi: 10.1016/S0006-3495(97)78804-0.

[242] Rainer A. Böckmann and Helmut Grubmüller. “Nanoseconds molecular dynamics sim-

ulation of primary mechanical energy transfer steps in F1-ATP synthase”. In: Nature

Structural Biology 9.3 (Mar. 2002). Bandiera abtest: a Cg type: Nature Research Jour-

nals Number: 3 Primary atype: Research Publisher: Nature Publishing Group, pp. 198–

202. issn: 1545-9985. doi: 10.1038/nsb760.

[243] Aleksij Aksimentiev et al. “Insights into the Molecular Mechanism of Rotation in the

Fo Sector of ATP Synthase”. In: Biophysical Journal 86.3 (Mar. 2004), pp. 1332–1344.

issn: 0006-3495.

[244] Jan Saam et al. “Molecular Dynamics Investigation of Primary Photoinduced Eventsin

the Activation of Rhodopsin”. In: Biophysical Journal 83.6 (Dec. 1, 2002). Publisher:

Elsevier, pp. 3097–3112. issn: 0006-3495. doi: 10.1016/S0006-3495(02)75314-9.

[245] Carsten Kutzner, Jacek Czub, and Helmut Grubmüller. “Keep It Flexible: Driving

Macromolecular Rotary Motions in Atomistic Simulations with GROMACS”. In: Jour-

nal of Chemical Theory and Computation 7.5 (May 10, 2011). Publisher: American

Chemical Society, pp. 1381–1393. doi: 10.1021/CT100666V.

[246] Andreas Dullweber, Benedict Leimkuhler, and Robert McLachlan. “Symplectic splitting

methods for rigid body molecular dynamics”. In: The Journal of Chemical Physics

107.15 (Oct. 15, 1997). Publisher: American Institute of Physics, pp. 5840–5851. issn:

0021-9606. doi: 10.1063/1.474310.

[247] T. F. Miller et al. “Symplectic quaternion scheme for biophysical molecular dynam-

ics”. In: The Journal of Chemical Physics 116.20 (May 22, 2002). Publisher: American

Institute of PhysicsAIP, pp. 8649–8659. issn: 0021-9606. doi: 10.1063/1.1473654.

204

https://doi.org/10.1021/acs.jctc.1c00273
https://doi.org/10.1021/acs.jctc.7b00182
https://doi.org/10.26434/chemrxiv-2022-w89tc
https://doi.org/10.1016/S0006-3495(97)78804-0
https://doi.org/10.1038/nsb760
https://doi.org/10.1016/S0006-3495(02)75314-9
https://doi.org/10.1021/CT100666V
https://doi.org/10.1063/1.474310
https://doi.org/10.1063/1.1473654

[248] Ana J. Silveira and Charlles R. A. Abreu. “Molecular dynamics with rigid bodies:

Alternative formulation and assessment of its limitations when employed to simulate

liquid water”. In: The Journal of Chemical Physics 147.12 (Sept. 28, 2017). Publisher:

American Institute of Physics, p. 124104. issn: 0021-9606. doi: 10.1063/1.5003636.

[249] Oliver Johns. “Kinematics of Rotation”. In: Analytical Mechanics for Relativity and

Quantum Mechanics. 2011, pp. 152–199. isbn: 978-0-19-100162-8.

[250] E. Krissinel and K. Henrick. “Secondary-structure matching (SSM), a new tool for fast

protein structure alignment in three dimensions”. In: Acta Crystallographica. Section D,

Biological Crystallography 60 (Pt 12 Pt 1 Dec. 2004), pp. 2256–2268. issn: 0907-4449.

doi: 10.1107/S0907444904026460.

[251] W. Kabsch. “A solution for the best rotation to relate two sets of vectors”. In: Acta Crys-

tallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystal-

lography 32.5 (Sept. 1, 1976). Number: 5 Publisher: International Union of Crystallog-

raphy, pp. 922–923. issn: 0567-7394. doi: 10.1107/S0567739476001873.

[252] W. Kabsch. “A discussion of the solution for the best rotation to relate two sets

of vectors”. In: Acta Crystallographica Section A: Crystal Physics, Diffraction, The-

oretical and General Crystallography 34.5 (Sept. 1, 1978). Number: 5 Publisher: In-

ternational Union of Crystallography, pp. 827–828. issn: 0567-7394. doi: 10.1107/

S0567739478001680.

[253] Konstantin N. Kudin and Anatoly Y. Dymarsky. “Eckart axis conditions and the min-

imization of the root-mean-square deviation: Two closely related problems”. In: The

Journal of Chemical Physics 122.22 (June 8, 2005). Publisher: American Institute of

Physics, p. 224105. issn: 0021-9606. doi: 10.1063/1.1929739.

[254] Gerald R. Kneller. “Eckart axis conditions, Gauss’ principle of least constraint, and the

optimal superposition of molecular structures”. In: The Journal of Chemical Physics

128.19 (May 21, 2008). Publisher: American Institute of Physics, p. 194101. issn: 0021-

9606. doi: 10.1063/1.2902290.

[255] Guillaume Chevrot et al. “Least constraint approach to the extraction of internal mo-

tions from molecular dynamics trajectories of flexible macromolecules”. In: The Journal

of Chemical Physics 135.8 (Aug. 28, 2011). Publisher: American Institute of Physics,

p. 084110. issn: 0021-9606. doi: 10.1063/1.3626275.

[256] Douglas R. Gregory. “Rotating reference frames”. In: Classical Mechanics. Cambridge

University Press, Apr. 13, 2006, pp. 469–491. isbn: 978-0-521-82678-5.

[257] Petr Šulc et al. “Sequence-dependent thermodynamics of a coarse-grained DNA model”.

In: The Journal of Chemical Physics 137.13 (Oct. 7, 2012). Publisher: American Insti-

tute of PhysicsAIP, p. 135101. issn: 0021-9606. doi: 10.1063/1.4754132.

205

https://doi.org/10.1063/1.5003636
https://doi.org/10.1107/S0907444904026460
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1107/S0567739478001680
https://doi.org/10.1107/S0567739478001680
https://doi.org/10.1063/1.1929739
https://doi.org/10.1063/1.2902290
https://doi.org/10.1063/1.3626275
https://doi.org/10.1063/1.4754132

[258] A. Liwo et al. “A united-residue force field for off-lattice protein-structure simulations.

I. Functional forms and parameters of long-range side-chain interaction potentials from

protein crystal data”. In: Journal of Computational Chemistry 18.7 (Dec. 7, 1997),

pp. 849–873. issn: 1096-987X. doi: 10.1002/(SICI)1096-987X(199705)18:7<849::

AID-JCC1>3.0.CO;2-R.

[259] Roberto Berardi, Carlo Fava, and Claudio Zannoni. “A Gay–Berne potential for dis-

similar biaxial particles”. In: Chemical Physics Letters 297.1 (Nov. 20, 1998), pp. 8–14.

issn: 0009-2614. doi: 10.1016/S0009-2614(98)01090-2.

[260] R. Everaers and M. R. Ejtehadi. “Interaction potentials for soft and hard ellipsoids”.

In: Physical Review E 67.4 (Apr. 21, 2003). Publisher: American Physical Society,

p. 041710. doi: 10.1103/PhysRevE.67.041710.

[261] Norbert Kern and Daan Frenkel. “Fluid–fluid coexistence in colloidal systems with

short-ranged strongly directional attraction”. In: The Journal of Chemical Physics

118.21 (June 2003). Publisher: American Institute of Physics, pp. 9882–9889. issn:

0021-9606. doi: 10.1063/1.1569473.

[262] W. Michael Brown et al. “Liquid crystal nanodroplets in solution”. In: The Journal

of Chemical Physics 130.4 (Jan. 28, 2009). Publisher: American Institute of Physics,

p. 044901. issn: 0021-9606. doi: 10.1063/1.3058435.

[263] Shengfeng Cheng and Mark J. Stevens. “Self-assembly of chiral tubules”. In: Soft Matter

10.3 (Dec. 17, 2013). Publisher: The Royal Society of Chemistry, pp. 510–518. issn:

1744-6848. doi: 10.1039/C3SM52631C.

[264] Trung Dac Nguyen and Steven J. Plimpton. “Aspherical particle models for molecu-

lar dynamics simulation”. In: Computer Physics Communications 243 (Oct. 1, 2019),

pp. 12–24. issn: 0010-4655. doi: 10.1016/j.cpc.2019.05.010.

[265] Oliver Henrich et al. “Coarse-grained simulation of DNA using LAMMPS”. In: The

European Physical Journal E 41.5 (May 10, 2018), p. 57. issn: 1292-895X. doi: 10.

1140/epje/i2018-11669-8.

[266] Adam Liwo et al. “Theory and Practice of Coarse-Grained Molecular Dynamics of

Biologically Important Systems”. In: Biomolecules 11.9 (Sept. 2021). Number: 9 Pub-

lisher: Multidisciplinary Digital Publishing Institute, p. 1347. issn: 2218-273X. doi:

10.3390/biom11091347.

[267] Denis J. Evans. “On the representatation of orientation space”. In: Molecular Physics

34.2 (Aug. 1, 1977). Publisher: Taylor & Francis eprint: https://doi.org/10.1080/00268977700101751,

pp. 317–325. issn: 0026-8976. doi: 10.1080/00268977700101751.

206

https://doi.org/10.1002/(SICI)1096-987X(199705)18:7<849::AID-JCC1>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1096-987X(199705)18:7<849::AID-JCC1>3.0.CO;2-R
https://doi.org/10.1016/S0009-2614(98)01090-2
https://doi.org/10.1103/PhysRevE.67.041710
https://doi.org/10.1063/1.1569473
https://doi.org/10.1063/1.3058435
https://doi.org/10.1039/C3SM52631C
https://doi.org/10.1016/j.cpc.2019.05.010
https://doi.org/10.1140/epje/i2018-11669-8
https://doi.org/10.1140/epje/i2018-11669-8
https://doi.org/10.3390/biom11091347
https://doi.org/10.1080/00268977700101751

[268] D.C Rapaport. “Molecular dynamics simulation using quaternions”. In: Journal of Com-

putational Physics 60.2 (1985), pp. 306–314. issn: 00219991. doi: 10.1016/0021-

9991(85)90009-9.

[269] R. L. Davidchack, T. E. Ouldridge, and M. V. Tretyakov. “New Langevin and gradient

thermostats for rigid body dynamics”. In: The Journal of Chemical Physics 142.14

(Apr. 14, 2015). Publisher: AIP Publishing LLCAIP Publishing, p. 144114. issn: 0021-

9606. doi: 10.1063/1.4916312.

[270] André Lanrezac, Nicolas Férey, and Marc Baaden. “Wielding the power of interactive

molecular simulations”. In: WIREs Computational Molecular Science n/a (n/a 2021).

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1594, e1594. issn: 1759-

0884. doi: 10.1002/wcms.1594.

[271] Seth Cooper et al. “Predicting protein structures with a multiplayer online game”.

In: Nature 466.7307 (Aug. 2010). Number: 7307 Publisher: Nature Publishing Group,

pp. 756–760. issn: 1476-4687. doi: 10.1038/nature09304.

[272] Guillaume Levieux et al. “Udock, the interactive docking entertainment system”. In:

Faraday Discussions 169 (2014), pp. 425–441. issn: 1359-6640. doi: 10.1039/c3fd00147d.

[273] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to Splines

for use in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers,

Inc., 1987. isbn: 0-934613-27-3.

207

https://doi.org/10.1016/0021-9991(85)90009-9
https://doi.org/10.1016/0021-9991(85)90009-9
https://doi.org/10.1063/1.4916312
https://doi.org/10.1002/wcms.1594
https://doi.org/10.1038/nature09304
https://doi.org/10.1039/c3fd00147d

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	What is Molecular Dynamics?
	What is Virtual Reality?
	Thesis Overview
	Contributions
	Publications

	The Narupa Framework
	Development of NarupaXR
	Co-location in Virtual Reality
	Communication
	Synchronising Data
	Streaming Molecular Dynamics
	Integrations and Expansions
	Visualisation
	Conclusions

	Molecular Visualisation
	Introduction
	Ray casting
	Periodic Boundary Conditions
	Conclusions

	Continuity in Secondary Structure Rendering
	Protein Structure
	History of the ribbon diagram
	Splines and Curves
	Extruding the curve
	Ribbon Flipping
	Conclusions

	Interactive Molecular Dynamics
	Introduction
	Interactive Molecular Dynamics
	Rotational Interactions
	Finite and Asymmetric Particles
	Conclusions

	Conclusions
	Appendices
	Transformations & Affine Coordinates
	Linear Transformations
	Affine Transformations
	Perspective Transformations

	Splines
	Bezier Curves
	Cubic Hermite Spline
	Natural Cubic Spline
	B-Splines

	Quaternions
	Quaternions as rotations

	Bibliography

