
Adaptive Value Function
Approximation in Reinforcement

Learning using Wavelets

Michael Mitchley
Supervised by Prof. George Konidaris and Prof. Ebrahim

Momoniat

A thesis presented for the degree of
Doctor of Philosophy

School of Computational and Applied Mathematics
University of the Witwatersrand, Johannesburg

South Africa
July, 2015

Abstract

Reinforcement learning agents solve tasks by finding policies that maximise their reward
over time. The policy can be found from the value function, which represents the value
of each state-action pair. In continuous state spaces, the value function must be ap-
proximated. Often, this is done using a fixed linear combination of functions across all
dimensions.

We introduce and demonstrate the wavelet basis for reinforcement learning, a basis
function scheme competitive against state of the art fixed bases. We extend two online
adaptive tiling schemes to wavelet functions and show their performance improvement
across standard domains. Finally we introduce the Multiscale Adaptive Wavelet Basis
(MAWB), a wavelet-based adaptive basis scheme which is dimensionally scalable and in-
sensitive to the initial level of detail. This scheme adaptively grows the basis function
set by combining across dimensions, or splitting within a dimension those candidate func-
tions which have a high estimated projection onto the Bellman error. A number of novel
measures are used to find this estimate.

i

Dedication

To my shining star, Miriella, whose boundless love, patience, help and support has made
this thesis possible.

ii

Declaration

I, Michael Mitchley, declare that this thesis titled ‘Adaptive Value Function Approximation
in Reinforcement Learning using Wavelets’ and the work presented in it are my own. I
confirm that:

! This work was done wholly while in candidature for a research degree at this Uni-
versity.

! This work has not been submitted to any other institution or for any other degree.

! Where I have consulted the published work of others, this is always clearly attributed.

! Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

! I have acknowledged all main sources of help.

Signed:

Date:

iii

Michael Mitchley
30/07/2015

Acknowledgements

I would like to thank my supervisors George Konidaris and Ebrahim Momoniat for the
help and advice offered over the past three years. In particular, I would like to thank
George for the weekly meetings, for his hospitality during my visit, and for his endless
enthusiasm for this project. In the long, dark teatime of the soul that happens so often
during experimentation, George was always there to offer advice and support (and to tell
me to improve my results).

Thank you to Philip Thomas and Bruno da Silva (and their partners) for hosting
me during the February 2014 Amherst trip, and for sharing their research and favourite
watering hole. I look forward to future collaborations and visits, with the next round
being on me.

Thank you to Byron, Charis, and Rhameez for enduring countless small questions with
good grace and making the office a fun place to work.

iv

Contents

Abstract i

Dedication ii

Declaration iii

Acknowledgements iv

Notation xi

1 Introduction 1

2 Background and Related Work 3
2.1 Introduction . 3
2.2 Reinforcement Learning . 3
2.3 Value Function Approximation . 5

2.3.1 Learning the Value Function Online 5
2.3.2 Batch and Offline Learning . 7

2.4 Basis Function Schemes . 8
2.4.1 Tile Coding . 8
2.4.2 Radial Basis Functions . 8
2.4.3 Polynomial Basis Functions . 9
2.4.4 The Fourier Basis . 9
2.4.5 Nonlinear Schemes . 10

2.5 Adaptive Basis Functions . 10
2.5.1 Feature Selection . 10
2.5.2 Constructive Techniques . 11
2.5.3 Adaptive Techniques . 12

2.6 Conclusion . 13

3 The Wavelet Basis 14
3.1 Introduction . 14
3.2 Wavelets and Their Properties . 14

3.2.1 Function Approximation using Wavelets 14
3.2.2 Multiresolution Analysis . 17
3.2.3 Bases and Frames . 18
3.2.4 Wavelet Families . 18

3.3 The Wavelet Basis for Reinforcement Learning 24
3.3.1 Extension to Multiple Dimensions 24
3.3.2 Parameters . 24
3.3.3 Wavelet Families for Reinforcement Learning 25

3.4 Wavelets on the Interval . 26

v

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

3.5 Empirical Results . 27
3.5.1 Methodology . 27
3.5.2 Discontinuous Room . 28
3.5.3 Mountain Car . 28
3.5.4 Acrobot . 28
3.5.5 Pinball . 29
3.5.6 3D Mountain Car . 29
3.5.7 Further Results . 38

3.6 Discussion and Conclusion . 38

4 Relevance Measures 40
4.1 Introduction . 40
4.2 Novel Relevance Measure . 41
4.3 Weighted Relevance Measure . 42
4.4 Measuring Error . 44
4.5 Measuring the Relevance of Functions . 44
4.6 Empirical Results . 44
4.7 Discussion and Conclusion . 45

5 Adaptive Wavelet Refinement 48
5.1 Introduction . 48
5.2 Related Work . 48
5.3 Adaptive Wavelet Refinement . 50

5.3.1 Theoretical Results . 50
5.4 Experimental Results . 52

5.4.1 Discontinuous Room . 52
5.4.2 Mountain Car . 52
5.4.3 Acrobot . 55
5.4.4 Pinball . 57
5.4.5 3D Mountain Car . 57

5.5 Discussion . 57
5.6 Conclusion . 59

6 Incremental Basis Function Dependency Discovery 61
6.1 Introduction . 61
6.2 Related Work . 61
6.3 Incremental Basis Function Dependency Discovery 63
6.4 Empirical Results . 64

6.4.1 Discontinuous Room . 65
6.4.2 Mountain Car . 65
6.4.3 Acrobot . 65
6.4.4 Pinball . 65
6.4.5 3D Mountain Car . 73

6.5 Discussion . 73
6.6 Conclusion . 75

7 The Multiscale Adaptive Wavelet Basis 76
7.1 Introduction . 76
7.2 Multiscale Adaptive Wavelet Basis Algorithm 76
7.3 Theoretical Results . 77
7.4 Empirical Results . 79

7.4.1 Discontinuous Room . 79

Michael Mitchley vi

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

7.4.2 Mountain Car . 79
7.4.3 Acrobot . 81
7.4.4 Pinball . 81
7.4.5 3D Mountain Car . 81
7.4.6 Car Driving Simulation . 81

7.5 Discussion . 86
7.6 Conclusion . 88

8 Conclusion 89
8.1 Contributions . 89
8.2 Future work . 89

Michael Mitchley vii

List of Figures

3.1 The Haar wavelet family. 15
3.2 Three dilations (a) and five translations (b) of the second order B-spline

wavelet . 15
3.3 An approximation formed with a single Haar father wavelet at scale 0 . . . 16
3.4 An approximation formed with a single Haar father wavelet and a single

Haar mother wavelet at scale 0 . 16
3.5 Further detail is added to the approximation using mother wavelets 17
3.6 The Daubechies wavelet family. 19
3.7 The Coiflet wavelet family . 20
3.8 The Symlet wavelet family . 20
3.9 The Shannon wavelet family . 20
3.10 The Meyer wavelet family . 21
3.11 A biorthogonal analysis wavelet family . 21
3.12 A biorthogonal synthesis wavelet family . 21
3.13 B-spline wavelets of various orders . 22
3.14 A Battle-Lemarie wavelet family . 23
3.15 A father wavelet tile formed in x and y . 24
3.16 Discontinuous room returns using 4 basis functions per dimension 29
3.17 Discontinuous room returns using 6 basis functions per dimension 30
3.18 Discontinuous room returns using 8 basis functions per dimension 30
3.19 Mountain Car returns using 4 basis functions per dimension 31
3.20 Mountain Car returns using 6 basis functions per dimension 31
3.21 Mountain Car returns using 8 basis functions per dimension 32
3.22 Acrobot returns using 4 basis functions per dimension 32
3.23 Acrobot returns using 6 basis functions per dimension 33
3.24 Acrobot returns using 8 basis functions per dimension 33
3.25 Pinball returns using 4 basis functions per dimension 34
3.26 Pinball returns using 6 basis functions per dimension 34
3.27 Pinball returns using 8 basis functions per dimension 35
3.28 The pinball map used . 35
3.29 3D Mountain car returns using 4 basis functions per dimension 36
3.30 3D Mountain car returns using 6 basis functions per dimension 36
3.31 3D Mountain car returns using 8 basis functions per dimension 37

4.1 Absolute weights for mountain car . 45
4.2 Relevances (left), observed error minus relevance (centre) and absolute error

minus relevance (right) for measures computed ordinarily (a, b, c), with
sample attenuation (d, e, f), with decay (g, h, i) and with both sample
attenuation and decay (j, k, l), on the mountain car domain, for 1 episode
(blue), 20 episodes (green) and 1000 episodes (red). Average value lines are
shown in same colours. 46

viii

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

5.1 AWR Returns for Discontinuous Room . 53
5.2 AWR Number of Basis Functions for Discontinuous Room 53
5.3 AWR Returns for Mountain Car . 54
5.4 AWR Number of Basis Functions for Mountain Car 54
5.5 AWR Returns for Acrobot . 55
5.6 AWR Number of Basis Functions for Acrobot 56
5.7 AWR Returns for Pinball . 57
5.8 AWR Number of Basis Functions for Pinball 58
5.9 AWR Returns for 3D Mountain Car . 58
5.10 AWR Number of Basis Functions for 3D Mountain Car 59

6.1 IFDD Returns for Discontinuous Room . 66
6.2 IFDD Number of Basis Functions forDiscontinuousRoomIFDD 66
6.3 IFDD Returns for Mountain Car at Scale 1 67
6.4 IFDD Number of Basis Functions for Mountain Car at Scale 1 67
6.5 IFDD Returns for Mountain Car at Scale 2 68
6.6 IFDD Number of Basis Functions for Mountain Car at Scale 2 68
6.7 IFDD Returns for Acrobot at Scale 1 . 69
6.8 IFDD Number of Basis Functions for Acrobot at Scale 1 69
6.9 IFDD Returns for Acrobot at Scale 2 . 70
6.10 IFDD Number of Basis Functions for Acrobot at Scale 2 70
6.11 IFDD Returns for Pinball at Scale 1 . 71
6.12 IFDD Number of Basis Functions for Pinball at Scale 1 71
6.13 IFDD Returns for Pinball at Scale 2 . 72
6.14 IFDD Number of Basis Functions for Pinball at Scale 2 72
6.15 IFDD Returns for 3D Mountain Car at Scale 1 73
6.16 IFDD Number of Basis Functions for 3D Mountain Car at Scale 1 74
6.17 IFDD Returns for 3D Mountain Car at Scale 2 74
6.18 IFDD Number of Basis Functions for 3D Mountain Car at Scale 2 75

7.1 MAWB Returns for Discontinuous Room 79
7.2 MAWB Number of Basis Functions for Discontinuous Room 80
7.3 MAWB Returns for Mountain Car . 80
7.4 MAWB Number of Basis Functions for Mountain Car 81
7.5 MAWB Returns for Acrobot at Scale 1 . 82
7.6 MAWB Number of Basis Functions for Acrobot at Scale 1 82
7.7 MAWB Returns for Acrobot at Scale 2 . 83
7.8 MAWB Number of Basis Functions for Acrobot at Scale 2 83
7.9 MAWB Returns for Pinball . 84
7.10 MAWB Number of Basis Functions for Pinball 84
7.11 MAWB Returns for 3D Mountain Car . 85
7.12 MAWB Number of Basis Functions for 3D Mountain Car 85
7.13 MAWB Returns for 19 lane Car Task . 86
7.14 MAWB Number of Basis Functions for 19 lane Car Task 87
7.15 Time taken to execute Car Tasks of varying dimensions 87
7.16 Final returns of Car Tasks of varying dimensions 88

Michael Mitchley ix

List of Tables

3.1 Comparative properties of wavelet families 23
3.2 Unique features of wavelet families . 23
3.3 Properties of wavelet families suggested for use in RL 26
3.4 Number of functions for the tested parameter combinations 28
3.5 Dimensions and actions of each tested domain 28
3.6 Average standard deviation for each basis function type and domain. 38
3.7 LSTD residuals for each basis function type and domain. 38

5.1 AWR results summary . 59

6.1 IBFDD results summary . 73

7.1 MAWB results summary . 88

x

Notation

S The state space, or set of all possible states
s An arbitrary state
π An arbitrary policy, mapping each state to an action
π∗ The optimal policy, maximising reward
s′ The successor state of s, after executing action a according to policy π
A The action space, or set of all possible actions
a An arbitrary action
a′ The action chosen in state s′ using policy π
T A transition probability density function
γ The discount factor of the MDP
α The learning rate of the agent
ϵ The exploration rate of the policy
Λ The eligibility trace
w The parameter or weight vector of a basis function series
D The number of dimensions in S for a continuous state MDP
d A specific state dimension in a continuous state MDP
n The order of the function approximation
φ A father wavelet function in one dimension
ψ A mother wavelet function in one dimension
Φ A father wavelet tile in multiple dimensions
ΨG A wavelet tile in all dimensions
τ A tolerance
ρ The per-function relevance
A The per-function absolute error
O The per-function observed error
T The number of samples used in an estimate
σ Standard deviation

xi

Chapter 1

Introduction

When one learns a new task, one discovers the dependencies between task elements indi-
vidually, rather than assuming full dependence between all task elements. Consider, for
example, learning to drive: a new driver must be instructed on the interplay between the
gear lever and the clutch as, in the absense of prior experience, the driver may not know of
their connection. Appropriate levels of detail, too, must be discovered for the task. In our
car scenario, one must discover how much to turn the steering wheel: a fraction of a degree
is too fine a detail level, while ‘clockwise or anticlockwise’ would be too coarse. Likewise, it
is sufficient to gauge the rough level of fuel in the tank (to, perhaps, the nearest quarter),
rather than knowing the exact quantity of fuel remaining, or differentiating only between
empty and not empty. Our first-time driver, however, might find it advantageous to begin
the lesson with only this coarse level of detail, and add to it as the task is mastered.

When an intelligent computational agent learns a task, the detail level required to rep-
resent the knowledge needed to solve that task is typically set manually prior to learning,
and full feature dependence is assumed between the state dimensions (where each dimen-
sion corresponds to a different measurable quantity in the environment or state). This
leads to agents which do not scale with dimensionality: the number of features required
to represent the same level of detail across all state dimensions grows exponentially in the
number of dimensions, a problem often referred to as the curse of dimensionality. Further-
more, the initial detail chosen may be too coarse (in which case the agent may not learn to
perform the task well, or could even fail to accomplish the task at all), or too fine (in which
case the agent will take a long time to learn, as the knowledge gained in each attempt
is highly localised). Scaling with dimension will require a representational framework in
which the agent may assume independence between task features, until such dependencies
are discovered to be important. Detail-based adaptivity would ideally balance generality
(and thus fast learning) against the eventual representation of fine-scale detail as optimal
behaviour is achieved.

Within reinforcement learning, adaptive value function approximation techniques have
attempted to address the curse of dimensionality or adaptive representation separately. To
date, no online linear value function approximation method has addressed both problems.
Furthermore, prior adaptive techniques rely on simple binary functions, and thus lack
representational ability.

In this thesis, we propose two algorithms for real-valued functions; Incremental Feature
Dependency Discovery and Adaptive Wavelet Refinement, which address the problems of
feature dependence discovery and detail level discovery respectively, using a number of
novel measures of feature error and relevance. We then combine these into a hybrid
algorithm which is able to discover appropriate dependencies and detail levels through
online sampling, called the Multiscale Adaptive Wavelet Basis.

The remainder of this thesis is organised as follows. In Chapter 2, we present a

1

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

literature review of topics related to value function approximation within reinforcement
learning. Value functions give the ‘value’ of being in a particular state (or state-action
pair). When the state space of the problem is continuous, the value of each state cannot be
represented directly, and so an approximation of the value function is required. In Chapter
3, we discuss function approximation using wavelets, a class of refineable function which
generalises Fourier analysis. Since much of the literature on wavelets discusses their use
from a function analysis perspective, we explain clearly their use in the context of function
synthesis, with specific focus on their use in value function approximation in reinforcement
learning. We demonstrate the competitiveness of a number of fixed wavelet bases against
the state of the art. These chapters may be skipped by readers familiar with either value
function approximation or wavelet synthesis theory respectively.

In Chapter 4, we examine how the usefulness of a function can be measured in an online
setting, and present a number of novel measures of function error and relevance. We argue
for the use of these relevance measures, supported by theoretical and empirical results. In
Chapter 5, the novel measures of the previous chapter are used to extend the adaptive
tile coding algorithm (ATC) [Whiteson et al. 2007], using the wavelet basis discussed in
Chapter 3. We show that the resulting algorithm is convergent, and that wavelets are
both necessary and sufficient for certain classes of detail-based value function adaptation.
We show also that the novel algorithm performs better than a fixed basis.

Chapter 6 extends the binary feature-based incremental feature dependency discovery
algorithm (IFDD) [Geramifard et al. 2011] to arbitrary function types through the use
of our novel relevance measures. We show convergence results and demonstrate the per-
formance of our new algorithm against two variants of IFDD using both tile coding and
wavelets. Chapter 7 showcases the main result of this thesis, the novel Multiscale Adaptive
Wavelet Basis (MAWB) which combines the extensions of the previous two chapters into a
basis function scheme that adapts in both feature dependency and detail level. This allows
one to apply value function approximation to arbitrarily high dimensional domains at a
very low initial detail level. MAWB retains the convergence properties and performance of
the two algorithm extensions. We demonstrate the scalability of MAWB using a domain
with 100 continuous state variables. Finally, in Chapter 8, we summarise the results and
contributions, and discuss future directions that may be taken.

Michael Mitchley 2

Chapter 2

Background and Related Work

2.1 Introduction

Before introducing the novel work of this thesis, we first provide a brief introduction
to reinforcement learning, and examine the state of the art of adaptive value function
approximation. This chapter is intended for readers familiar with machine learning, but
readers already familiar with reinforcement learning may wish to skip to the next chapter.

2.2 Reinforcement Learning

Reinforcement learning is a machine learning framework in which an agent acts in an
environment and receives feedback in the form of rewards based on the outcomes of those
actions. The agent may be learning to complete a task, but that task is not explicitly
programmed into the agent. Instead, the agent learns to maximise the reward it obtains—
desirable behaviour is rewarded and undesirable behaviour is penalised.

Reinforcement learning tasks are commonly modelled as Markov decision processes
(MDPs), although non-Markov frameworks exist as well. An MDP is described by a tuple
(S, A, T , R, γ) where S is the set of states, A is the set of actions the agent has available
to it, the transition probability T (s, a, s′) !→ [0, 1] is the transition function, or probability
of transitioning to state s′ after executing action a in state s, and R(s, a, s′) !→ R is the
reward given by the system upon transition from state s to s′ through the execution of
action a. The discount factor γ ∈ (0, 1) informs the agent of how much future rewards
should be discounted, in favour of present rewards. The goal of the agent is to maximise
the total reward it obtains by finding and following an optimal policy π(s, a) !→ [0, 1]
giving the probability of executing action a in state s, subject to the discount γ.

If reinforcement learning were applied to the game of checkers, for example, the state
would list the position of each piece on the board, and the available actions at each state
would be the legal moves that could be made. If a positive reward were associated with
winning, and a negative reward with losing, an agent could, given sufficient time and an
appropriate framework, learn how to play checkers. Checkers has a discrete state space
(although it is very large), because there are a finite number of possible positions. The
game of checkers has the Markov property, whereby an observation of the current state is
sufficient to make a move, as the conditional probability of future states is dependent only
on the current state, and is not conditional on the state history. One would not need to
know the history of the game (although for human players this history may inform us of
intent).

The state space may be discrete (with a finite number of states) or continuous (with an
infinite number of possible states). Likewise, the action space may be either discrete, or
continuous. The state space may be partially observable, wherein the agent’s information

3

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

about the current state is incomplete. This violates the Markov property, as one would
require prior states in addition to the current state to determine the next move.

Transitions in the MDP may be deterministic (in which case, T is a manifold with
T : S ×A→ S), or stochastic, such that T is a set of probabilities over the state space in
the discrete state case, or a probability density function in the continuous state case.

The rewards are either deterministic or stochastic, and are an intrinsic property of the
MDP. The sum of discounted future rewards of the agent is given by

R =
∞∑

t=0

γtR(st, at, st+1), (2.1)

where si is the ith state visited by the agent. This is called the return, and is the quantity
the agent will attempt to maximise. If the task is episodic (guaranteed to come to an end
in a finite number of time steps), then 0 < γ ≤ 1, otherwise 0 < γ < 1. Tasks may be
stationary, where the reward and transition probabilities do not change, or non-stationary,
where they do. If the rewards or transitions change, the underlying task we wish the agent
to solve changes, and so the agent should adapt to the new task.

The transition function defining the state dynamics is typically not known to the agent.
Problem frameworks wherein the transition function T or reward function R are known
(or can be estimated) are known as model-based approaches, while those wherein these
functions are not known or estimated are called model free. As the task to be solved is
not explicitly programmed into the agent, reinforcement learning is well-suited to highly
complex tasks where the optimal behaviour is unknown in advance. A common form of
reward in episodic tasks, for example, is simply to penalise the agent for each time step
taken until the goal state is reached. This induces the agent to complete the task as quickly
as possible, in order to minimise the total penalty (which is equivalent to maximising its
total reward). The complexity of the required task is no longer a factor in creating the
agent, as the agent does not require foreknowledge of the required behaviour or the state
dynamics (although clearly this complexity may still be an issue which affects how long
the agent takes to complete the task).

The central problem of reinforcement learning is finding the policy quickly and effi-
ciently without requiring prior knowledge of the task. This should be done without an
exhaustive search through the state space, and without exorbitant memory requirements.
One approach to finding this policy is through a value function.

The agent seeks to maximise its return (the discounted sum of future rewards). Since
the return is dependent on both the current state and the policy being followed, it is useful
to define the value of each state Vπ(s) under the policy π as

Vπ(s) = E
{ ∞∑

t=0

γtR(st,π(st), st+1) | s0 = s

}
, (2.2)

which is the expected return of following π from the current state. Note that this is
similar to equation 2.1, with a prescribed initial state s0 = s and actions chosen according
to policy π. This is the state value function. Deriving a policy from the state value
function requires T . In model-free approaches, the state-action value function Qπ(s, a) is
used, defined as

Qπ(s, a) = E
{
R(s, a, s0) +

∞∑

t=0

γtR(st,π(st), st+1)

}
, (2.3)

which is the expected return of executing action a in state s, and thereafter following
policy π.

Michael Mitchley 4

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

It is relatively easy to derive a policy once the value Q(s, a) of a state-action pair
has been established. The greedy policy π(s) = argmaxaQ(s, a) always selects the action
with the highest value. If one wishes to explore the state space through occasional random
action selection, ϵ-greedy policies select a random action with probability ϵ but otherwise
select the action greedily. These have the disadvantage that an exploratory move could
result in the selection of an action which is known to be very bad. Softmax [Sutton
and Barto 1998] weights the action selection by the value using (commonly) a Gibbs
distribution, choosing action a with probability

exp Q(s,a)
τ∑

i exp
Q(s,i)

τ

,

where τ is a parameter functioning much like a temperature in simulated annealing. As τ
tends to infinity, softmax turns into uniform random selection, each action being equally
likely. A very low τ tending to zero reduces softmax to the greedy policy.

In both the ϵ-greedy policy and softmax, it may be beneficial to vary the parameter (ϵ
and τ , respectively) with time, starting high to encourage exploration and reducing it so as
to tend towards the greedy policy. In continuous action problems, finding argmaxaQ(s, a)
involves a one-dimensional search through a, although this will depend on how Q(s, a) is
represented.

2.3 Value Function Approximation

When the state space S is large or continuous, it is impossible to compute and store a
value for each state. In this case, the value function must be approximated. One such
approach is linear value function approximation, which represents V π as a weighted sum
of a collection of n basis functions Φ:

V π(s) ≈ w · Φ(s) =
n∑

i=1

wiφi(s),

which map states to values. This approximation is linear in the components of the pa-
rameter (or weight) vector, w, which results in simple update rules for the weights and
a quadratic error surface, as the local minimum of the difference between V π(s) and∑n

i=1wiφi(s) is also the global minimum. Linear value function approximation can rep-
resent complex value functions because the basis functions themselves can be arbitrarily
complex. The goal of the reinforcement learning agent within this context is then to learn
the weights wi, which may then be used to find the policy π∗ that maximises returns. We
defer discussing the selection of the basis functions φ to the next section.

2.3.1 Learning the Value Function Online

We now focus on online learning methods. These methods process samples from the MDP
individually, and update the weights of the value function at each timestep. Monte Carlo
approaches to problem solving tend towards the correct answer through a large number of
trials or samples. In reinforcement learning, one may learn the value function by sampling
Markov chains of the MDP, and using those to update estimates of the reward at each state.
In an infinite state environment, one would instead update the parameters of the value
function approximation. Monte Carlo methods require a very large number of samples,
and converge slowly. The Monte Carlo estimate minimises the mean squared error of the
value function for the MDP in the batch case [Sutton and Barto 1998].

The value at a state may be updated using the single-step temporal difference (TD),
which is the difference between the reward, and the difference between the decayed value

Michael Mitchley 5

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

at the successor state and the value at the current state. This is stored as the change in
the value at the state,

∆V (s) = R(s)− (V (s)− γV (s′)),

used to update the value at s as

V (s) = V (s) + α∆V (s),

where α is the learning rate. The reward in state s can be propagated further than one
step. Suppose the temporal difference is now computed as

∆V (st) = R(st)−
(
V (st)−

n∑

τ=1

γτV (st+τ)

)
.

Then V (st) can be updated more accurately, but only when the state st+n is reached.
TD methods are guaranteed to converge, and are the maximum likelihood estimate of the
value function of the MDP when used for batch methods [Sutton and Barto 1998].

When dealing with a state-action value function Q(s, a), the Sarsa method can be
employed to learn and update the value function. The tuple (s, a, R, s′, a′) (consisting of
the state s and action a chosen according to policy π, the reward R, the successor state
s′ and action a′ chosen in s′) is used, giving the method its name. The change in value

∆Q(s, a) = R(s)− (Q(s, a)− γQ(s′, a′))

is used to update the value at s as

Q(s, a) = Q(s, a) + α∆Q(s, a).

The value function Q is dependent on the policy π, making Sarsa an on-policy method.
Sarsa is known to converge to Q∗ provided all the state-action pairs are visited an infinite
number of times (that is, the MDP is ergodic), and the policy π converges to the greedy
policy π(s) = argmaxaQ(s, a) [Sutton and Barto 1998]. When a single sample is used in
the update, this is known as single-step Sarsa.

Single-step Sarsa can be augmented with eligibility traces by updating the value func-
tion as

Q(s, a) = Q(s, a) + α∆Q(s, a)Λt(s, a)

where the eligibility trace Λ at time t is given by

Λt(s, a) =

{
λγΛt−1(s, a) + 1 if s = st and a = at
λγΛt−1(s, a) otherwise

for accumulating traces, and

Λt(s, a) =

⎧
⎨

⎩

1 if s = st and a = at
0 if s = st and a ̸= at
λγΛt−1(s, a) otherwise

for replacing traces [Främling 2007], where λ is an additional parameter defining the trace
decay. When Sarsa is employed in this way, it is referred to as Sarsa(λ). Keeping track of
the trace for each state-action pair is infeasible in large state-action spaces, and impossible
if either the state or action space is continuous. To that end, accumulating eligibility traces
are instead stored for the approximation parameter vector w, as the vector

Λt(s, a) = λγΛt−1(s, a) +∇wQ(st, at)

Michael Mitchley 6

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

which for linear value function approximation reduces to

Λt(s, a) = λγΛt−1(s, a) + φ(st, at).

This is known as gradient descent Sarsa, and is the method we will primarily use in this
research.

The above methods are on-policy methods, meaning that they learn the value function
associated with the current policy, π. Off-policy methods instead learn the value function
associated with a different policy regardless of how the samples are collected. Q learning
[Watkins and Dayan 1992] updates the value function Q(s, a) with

Q(s, a) = Q(s, a) + α(r(s)− (Q(s, a)− γmax
a′

Q(s′, a′))),

regardless of what action is chosen in state s′ (or indeed in state s). This allows learning
of the value function under the greedy policy π(s) = argmaxaQ(s, a) even if the policy
by which the samples are acquired is non-optimal, random, or exploratory.

Q learning is unstable for linear value function approximation [Baird 1995], which led
to the creation of GQ(λ) [Maei and Sutton 2010], a generalisation of Q learning to value
function approximation with eligibility traces. This was extended further as Greedy GQ
[Maei et al. 2010]. In this algorithm, the gradient of the projected Bellman error is also
tracked, as ω. A secondary learning rate β which adjusts how ω is updated is required.
The linear value function approximation parameter vector w is updated as

a′ = argmax
a

Q(s, a),

∆Q = r(s)− (Q(s, a)− γQ(s′, a′)),

w = w + α
{
∆QΦ(s, a)− γ

(
(ωTΦ(s, a))Φ(s′, a′)

)}
,

ω = ω + β
{
∆Q−

(
ωTΦ(s, a)

)
Φ(s, a)

}
.

2.3.2 Batch and Offline Learning

Whereas online methods use samples singly to learn, and then typically discard the sam-
ple, batch methods use multiple samples at a time. If one has a collection of samples
and their associated rewards, one may simply construct the system giving the TD error
of each sample, and find the minimising parameters of the value function approximation
in the least squares sense. This is the approach taken in least-squares temporal difference
learning (LSTD) [Boyan 1999]. The use of least-squares relies on the resulting system
being overdetermined, meaning that there are more linearly independent samples than
there are basis functions. If this is not the case, it is necessary to regularise the system,
as an underdetermined system does not have a unique solution. Regularisation in rein-
forcement learning often takes the form of simply adding elements to the main diagonal
of the system. This approach is known as ridge regression [Lagoudakis and Parr 2003] or
Tikhonov regularisation and is equivalent to regularisation with an l2 norm on the weights
of the system. This means that the distance of the weights (when considered as a vector)
from the origin is minimised.

Kolter and Ng [2009] employ l1 regularisation to improve on the LSTD method through
a method similar to least angle regression (LARS) called LARS-TD. This form of regu-
larisation minimises the absolute sum of the weights. If an overdetermined system is
regularised, this has the effect of altering the (already unique) answer. Regularisation
increases the l2 error of the system, although it may decrease the error in other metrics
(for example, reducing test-set error by avoiding over-fitting).

LSTD-based methods produce policy-dependent solutions. If the underlying pol-
icy changes, it is necessary to gather new data. Least-squares policy iteration (LSPI)

Michael Mitchley 7

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

[Lagoudakis and Parr 2003] iteratively improves the policy through repeatedly solving an
LSTD system, finding an improved policy based on that solution and replaying the ex-
perience. LSPI uses a state-action value function-based variant of LSTD, LSTDQ. Sigma
point policy iteration [Bowling et al. 2008] is a method for speeding up LSPI through
a stored policy-independent experience summary, eliminating the need to store previous
samples and reducing computational load.

2.4 Basis Function Schemes

A common approach to value function approximation is to select a priori a set of basis
functions φ suited to general function approximation, and use a linear combination of
them to represent the value function. If this set of basis functions is not modified or added
to over time it is a fixed basis, whereas a basis that is modified over time is an adaptive
basis. The choice of basis function can severely affect performance. We now discuss a
number of common basis function schemes.

2.4.1 Tile Coding

Tile coding [Sutton and Barto 1998] is a discretisation technique where a set of piecewise
constant functions is used to approximate a value function. In their simplest form, these
functions act as indicator functions for an exhaustive disjoint partitioning of the states.
The tiles themselves are binary, activating if a state is within that tile. A linear value
function is obtained by multiplying each tile φi by a weight wi, and summing.

The tiles can be of any shape, but typically one divides the state space in each di-
mension into right angled tiles of equal width. If one wishes to use a single tiling with n
partitions per dimension, this results in nd tiles of equal size across the state space.

Multiple tilings may be used, with different discretisation levels or tile shapes for each
tiling, producing an overlapping set of basis functions. Typically, the different tilings are
at the same discretisation level, but are offset from each other [Whiteson et al. 2007].
The number of tilings needed to achieve good performance grows exponentially with the
number of dimensions [Wu and Meleis 2009].

2.4.2 Radial Basis Functions

Radial basis functions (RBFs) are a commonly used basis function scheme where each basis
function is (in the context of reinforcement learning, usually) a multivariate Gaussian

φi(x) = e−
||x−ci||

2
2

2σ2 , (2.4)

for a given set of centres c, and a variance σ2. Sometimes, the variance itself varies in
each dimension, leading to basis functions that are not strictly radial, but are stretched
in some dimensions. The variances between each basis function φi may vary.

RBFs can be based around any rotated function, provided they are radial in some
measure ||·|| around some centre c (that is, provided φ(y) = φ(x−c) for all ||y|| = ||x−c||).

RBFs have the property that they can interpolate any function on an interval with
arbitrarily high accuracy, given sufficiently many of them. They do not (strictly) form
a basis, but rather form a frame. The difference between the two is discussed in section
3.2.3.

A central question for RBFs is how to set the centres and variance(s). If these are
chosen in advance, a variance that is too large will lead to poor detail (but fast learning),
while a variance that is too small will lead to very slow learning. Learning the centres and
variances for RBFs changes the problem from linear to nonlinear, due to the exponential
dependency on both parameters.

Michael Mitchley 8

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

2.4.3 Polynomial Basis Functions

Polynomial functions are a natural way to represent data. By the Weierstrass approx-
imation theorem, every function f(x) continuous on an interval can be arbitrarily well
approximated by a polynomial on that interval, although if interpolation is used to find
that polynomial, one may run into Runge’s phenomenon, where the polynomial exhibits
highly oscillatory behaviour at the edges of the interval.

Lagoudakis and Parr [2003] presented a polynomial basis for value function approxi-
mation in reinforcement learning, given by

φi(x) =
d∏

j=1

x
ci,j
j , (2.5)

where ci,j are integers such that a tensor product of the polynomial series xi, i = 0, . . . , n
is formed.

Chebyshev polynomials of the first kind mitigate Runge’s phenomenon and are more
numerically stable, as their extrema are either −1 or 1, and are all found on the inter-
val [−1, 1]. Chebyshev polynomials are also orthonormal. To the author’s knowledge,
Chebyshev polynomials have not been used in reinforcement learning to date.

2.4.4 The Fourier Basis

Fourier analysis has a rich history in science and engineering. It involves representing a
function as a sum of trigonometric functions of varying frequencies. The Fourier series of
a real function f(x) is given by

f(x) =
a0
2

+
∞∑

k=1

(
ak cos

(
k
2π

T
x

)
+ bk sin

(
k
2π

T
x

))
,

where T is the period of the Fourier series. An approximation to the function is formed if
the Fourier series is truncated. As the trigonometric functions that make up the Fourier
series are mutually orthogonal, the coefficients of the series can be found as inner products,
which in Euclidean space are given by

ak =
2

T

∫ T

0
f(x) cos

(
k
2π

T
x

)
dx,

bk =
2

T

∫ T

0
f(x) sin

(
k
2π

T
x

)
dx.

In a signal processing context, Fourier analysis is commonly accomplished using a Fast
Fourier Transform (FFT), where the coefficients of the discrete Fourier transform of a
vector of length n are obtained in O(n log n).

This is fundamentally different from the approach required in value function approx-
imation, where a function is synthesised to fit sampled data by tuning the parameters
or weights of a basis set, rather than obtaining those parameters through analysis of the
sampled data.

Fourier analysis has been applied to reinforcement learning in the form of the Fourier
basis [Konidaris 2011]. Starting with the univariate Fourier series, the authors note that
if one assumes the value function is even on the interval [−1, 1], then the sine terms can
be dropped from the expansion with little loss of accuracy, halving the number of terms
required per dimension. A standard tensor product extension to multiple dimensions is
then applied, leading to the Fourier basis,

φi(x) = cos(πci · x), (2.6)

Michael Mitchley 9

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

where ci = [ci1, c
i
2, . . . , c

i
d], c

i
j ∈ [0, . . . , n]d producing a set of (n+1)d basis functions which

are referred to as an nth order Fourier Basis. The Fourier Basis performs well in a number
of domains when compared to other basis function schemes and will be used here as a
benchmark fixed basis scheme.

2.4.5 Nonlinear Schemes

While much work in value function approximation is focused on linear schemes, nonlinear
schemes are also used. Razo-Zapata et al. [2007] use wavelets as the activation function
with a neural network, while Whiteson and Stone [2006] combined neuroevolution of aug-
menting topologies (NEAT) with Q learning to learn a topology and initial weighting for
a neural network. Nonlinear function approximation is not often used, as it can diverge
[Tsitsiklis and Van Roy 1997], and certain tasks are very difficult to solve with neural
networks [Whiteson and Stone 2006]. Deep learning approaches have been applied to rein-
forcement learning in the form of Deep Q Learning [Mnih et al. 2013], which demonstrated
excellent performance on Atari games.

2.5 Adaptive Basis Functions

The major drawback of fixed basis schemes is that the number of basis functions grows
exponentially with the dimension of the state space; an order n polynomial basis has
(n + 1)d basis functions (similarly for an order n Fourier basis, or k = n + 1 RBFs
per dimension). There are three broad approaches to this problem. Feature selection
deals with this problem by selecting a sub-exponential number of basis functions from
a dictionary, although often the dictionary itself is large. Constructive basis function
schemes create basis functions that will best represent the value function, given some
information about the domain. Finally, adaptive techniques alter the set of basis functions
to balance generality with detail. We draw a distinction between these three approaches
for this thesis, by specifying that feature selection refers to methods drawing from a pre-
existing set of functions using batch samples, constructive techniques create those functions
from batch samples, and adaptive techniques modify or add to the basis function set online.
Sources in the literature may refer to all of these approaches as feature selection.

2.5.1 Feature Selection

Feature selection procedures control the size the feature set (or set of basis functions) by
selecting the best features to represent the value function from a dictionary of potential
features.

The OMP-BRM and OMP-TD methods of Painter-Wakefield and Parr [2012] collect
samples from the MDP, and form a matrix Φ, where the element in column i, row j is the
potential feature φi evaluated at φi(sj , aj). Both methods use orthogonal matching pursuit
(OMP) to select a feature from the dictionary that minimises the estimated Bellman error
(OMP-BRM) or TD fixed point residual (OMP-TD) at each step. This feature is then
added to the set of basis functions.

The matching pursuit approach finds the set of basis functions in a dictionary with the
largest projection onto the residual, which are selected for inclusion in the linear system
(that is, their weights are nonzero). In orthogonal matching pursuit, the weights of all
included functions are recomputed at each step through orthogonal projection onto the
column space of the basis function set, while in matching pursuit, weights are assigned
once only. OMP converges in the column space of the dictionary and finds a solution
which approximates the l0 pseudonorm solution [Mairal et al. 2008] (that is, the solution
with the fewest nonzero elements, or most sparse solution).

Michael Mitchley 10

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

The OMP-BRM method guarantees sparse recovery. That is, if the value function ism-
sparse in the dictionary of candidate features (can be represented as a linear combination of
m features assigned a nonzero weight), then the OMP-BRM method will recover the sparse
representation in m iterations. Despite this strong guarantee which does not carry over
to OMP-TD, OMP-BRM does not perform as well as OMP-TD when tested empirically.
Both OMP algorithms outperform the nonadaptive method LARS-TD in a number of
domains.

2.5.2 Constructive Techniques

Many techniques focus on the construction of a best basis for a domain based on knowledge
of the domain (for example, its transition matrix or an estimate thereof). These techniques
commonly assume a discrete state space, although many of these methods may be extended
to continuous state spaces through the use of out-of-sample interpolation techniques. We
will use the terminology of discrete state space MDPs in this section. All methods discussed
below are batch methods.

Krylov bases [Petrik 2007] for discrete state spaces are formed in the context of RL
by considering the first m powers of the transition matrix T postmultiplied by the reward
vector r as basis vectors.

Proto Value Functions (PVFs) [Mahadevan 2005] are constructed by taking as basis
functions the eigenvectors of the transition graph Laplacian with the smallest eigenvalues,
as these correspond to the eigenvectors capturing the least variation. Diffusion wavelets
[Mahadevan and Maggioni 2006] extend this approach by generating a wavelet basis over
the graph. These two approaches require knowledge or construction of the transition graph
of an MDP.

Krylov bases, PVFs and diffusion wavelets are examined in Petrik [2007] who found
that Krylov methods perform better than graph Laplacian-based methods, although the
application of Krylov schemes to domains with state spaces too large to enumerate might
be infeasible, as the bases are as large as the state space.

Keller et al. [2006] use neighbourhood component analysis (NCA) to linearly project
the state space in Rd to a much smaller space Rd̄, d̄ ≪ d, grouping states with similar
Bellman errors close together in a Euclidean sense. This projection is learned from samples
of the state space, and is fed as input into a state aggregator to generate basis functions
on the lower dimensional space, although the use of RBFs as basis functions is discussed.
This approach relies on knowing in advance the intrinsic dimensionality of the domain,
as projection to a space that is too small will result in a loss of detail. Intrinsic dimen-
sionality could be estimated using the Minimum Description Length (MDL), the Akaike
Information Criterion (AIC) [Pujol 2007], or KN rank estimation [Kritchman and Nadler
2008], provided a sample covariance matrix estimate could be computed.

Bellman Error Basis Functions (BEBFs) [Parr et al. 2007] take as basis functions
difference between the Bellman operator applied to the value function approximation, and
the value function approximation itself. This gives

φi = R+ γV (s′)− V (s),

where V =
∑

j wjφj . The new function φi is then added to the current representation.
Of interest is the fact that this function is orthogonal to the span of V , and the sequence
of functions produced in this manner are mutually orthogonal. BEBFs were extended to
high dimensional state spaces by Fard et al. [2013] through the use of random projection
techniques drawn from the field of compressive sampling. Random projection greatly
reduces the dimensionality of an input signal by projecting it into a lower dimensional
space through multiplication with a random matrix. Provided the signal is sufficiently

Michael Mitchley 11

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

sparse, it can be exactly reconstructed with high probability (it is the sparsity requirement
that allows one to avoid the Nyquist limit). The BEBF random projection technique is
demonstrated on a domain with six continuous state variables, discretised using 65536
overlapping tiles.

The Model Error Basis Function (MEBF) method [Parr et al. 2008] adds features that
capture the residual error in the transition model. This paper also demonstrates that
reducing the model error (defined as the error in the prediction of next feature values,
and the error in the reward) results in reducing the Bellman error, as the two errors are
equivalent.

2.5.3 Adaptive Techniques

Incremental Feature Dependency Discovery (IFDD) is a method for discovering dependen-
cies between distinct binary features by estimating the relevance of pairwise conjunctions
of the features as candidate features [Geramifard et al. 2011], incrementally building to
the complete tensor product by adding those pairwise conjunctions with a high enough
relevance to the set of basis functions. The IFDD relevance measure is the absolute value
of the sum of accumulated error over the candidate function, whereas in IFDD+ [Geram-
ifard et al. 2013a] the relevance measure is divided by the number of states visited where
the candidate function would have a nonzero value (that is, the binary feature conjunc-
tion is activated). If a candidate feature is selected for inclusion in the feature set, the
pairwise conjunctions of itself and all other features are then added to the set of candidate
functions.

Batch-IFFD [Geramifard et al. 2013b] extended IFDD to batch learning, wherein it is
shown that batch-IFDD is a matching pursuit method adding at each stage the functions
with the highest correlation to the error, and thus has a convergence guarantee in the
space spanned by the possible feature conjunctions.

The drawback of IFDD and its variants is that one must choose the detail level of the
initial set of features. If the potential conjunctions of this set of features fails to capture an
important detail, the algorithm cannot correct for that, as it has a fixed level of detail or
resolution. The principle advantage of IFDD is that it avoids the curse of dimensionality
by scaling polynomially with dimension.

Adaptive Tile Coding (ATC) takes the complementary approach, assuming full di-
mensional dependence (that is, a complete tiling), but a lack of detail in each dimension
[Whiteson et al. 2007]. Detail is added by splitting the tiles of the initial approximation in
half along the dimension that would result in the largest change to either the value func-
tion or the policy. ATC finds when to split by examining convergence. If τ (a tolerance)
timesteps have gone by since the basis functions in the basis function set, F, encountered
their lowest TD error, a split is triggered. The learned weights of each potential split in
each dimension are examined, and the split is performed in the tile and dimension that
maximises either the change in value function, or the change in policy. The split tile is
replaced by its children in F.

Evolutionary Tile Coding (EvoTC) [Lin and Wright 2010] modifies ATC to use a ge-
netic algorithm to decide when and where to split the tiles. Tiles may be split at arbitrary
points, leading to more efficient tile representations. Whereas ATC requires specification
of the threshold parameter only, EvoTC requires specification of the two mutation prob-
abilities. Comparison between ATC and EvoTC by Lin and Wright [2010] indicates that
EvoTC is more efficient with respect to tiles generated (and thus representation), but less
efficient with respect to number of updates required. ATC was found to diverge on the
pole balancing problem.

Adaptive RBFs [Menache et al. 2005] use Cross Entropy methods to tune the nonlinear
parameters of a set of RBFs, allowing the functions to shift and grow or shrink, allowing

Michael Mitchley 12

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

for a best representation for a given number of RBFs.

2.6 Conclusion

A common policy representation for reinforcement learning problems is a value function.
Value functions may be represented using a hand-picked set of basis functions, or more
generally using a fixed basis. Fixed bases scale exponentially with dimension, making
them difficult to apply to larger problems. Furthermore, the level of detail of a fixed basis
must be chosen in advance. Adaptive basis schemes often attempt to solve one or both
of these problems. Many adaptive basis schemes use tile coding, although in fixed bases
there are many schemes which outperform fixed tile codings.

In the following chapter, we will introduce a fixed basis scheme which has good theo-
retical properties and empirical performance, and in addition lends itself well to adaptive
schemes through its self-similarity.

Michael Mitchley 13

Chapter 3

The Wavelet Basis

3.1 Introduction

Linear value function approximation involves balancing the conflicting goals of quickly
learning global trends against the ability to capture dramatic changes in neighbouring
states on a fine scale. The basis function schemes currently in wide use offer no good
solution to this conflict.

Multiresolution Analysis (MRA) offers a framework in which multiple detail levels can
be learnt at once. MRA defines a broad class of functions known as wavelets. We introduce
the wavelet basis, a class of fixed basis function schemes for value function approximation
which offer a number of attractive theoretical properties, and are empirically competitive
against other fixed basis types.

3.2 Wavelets and Their Properties

Wavelets are a comparatively new form of spectral analysis, and were developed in a num-
ber of diverse fields (leading to different viewpoints, applications and terminology). In the
late 1980s, families of orthonormal compactly supported self-similar functions were found
to exist. Their properties and construction are the topic of seminal work by Daubechies
[1992]. In this section, we will present wavelets from a function analysis and synthesis
viewpoint, bearing in mind that they will later be used for value function approximation.
As wavelet analysis (like Fourier analysis) is a spectral method, the properties of wavelets
are often discussed in terms of time and frequency. Time in this case corresponds directly
to state space.

3.2.1 Function Approximation using Wavelets

We will begin this discussion, as much of the literature does, with the Haar wavelet. The
Haar wavelet is the simplest possible wavelet, having the smallest compact support and
best time localisation. A Haar wavelet family is comprised of a father wavelet (also known
as a scaling function), and a mother wavelet (or wavelet function), shown in figure 3.1.
The father wavelet defines the mother wavelet via a multiresolution analysis, which will
be covered in section 3.2.2.

Approximations are formed with weighted linear sums of dilations and translations of
the father and mother wavelets. A father wavelet at scale j (that is, dilated by 2j) and at
translation k is denoted φj,k(x) = φ(2jx− k). Similarly, a mother wavelet at scale j and
translation k is denoted ψj,k(x) = ψ(2jx− k). Wavelets do not always have to be dilated
by a factor of 2, but this is chosen for notational simplicity. Dilations and translations are
demonstrated using B-spline wavelets in figures 3.2a and 3.2b respectively.

14

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) The Haar father wavelet.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b) The Haar mother wavelet.

Figure 3.1: The Haar wavelet family.

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

j= 0

j= 1

j= 2

(a)

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k = -2

k = -1

k = 0

k = 1

k = 2

(b)

Figure 3.2: Three dilations (a) and five translations (b) of the second order B-spline
wavelet

Suppose now we wish to approximate some function f(x) using a Haar wavelet series
as

f(x) =
n∑

i=1

wiφi(x), (3.1)

where wi are the weights associated with the ith wavelet and φi(x) is either a mother or
father wavelet at some location and scale. As the Haar wavelets are orthonormal, the inner
product between any two wavelets ⟨φi, φj⟩ = δji . We can then compute the coefficients
of the expansion by taking the inner product of both sides of equation 3.1 with a wavelet
(say, φk).

⟨φk(x), f(x)⟩ = ⟨φk(x),
n∑

i=1

wiφi(x)⟩

=
n∑

i=1

wi⟨φk(x), φi(x)⟩

=
n∑

i=1

wiδ
k
i

= wk.

It is important to note that the set of wavelets φi(x) used in this expansion must be
mutually orthonormal for this to work.

Father wavelets approximate a function at a specified scale. The finer the scale (that
is, the higher the scale parameter), the more detailed the approximation will be. Mother
wavelets add further detail to that approximation at a specific scale. A more mathematical

Michael Mitchley 15

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

treatment of this is given in section 3.2.2, but for now we will use the Haar wavelet to
examine this intuitively.

Suppose we wish to approximate the function P (x) = (x − 0.23)2 + 1 on the interval
[0, 1]. If we use a single Haar father wavelet to do this, we must choose the wavelet’s scale
as 0. This results in the approximation shown in figure 3.3. While this is the optimal
approximation, and corresponds to the function’s average value across the interval, it is
not a detailed approximation.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.3: An approximation formed with a single Haar father wavelet at scale 0

We thus add a single mother wavelet function at scale 0 to the approximation, resulting
in the approximation shown in figure 3.4. Further detail is added to the approximation
by including the mother wavelets at scale 1 (figure 3.5a) and scale 2 (figure 3.5b). The
approximation resulting from father wavelets at scale 0, and mother wavelets at scales 0
through 2 is equal to the approximation resulting from using only father wavelets at scale
3, although the functional composition of the two approximations are different. Father
wavelets can be thought of as smoothing functions, while mother wavelets capture the
smoothed-away detail at differing scales.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.4: An approximation formed with a single Haar father wavelet and a single Haar
mother wavelet at scale 0

Wavelets may have any number of vanishing moments. A wavelet has m vanishing
moments if the inner product of the mother wavelet with a polynomial of degree m+ 1 is
zero. This implies that the father wavelet perfectly encodes the polynomial portion of a
signal, or equivalently from a function synthesis perspective, that a combination of father
wavelets can recreate any polynomial of degree m or less, with mother wavelets adding in
any missing detail.

For sufficiently many vanishing moments, wavelet representations exhibit sparse coef-
ficient representations. For any m + 1 times differentiable function approximated with a
wavelet with m vanishing moments, the coefficients of the wavelet approximation decay

Michael Mitchley 16

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Mother wavelets added up to scale 2

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Mother wavelets added up to scale 3

Figure 3.5: Further detail is added to the approximation using mother wavelets

exponentially with the scale [Christensen 2008], and we can thus expect an arbitrarily good
approximation from a finite number of wavelets. The Haar wavelet has a single vanishing
moment, and thus can perfectly represent piecewise constant functions only, forming an
approximation for any other function type.

3.2.2 Multiresolution Analysis

Wavelets form a multiresolution analysis. A multiresolution analysis (for a dilation factor
of 2) is formed when a function f(x) and its translates form a basis for some function
space V0 such that f(x) ∈ V0 ⇔ f(2x) ∈ V1 and f(2mx) ∈ Vm, and V0 ⊂ V1 ⊂ · · · ⊂ Vm,
m ∈ Z. Subject to some eligibility criteria, such a function may be used as a scaling
function φ(x) in a wavelet family, and limm→∞ Vm = L2(R). The wavelet spaces Wi are
defined as the complement of the scaling function spaces, that is Wm = Vm+1 ⊖ Vm and
the wavelet function ψ(2mx), with its translates, forms the basis for Wm.

Thus, for any particular Vm, limn→∞ Vm ⊕Wm ⊕ · · ·⊕Wm+n = L2(R) (defined in the
following section), meaning that father wavelets form an approximation at a particular
scale m, and mother wavelets add detail at that scale and finer. This allows for multiscale
representations, capturing both global and local detail.

A highly abbreviated construction of a wavelet basis via multiresolution analysis is
presented from Mohlenkamp and Pereyra [2008]. Suppose we find an orthogonal function
φ(x) with ⟨φ(x − j), φ(x − k)⟩ = δj,k for integers j, k, and wish to construct a wavelet
basis. This function must obey a refinement equation with

φ(x) =
∞∑

k=−∞
hkφ(2x− k)

and a finite number of hk nonzero. In addition, we require
∫∞
−∞ φ(x)dx = 1. Then, φ is

called a scaling function or father wavelet, and one may construct a filter consisting of
the nonzero hk which represents φ. This filter may be used directly in signal processing
(convolution of the filter with a discrete signal is equivalent to approximation of that signal
with φ), or indirectly to evaluate the wavelet. In addition, we can define a mother wavelet
function as

ψ(x) =
∞∑

k=−∞
gkφ(2x− k),

with
gk = (−1)1−kh1−k,

where h is the complex conjugate of h.

Michael Mitchley 17

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

3.2.3 Bases and Frames

In function approximation, a basis is a set of orthonormal functions spanning a function
space, such that anything within that function space can be exactly reconstructed using
a unique weighted sum of the basis functions. A frame is formed when that reconstruc-
tion is not unique, or equivalently, when the functions are not orthonormal. Frames are
overcomplete, leading to redundancies in their representations (not always an undesirable
property). A set of functions that is neither a basis nor a frame for a particular function
space may still perform well in practice, but cannot represent all functions within the
function space (for an in-depth treatment of bases and frames see Christensen [2008]).
Typically, we are interested in bases or frames for L2(R), the Hilbert space H of all finite
square-integrable functions. In Euclidean spaces, f(x) ∈ L2(R) implies that

∫∞
−∞ f2(x)dx

is finite, a property satisfied by all value functions with a finite return.
The following properties of a set of orthonormal functions φi(x) indexed with i ∈ N

are equivalent:

1. φ(x) is an orthonormal basis for H.

2. f(x) =
∑

i⟨φi(x), f(x)⟩φi(x), ∀f ∈ H .

3.
∑∞

i=1 |⟨φi(x), f(x)⟩|2 = ||f(x)2||.

4. Span{φ(x)} = H.

Property 3 is a special case of Parseval’s inequality. For any frame,

c1||f(x)2|| ≤
∞∑

i=1

|⟨φi(x), f(x)⟩|2 ≤ c2||f(x)2|| (3.2)

for some constants c1, c2, which define the tightness of the frame. If c1 = c2 = 1, the
frame is a tight frame, or basis.

3.2.4 Wavelet Families

Many wavelet families exist. Here, we discuss the basic properties of a number of com-
mon wavelet families. Much of this information is drawn from Daubechies [1992] and
Mohlenkamp and Pereyra [2008], but may be found in any standard wavelet reference (for
example, Kaiser [2010]).

The Daubechies family of wavelets varies through a parameter value 2N (some texts
use N ∈ 2Z), defining the number of vanishing moments and the compact support of the
wavelet, as well as the tap length (the number of elements in its filter). The Daubechies
D2 wavelet is the shortest possible wavelet, with one vanishing moment and a support
width of one. In general, the D2N wavelet has N vanishing moments, 2N taps (nonzero
elements) in its filter, and a support width of 2N − 1.

The Daubechies family has the maximal number of vanishing moments for a given
support width. They are compactly supported and orthonormal, but not symmetrical.
The father and mother wavelets of the first few Daubechies wavelets are shown in figure
3.6. Note that the 2 tap Daubechies wavelet is equivalent to the Haar wavelet.

Coiflets were created so that the father wavelets have vanishing moments too. They
are nearly symmetrical, and are orthonormal, but have a wide compact support. A Coiflet
wavelet family is shown in figure 3.7. Symlets are a modified version of the Daubechies
wavelets, which have maximal symmetry for compactly supported orthogonal wavelets
through a wider compact support. They are nearly symmetric, as no wavelet may be
orthogonal, compactly supported and symmetric. A Symlet wavelet family is shown in
figure 3.8.

Michael Mitchley 18

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) The Daubechies 2 tap father wavelet

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b) The Daubechies 2 tap mother wavelet

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

(c) The Daubechies 4 tap father wavelet

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

1.5

(d) The Daubechies 4 tap mother wavelet

1 2 3 4 5

0.5

1.0

(e) The Daubechies 6 tap father wavelet

1 2 3 4 5

-1.0

-0.5

0.5

1.0

1.5

(f) The Daubechies 6 tap mother wavelet

1 2 3 4 5 6 7

-0.2

0.2

0.4

0.6

0.8

1.0

(g) The Daubechies 8 tap father wavelet

1 2 3 4 5 6 7

-1.0

-0.5

0.5

1.0

(h) The Daubechies 8 tap mother wavelet

Figure 3.6: The Daubechies wavelet family.

Michael Mitchley 19

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

-2 -1 1 2 3

0.5

1.0

1.5

(a) The Coiflet father wavelet

-2 -1 1 2 3

-2.0

-1.5

-1.0

-0.5

0.5

1.0

(b) The Coiflet mother wavelet

Figure 3.7: The Coiflet wavelet family

1 2 3 4 5 6 7

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

(a) The Symlet father wavelet

1 2 3 4 5 6 7

-1.0

-0.5

0.5

1.0

1.5

(b) The Symlet mother wavelet

Figure 3.8: The Symlet wavelet family

Shannon wavelets are orthonormal, and have a closed form expression as the sinc
function. They are not, however, compactly supported. The Shannon wavelet decreases
slowly, as O(1x). They are the Fourier dual of the Haar wavelet, offering perfect localisation
in frequency, but very poor localisation in time. These wavelets are shown in figure 3.9.
Meyer wavelets are similar to Shannon wavelets, but sacrifice some localisation in frequency
to gain exponentially rapid decay. They are shown in figure 3.10.

-5 5

-0.2

0.2

0.4

0.6

0.8

1.0

(a) The Shannon father wavelet

-5 5

-0.5

0.5

1.0

(b) The Shannon mother wavelet

Figure 3.9: The Shannon wavelet family

Biorthogonal wavelets provide good symmetry, compact support and vanishing mo-
ments, at the cost of orthonormality. Instead, these wavelets form an overcomplete frame.
In order to keep the weights equivalent to an inner product a second family of synthe-
sis wavelets orthonormal to the analysis wavelets is used. Weights are computed using
the analysis wavelets, and the function can be reconstructed using the synthesis wavelets.
While many biorthogonal wavelet families exist, the name usually refers to the Cohen-
Daubechies-Feauveau (CDF) wavelet [Daubechies 1992]. The orders of the analysis and

Michael Mitchley 20

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

-5 5

-0.2

0.2

0.4

0.6

0.8

1.0

(a) The Meyer father wavelet

-5 5

-0.5

0.5

1.0

(b) The Meyer mother wavelet

Figure 3.10: The Meyer wavelet family

synthesis wavelets may differ. The analysis wavelets of a biorthogonal wavelet family are
shown in figure 3.11. The synthesis wavelets, which are of interest to us for function
synthesis, are shown in figure 3.12.

-4 -2 2 4

-0.5

0.5

1.0

1.5

2.0

(a) A biorthogonal father wavelet

-4 -2 2 4

-2

-1

1

2

(b) A biorthogonal mother wavelet

Figure 3.11: A biorthogonal analysis wavelet family

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) A biorthogonal father wavelet

-4 -2 2 4

-0.5

0.5

1.0

(b) A biorthogonal mother wavelet

Figure 3.12: A biorthogonal synthesis wavelet family

Spline wavelets have received special attention in recent years due to their attractive
properties for function synthesis, rather than analysis (see, for example, Unser [1997]; Cho
and Lai [2005]; Unser et al. [1993] and references therein). Spline wavelets are constructed
from splines, which can all be expressed as a combination of B-splines (or Basis splines),
compactly supported piecewise polynomial functions of maximal smoothness and order for
a given support width [Unser 1997].

We will discuss two such spline wavelets. B-spline wavelets are the synthesis wavelets
of a biorthogonal wavelet family, and their father wavelets are given directly by B-splines

Michael Mitchley 21

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

shifted such that their support starts at the origin. These wavelets are not orthogonal,
but are symmetric, differentiable, compactly supported and have a closed form expression.
B-spline wavelets provide good localisation in time and frequency, and tend towards Gabor
functions as the order of the spline tends to infinity, which have optimal localisation in both
time and frequency with respect to the uncertainty principle [Unser et al. 1993]. These
wavelets are shown in figure 3.13. Note that the zeroth order B-spline father wavelet is a
tile, or binary function.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Order 0

Order 1

Order 2

Order 3

Figure 3.13: B-spline wavelets of various orders

Of all known wavelet types, B-splines will give the tightest approximation error bounds
[Unser 1997]. B-spline wavelets have near optimal time-frequency localisation, even for low
orders [Unser et al. 1993]. B-spline father wavelet functions are the smoothest possible
father wavelets for a given compact support, and have the shortest support width for
a given order [Unser 1997]. Furthermore, when used as interpolants, B-splines are the
functions that oscillate the least [Unser 1997], resulting in high numerical stability.

The B-spline father wavelet equation is given by repeated self-convolution of a tile
across the unit interval [Chui and Wang 1992]. The first three such convolutions, giving
constant, linear and quadratic B-splines are

φ0(x) =

{
1 : 0 ≤ x ≤ 1
0 : otherwise,

φ1(x) =

⎧
⎨

⎩

x : 0 ≤ x ≤ 1
2− x 1 ≤ x ≤ 2
0 : otherwise,

φ2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5x2 : 0 ≤ x ≤ 1
0.75− (x− 1.5)2 : 1 ≤ x ≤ 2
0.5(x− 3)2 : 2 ≤ x ≤ 3
0 : otherwise.

Battle-Lemarie wavelets are orthogonal spline wavelets, although the spline is in the
Fourier domain, meaning that the wavelet has good frequency localisation, but infinite
support (although it has exponential decay). An example of this wavelet type is shown in
figure 3.14.

Michael Mitchley 22

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Family Order Support Width Orthonormal Symmetric Closed Form

Haar - 1 Yes Yes Yes
Daubechies 2n 2n− 1 Yes No No
Coiflet 2n 3n− 1 Yes No No
Symlet 2n 2n Yes Nearly No
Shannon - R Yes Yes Yes
Meyer - R Yes Yes No
B-spline n n+ 1 No Yes Yes
Battle-Lemarie n R Yes Yes No

Table 3.1: Comparative properties of wavelet families

Family Special Properties

Haar Best spatial localisation, worst frequency localisation
Daubechies Maximal vanishing moments for support width
Coiflet Additional vanishing moments in mother wavelets
Symlet Least asymmetry in a compactly supported orthonormal wavelet
Shannon Best frequency localisation, worst spatial localisation
Meyer Closed form in Fourier domain and exponential decay across R
B-spline Tends towards optimal time-frequency localisation
Battle-Lemarie Closed form in Fourier domain and exponential decay across R

Table 3.2: Unique features of wavelet families

-10 -5 5 10

-0.2

0.2

0.4

0.6

0.8

1.0

(a) A Battle-Lemarie father wavelet

-10 -5 5 10

-0.5

0.5

1.0

(b) A Battle-Lemarie mother wavelet

Figure 3.14: A Battle-Lemarie wavelet family

The properties of these wavelet families are summarised in table 3.1, with the unique
properties of each wavelet summarised in table 3.2. This list is by no means exhaustive,
as wavelet families can be constructed to have any particular set of properties in mind,
provided one bears in mind the trade-offs between support width, symmetry and other
properties.

All the wavelets examined thus far map from R to R. Multiwavelets extend the univari-
ate construction to wavelets mapping from Rn to R by considering construction through
dilation matrices (for example, dilation by 2jI). Further details about these wavelets can
be found in Strela [1996] or Keinert [2003].

Coifman and Maggioni [2006] introduced diffusion wavelets, a new construction gen-
eralising wavelets from Euclidean spaces to graphs and manifolds. Discussion of the ap-
plication of diffusion wavelets to reinforcement learning [Mahadevan and Maggioni 2006]
is deferred to section 3.6.

Michael Mitchley 23

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

3.3 The Wavelet Basis for Reinforcement Learning

We now examine a generalised wavelet basis for use in reinforcement learning. We assume
function approximation in a continuous state space rescaled to be on the unit hypercube,
but any finite interval will also work. We will denote the collection of nth order father
wavelet functions φ(x) for representation of a function f(x) on the support [0, 1] at scale
j as φjk(x) = φ(2jx − k) for k = −n + 2, . . . , 2j − 1, j, k ∈ Z and similarly, the set
of mother wavelet functions ψ(x) at scale j are given as ψjk(x) = ψ(2jx − k), with finer
scale sets taking on increasing values of j. Through the multiresolution property discussed
in section 3.2.2, the combination of father wavelets φjk(x) for some specific scale j, and
mother wavelets ψj̄k for j̄ ≥ j forms a basis for L2(R).

3.3.1 Extension to Multiple Dimensions

In order to extend univariate wavelets to Rd, we take the tensor product of the wavelets in
each dimension as described by Chui [1997] and Triebel [2008]. In practice, this is simply
the outer product of the basis functions in different dimensions at each scale. Orthogonality
between wavelets in different dimensions is maintained, as is regularity. As the wavelets
are of compact support in each dimension, their products have compact support across
all dimensions. This has the effect of producing what we will refer to as a wavelet tiling,
as shown in figure 3.15. By combining the wavelets across all the dimensions, we form a
basis for L2(RD) [Triebel 2008].

0

1

2

3

x

0

1

2

3

y

0.0

0.2

0.4

0.6

(a) A father wavelet in x
only, constant in y

0

1

2

3

x

0

1

2

3

y

0.0

0.2

0.4

0.6

(b) A father wavelet in y
only, constant in x

0

1

2

3

x

0

1

2

3

y

0.0

0.2

0.4

(c) The product of father
wavelets in x and y

Figure 3.15: A father wavelet tile formed in x and y

Let ψG denote either a father wavelet function ψS = φ or a mother wavelet function
ψW = ψ. For a given scale j, we form an initial approximation to the function using father
wavelet tiles

Φj, k⃗ = ΨG
j, k⃗

=
D∏

d=1

ψGd(2jxd − kd),

where k⃗ = [k1, . . . , kD] ∈ ZD are the offsets in each dimension, and for all dimensions d,
Gd = S. By varying k⃗ we include all tiles such that the wavelet tile is nonzero in the
region of interest.1 Further detail is added with cross tiles ΨG

j̄, k⃗
created from all possible

products of at least one mother wavelet function and father wavelet functions (∃dGd = W)
at scales j̄ ≥ j. It is important to note that the cross tiles do not include tiles comprised
of father wavelets only, as that makes a father wavelet tile.

3.3.2 Parameters

The scale of the wavelet approximation is an obvious parameter that must be chosen.
Fortunately, this scale needn’t be chosen ad hoc. For Daubechies wavelets, an n-tap

1In value function approximation, the region of interest is usually the unit hypercube of scaled states.

Michael Mitchley 24

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

wavelet at scale j has a support width of n−1
2j . Since we are interested in approximating

a function on the unit interval [0, 1], it would make sense to choose the largest j such
that the support width of the wavelet is not less than the unit interval, as this is the final
scale at which the wavelet functions are global in scale across that interval. Additional
detail added with wavelet functions will be on a local scale, not covering the unit interval
entirely. Similar choices can be made for other wavelet families: the scale should be chosen
such that the compact support of the father wavelets is approximately the unit interval.

For the Daubechies wavelets, we must decide what tap length to use. This influences
the smoothness of the resulting function, as well as its support width. Daubechies wavelets
offer the highest number of vanishing moments for a fixed support width. This means that
a Daubechies 2n-tap wavelet will have a support width of 2n−1, and n vanishing moments,
giving exact synthesis of polynomials of order n− 1 and below, provided sufficiently many
wavelets are used to entirely cover the support of that polynomial. The trade-off between
vanishing moments and support width can be summarised as follows: for each additional
vanishing moment (that is, additional order of polynomial smoothness in representability)
one must include two extra functions due to the support width increasing by two.

B-Spline wavelets have the polynomial order of the splines as their parameter, with
n ∈ N0. The support width of the B-spline father wavelet is n+1. B-Splines are symmetric,
but sacrifice orthonormality (and are thus overcomplete, forming a frame). They are the
synthesis wavelets of the biorthogonal wavelet family. They offer exact order n polynomial
reconstruction across any fixed interval.

The locations of each wavelet are fixed by the wavelet scheme, an advantage over RBFs.
There is only one possible wavelet transform, given a starting scale.

The wavelet basis (as it has been introduced thus far) lacks a method for selecting
the number of basis functions per dimension, which is possible in other basis function
schemes. As one must choose the wavelet family and order, and the starting scale, which
combined determine the number of wavelets per dimension, one may ask if this may be
done in reverse: choose the family and number of wavelets per dimension, and through
that determine the scale and order of the wavelets. This may be done by fixing one of
the free parameters. If the wavelet order is fixed, then one may select an initial scale such
that the number of wavelets generated is close to the number of wavelets requested (rarely
will these match up exactly).

3.3.3 Wavelet Families for Reinforcement Learning

There are an infinite number of possible wavelet families, but we will focus on three with
properties that may be desireable in reinforcement learning. We defer demonstrating
their application to section 3.5, and instead concentrate here on explaining the use of
these functions in function approximation.

The first type, Haar wavelets, are binary functions across the interval [0, 1], which
produce value functions equivalent to those produced by a disjoint regular single tile
coding, although Haar wavelets offer a number of advantages over and above tile coding.
Like tile coding, Haar wavelets have a simple closed-form expression that can be rapidly
evaluated. Haar wavelets form the lowest order of many wavelet families. The Daubechies
2-tap wavelet is a Haar wavelet, as is the B-spline of order 0.

Haar wavelets are symmetric and orthonormal, but cannot represent functions that
are not piecewise constant. Higher-order polynomials can be represented with a B-spline
wavelet transform, or a Daubechies wavelet transform, among others. B-spline wavelets
are the symmetric synthesis wavelets of the biorthogonal wavelet transform, and as such
sacrifice orthonormality for symmetry. They have simple closed-form expressions as poly-
nomial splines of order n across a support of n + 1. The order may be chosen through
balancing the number of intrinsic wavelets in the transform against the desired piecewise

Michael Mitchley 25

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Family Width Orthonormal Symmetric Closed Form Order

Haar 1 Yes Yes Yes 0
Daubechies 4-tap 3 Yes No No 1
Daubechies 6-tap 5 Yes No No 2
Daubechies 8-tap 7 Yes No No 3
B-Spline order 1 2 No Yes Yes 1
B-Spline order 2 3 No Yes Yes 2
B-Spline order 3 4 No Yes Yes 3
B-Spline order 4 5 No Yes Yes 4

Table 3.3: Properties of wavelet families suggested for use in RL

polynomial smoothness. As is the case with polynomial bases, it is seldom worthwhile to
consider orders higher than 4. B-Splines form a frame, as they are not orthogonal. This
leads to overcomplete, nonunique representations, which is sometimes advantageous.

Daubechies wavelets are highly asymmetric and do not have closed-form expressions,
but they have the maximum number of vanishing moments of all orthogonal wavelets,
leading to the highest level of unique polynomial representation and a very sparse repre-
sentation. The lack of a closed form expression means wavelets must be evaluated iter-
atively. The Daubechies-Lagarias algorithm can be used to evaluate a wavelet function
at a point [Soman et al. 2009] for a specified level of accuracy in constant time—similar
to the evaluation of sine and cosine, which are computed through series approximations.
The wavelet tiles can thus be evaluated in time linear to the number of dimensions.2

To summarise, if one wishes to use a binary function representation, Haar wavelets
offer a number of advantages over tile coding. If one desires unique representations and
orthonormality, Daubechies wavelets offer the most sparse representation. If one prefers
symmetry, B-spline wavelets can be quickly evaluated and have a closed form expression.
These properties are summarised in table 3.3 for suggested orders of these wavelets. Note
that in this table order is taken to mean the order of piecewise polynomial that the family
can represent perfectly.

3.4 Wavelets on the Interval

The interval across which wavelets are placed can be arbitrarily rescaled, provided wavelets
are placed with respect to this rescaling. As an example, if one wanted three Haar wavelets
at scale 0 on the unit interval, one could rescale that interval to be [0, 3], or equivalently
rescale the wavelets (and their translations and scaling) to be the desired size.

Daubechies wavelets with compact support of length greater than one have a problem
when used to approximate functions on the unit interval. We define a region of interest
(ROI) to be the real segment [0, 1]. The Haar wavelet has a support width of exactly one,
leading to perfect localisation in time (and very poor localisation in frequency). If one
chooses to use this wavelet, and selects a scale j at which to add father wavelets, then
exactly 2j father wavelets will be used, all of which will be fully within the ROI. This
is a consequence of each father wavelet at scale j having a support width of 1

2j from the
dilation equation.

All other wavelets, however, have a larger support width (say, [0, n]). Under the
wavelet equation

φjk(x) = 2
j
2φ(2jx− k),

2We used the Java Wavelet implementation within the mathIT package (http://www.math-it.org/).

Michael Mitchley 26

http://www.math-it.org/

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

each father wavelet φ has a support width of n
2j and is shifted by k

2j . A complete wavelet
basis is formed by every integer k such that at least part of φ is within the ROI, for
some scale j. As an example, consider the D8 Daubechies wavelets: these wavelets have
a support width of 7, and so at scale 2 there are 10 wavelets within the ROI, 4 induced
by the 22 positive shifts of k. The long ‘tail’ of this wavelet family results in 6 seemingly
extraneous ‘tail’ wavelets, regardless of the scale chosen.

These tail wavelets contribute little to the approximation when Daubechies wavelets
are used, and are present at every scale, and in every wavelet family (aside from Haar);
the number of tail wavelets is one less than the support width (or in the case of wavelets
without compact support, the effective support width). For a wavelet family with (effec-
tive) support width n, and scale m, the number of wavelets per dimension is 2m + n− 1.
As the total number of wavelets scales exponentially with the number of dimensions in a
fixed basis, these tail wavelets pose a serious problem, as they lead to an exponentially
large number of wavelets with poor representational capability.

Depending on the wavelet family, one may choose to exclude these tail wavelets from
the approximation (thus sacrificing some representational ability). One may also construct
a wavelet family on the interval through multiresolution such that all the wavelets have
compact support entirely within the interval, although the form and compact support of
the wavelets at the interval edges will be different to the other wavelets, whether con-
structed to supplement an existing wavelet family, or constructed entirely on the interval.

Alternatively, the interval can be repeated infinitely, effectively wrapping the wavelet
transform toroidally around the region of interest (also called periodising the wavelet).
Repeating the interval requires that the interval end-points of the function match, other-
wise one will induce ‘ringing’, or pseudo-Gibbs phenomena at the interval edges. In the
context of function synthesis, one may choose to introduce a gap in between the repeated
intervals, wherein the wavelets may take on arbitrary values to reduce this effect. Intervals
may also be mirrored to mitigate this effect (also called wavelet folding in the literature),
but this doubles the length of the interval to approximate. We shall investigate simple
periodisation with gaps within this chapter through toroidal Daubechies wavelets at scale
0, compressed such that they operate over the unit interval. For in-depth discussions of
the other forms of wavelets on an interval, see Mohlenkamp and Pereyra [2008].

3.5 Empirical Results

3.5.1 Methodology

We test B-spline, Daubechies, tailless Daubechies and toroidal Daubechies wavelet bases
against the Fourier basis, RBFs and tile coding in five online domains to demonstrate that
wavelets are competitive with commonly used fixed basis schemes. Tail-less wavelets were
selected such that only those tiles with more than 90% of their energy within the domain
of interest were retained. Toroidal wavelets employed Daubechies wavelets of order n at
scale 0 (having support width n − 1) where the wavelet was resized and periodised to
wrap around the unit interval, with a small gap (of precisely one unit before resizing).
A non-overlapping single tile coding was used, with equal numbers of tiles used in each
dimension.

Parameters are varied to show the performance of 4, 6, and 8 basis functions per
dimension, as shown in table 3.4. We used Sarsa(λ), with λ = 0.9, ϵ = 0.05 and γ =
1. PARL2 α scaling is used [Dabney 2014] with α0 = 1. Results are averaged across
100 experiments for 20 episodes (following the structure of Konidaris [2011]), to examine
the early performance of each basis function type. All results show the average return
measured at each episode. Functions which diverged, or performed an order of magnitude
worse than the best performing function for all episodes are not shown to make the graph

Michael Mitchley 27

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Wavelet Order Scale Functions

B-spline 2 1 4
2 2 6
4 2 8

Daubechies 6 1 6
8 1 8

Tailless Daubechies 8 1 4
8 2 6

Toroidal Daubechies 4 0 4
6 0 6
8 0 8

Table 3.4: Number of functions for the tested parameter combinations

Domain Dimensions Actions

Discontinuous Room 2 4

Mountain Car 2 3

Acrobot 4 3

Pinball 4 5

3D Mountain Car 4 5

Table 3.5: Dimensions and actions of each tested domain

scales readable. The number of dimensions and actions of each tested domain are shown
in table 3.5.

3.5.2 Discontinuous Room

Discontinuous room is a continuous state gridworld with a narrow gap to the goal room
[Konidaris et al. 2011]. Curiously, every tested basis function exhibited a performance dip
on the first episode, with the exception of tiling (figures 3.16, 3.17 and 3.18). RBFs did
not manage to solve this task, perhaps due to the narrowness of the gap. The B-spline
basis outperforms all other bases for all tested levels of detail.

3.5.3 Mountain Car

The mountain car task Sutton and Barto [1998] has a steep discontinuity in the value
function. The B-spline wavelet basis performs well in this domain, as shown in figures
3.19, 3.20 and 3.21, outperforming the other basis function types.

3.5.4 Acrobot

The acrobot [Sutton and Barto 1998] has 4 continuous variables (an angle and an angular
velocity for each joint). The second order B-spline wavelet basis at scale 2 outperforms
the other basis functions tested (figure 3.23), but is outperformed by the O(3) and O(7)
Fourier basis (figures 3.22 and 3.24). Both RBFs and tiling perform poorly in this domain.

Michael Mitchley 28

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet

Figure 3.16: Discontinuous room returns using 4 basis functions per dimension

3.5.5 Pinball

In the pinball task [Konidaris and Barto 2009] the agent must control a ball with elastic
dynamics through a two dimensional obstacle field. A tiling comprised of 4 tiles per
dimension performs surprisingly well against O(3) Fourier (figure 3.25), but these results
do not carry over to greater levels of detail, wherein the B-spline basis outperforms the
others (figures 3.26 and 3.27). RBFs did not converge for this domain, and are not shown.
The pinball map used is shown in figure 3.28.

3.5.6 3D Mountain Car

3D mountain car [Taylor et al. 2008] is an extension of the mountain car task into a three
dimensional valley. RBFs perform well in this domain, equalling the performance of the
B-spline wavelet basis (figures 3.29, 3.30 and 3.31). Both outperform other basis function
schemes in 3D mountain car. Tiling performs poorly.

Michael Mitchley 29

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−1,500

−1,000

−500

0

500

1,000

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Toroidal Wavelet

Figure 3.17: Discontinuous room returns using 6 basis functions per dimension

0 2 4 6 8 10 12 14 16 18 20
−600

−400

−200

0

200

400

600

800

1,000

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Toroidal Wavelet

Figure 3.18: Discontinuous room returns using 8 basis functions per dimension

Michael Mitchley 30

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Toroidal Wavelet
RBFs

Figure 3.19: Mountain Car returns using 4 basis functions per dimension

0 2 4 6 8 10 12 14 16 18 20
−1,600

−1,400

−1,200

−1,000

−800

−600

−400

−200

0

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Daubechies
Toroidal Wavelet
RBFs

Figure 3.20: Mountain Car returns using 6 basis functions per dimension

Michael Mitchley 31

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−2,000

−1,800

−1,600

−1,400

−1,200

−1,000

−800

−600

−400

−200

0

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Daubechies
Toroidal Wavelet
RBFs

Figure 3.21: Mountain Car returns using 8 basis functions per dimension

0 2 4 6 8 10 12 14 16 18 20
−6,000

−5,000

−4,000

−3,000

−2,000

−1,000

0

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
RBFs

Figure 3.22: Acrobot returns using 4 basis functions per dimension

Michael Mitchley 32

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−1,400

−1,200

−1,000

−800

−600

−400

−200

0

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Toroidal Wavelet

Figure 3.23: Acrobot returns using 6 basis functions per dimension

0 2 4 6 8 10 12 14 16 18 20
−1,000

−800

−600

−400

−200

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Toroidal Wavelet

Figure 3.24: Acrobot returns using 8 basis functions per dimension

Michael Mitchley 33

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20

−3

−2

−1

0

1
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Toroidal Wavelet

Figure 3.25: Pinball returns using 4 basis functions per dimension

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Daubechies
Toroidal Wavelet

Figure 3.26: Pinball returns using 6 basis functions per dimension

Michael Mitchley 34

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Daubechies

Figure 3.27: Pinball returns using 8 basis functions per dimension

Figure 3.28: The pinball map used

Michael Mitchley 35

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20

−4

−3

−2

−1

0
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Tailless Wavelet
Toroidal Wavelet
RBFs

Figure 3.29: 3D Mountain car returns using 4 basis functions per dimension

0 2 4 6 8 10 12 14 16 18 20
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Daubechies
Toroidal Wavelet
RBFs

Figure 3.30: 3D Mountain car returns using 6 basis functions per dimension

Michael Mitchley 36

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 2 4 6 8 10 12 14 16 18 20
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
·104

Episode

R
et
u
rn

B-spline
Fourier
Tiling
Daubechies
RBFs

Figure 3.31: 3D Mountain car returns using 8 basis functions per dimension

Michael Mitchley 37

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Fourier RBFs Tiling B-splines

Mountain Car 53 279 284 62
Discont. Rm. 188 - 53 209
Pinball 5634 - 4529 3598
Acrobot 194 2810 351 121
3d Mtn. Car 1320 1253 4080 645

Table 3.6: Average standard deviation for each basis function type and domain.

Fourier RBFs Tiling B-splines

Mountain Car 94.25 95.31 99.51 93.41
Discont. Rm. 99.93 99.95 99.97 99.92
Pinball 443.29 448.01 445.49 442.21
Acrobot 82.14 94.46 95.62 87.38
3d Mtn. Car 79.85 91.25 98.16 81.56

Table 3.7: LSTD residuals for each basis function type and domain.

3.5.7 Further Results

The standard deviations (measured across the runs and averaged across the episodes for
six basis functions per dimension) for selected basis function types and all domains are
shown in table 3.6. Of interest is that the standard deviation of the B-spline basis is by far
the lowest for pinball, acrobot and 3d mountain car. Tile coding has the lowest standard
deviation for discontinuous room, and the Fourier basis the lowest for mountain car.

Six basis functions per dimension were used in an LSTD method Boyan [1999] (reg-
ularised with ridge regression with δ = 0.01) using 10 000 samples collected in 50 state
chains by a random policy. The Euclidean norms of the residuals are shown in table 3.7,
indicating that the use of B-splines (in mountain car, discontinuous room and pinball) and
the Fourier basis (in acrobot and 3d mountain car) resulted the smallest approximation
error.

3.6 Discussion and Conclusion

The fixed B-spline wavelet basis is shown to be competitive against other basis function
schemes in both online and batch settings, due to its polynomial representational sparsity.
Daubechies wavelets do not perform as well as the B-spline wavelets, due to their large
compact supports. While excluding the wavelet ‘tails’ mitigates this problem, the wavelets
still do not have the low-order flexibility seen in the B-spline wavelet type. Toroidally
wrapped Daubechies wavelets perform overall poorly. We will therefore carry the B-spline
wavelet basis forward as the exemplar wavelet basis.

The wavelet basis is not only useful in its own right, but it provides a framework on
which one may build a basis with good theoretical guarantees. Vanishing moments provide
a characterisation of the polynomial representational sparsity of the basis, while compact
support is necessary for approximation with a finite number of basis functions.

Wavelet approaches have been used in reinforcement learning in only a few instances.
Razo-Zapata et al. [2007] use wavelet networks for function approximation in continu-
ous state spaces, by combining wavelet and neural networks. This work made use of
the Mexican hat wavelet, a continuous, non-orthogonal wavelet equal to the derivative
of a Gaussian. Wavelet contributions are thresholded to avoid problems with the infi-

Michael Mitchley 38

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

nite support width of this wavelet. Ganesan et al. [2007] use wavelet-based denoising to
clean incoming data in a reinforcement learning problem, thresholding the coefficients of
a wavelet transform.

Mahadevan and Maggioni [2006] use diffusion wavelet techniques to construct basis
functions by constructing a graph of the MDP and generating a diffusion wavelet tree over
it. These wavelets are constructed by modelling the diffusion of information through a
graph or manifold. Although diffusion wavelets are more general than standard wavelets,
using this basis requires either a model of the transition manifold of the MDP or a sufficient
number of transition samples to build an approximate graph. It also requires an out-of-
sample extension method when encountering states that are not already on the graph.
Direct comparison of these two methods is not feasible due to the vastly different problem
domains addressed, as the wavelet basis assumes a continuous Euclidean state space with
an unknown transition function.

The wavelet basis presented in this chapter is a fixed basis, and thus still suffers from
the central weakness of any fixed basis: the curse of dimensionality. The number of basis
functions needed to cover a finite space is exponential in the number of dimensions of that
space. In order to mitigate this problem, we will need to add basis functions adaptively.

Michael Mitchley 39

Chapter 4

Relevance Measures

4.1 Introduction

While the wavelet basis performs well for the demonstrated domains, one may ask the same
question as with any fixed basis: is this the best possible basis for a specific problem? The
schemes discussed in sections 2.5.1 and 2.5.2 have the advantage of selecting or constructing
a best basis using a priori information about the problem, such as the transition model or
sparsity, or having a large number of samples with which to assess the worth of a candidate
function. In an online setting, the usefulness, or relevance of a function must be estimated
at the same time as learning the value function to which the function may contribute by
estimating the correlation of the function with error. In this chapter, we examine two
different approaches in the literature, and define a number of novel relevance and error
measures which are based on estimates of function projections.

Adaptive tile coding (ATC) [Whiteson et al. 2007] directly computes the relevance of
candidate basis functions using TD(0). Those functions which would maximally change
either the value function or the policy through their inclusion in the basis function set
are assigned a high relevance. This approach requires one to track the weights of all
potential features using the same learning mechanism as those of the basis function set. As
candidate basis functions may replace others in the basis function set, this would become
complicated were one to use Sarsa(λ), for example, as one would need to track weights
and eligibility traces for each potential function in the assumed absence of the function
they would replace. One may also ask if maximal change is necessarily the correct goal.

Incremental feature dependency discovery (IFDD) [Geramifard et al. 2011] is an online
approximation of a matching pursuit algorithm, using a relevance measure to identify
which conjunction of binary features to include in the basis function set. For a particular
binary feature φ, its relevance for T samples is defined as

ρ(φ) =
T∑

t=0

|δ(st)|,

using the TD error δ(s) for all st within the domain of φ, a divergent measure of the
accumulated absolute error across φ. Subsequently, IFDD+ [Geramifard et al. 2013a]
used

ρ(φ) =
|
∑T

t=0 δ(st)|√
T

,

for all st within the domain of φ, which is a divergent measure of the absolute average
error across φ multiplied by the square root of the number of samples comprising this
estimate. Note that the absolute value is now applied to the sum, rather than each term,
the primary difference between the two algorithms. In IFDD, a perfectly approximated

40

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

value function may still accumulate a high relevance due to stochasticity in the TD error,
which we believe to indicate a typographical mistake. The intended usage of both relevance
measures is clear: if a candidate function has a high error across its domain, then adding it
to the basis function set will reduce that error. The drawback of these relevance measures
comes when you consider their divergence. Since both either grow infinitely unless the TD
error δ vanishes, they do not take into account what one would consider an acceptable
level of error. This is problematic for continuous-state MDPs, where the value function
approximation might never be exact. Furthermore, if one wanted to use a value function
approximation scheme that was nonbinary such as RBFs, the Fourier basis, the polynomial
basis, or the wavelet basis introduced in the previous chapter, there is no clear way of
computing the function relevance.

4.2 Novel Relevance Measure

We note that a compactly supported function φ extended to multiple dimensions has a
domain Ω outside of which the function is identically zero. The size of this domain, ∥Ω∥,
which can be computed as the product of the support widths across all dimensions. We
define a per-function relevance ρ(φ) at time T with domain Ω of size ∥Ω∥ as

ρ(φ) = ∥Ω∥
∑T

t=0 δ(st)φ(st)

T
, (4.1)

for all states st within Ω, where δ(s) is the TD error in state s, and function φ is assumed
to be normal (although not necessarily orthonormal). To facilitate updates, we will store
the relevance ρ and the number of samples T used to create it separately. When a new
sample is gathered (say, at sT+1), we update ρ using

ρ(φ)← T

T + 1
ρ(φ) +

1

T + 1
∥Ω∥ δ(sT+1)φ(sT+1).

We note that
∑T

t=0 δ(st)φ(st)
T is an average. This relevance measure is convergent, rather

than the divergent measures of IFDD and IFDD+; it is an online estimate of the correlation
between δ and φ.

Theorem 4.1. The relevance measure ρ in equation 4.1 is a Monte Carlo approximation
of the inner product between the function φ and the Bellman error ∆ across all states with
respect to the state density.

Proof. Define the Bellman error function ∆(s) = E [δ(s)] assuming an MDP with policy
inducing ergodic chains. Suppose the weights w are fixed and learning of the relevances
has converged such that ρ is known for all basis functions φ. Then, since each state has
been visited an infinite number of times,

lim
T→∞

∥Ω∥
∑T

t=0 δ(st)φ(st)

T
=

∫

S
∆(s)φ(s)P (s)ds, (4.2)

where P (s) is the state density function and S is the set of all states, as

lim
T→∞

∑T
t=0 δ(st)φ(st)

T

is the expected mean value of ∆(s)φ(s)P (s). This integral is equivalent to the inner
product ⟨∆, φ⟩P , which is a projection of φ onto ∆. If a finite number of samples are
drawn, the relevance measure is an estimate of this quantity.

Michael Mitchley 41

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Recall that Ω is the domain of φ, and so outside of this domain, the inner product of
φ with any function is identically zero.

For optimal policies and value functions, the expected value of the relevance is zero.
Intuitively, this is because, while there may be representational or stochastic error at any
particular timestep, the basis functions comprising the value function must be the best
possible fit. This implies that the expected projection onto the error must be zero. We
prove this

Corollary 4.1. For a fixed optimal value function with a policy π∗ inducing ergodic
Markov chains, the expectation of the per-function relevance given in equation 4.1 is zero
in the limit as time tends to infinity, for all basis functions within the basis function set.

Proof. Suppose the relevance is not zero in the limit for some function. This implies that
there is a function φ whose expected inner product with the error δ is not zero (since we
have taken the limit that time tends to infinity, the relevance is this inner product). This
implies that the function has a nonzero projection onto the error, and thus the error could
be reduced by changing the function’s weight. This violates the assumption that the value
function is optimal. Thus, the expected relevance is zero for all functions.

Suppose now that we compare the relevances of two different functions. We would pre-
fer that the relevance is constructed using many samples, rather than few. The relevance
measure used in IFDD+ [Geramifard et al. 2013ab] assigns a higher relevance when more
samples are used by dividing the error sum by the square root of the number of samples,
which is equivalent to multiplying the average error by the square root of the number of
samples; that is, ∑T

t=0 δ(st)√
T

=
√
T

∑T
t=0 δ(st)

T
,

which is equivalent to
√
Tρ(φ) if φ is binary and all samples are within its domain. We

could employ a similar technique for ρ, but this would make our relevance divergent, rather
than being an inner product estimate. Instead, we will multiply the relevance by T−1

T to
get

ρ(φ) =
T − 1

T
∥Ω∥

∑T
t=0 δ(st)φ(st)

T
, (4.3)

which attenuates relevances that have few samples, but in the limit of T does not affect
any of its properties. In principle, one could attenuate the function more with a numerator
of the form max{0, T − n} for any n ≥ 1, but we choose conservative attenuation.

4.3 Weighted Relevance Measure

Suppose now we consider our relevance measure under a changing policy π, tending to-
wards π∗ via a learning mechanism. Our relevance will no longer converge to zero, as the
initial samples will involve errors from a different policy. To mitigate this, we will use an
exponentially weighted moving average (EWMA) instead of the average given by

∑T
t=0 δ(st)φ(st)

T
.

Given a weighting ϵ, the update formula for the EWMA Et of a data series dt is given
by

Et+1 = ϵEt + (1− ϵ)dt+1.

The previous estimate Et is decayed by ϵ, in a manner similar to the decay seen in the
return and the eligibility trace. Note that E0 is undefined. A common estimate for the

Michael Mitchley 42

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

initial mean is E0 = d0 (since, for a single sample, the sample itself is the mean), but
this can bias the EWMA heavily towards the initial sample. Consider ϵ = 0.99. After
updating E100, d100 has a weight of 0.01, while d0 has a weight of 0.366, the highest of any
sample. It will take 459 samples for the weight assigned to the initial sample d0 to decay
below that of the most recent sample.

For our purposes, we require the weights to monotonically increase. To this end, we
will choose the initial estimate to be E0 = (1−ϵ)d0, such that the first sample is multiplied
by the same factor as every other sample. This is equivalent to choosing E0 = 0 if the
data series starts at d1. E is now an underestimate of the EWMA, tending to it as the
number of samples grows.

The EWMA is an estimate of the mean of a process [Čisar and Čisar 2011]. Using the
sample-based attenuation of the previous section, the EWMA-based relevance measure is
thus given by

ρ(φ) =
T − 1

T
∥Ω∥ (1− ϵ)

T∑

t=0

ϵ(T−t)δ(st)φ(st), (4.4)

with the update formula

ρ(φ)← T

T + 1
(ϵρ(φ) + ∥Ω∥ (1− ϵ)δ(sT+1)φ(sT+1)),

necessitating storage of ρ and T only. This exponentially weighted relevance measure
provides us with a number of attractive theoretical properties.

Theorem 4.2. The EWMA-based relevance measure of equation 4.4 is a Monte Carlo
approximation of the inner product between the function φ and the Bellman error δ across
all states with respect to the state density, provided the learning mechanism converges to
a policy π∗ with value function Q∗

π.

Proof. In the limit,

lim
T→∞

T − 1

T
(1− ϵ)

T∑

t=0

ϵT−tδ(st)φ(st) = lim
T→∞

(1− ϵ)
T∑

t=0

ϵT−tδ(st)φ(st),

which is the expected average of (φ(s)δ(s)P (s)) (since this is just the EWMA in the limit)
across the state space for policy π∗, as samples drawn from previous policies are exponen-
tially discounted. When this is multiplied by ∥Ω∥, it is equivalent to

∫
S ∆(s)φ(s)P (s)ds.

The expectation of the weighted relevance given in equation 4.4 is zero in the limit
as time tends to infinity, provided the learning mechanism converges to a policy π∗ with
value function Q∗

π.

Lemma 4.1. Suppose that some candidate function can be expressed as a linear combi-
nation of functions already within the basis function set, that is

φ =
∑

i

wiφi.

Then, the relevance of φ will tend to zero provided the learning mechanism converges for
all wi.

Proof. Since we know that φ =
∑

iwiφi, we can express the inner product as ⟨φ, δ⟩P =∑
iwi⟨φi, δ⟩P . If each ⟨φi, δ⟩P = ρ(φi) tends to zero, the linear combination must also

tend to zero.

This means that a candidate function which is redundant through representation in
the basis set will have a relevance that tends to zero.

Michael Mitchley 43

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

4.4 Measuring Error

It is useful to also define related measures that measure error in a meaningful way, using
similar techniques. These measures do not converge to zero in the limit, but instead tell
us something about how much error can be attributed to a specific function.

We define the absolute error A(φ) of a function φ as

A(φ) = ∥Ω∥
∑T

t=0 |δ(st)|
T

, (4.5)

with extensions as per the relevance to sample-based attenuation and exponential weight-
ing. This error measure is simply the average absolute error observed over Ω, the domain
of φ. It converges (under either a fixed policy, or variable policy with exponential weight-
ing) to the expected absolute error across Ω (one need only consider the theorems above
with φ identically one).

We define the observed error O(φ) of a function φ as

O(φ) = ∥Ω∥
∑T

t=0 |δ(st)|φ(st)
T

, (4.6)

with extensions as per the relevance to sample-based attenuation and exponential weight-
ing. This provides a measure of the absolute error that the function may contribute to. If
one considers a φ with some subdomain identically zero, this function may have a high ab-
solute error measure across that domain, but no change in function weight will affect this
error. As per the theorems above, this error measure will converge to the inner product
⟨|δ|φ⟩, a finite quantity expressing the error across Ω that φ may alter.

4.5 Measuring the Relevance of Functions

For candidate functions which do not yet form part of the set of basis functions that
determine the value function, the relevance is a direct measure of the usefulness of that
function; a candidate function with a high relevance has a large estimated projection onto
the error function ∆(s), while a function with a low relevance either has a low projection
onto the error due to a poor fit, or due to a low error.

Functions forming part of the basis set are slightly more difficult. The relevance for
such a function will tend towards zero regardless of how well or poorly the function fits,
and the absolute error and observed error will converge to some finite measure, even if the
weight for that function has converged. One may need to consider a measure involving
both. A high absolute or observed error, with a low relevance, may mean that the function
is a poor fit. One may choose to measure the ratio between the absolute or observed error
and the relevance, for example. As the relevance tends to zero, while the error measures
tend to some finite number, the ratio will tend to infinity unless the error tends to zero.

A more stable measure is the difference between the observed error and the relevance.
This will tend to the average absolute error weighted by the function value (as the relevance
tends to zero), and will always be non-negative if the basis functions used are non-negative.

4.6 Empirical Results

The relevance and error measures presented in this chapter have interesting theoretical
properties. To further demonstrate the use of these properties, we will show their correla-
tion with function weights empirically. We stress that these empirical results are largely
qualitative: there are few points of possible comparison. We ran a fixed domain and ex-
tracted the weights assigned to the basis functions, along with each function’s relevance,

Michael Mitchley 44

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

absolute error, observed error and the difference between the observed and absolute er-
rors and the relevance, each with and without decay, and with and without sample-based
attenuation.

The domain chosen is mountain car, which provides a representationally complex value
function with a low dimensionality, allowing for many more experiments than larger do-
mains. The weights of the functions were sorted by magnitude, and plotted in figure 4.1
for 1, 20 and 1000 episodes. Relevance and error measures are shown in figure 4.2. The
results for episodes 1 to 20 were averaged across 1000 experiments, while the results for
episode 1000 were computed separately and averaged across 10 experiments.

0 10 20 30 40 50
0

50

100

150

200

250

300

350
Episode 1
Episode 20
Episode 1000

Figure 4.1: Absolute weights for mountain car

From a qualitative viewpoint, it appears that all of the relevance and error measures
are well-correlated with the weight. Of interest are the relevance measures: while they do
not decrease to zero (due perhaps to the exploration parameter being too low for them to
be accurate measurements of the inner products), they still decrease slightly from episode
20 to episode 1000, and show far less structure, while the differences between them and
the error measures increase. Both the relevance, and the difference between the observed
error and relevance appear to track well with the weights for episodes 1 and 20. There
appears to be little difference between the decayed and sample-attenuated variants.

4.7 Discussion and Conclusion

For candidate functions that do not yet form part of the basis function set, we will employ
the decayed, sample-attenuated relevance as defined in equation 4.4. This relevance pro-
vides a number of attractive theoretical guarantees, and has good empirical performance.
For functions already within the basis function set, we will use the difference between the
decayed, sample-attenuated observed error O(φ) and the relevance ρ(φ), as this tracks well
with the weight.

These measures are by no means exhaustive, and represent simple methods for comput-
ing approximations to various inner products. Online variance estimates would perhaps
also provide a way to measure function relevance, but our focus is on inner product-based
measures, rather than statistical approaches, in keeping with the function approximation

Michael Mitchley 45

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 20 40
0

0.5

1

(a)

0 20 40
0

1

2

3

(b)

0 20 40
0

2

4

6

(c)

0 20 40
0

0.5

1

(d)

0 20 40
0

1

2

3

(e)

0 20 40
0

2

4

6

(f)

0 20 40
0

1

2

(g)

0 20 40
0

1

2

3

(h)

0 20 40
0

2

4

6

(i)

0 20 40
0

1

2

(j)

0 20 40
0

1

2

3

(k)

0 20 40
0

2

4

6

(l)

Figure 4.2: Relevances (left), observed error minus relevance (centre) and absolute error
minus relevance (right) for measures computed ordinarily (a, b, c), with sample attenuation
(d, e, f), with decay (g, h, i) and with both sample attenuation and decay (j, k, l), on the
mountain car domain, for 1 episode (blue), 20 episodes (green) and 1000 episodes (red).
Average value lines are shown in same colours.

Michael Mitchley 46

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

theme of this thesis. In the next chapter, we will use the measures defined here to select
candidate functions for detail enhancement.

Michael Mitchley 47

Chapter 5

Adaptive Wavelet Refinement

5.1 Introduction

The measures of the previous chapter provide us with ways to estimate the relevance of
candidate functions in online settings. In this chapter we explore the online Adaptive Tile
Coding (ATC) algorithm and similar ideas of adaptive detail refinement within the fields
of reinforcement learning, control theory, and numerical analysis, and present an extension
of ATC to arbitrary basis function types and learning methods, called Adaptive Wavelet
Refinement (AWR), through the use of relevance and error measures.

We prove convergence results, and show that wavelets are both necessary and sufficient
for certain classes of value function refinement. We compare our extension to an equivalent
fixed basis for both a B-spline basis and a tile coding, across a number of benchmark
domains.

5.2 Related Work

Adaptive Tile Coding (ATC) (given in Algorithm 1) [Whiteson et al. 2007] is a method
for adding representational detail to a tile coding by learning weights for potential tile
splits and selecting those splits that maximise the change in either the value function or
the policy. It uses TD(0) to learn the weights of both basis functions and potential splits.

Algorithm 1 ATC

Require: Tile function set F, state s giving Bellman error δt, and splitting tolerance τs.
Update TD(0) weights of all tiles and candidate splits
if p updates have passed without any φ encountering its lowest Bellman error δ then

for all functions φ activated by state (s, a) do
if splitting φ along d would result in the maximum change across all tiles in either
the value or policy criterion then

Replace tile φ with its child tiles split in dimension d in F.
end if

end for
end if
return F

The value criterion examines the absolute difference between candidate tile weights.
If the value function changes rapidly across φ in dimension d, one would expect the two
child tiles of φ split along d to have the largest absolute difference in weight. The policy
criterion estimates which tile split would result in a maximal improvement in the policy
by counting how many of the |A| successor states of s would result in a change in policy

48

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

if split. That is, the algorithm computes ∆Vd(s′) = wd(s′) − V (s′), and if altering Vd(s)
by ∆Vd(s′) would result in a change in the policy at s, then the count is increased for a
potential split in the tile across s′ in dimension d. The tile with the largest count is then
split along dimension d.

ATC does not offer any theoretical guarantees, but performs well empirically in puddle
world and mountain car. If one started with a single tile spanning all dimensions, ATC
would scale linearly with the dimensions. If one starts with any other form of fixed basis,
ATC would start with a basis function set exponential in dimension. The number of
weights to track (including those of the basis function set) is always exactly |F |(2d+ 1).

ATC uses TD(0) to compute the function weights. This makes it easy to update
the child tile weights, since these must be updated under the assumed absence of their
parent tile (or sibling tiles), as splits are performed through replacement of the parent,
and preclude splitting that tile in any other dimension. If the parent is updated through

∆w = αmax
a

(R(s, a)− γV (T (s, a)))− V (s),

then the child is updated through

∆wd = αmax
a

(R(s, a)− γV (T (s, a)))− wd.

Note the use of wd in place of V (s): this additionally implies that the tiles are of unit
value across their domain. Learning child tile weights using Sarsa(λ) or similar would be
more complicated, as the change in weight and trace must be computed without influence
from the parent function. Furthermore, one is constrained to using binary functions in the
above formula, and the convergence heuristic, value function criterion, and policy criterion
do not have a solid theoretical foundation.

Evolutionary Tile Coding (EvoTC) [Lin andWright 2010] extends this work by allowing
the tile split to take place at any arbitrary position. The optimal tiling is computed using
a genetic algorithm (GA). The GA takes as its initial population a tree representation of
a tiling, wherein each leaf node is the Q value of the tile, and each internal node is the
position and dimension along which the tile is split. The fitness of a tiling is evaluated
using the overall performance of a learning method using the tiling as a basis function
set. Unlike the ATC method, EvoTC has a convergence guarantee, as the GA will (in the
limit) explore the space of all possible tilings.

Ideas of adaptive discretisation have had a longer history in control theory and numer-
ical analysis. Munos and Moore [2000] and later Munos and Moore [2002] introduced a
variable resolution technique based on value and policy criteria similar to those of ATC.
The discretisation procedure explicitly starts with a single tile covering the whole state
space, although within each tile Kuhn interpolation is used to achieve linear interpolation
(thus, the represented value function is piecewise linear, rather than piecewise constant).
The cost of this is that each tile is composed of d! simplexes, leading to factorial complexity
with dimension.

Adaptive mesh refinement (AMR), or adaptive gridding or discretisation, appears to
have originated in a paper by Melosh and Killian [1976] wherein it was applied to finite
element analysis. Since then, it has been applied innumerable times in numerical analysis,
particularly when the system may contain singularities, shocks or discontinuities [Berger
and Colella 1989] or where much of the system’s behaviour is simple, such as in compu-
tational astrophysics [Hansen et al. 2015]. Much like ATC, AMR techniques rely on a
posteriori estimates of the approximation error to refine the grid. The interested reader
may refer to any text on the subject for further information, as a survey of AMR and
adaptive discretisation techniques outside of reinforcement learning is beyond the scope
of this thesis.

Michael Mitchley 49

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

5.3 Adaptive Wavelet Refinement

Whiteson et al. [2007] presented ATC within the context of a TD-0 learning algorithm
using tile coding. We extend this algorithm as follows: we allow for any refineable basis
function type (we define later what is meant by refineable), we apply the algorithm to Sarsa
instead of TD(0) (although the new algorithm could be used with any learning mechanism),
and replace learning the subweights of each candidate tile split with our relevance measure
from Chapter 4. The new algorithm is called Adaptive Wavelet Refinement (AWR).

At each timestep, the algorithm updates the observed errors and relevances of every
function that is nonzero in the current state-action pair, as well as the relevances of each
of those function’s potential split child functions. The algorithm then selects the function
with the largest difference between the observed error and relevance for splitting (provided
this difference is larger than the tolerance), and selects the dimension to split in by choosing
the dimension with the largest average relevance among the child functions.

Splits are performed with replacement, meaning that the parent function is replaced
by its split children. The parent weight is distributed among the children so as to leave
the value function unchanged, and the trace of each child function is initialised to zero.
The complete algorithm is presented in Algorithm 2. For the purposes of computing the
relevance, the functions concerned are assumed to be normal (that is, square-integrable to
one), but this requirement need not carry over to the value function itself.

Algorithm 2 AWR

Require: Basis function set F, state s giving TD error δt, relevance ρ, sample count T ,
observed error O, and splitting tolerance τs.
for all Functions φ activated by state (s, a) do

Update relevance ρ, observed error O and sample count T of φ
for all Candidate children φdj,k of function φ split in dimension d do

Update relevance and sample count of φdf,k
end for

end for
if O(φ)− ρ(φ) ≥ τs and maxφO(φ)− ρ(φ) then

Replace φ with its children φdf,k in dimension d such that maxd
1
|k|
∑

k φ
d
f,k, redis-

tributing the weight associated with φ among its children.
end if
return F, ρ, O, T

The requirement that the basis function φ is refineable means that it can be replaced
with smaller copies of itself at regular intervals. This is expressed as follows:

φ(x) =
∑

k

wkφ(mx− k), (5.1)

where m > 1, k ∈ Z (only refineable functions can be replaced by child functions without
altering the value function). Tiles, polynomials and wavelets are refineable, while RBFs
and Fourier terms are not. Note that equation 5.1 means that the function is replaced
by uniform copies of itself at regular intervals (as used by ATC), rather than arbitrary
splits as in the work of Lin and Wright [2010] or overlaid sets of basis functions without
replacement.

5.3.1 Theoretical Results

We now prove that wavelets are both necessary and sufficient for certain kinds of adaptive
value function schemes, and will always result in a good basis for ergodic processes.

Michael Mitchley 50

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Theorem 5.1. If one wishes to split a basis function φ into a finite number of smaller
copies of itself such that the value function remains unchanged, using equation 5.1 where
m > 1 and k ∈ Z, with a finite number of wk nonzero, it is sufficient to use a compactly
supported father wavelet as φ.

Proof. The dilation equation 5.1 is obeyed by all father wavelet functions with refinement
mask m [Daubechies 1992]. If a father wavelet has compact support, it will have a finite
dilation series.

Theorem 5.2. If, further, we require that φ(x) ∈ L2(R) (that is, the basis function is
finite square-integrable), then the use of a father wavelet function is necessary to meet
equation 5.1.

Proof. The above conditions define a father wavelet function [Strang 1989]; any function
that meets them has an associated mother wavelet and multiresolution analysis.

Note that a number of functions are refineable, and thus obey equation 5.1 (without
the added conditions), for example all polynomial functions are refineable, but are not in
L2(R). When considered across the unit interval, polynomial functions are in L2(R), but
are not generally refineable; for example, the function

f(x) =

{
x 0 ≤ x ≤ 1
0 otherwise

cannot be represented as a sum of functions f(2x − k). The most important property of
wavelets within the context of this chapter is that all father wavelets satisfy a refinement (or
dilation) equation, wherein a father wavelet at a specific scale can be exactly reconstructed
using a finite number of wavelets at the next scale. We now present additional theoretical
properties of wavelets and AWR.

Theorem 5.3. Suppose we are given an episodic MDP with finite reward per time step.
Then, for all ϵ > 0 and D-dimensional wavelet bases Φ(s) forming a frame for L2([0, 1]D),
there exists a scale j and weights wk such that ||V ∗(s)−

∑
k wkΦ(2js− k)|| ≤ ϵ, where k

is an index across ZD.

Proof. Since the described MDP is episodic with finite rewards, the returns must also
be finite. This means that V ∗ ∈ L2([0, 1]D), as it is finite. Since the selected wavelet
family forms a frame for L2([0, 1]D), all functions in L2([0, 1]D) can be arbitrarily well-
approximated with a finite number of wavelets [Christensen 2008].

Theorem 5.4. Given an MDP initialised with a complete fixed basis at some detail level, a
policy inducing ergodic Markov chains, and a learning method that converges to an optimal
weight for any added function φ added to the basis, the AWR algorithm will converge to
a point where the projected error ⟨|∆|,φ⟩ is below the splitting tolerance τs for all φ. For
τs → 0, this implies convergence to ∆(s)→ 0.

Proof. In the limit as t → ∞, the observed error and relevance of each function in the
basis set φ will tend to the inner product estimates ⟨|∆|,φ⟩ and ⟨∆,φ⟩ respectively. As
proven in Corollary 4.1, the relevance of a function in the basis function set will tend to
zero in the limit, and so the difference O(φ)− ρ(φ) will tend to O(φ)→ ⟨|∆|,φ⟩. If this is
greater than τs, the function will be split, and the process repeated on its children. For
τs → 0, functions will be split until ⟨|∆|,φ⟩ is zero, implying that ∆(s)→ 0 for all states
s, since wavelets can arbitrarily well approximate any function for some scale by Theorem
5.3.

Michael Mitchley 51

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Note that the proof above assumes the convergence of the underlying learning algorithm
for any added φ, implying that τs is set such that the weights of the basis functions and
the error estimates converge sufficiently rapidly compared to the rate of addition of new
functions. If one considers an ATC variant which could split all the basis functions on
each step, the rate of addition of new functions would be too high for learning to take
place. AWR is constrained to splitting at most one basis function per step. Furthermore,
upon splitting, the added child functions’ observed errors are set to zero, ensuring that a
split cannot take place until O(φ) > ρ(φ) + τs for φ.

5.4 Experimental Results

As ATC is a TD(0) method, we cannot compare Sarsa-based AWR to it directly, for
differences in performance could be explained through the different learning methods.
Instead, we demonstrate the performance of AWR using Sarsa against two fixed bases.
A fixed basis at scale 1 (4 wavelets or tiles per dimension) is used to establish baseline
performance, and the average return of AWR at scale 1 is shown against a fixed basis at
scale 2 (6 wavelets or tiles per dimension). We wish to demonstrate that AWR achieves the
performance of an appropriately scaled fixed basis, even when started with an undetailed
basis.

We use Sarsa(λ) with λ = 0.9, ϵ = 0.05 and γ = 1. PARL2 α scaling is used [Dabney
2014], with α0 = 1. Results are averaged across 100 experiments for 20 adaptive episodes
followed by 80 nonadaptive episodes, in order to demonstrate the short-term adaptation
(tying into the idea of early generalisation followed by rapid representation), followed
by the long-term performance of the learned basis. All results show the average return
measured at each episode, and the average number of basis functions in the basis function
set at each episode. Standard error was found to be extremely low due to the large number
of experiments run, and is thus left out of all results. The tolerance τs was selected
via empirical experimentation in each case to provide reasonable numbers of additional
functions, although we acknowledge that ideally the algorithm would not require such
parameter tuning. We leave creation of a parameter-free algorithm to future work.

5.4.1 Discontinuous Room

In the discontinuous room domain, we see a large improvement in performance when AWR
is employed for both B-splines and tiles (figure 5.1) although the number of functions
added by AWR exceeds the number of basis functions at the next scale (figure 5.2). The
decreasing performance of the scale 1 fixed bases may indicate an inability to represent
the gap through which the agent must pass to get into the next room.

5.4.2 Mountain Car

Figure 5.3 shows that while the AWR B-spline method does learn as fast as the scale 1
B-spline fixed basis, and achieve results comparable to those of the scale 2 fixed basis,
there are instabilities when applied to the mountain car domain. We do not know what
caused the sharp drop in average performance on episode 30, or the smaller dips around
episode 60. Tiling-based methods perform well in this domain, achieving the early learning
performance of the scale 1 fixed basis, and long-term performance greater than the scale
2 fixed basis. Figure 5.4 shows the number of basis functions used at each episode.

Michael Mitchley 52

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−1,500

−1,000

−500

0

500

1,000

Episode

R
et
u
rn

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 10
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 2000
Scale 2 Fixed B-spline

Figure 5.1: AWR Returns for Discontinuous Room

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 10
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 2000
Scale 2 Fixed B-spline

Figure 5.2: AWR Number of Basis Functions for Discontinuous Room

Michael Mitchley 53

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 20
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 200
Scale 2 Fixed B-spline

Figure 5.3: AWR Returns for Mountain Car

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

240

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 20
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 200
Scale 2 Fixed B-spline

Figure 5.4: AWR Number of Basis Functions for Mountain Car

Michael Mitchley 54

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

5.4.3 Acrobot

In figures 5.5 and 5.6 we see that the use of AWR in the acrobot domain did not result
in an improvement to the average return. B-spline AWR fails to outperform fixed basis
at the same scale: their results are comparable, but the fixed basis performs slightly
better overall. The tile-based AWR performs far worse than the fixed basis, indicating an
instability of some type.

0 10 20 30 40 50 60 70 80 90 100
−1,400

−1,200

−1,000

−800

−600

−400

−200

0

Episode

R
et
u
rn

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 1
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 1000
Scale 2 Fixed B-spline

Figure 5.5: AWR Returns for Acrobot

Michael Mitchley 55

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 1
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 1000
Scale 2 Fixed B-spline

Figure 5.6: AWR Number of Basis Functions for Acrobot

Michael Mitchley 56

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

5.4.4 Pinball

In figure 5.7 we see that the AWR method has performed well for both basis function
types in the pinball domain. Tiling outperforms the B-spline basis in this domain. Of
interest is that in figure 5.8 we see that this increase in performance does not come at the
cost of more basis functions than the next scale.

0 10 20 30 40 50 60 70 80 90 100
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
·104

Episode

R
et
u
rn

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 10
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 10000
Scale 2 Fixed B-spline

Figure 5.7: AWR Returns for Pinball

5.4.5 3D Mountain Car

Figures 5.9 and 5.10 show a number of strange behaviours in the 3D mountain car domain:
the tile-based methods did not converge for either fixed or adaptive methods, the scale 1
fixed B-spline basis outperformed the scale 2 B-spline basis, and the AWR B-spline basis
performs as well as the scale 1 basis for the adaptive episodes, and then exhibits large,
intermittent performance dips for certain non-adaptive episodes. We suspect the scale 1
fixed B-spline basis matches closely the optimal value function of this domain, such that
learning is forced in the direction of the optimal value function regardless of exploratory
moves. Deviation from this representation decreases performance.

5.5 Discussion

The results of this chapter are summarised in table 5.1.

Michael Mitchley 57

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
1,000

2,000

3,000

4,000

5,000

6,000

7,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 Fixed tiling
Scale 1 AWR tiling τs = 10
Scale 2 Fixed tiling
Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 10000
Scale 2 Fixed B-spline

Figure 5.8: AWR Number of Basis Functions for Pinball

0 10 20 30 40 50 60 70 80 90 100
−8

−7

−6

−5

−4

−3

−2

−1

0
·104

Episode

R
et
u
rn

Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 200
Scale 2 Fixed B-spline

Figure 5.9: AWR Returns for 3D Mountain Car

Michael Mitchley 58

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
1,000

2,000

3,000

4,000

5,000

6,000

7,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 Fixed B-spline
Scale 1 AWR B-spline τs = 200
Scale 2 Fixed B-spline

Figure 5.10: AWR Number of Basis Functions for 3D Mountain Car

AWR vs. Fixed Basis B-Splines vs. Tile Coding

Discontinuous Room AWR better B-Splines better
Mountain Car AWR better B-Splines better
Acrobot AWR worse B-Splines better
Pinball AWR better Tiling better
3D Mountain Car AWR worse B-Splines better

Table 5.1: AWR results summary

In acrobot, initial instabilities in the adaptive episodes appear to affect the long-term
performance of AWR, dropping it below those of the baseline fixed bases. It is not known
what causes this instability, but we conjecture that it is related to inadequate exploration
in a small number of experimental runs. In 3D mountain car AWR initially performs
well, matching the performance of the scale 1 fixed basis. The instability seen in certain
episodes arises in the non-adaptive episodes, and does not appear to affect the overall
long-term performance too badly. Nonetheless, for this domain, we cannot say that AWR
performs better than the fixed basis. The successes of the AWR method, particularly in
the representationally complex pinball and mountain car domains, show the promise of
detail-based basis function adaptation.

5.6 Conclusion

We have presented the AWR algorithm, an extension of the method of Whiteson et al.
[2007] to refineable basis functions with any learning method. This algoritm provides
numerous theoretical guarantees, including a convergence theorem conditioned on the
convergence of the learning method. Under some assumptions, we have shown that wavelet
basis functions are both necessary and sufficient for a broad class of detail-based adaptation
with replacement.

AWR has, however, the major disadvantage of starting from a complete fixed basis.

Michael Mitchley 59

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

This means that, while the initial detail level may be low, the size of the basis function
set will be exponentially dependent on the number of dimensions of the domain. In the
following chapter, we will examine dimensional adaptivity to mitigate this problem.

Michael Mitchley 60

Chapter 6

Incremental Basis Function
Dependency Discovery

6.1 Introduction

The method introduced in the previous chapter adds detail incrementally to the basis func-
tion set, but cannot scale subexponentially with dimension. In this chapter, we examine
an online orthogonal matching pursuit (OMP) algorithm which discovers binary feature
dependencies incrementally. This algorithm mitigates the curse of dimensionality by only
adding features that are relevant to the problem, using the relevance measure discussed
in Chapter 4. We discuss this algorithm and related work, and present a novel extension
to this algorithm that allows for arbitrary function types. We prove that the algorithm
converges, and demonstrate its empirical performance against the state of the art in a
number of domains.

6.2 Related Work

Incremental feature dependency discovery (IFDD) (given in algorithm 3) [Geramifard et
al. 2011] and IFDD+ (given in algorithm 4) [Geramifard et al. 2013a] are two related
methods for discovering feature dependencies between binary features online. The set of
all pairwise conjunctions of binary features currently within the basis function set is used
as the set of candidate functions. A relevance is stored for each candidate function, and
updated at each step using the current Bellman error δ. Any conjunction with a relevance
greater than a tolerance τ is added to the basis function set, and removed from both its
parent functions. That is, if a function φf = φg ∩ φh is added to the basis function set,
we replace φg with φg ← φg \ φg ∩ φf , and similarly modify φh. This ensures that the
basis function φf cannot be accidently added twice to the basis function set, and leaves
no overlap between parent functions and their conjunctive children.

61

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Algorithm 3 IFDD

Require: binary basis function set F, state s giving Bellman error δ, relevance ρ(φ), and
tolerance τ .
for all pairwise conjunctions φf = φgφh such that φg, φh ∈ F, and φf (s) ̸= 0 do

if φf ̸∈ F then
ρ(φf)← ρ(φf) + |δ|

end if
if |ρ(φf)| ≥ τ then

F← F ∪ {φf}
φg ← φg \ φg ∩ φf
φh ← φh \ φh ∩ φf

end if
end for
return F, ρ

Algorithm 4 IFDD+

Require: binary basis function set F, state s giving Bellman error δ, relevance ρ(φ),
sample count T , and tolerance τ .
for all pairwise conjunctions φf = φgφh such that φg, φh ∈ F, and φf (s) ̸= 0 do

if φf ̸∈ F then
T ← T + 1
ρ(φf)←

√
T−1√
T
ρ(φf) + δ

end if
if |ρ(φf)| ≥ τ then

F← F ∪ {φf}
φg ← φg \ φg ∩ φf
φh ← φh \ φh ∩ φf

end if
end for
return F, ρ

IFDD provides a number of theoretical guarantees, which are reproduced below without
their associated proofs. Theorems that only apply to discrete-state MDPs are omitted.

Theorem 6.1. Given initial features and a fixed policy that turns the underlying MDP
into an ergodic Markov chain, TD-based IFDD is guaranteed to discover all possible feature
conjunctions or converge to a point where the TD error is identically zero with probability
one [Geramifard et al. 2011].

Corollary 6.1. If at each step of IFDD-TD the policy changes but still induces an ergodic
Markov chain (e.g., via ϵ-greedy or Boltzmann exploration), then IFDD-TD will explore
all reachable features or converge to a point where the TD error is identically zero with
probability one [Geramifard et al. 2011].

The IFDD and IFDD+ algorithms require binary features. While tile coding produces
binary features, other basis function types cannot be used with it directly. From the proof
structure followed in Geramifard et al. [2011], it would seem that IFDD was originally
intended for use in discrete state MDPs. This is supported by observing that the proof of
Corollary 3.3 of that paper states that a full expansion in IFDD would result in each state
having exactly one active feature, a property only achievable if there are finitely many
states.

Michael Mitchley 62

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Temporal difference feature evaluation (TDFE) [Bishop and Miikkulainen 2013] uses a
genetic algorithm to search through a space populated by feature subsets. Feature subsets
are initialised through random selection without replacement from the set of all avail-
able features until the desired subset size is reached (the size is determined by sampling
from a normal distribution of a user-supplied mean and variance). This continues until a
user-supplied population size is reached. Evaluation then occurs through off-policy value
function estimation, and selection is performed to keep the population at a steady size.
This algorithm is somewhat similar to IFDD. Both search through the set of all feature
subsets, but while IFDD explores a pairwise-conjunctive frontier of features, TDFE ex-
plores the set randomly, relying on crossover and mutation. Both work within frameworks
that offer convergence guarantees: GA through eventual exploration of the entire space
via mutation, MP through convergence in the span of the feature column space.

6.3 Incremental Basis Function Dependency Discovery

The IFDD approach can only be used with binary functions. While one may use tile
coding as a binary function set on continuous domains, and in this way mitigate the curse
of dimensionality by tiling each dimension independently as the initial feature set, the
resulting value functions can only ever be piecewise constant. We now extend IFDD+ to
arbitrary function types in algorithm 5. Primarily, we use functions φi(s) in place of binary
features, giving the new algorithm the name Incremental Basis Function Dependency
Discovery (IBFDD).

Algorithm 5 IBFDD

Require: Basis function set F, state s giving TD error δt, relevance ρ(φ), sample count
T (φ), tolerance τc and the size of the domain of the function φ within the area of interest,
|Ωφ|
for all Pairwise conjunctions φf = φgφh such that φg, φh ∈ F, and φf (s) ̸= 0 do

if φf ̸∈ F then
Update ρ(φf)
Update T (φf)

end if
end for
if ρ(φf) ≥ τc and maxf ρ(φf) then

F← F ∪ {φf}
end if
return F, ρ, T

The primary differences between IFDD+ and IBFDD are that we add only the conjunc-
tion with the highest magnitude relevance greater than τc at each step, and the inclusion
of the function values in the relevance measure. This relevance measure is an estimate of
the projection of the Bellman error onto the function. The conjunctive functions are not
removed from their parent functions in our scheme, as this removal has no clear meaning
within the context of arbitrary functions φ. As is the case with IFDD, the set of candidate
functions is of finite size, and so F is also of finite size.

Theorem 6.2. Given a changing policy π that, through exploration, induces ergodic
Markov chains, and a learning method that converges to an optimal weight for any added
function φ, the IBFDD method will converge to a point where the projected error ⟨∆,φ⟩ is
below the combining tolerance τc for all existing candidate functions φ. For τc → 0, this
implies convergence to either δ(s) → 0, or the addition of all candidate functions to the
basis function set.

Michael Mitchley 63

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Proof. In the limit as t→∞, the relevance of each candidate function φ will tend to the
inner product estimate ⟨∆,φ⟩. If this is greater than τc, the candidate function will be
added, and the process repeated on its conjunctions. For τc → 0, candidate functions
will be added until no more candidate functions exist, or ⟨∆,φ⟩ is zero, implying that
∆(s)→ 0 for all states s.

Theorem 6.3. The IBFDD algorithm may be considered an online approximation of an
orthogonal matching pursuit algorithm.

Proof. A similar result was derived for Batch-IFDD [Geramifard et al. 2013b], so we give
a less rigorous argument for our new relevance measure. Since the relevance measure is
a Monte Carlo approximation of the inner product ⟨∆, φ⟩P , it is an estimate of the pro-
jection of candidate function φ onto the Bellman error surface ∆. Selecting the largest
such relevance measure means the algorithm has the same behaviour as a matching pur-
suit method, working with projection estimates computed in finite time. As the weights
associated with the basis functions are subsequently shifted by the addition of the candi-
date function φ, the method is an online approximation of an orthogonal matching pursuit
algorithm.

In the worst case, every function in the conjunction set is activated by state s, neces-
sitating a ρ update for every candidate function. In the average case, however, we expect
that not every function will be activated. If wavelet functions are used, one can quickly
index into the set of activated functions without having to check the entire set of conjunc-
tions. Suppose we wish to find which functions are activated in state s ∈ [0, 1]D, where
sd will denote the state element in dimension d, given a set of conjunctions of univariate
wavelet functions φj,k = φ(2jxd − kd). Since the domain of the atomic wavelet function
φ is known (say, [0, a]), we can for a specific j and sd generate a list of translations kd
in time linear in the order of the wavelet function such that in dimension d, sd is in the
domain of φ(2jxd − kd). This is possible because the domain of φ(2jxd − kd) is [

kd
2j ,

a+kd
2j]

and so the kd such that sd is within this domain is given by kd ∈ {⌊2jsd⌋, . . . , ⌊a+2jsd⌋}.
A smart index is maintained as a list of hash tables, indexing into lists of basis func-

tions. The outermost list gives a hash table for each dimension d, and the hash table
indexes translations kd into lists of basis functions φ, such that φ(2jsd − ki) is an atomic
function in each φ in the list. An empty list means no function is stored at that loca-
tion for that dimension. A state s is examined in each dimension, and for each possible
translation kd in that dimension, the corresponding hash table entries at kd are extracted
as potentially activated functions, since these functions must still be checked against the
entirety of s. Each conjunction is stored in one hash table only, which in our implementa-
tion corresponded to its first active dimension. A more efficient implementation would be
to store it in the hash table of a random active dimension, to ensure the hash tables are
roughly balanced. The overall complexity of indexing all potentially activated functions is
O(nD), where n is the order of the wavelet basis determining the length of the support, a.
Since each k may index into a list of conjunctions whose length is in some way dependent
on the conjunctive frontier size, an average-case complexity analysis would be difficult.
The number of functions checked is guaranteed to be less than or equal to the size of the
set of candidate functions, and in practice is much smaller.

6.4 Empirical Results

The IFDD and IFDD+ algorithms are tested against IBFDD employing tile coding, and
IBFDD using order 2 B-spline wavelets, at scales 1 and 2 (or equivalently 4 or 6 functions
per dimension), in five domains. We use Sarsa(λ) with λ = 0.9, ϵ = 0.05 and γ = 1.

Michael Mitchley 64

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

PARL2 α scaling is used [Dabney 2014], with α0 = 1. Results are averaged across 100
experiments for 20 adaptive episodes followed by 80 nonadaptive episodes, in order to
demonstrate long-term performance of the learned basis. All results show the average
return measured at each episode, and the average number of basis functions in the basis
function set at each episode.

In the original paper, the IFDD relevance [Geramifard et al. 2011] appears to contain
an error, in that the relevance is given as the sum of the absolute value of the error, rather
than the absolute value of the sum of the error. Since this is corrected in subsequent
publications [Geramifard et al. 2013ab], we will instead use the corrected version when
IFDD is used. The removal of conjunctions from the parent function was implemented
as a taboo list when checking the value of the parent tile function. If the child function
is activated, the parent function is not. In all domains, IFDD and IFDD+ exhibited a
marked sensitivity to the tolerance parameter: either a large number of functions were
added, or none were. The tolerances of the extension methods were chosen to attempt to
match the number of basis functions selected by the IFDD method.

6.4.1 Discontinuous Room

Tile-based IBFDD and IFDD did not converge for this domain. We show results for B-
spline based IBFDD against the tile-based IFDD+ method in figures 6.1 and 6.2. When 4
B-splines per dimension are employed, a stable basis is not achieved (recall the instabilities
seen in the fixed basis at scale 1), while 6 B-splines per dimension produce performance
surpassing that of the tile coding bases, while adding fewer functions. This indicates the
weakness of the IFDD approaches: if the initial level of detail is insufficient, the basis will
never be adequate, even if every conjunction is added. As with the fixed basis results, tile
coding does not exhibit a dip in the second episode.

6.4.2 Mountain Car

Figures 6.3 and 6.4 show that IBFDD using B-splines outperform the extension using tile
coding, as well as IFDD and IFDD+, using fewer basis functions in the process. The
extension using tile coding additionally has more stable performance than IFDD, improv-
ing on the results when performance in the non-adaptive episodes are considered. These
trends are also seen when the methods are started with 6 basis functions per dimension
(figures 6.5 and 6.6), although one of the nonadaptive episodes using the B-spline basis
appear to have performed poorly on average, perhaps indicating very poor performance in
a single episode of a single experiment. However, this has not affected the overall results.

6.4.3 Acrobot

Figures 6.7 and 6.8 show that IBFDD with 4 B-splines per dimension outperforms tile
coding-based approaches with a roughly equivalent number of basis functions used, but
here we see poor performance from the tile coding-based IBFDD. This is also seen in
figures 6.9 and 6.10, where six basis functions per dimension are used.

6.4.4 Pinball

Figures 6.11 and 6.12 shows a failure in the B-spline based IBFDD, wherein severe insta-
bilities are seen in the long-term performance when four basis functions per dimension are
used. This is not seen when six basis functions per dimension are used (figures 6.13 and
6.14), although the IBFDD methods do not outperform either IFDD or IFDD+ in this
domain.

Michael Mitchley 65

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
·104

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 2 IBFDD B-spline τc = 1
Scale 1 IFDD+ tiling τc = 1
Scale 2 IFDD+ tiling τc = 1

Figure 6.1: IFDD Returns for Discontinuous Room

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 2 IBFDD B-spline τc = 1
Scale 1 IFDD+ tiling τc = 1
Scale 2 IFDD+ tiling τc = 1

Figure 6.2: IFDD Number of Basis Functions forDiscontinuousRoomIFDD

Michael Mitchley 66

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 IFDD tiling τc = 0.2
Scale 1 IFDD+ tiling τc = 0.2
Scale 1 IBFDD tiling τc = 0.1

Figure 6.3: IFDD Returns for Mountain Car at Scale 1

0 10 20 30 40 50 60 70 80 90 100

30

40

50

60

70

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 IFDD tiling τc = 0.2
Scale 1 IFDD+ tiling τc = 0.2
Scale 1 IBFDD tiling τc = 0.1

Figure 6.4: IFDD Number of Basis Functions for Mountain Car at Scale 1

Michael Mitchley 67

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 2 IBFDD B-spline τc = 1
Scale 2 IFDD tiling τc = 0.2
Scale 2 IFDD+ tiling τc = 0.2
Scale 2 IBFDD tiling τc = 0.1

Figure 6.5: IFDD Returns for Mountain Car at Scale 2

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 2 IBFDD B-spline τc = 1
Scale 2 IFDD tiling τc = 0.2
Scale 2 IFDD+ tiling τc = 0.2
Scale 2 IBFDD tiling τc = 0.1

Figure 6.6: IFDD Number of Basis Functions for Mountain Car at Scale 2

Michael Mitchley 68

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 IFDD tiling τc = 0.2
Scale 1 IFDD+ tiling τc = 0.2
Scale 1 IBFDD tiling τc = 0.1

Figure 6.7: IFDD Returns for Acrobot at Scale 1

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 IFDD tiling τc = 0.2
Scale 1 IFDD+ tiling τc = 0.2
Scale 1 IBFDD tiling τc = 0.1

Figure 6.8: IFDD Number of Basis Functions for Acrobot at Scale 1

Michael Mitchley 69

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100

−1,400

−1,200

−1,000

−800

−600

−400

−200

0

Episode

R
et
u
rn

Scale 2 IBFDD B-spline τc = 1
Scale 2 IFDD tiling τc = 0.2
Scale 2 IFDD+ tiling τc = 0.2
Scale 2 IBFDD tiling τc = 0.1

Figure 6.9: IFDD Returns for Acrobot at Scale 2

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 2 IBFDD B-spline τc = 1
Scale 2 IFDD tiling τc = 0.2
Scale 2 IFDD+ tiling τc = 0.2
Scale 2 IBFDD tiling τc = 0.1

Figure 6.10: IFDD Number of Basis Functions for Acrobot at Scale 2

Michael Mitchley 70

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5
·105

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 10
Scale 1 IFDD tiling τc = 0.2
Scale 1 IFDD+ tiling τc = 0.2
Scale 1 IBFDD tiling τc = 1

Figure 6.11: IFDD Returns for Pinball at Scale 1

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Episode

B
as
is

F
u
n
ct
io
n
s

1 IBFDD bspline-10
1 IFDD tiling-0.2
1 IFDD+ tiling-0.2
1 IBFDD tiling-1

Figure 6.12: IFDD Number of Basis Functions for Pinball at Scale 1

Michael Mitchley 71

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1
·104

Episode

R
et
u
rn

Scale 2 IBFDD B-spline τc = 10
Scale 2 IFDD tiling τc = 0.2
Scale 2 IFDD+ tiling τc = 0.2
Scale 2 IBFDD tiling τc = 1

Figure 6.13: IFDD Returns for Pinball at Scale 2

0 10 20 30 40 50 60 70 80 90 100
0

500

1,000

1,500

2,000

2,500

3,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 2 IBFDD B-spline τc = 10
Scale 2 IFDD tiling τc = 0.2
Scale 2 IFDD+ tiling τc = 0.2
Scale 2 IBFDD tiling τc = 1

Figure 6.14: IFDD Number of Basis Functions for Pinball at Scale 2

Michael Mitchley 72

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

6.4.5 3D Mountain Car

Figures 6.15 and 6.16, and figures 6.17 and 6.18 show that the B-spline IBFDD outperforms
the tile-based methods, using a roughly equivalent number of basis functions, for both 4
and 6 basis functions per dimension. We also note that the instabilities seen in the AWR
basis are not present here.

0 10 20 30 40 50 60 70 80 90 100
−5,000

−4,000

−3,000

−2,000

−1,000

0

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 IFDD tiling τc = 0.1
Scale 1 IFDD+ tiling τc = 0.1
Scale 1 IBFDD tiling τc = 0.1

Figure 6.15: IFDD Returns for 3D Mountain Car at Scale 1

6.5 Discussion

Table 6.1 summarises the results above. In three of the five tested domains, the B-spline
based IBFDD outperformed the tile-based methods. In the remaining two domains, results
were inconclusive due to mixed performance dependant on the starting scale. For scale
2 wavelets (that is, 6 basis functions per dimension), the B-spline based IBFDD outper-
formed the tile-based methods in every domain except pinball, wherein the performance
was roughly equal to the IFDD and IFDD+ methods. The spiking seen in Mountain Car
may be attributed to a single episode in a single run performing abysmally, as this does
not seem to have unduly affected overall performance.

IBFDD vs. IFDD/+ B-Splines vs. Tile Coding

Discontinuous Room Inconclusive Inconclusive
Mountain Car IBFDD better B-Splines better
Acrobot IBFDD better B-Splines better
Pinball IBFDD worse Inconclusive
3D Mountain Car IBFDD better B-Splines better

Table 6.1: IBFDD results summary

We thus conclude that IBFDD with B-splines performs better than IBFDD with tile
coding, and overall it seems that IBFDD outperforms IFDD and IFDD+ (although we

Michael Mitchley 73

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 IFDD tiling τc = 0.1
Scale 1 IFDD+ tiling τc = 0.1
Scale 1 IBFDD tiling τc = 0.1

Figure 6.16: IFDD Number of Basis Functions for 3D Mountain Car at Scale 1

0 10 20 30 40 50 60 70 80 90 100

−4,000

−3,000

−2,000

−1,000

0

Episode

R
et
u
rn

Scale 2 IBFDD B-spline τc = 1
Scale 2 IFDD tiling τc = 0.1
Scale 2 IFDD+ tiling τc = 0.1
Scale 2 IBFDD tiling τc = 0.1

Figure 6.17: IFDD Returns for 3D Mountain Car at Scale 2

Michael Mitchley 74

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 2 IBFDD B-spline τc = 1
Scale 2 IFDD tiling τc = 0.1
Scale 2 IFDD+ tiling τc = 0.1
Scale 2 IBFDD tiling τc = 0.1

Figure 6.18: IFDD Number of Basis Functions for 3D Mountain Car at Scale 2

do not claim statistical significance of the results). As IBFDD generalises the ideas of
IFDD to any basis function set, it has clear advantages over IFDD. Both approaches,
however, cannot add representational detail that is lacking from the initial basis function
set. As such, we recommend neither method for use within general reinforcement learning
problems wherein the appropriate level of detail is not known.

6.6 Conclusion

The IBFDD method (like the IFDD and IFDD+ methods) is dimensionally insensitive,
and can be applied to large-scale problems, an advantage over both the fixed basis and
the AWR method. However, if the initial level of detail is insufficient, IBFDD may not
produce a stable basis, even if the basis is fully expanded. In the following chapter, we
present a novel algorithm which combines the dimensional scalability of IBFDD and the
detail-based adaptivity of AWR.

Michael Mitchley 75

Chapter 7

The Multiscale Adaptive Wavelet
Basis

7.1 Introduction

The algorithms presented in chapters 5 and 6 perform well in most domains, but exhibit
some deficiencies. AWR starts from a fixed basis, and so the size of the initial basis
function set is exponential in the number of dimensions. IBFDD is unstable when the
initial level of detail is insufficient. In this chapter, we present a hybrid algorithm which
retains the theoretical properties of both AWR and IBFDD, and corrects the weaknesses
of both approaches.

7.2 Multiscale Adaptive Wavelet Basis Algorithm

Our algorithm (MAWB) is an extension of IFDD to arbitrary basis functions in continuous
domains, combined with an algorithm based on ATC which uses an IFDD-like relevance
measure to decide when and where to split wavelet tiles. Our method uses an initial basis
function set linear in the number of dimensions and which is insensitive to the initial scale
of the basis functions, as it can adaptively add detail as necessary.

Algorithm 6 gives a complete overview of our algorithm which is intended to be inde-
pendent of learning method or wavelet family. We have implemented ours using order 2
(quadratic) BSpline wavelets normalised to have a unit square integral, using Sarsa. We
begin the algorithm with an initial wavelet basis Φ0 at scale j, and supply the algorithm
with tolerances τs and τc ≥ 0. At each timestep t, the algorithm draws a sample from the
MDP, conducts learning on the weights wt of the current basis function set Φt, and then
updates the relevances of the currently activated candidate conjunctions and splits. If a
candidate function is not currently activated, it has a value of zero in state st and cannot
contribute in any way to the currently observed Bellman error δt. Once the relevances of
each candidate conjunction and split are updated, we find the candidate conjunction and
split with the largest magnitude relevance greater than tolerance τ (where the tolerances
applied to IBFDD and AWR may differ). If we find a conjunctive candidate function with
relevance greater than τc, it is added to the basis function set and pairwise conjunctions
of itself and the other initial wavelets and candidate conjunctions are added to the set of
candidate conjunctions, taking care not to add a candidate conjunction already added to
either the set of basis functions or the set of candidate conjunctions. If we find a wavelet
tile to split, the parent tile is replaced with its children by initialising their weights such
that the value function remains unchanged, and potential splits of the children in each
dimension are considered as potential splits. If no relevance is larger than τc or τs, the
algorithm makes no change to the set of basis functions.

76

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

Algorithm 6 MAWB

Require: Intial wavelet basis scale j, Tolerances τs and τc, γ and the size of the domain
of the function φ within the area of interest, |Ωφ|
Initialise basis function set Φ0 at scale j such that each wavelet is along a state space
axis.
Initialise set of candidate conjunctions ΦC through pairwise conjunctions of basis ele-
ments in Φ0 such that the dimensions of each element in a pair are disjoint.
Initialise ρ(φ) = 0 for all φ ∈ ΦC

Initialise ρ(φ, d) = 0 for all φ ∈ Φ0 and d ∈ [0, D]
Initialise O(φ) = 0 for all φ ∈ Φ0

Initialise sample count T (φ) = 0 for all φ ∈ Φ0 and all φ ∈ ΦC

for each episode do
Draw sample s, a, r, s′, a′ from MDP.
while s′ not terminal: do

Compute TD error δt
Update weights w of basis Φt using sample and learning method
Run IBFDD using Φt, s, δt, ρ, T , O, τc
Run AWR using Φt, s, δt, ρ, T , O, τs
Draw sample s, a, r, s′, a′ from MDP.

end while
end for

One may choose to maintain the set of candidate conjunctions as a set made of all
pairwise conjunctions of elements of F at all times, which would require propagating any
split throughout the set of basis functions and conjunctions. We have chosen to do the
least amount of work possible, examining conjunctions at the coarsest level of detail only,
and adding detail via splits. Candidate conjunctions never involve splits, and may only
be created using the initial wavelet set. As such, the set of candidate conjunctions is of
finite size.

One may decide to add all basis functions with relevance greater than τ , rather than
only the largest. This approach is followed by Geramifard et al. [2011]. By adding only the
largest, however, the rate of growth of the basis function set is guaranteed to be at most
linear in the number of steps taken. This also acts to reduce sensitivity to the tolerance.

7.3 Theoretical Results

We present a number of theoretical results of MAWB, proving maximal reduction of ap-
proximation error, equivalence to an OMP method and convergence.

Theorem 7.1. Given a stationary policy inducing ergodic chains on an MDP, a collection
of wavelet basis functions Φ at any scale and tolerances τ → 0, selecting the candidate
function with the largest magnitude relevance will result in selecting the candidate function
that maximally reduces the Bellman error in the weighted 2-norm.

Proof. As time tends to infinity, the relevance of each candidate function will tend towards
the inner product ⟨∆, φ⟩P , the projection of the wavelet φ onto the Bellman error. This
inner product is proportional to the weight of the best (in the least squares sense) approx-

imation of ∆ using φ, and the weighted 2-norm of ∆ given by
√∫

Ω∆2(s)P (s)ds is equal

to the square root of the sum of the squares of the weights of the expansion of ∆ in the
wavelet basis. The candidate basis function with the maximum weight is the candidate
function which would maximally reduce the Bellman error in the weighted 2-norm. After

Michael Mitchley 77

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

a finite number of samples, the candidate function with the largest magnitude relevance
would be the candidate function that would have the largest magnitude projection.

Theorem 7.2. Given a stationary policy inducing ergodic chains on an MDP, a collection
of wavelet basis functions Φ at any scale with tolerances τ → 0, and sufficient time such
that by selecting the candidate function with the largest magnitude relevance one would
maximally reduce the Bellman error, the selected candidate function would also maximally
reduce the approximation error ||V−Φw||P in the weighted 2-norm once the weight of the
added function has been learned.

Proof. Scherrer [2010] gives the result that the Bellman error (in a 2-norm weighted by
the state density) of an approximation of V forms an upper bound (to a constant) of
the approximation error in the same norm. By adding the candidate function that will
maximally reduce the Bellman error in the weighted norm, we maximally reduce the upper
bound on the approximation error, and thus maximally reduce that error.

Theorem 7.3. The multiscale adaptive wavelet approximation algorithm is an online
approximation of an orthogonal matching pursuit algorithm.

Proof. Since the relevance measure is a Monte Carlo approximation of the inner product
⟨∆, φ⟩P , it is an estimate of the projection of candidate function φ onto the Bellman
error surface ∆. Selecting the largest such relevance measure means the algorithm has
the same behaviour as a matching pursuit method, using projection estimates computed
in finite time. As the weights associated with the basis functions are subsequently shifted
by the addition of the candidate function φ, the method is an online approximation of an
orthogonal matching pursuit algorithm.

Theorem 7.4. Given a changing policy π that, through exploration, induces ergodic
Markov chains, and a learning method that converges to an optimal weight for any added
function φ, MAWB will converge to a point where the projected error ⟨∆,φ⟩ is below
the combining tolerance τc for all existing candidate functions φ, and the projected error
⟨|∆|,φ⟩ is below the splitting tolerance τs for all φ. For τc → 0, τs → 0, this implies
convergence to either δ(s)→ 0.

Proof. This theorem combines theorems 5.4 and 6.2. Since both the AWR and IBFDD
components converge if we make the assumption that the underlying learning mechanism
converges to the optimal weight for any added φ, the assumptions of both theorems are
satisfied. Thus, MAWB converges.

This first convergence proof combines the convergence results of the two component
algorithms of MAWB. Both convergence results rely on the convergence of the underlying
learning method under the addition of any function to the basis function set, and thus
neither algorithm can affect the convergence of the other. This rather stringent assumption
is necessary, as Sarsa (and many other learning methods) do not have convergence results
for value function approximation. If the learning method does not converge, the adaptive
methods will not converge either.

Theorem 7.5. Suppose we are dealing with an MDP with state variable x. Then for all
ϵ > 0 there exists an expanded wavelet basis Φ(x) and w such that ||V ∗(x) − Φ(x)w|| ≤ ϵ
which can be reached from any intial basis scale for τ → 0.

Proof. Since the algorithm is an online approximation of a matching pursuit method, it
will converge in the space spanned by the basis functions. The space of conjunctions
is fully explored by the IBFDD component of the algorithm, and the scale of each basis
function grows as those functions are split. Thus, the space spanned by the basis functions
tends towards L2(Rn), and the algorithm converges in that space.

Michael Mitchley 78

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

This second convergence proof utilises the relationship between MAWB and OMP
methods, and implies the existence of a wavelet basis with arbitrarily low approximation
error that can be reached from any initial basis, with appropriately chosen tolerances
tending to zero. In practice, this best basis may not be possible to reach due to time
limitations, as the theorem provides no guarantee on the speed of convergence.

7.4 Empirical Results

The IBFDD method was tested against MAWB using order 2 B-spline wavelets, at scales
1 and 2 (or equivalently 4 or 6 functions per dimension). We use Sarsa(λ) with λ =
0.9, ϵ = 0.05 and γ = 1. PARL2 α scaling was used [Dabney 2014], with α0 = 1.
Results were averaged across 100 experiments for 20 adaptive episodes followed by 80
nonadaptive episodes, in order to demonstrate long-term performance of the learned basis.
All results show the average return measured at each episode, and the average number of
basis functions in the basis function set at each episode. The tolerances were chosen to
match the tolerances used in the results of Chapters 5 and 6.

7.4.1 Discontinuous Room

Figures 7.1 and 7.2 show that MAWB does not suffer the same instability as IBFDD when
the initial set of features is undetailed. We also see that when the initial feature set is
sufficiently detailed, not many basis functions are added (scale 2).

0 10 20 30 40 50 60 70 80 90 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
·104

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 2000
Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 2000

Figure 7.1: MAWB Returns for Discontinuous Room

7.4.2 Mountain Car

Figures 7.3 and 7.4 show again that MAWB is more stable than IBFDD. Additionally, we
see that MAWB achieves better results than IBFDD, although more basis functions are
used to achieve this. Equivalent tolerances result in fewer splits taking place at higher
scales, as expected.

Michael Mitchley 79

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 2000
Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 2000

Figure 7.2: MAWB Number of Basis Functions for Discontinuous Room

0 10 20 30 40 50 60 70 80 90 100
−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 200
Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 200

Figure 7.3: MAWB Returns for Mountain Car

Michael Mitchley 80

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 200
Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 200

Figure 7.4: MAWB Number of Basis Functions for Mountain Car

7.4.3 Acrobot

Figures 7.5 and 7.6 show that, even in MAWB, B-splines outperform tile coding. The
results of MAWB are better than those of IBFDD for both basis function types. These
results are consistent for both starting scales (figures 7.7 and 7.8).

7.4.4 Pinball

Figures 7.9 and 7.10 show that, again, MAWB has corrected an instability present in
IBFDD, resulting in better performance.

7.4.5 3D Mountain Car

For B-splines at scale 1, no appreciable difference in performance between MAWB and
IBFDD is observed, but at scale 2, we see that MAWB outperforms IBFDD, resulting in
better, and more stable, performance (figures 7.11 and 7.12).

7.4.6 Car Driving Simulation

We present the n-lane Car Driving Simulation domain to demonstrate further the per-
formance of MAWB. This domain is based on the 3 lane Car Driving Simulation domain
commonly used in inverse reinforcement learning, extended to n lanes. We use as a state
space the distance to the nearest car for each lane, and the lane the agent is currently
driving in (for a total of n+ 1 continuous state dimensions). We employ the nice reward
structure described by Abbeel and Ng [2004]. Figures 7.13 and 7.14 show the results of
employing scale 0, 1 and 2 B-splines in a 19 lane simulation for IBFDD and MAWB.
We see that for scales 0 and 1, MAWB clearly outperforms IBFDD, while for scale 2, it
appears that MAWB performs better for most episodes, but not substantially.

Despite the high dimensionality of the state space (20 dimensions), the number of basis
functions in the basis function set remains low, with less than 6000 basis functions being
employed. If we compare this to a fixed basis, we would require the use of fewer than 1.6

Michael Mitchley 81

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 1000
Scale 1 IBFDD tiling τc = 0.1
Scale 1 MAWB tiling τc = 0.1, τs = 1

Figure 7.5: MAWB Returns for Acrobot at Scale 1

0 10 20 30 40 50 60 70 80 90 100
0

1,000

2,000

3,000

4,000

5,000

6,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 1000
Scale 1 IBFDD tiling τc = 0.1
Scale 1 MAWB tiling τc = 0.1, τs = 1

Figure 7.6: MAWB Number of Basis Functions for Acrobot at Scale 1

Michael Mitchley 82

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 1000
Scale 2 IBFDD tiling τc = 0.1
Scale 2 MAWB tiling τc = 0.1, τs = 1

Figure 7.7: MAWB Returns for Acrobot at Scale 2

0 10 20 30 40 50 60 70 80 90 100
0

1,000

2,000

3,000

4,000

5,000

6,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 1000
Scale 2 IBFDD tiling τc = 0.1
Scale 2 MAWB tiling τc = 0.1, τs = 1

Figure 7.8: MAWB Number of Basis Functions for Acrobot at Scale 2

Michael Mitchley 83

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5
·105

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 10
Scale 1 MAWB B-spline τc = 10, τs = 10000
Scale 2 IBFDD B-spline τc = 10
Scale 2 MAWB B-spline τc = 10, τs = 10000

Figure 7.9: MAWB Returns for Pinball

0 10 20 30 40 50 60 70 80 90 100
0

2,000

4,000

6,000

8,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 10
Scale 1 MAWB B-spline τc = 10, τs = 10000
Scale 2 IBFDD B-spline τc = 10
Scale 2 MAWB B-spline τc = 10, τs = 10000

Figure 7.10: MAWB Number of Basis Functions for Pinball

Michael Mitchley 84

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

Episode

R
et
u
rn

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 200
Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 200

Figure 7.11: MAWB Returns for 3D Mountain Car

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
·104

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 1 IBFDD B-spline τc = 1
Scale 1 MAWB B-spline τc = 1, τs = 200
Scale 2 IBFDD B-spline τc = 1
Scale 2 MAWB B-spline τc = 1, τs = 200

Figure 7.12: MAWB Number of Basis Functions for 3D Mountain Car

Michael Mitchley 85

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

basis functions per dimension to achieve a basis function set of that size (using two basis
functions per dimension would result in a basis function set employing 1 048 576 basis
functions).

0 10 20 30 40 50 60 70 80 90 100
740

760

780

800

820

840

860

880

900

920

Episode

R
et
u
rn

Scale 0 IBFDD B-spline τc = 0.2
Scale 0 MAWB B-spline τc = 0.2, τs = 30
Scale 1 IBFDD B-spline τc = 0.2
Scale 1 MAWB B-spline τc = 0.2, τs = 30
Scale 2 IBFDD B-spline τc = 0.2
Scale 2 MAWB B-spline τc = 0.2, τs = 30

Figure 7.13: MAWB Returns for 19 lane Car Task

To demonstrate the dimensional scalability of MAWB, we ran the car driving simu-
lation from 9 to 99 lanes (10 to 100 dimensions) in steps of ten for 20 episodes of 1000
steps each using a second order B-spline MAWB begun at scale 0. The total compute
time and final return at episode 20 were recorded for each, and the results were averaged
across 10 experiments. The simulations were run on a laptop with 16gb memory and 8
CPU cores, with no special care taken to provide speed advantages, no threading and
standard hardware. The average times taken for each dimension are shown in figure 7.15.
We see that even the 100 dimensional domain is run in a reasonable timeframe, and the
rate of growth appears to be quadratic (although the difficulty in computing the average
frontier size means this is a qualitative observation only). Furthermore, we can show that
this subexponential growth does not come at a cost of unduly reduced performance (some
performance loss is expected, as the portion of the state space explored through the fixed
number of samples shrinks exponentially). In figure 7.16, we see that the final returns
obtained by MAWB do not change drastically.

Were one to attempt the 100 dimensional task with a fixed basis at the same detail
level, one would require 3100 basis functions, a number rather close to the number of atoms
comprising the planet.

7.5 Discussion

The results of this chapter are summarised in table 7.1. We observe that the use of MAWB
has resulted in better performance than IBFDD in all domains. The application of MAWB
to a very high dimensional problem was also demonstrated using the car driving simulation
up to 100 dimensions.

Michael Mitchley 86

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

0 10 20 30 40 50 60 70 80 90 100
0

1,000

2,000

3,000

4,000

5,000

6,000

Episode

B
as
is

F
u
n
ct
io
n
s

Scale 0 IBFDD B-spline τc = 0.2
Scale 0 MAWB B-spline τc = 0.2, τs = 30
Scale 1 IBFDD B-spline τc = 0.2
Scale 1 MAWB B-spline τc = 0.2, τs = 30
Scale 2 IBFDD B-spline τc = 0.2
Scale 2 MAWB B-spline τc = 0.2, τs = 30

Figure 7.14: MAWB Number of Basis Functions for 19 lane Car Task

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Dimensions

A
ve
ra
ge

D
u
ra
ti
on

(m
)

Figure 7.15: Time taken to execute Car Tasks of varying dimensions

Michael Mitchley 87

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

Dimensions

F
in
al

R
et
u
rn

Figure 7.16: Final returns of Car Tasks of varying dimensions

MAWB vs. IBFDD

Discontinuous Room MAWB better
Mountain Car MAWB better
Acrobot MAWB better
Pinball MAWB better
3D Mountain Car MAWB better
Car Task MAWB better

Table 7.1: MAWB results summary

7.6 Conclusion

The MAWB method is dimensionally insensitive (like IBFDD), and detail insensitive (like
AWR). This means that domains of arbitrarily high dimension can be represented using
low detail bases, since dimensional interdependency will be discovered with IBFDD, and
required detail will be discovered with AWR. MAWB retains the convergence proofs of its
two component algorithms, and has a further convergence property in being an online ap-
proximation to a matching pursuit method. MAWB has demonstrably better performance
when compared to IBFDD, which has better performance than IFDD and IFDD+.

Michael Mitchley 88

Chapter 8

Conclusion

The B-spline basis is shown to be competitive against other basis function types as a
fixed basis, performing better than the state of the art in almost all tested domains. The
performance of both the tile-based and the wavelet-based AWR are better than or equiv-
alent to the performance of a fixed basis. In some cases, the AWR performance exceeded
that of a fixed basis at the next scale. Similarly, wavelet-based IBFDD performed better
than IFDD and IFDD+. These results carried over to MAWB, wherein the performance
of IBFDD was further improved by allowing wavelet splitting through AWR. MAWB is
scalable to high dimensional problems, with performance shown up to 100 dimensions.

8.1 Contributions

This thesis makes five main contributions. The first is a clear explanation and demon-
stration of the usage of wavelets for function synthesis within the context of reinforcement
learning. The second is a number of measures of the relevance or accumulated error at-
tributable to a function in an online setting. The third is Adaptive Wavelet Refinement, an
extension of the ATC algorithm [Whiteson et al. 2007] to arbitrary online learning methods
using any refineable basis function, together with proofs of the necessity and sufficiency of
wavelets as a basis function type, and a proof of convergence of the AWR algorithm. The
fourth contribution is Incremental Basis Function Dependency Discovery, an extension of
IFDD [Geramifard et al. 2011] to arbitrary basis function types, together with a proof of
convergence of the IBFDD algorithm. The final contribution is a hybrid algorithm com-
bining IBFDD and AWR into MAWB, a multiscale wavelet-based basis function scheme
that scales to high dimensional state spaces and is detail and dimensionally adaptive.

8.2 Future work

While the novel measures and algorithms provide good performance, there are many design
decisions to explore further. The relevance measures of Chapter 4 do not take into account
function variance, which would likely provide more information about function stability
and convergence than the mean. AWR uses the difference between the observed error and
the relevance to decide which function to split, whereas the difference between measures
of the parent and the child may provide better performance. Furthermore, while the
weight of the child functions can be set to match that of the parent, there is no obvious
way to capture the parent function’s learning trajectory in the children, leading to slower,
pessimistic learning. The candidate conjunction sets of IBFDD and MAWB are maintained
as conjuctions of wavelets at the coarsest level of detail, and added functions are never
removed, even if they are entirely covered by their conjunctive children. A better data

89

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

structure would be required to maintain a smarter, more robust list of conjunctions, one
that is perhaps made up of only the most useful functions, for some measure of usefulness.

It would furthermore be useful to investigate why some functions perform better in
some domains, independently of the learning method. This may provide insight into
how to choose a good basis from which to adapt. Ideally, one would have in the basis
function set only those functions that are absolutely required for learning at the current
detail level: learning an initial value function requires generalisation, while learning later
requires the addition of detail. One might imagine an adaptive basis function scheme
that, together with a well-chosen step-size and exploration parameter, guides learning
through an optimal balance of generality and fine detail, while still being scalable to high
dimensional problems. We hope the work in this thesis is a step in that direction, albeit
one made with a small value of α.

Michael Mitchley 90

Bibliography

[Abbeel and Ng 2004] P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse rein-
forcement learning. In Proceedings of the 21st International Conference on Machine
Learning, 2004.

[Baird 1995] Leemon Baird. Residual algorithms: Reinforcement learning with function
approximation. In In Proceedings of the Twelfth International Conference on Ma-
chine Learning, pages 30–37. Morgan Kaufmann, 1995.

[Berger and Colella 1989] M.J. Berger and P. Colella. Local adaptive mesh refinement for
shock hydrodynamics. Journal of Computational Physics, 82(1):64 – 84, 1989.

[Bishop and Miikkulainen 2013] Julian Bishop and Risto Miikkulainen. Evolutionary fea-
ture evaluation for online reinforcement learning. In Computational Intelligence in
Games, 2013 IEEE Conference on, pages 1–8. IEEE, 2013.

[Bowling et al. 2008] Michael Bowling, Alborz Geramifard, and David Wingate. Sigma
point policy iteration. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 379–386. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2008.

[Boyan 1999] J.A. Boyan. Least squares temporal difference learning. In Proceedings of
the 16th International Conference on Machine Learning, pages 49–56, 1999.

[Cho and Lai 2005] Okkyung Cho and Ming Jun Lai. A class of compactly supported
orthonormal B-spline wavelets. Splines and Wavelets, 2005.

[Christensen 2008] O. Christensen. Frames and Bases. Birkhauser Boston, 2008.

[Chui and Wang 1992] Charles K Chui and Jian-zhong Wang. On compactly supported
spline wavelets and a duality principle. Transactions of the American Mathematical
Society, 330(2):903–915, 1992.

[Chui 1997] C.K. Chui. Wavelets: a Mathematical Tool for Signal Analysis. SIAM, 1997.

[Čisar and Čisar 2011] Petar Čisar and Sanja Maravić Čisar. Optimization methods of
EWMA statistics. Acta Polytechnica Hungarica, 8(5):73–87, 2011.

[Coifman and Maggioni 2006] Ronald R Coifman and Mauro Maggioni. Diffusion
wavelets. Applied and Computational Harmonic Analysis, 21(1):53–94, 2006.

[Dabney 2014] William Dabney. Adaptive Step-Sizes for Reinforcement Learning. PhD
thesis, University of Massachusetts Amherst, 2014.

[Daubechies 1992] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

91

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

[Fard et al. 2013] Mahdi Milani Fard, Yuri Grinberg, Amir Massoud Farahmand, Joelle
Pineau, and Doina Precup. Bellman error based feature generation using random
projections on sparse spaces. In Advances in Neural Information Processing Systems,
pages 3030–3038, 2013.

[Främling 2007] Kary Främling. Replacing eligibility trace for action-value learning with
function approximation. In European Symposium on Artificial Neural Networks,
pages 313–318, 2007.

[Ganesan et al. 2007] R. Ganesan, T.K. Das, and K.M. Ramachandran. A multiresolution
analysis-assisted reinforcement learning approach to run-by-run control. Automation
Science and Engineering, IEEE Transactions on, 4(2):182 –193, April 2007.

[Geramifard et al. 2011] A. Geramifard, F. Doshi-Velez, J. Redding, N. Roy, and J. How.
Online discovery of feature dependencies. In Proceedings of the 28th International
Conference on Machine Learning, pages 881–888, New York, NY, USA, June 2011.

[Geramifard et al. 2013a] Alborz Geramifard, Christoph Dann, and Jonathan P How. Off-
policy learning combined with automatic feature expansion for solving large MDPs.
In Proc. 1st Multidisciplinary Conf. on Reinforcement Learning and Decision Mak-
ing, pages 29–33, 2013.

[Geramifard et al. 2013b] Alborz Geramifard, Thomas J Walsh, Nicholas Roy, and
Jonathan How. Batch iFDD: A scalable matching pursuit algorithm for solving
MDPs. In Proceedings of the 29th Annual Conference on Uncertainty in Artificial
Intelligence, 2013.

[Hansen et al. 2015] EC Hansen, A Frank, and P Hartigan. Magnetohydrodynamic effects
on pulsed young stellar object jets. i. 2.5 d simulations. The Astrophysical Journal,
800:41, 2015.

[Kaiser 2010] Gerald Kaiser. A friendly guide to wavelets. Springer, 2010.

[Keinert 2003] Fritz Keinert. Wavelets and multiwavelets. CRC Press, 2003.

[Keller et al. 2006] P.W. Keller, S. Mannor, and D. Precup. Automatic basis function
construction for approximate dynamic programming and reinforcement learning. In
Proceedings of the International Conference on Machine Learning, pages 449–456,
2006.

[Kolter and Ng 2009] J.Z. Kolter and A.Y. Ng. Regularization and feature selection in
least-squares temporal difference learning. In Proceedings of the 26th International
Conference on Machine Learning, pages 521–528, 2009.

[Konidaris and Barto 2009] G.D. Konidaris and A.G. Barto. Skill discovery in contin-
uous reinforcement learning domains using skill chaining. In Advances in Neural
Information Processing Systems 22, pages 1015–1023, 2009.

[Konidaris et al. 2011] G.D. Konidaris, S. Osentoski, and P.S. Thomas. Value function
approximation in reinforcement learning using the Fourier basis. In Proceedings of
the Twenty-Fifth Conference on Artificial Intelligence, pages 380–385, 2011.

[Konidaris 2011] G.D. Konidaris. Autonomous Robot Skill Acquisition. PhD thesis, Uni-
versity of Massachusetts Amherst, May 2011.

Michael Mitchley 92

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

[Kritchman and Nadler 2008] Shira Kritchman and Boaz Nadler. Determining the num-
ber of components in a factor model from limited noisy data. Chemometrics and
Intelligent Laboratory Systems, 94(1):19–32, 2008.

[Lagoudakis and Parr 2003] M. Lagoudakis and R. Parr. Least-squares policy iteration.
Journal of Machine Learning Research, 4:1107–1149, 2003.

[Lin and Wright 2010] Stephen Lin and Robert Wright. Evolutionary tile coding: An
automated state abstraction algorithm for reinforcement learning. In Abstraction,
Reformulation, and Approximation, 2010.

[Maei and Sutton 2010] Hamid Reza Maei and Richard S Sutton. GQ (λ): A general
gradient algorithm for temporal-difference prediction learning with eligibility traces.
In Proceedings of the Third Conference on Artificial General Intelligence, volume 1,
pages 91–96, 2010.

[Maei et al. 2010] Hamid Reza Maei, Csaba Szepesvari, Shalabh Bhatnagar, and
Richard S. Sutton. Toward off-policy learning control with function approxima-
tion. In Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings of the
27th International Conference on Machine Learning, pages 719–726, June 2010.

[Mahadevan and Maggioni 2006] S. Mahadevan and M. Maggioni. Value function approx-
imation with diffusion wavelets and Laplacian eigenfunctions. Advances in Neural
Information Processing Systems 18, pages 843–850, 2006.

[Mahadevan 2005] S. Mahadevan. Proto-value functions: Developmental reinforcement
learning. In Proceedings of the Twenty Second International Conference on Machine
Learning, pages 553–560, 2005.

[Mairal et al. 2008] Julien Mairal, Marius Leordeanu, Francis Bach, Martial Hebert, and
Jean Ponce. Discriminative sparse image models for class-specific edge detection
and image interpretation. In Computer Vision ECCV 2008, volume 5304 of Lecture
Notes in Computer Science, pages 43–56. Springer Berlin Heidelberg, 2008.

[Melosh and Killian 1976] RJ Melosh and DE Killian. Adaptive mesh refinement in fi-
nite element analysis. In Second National Symposium on Computerized Structural
Analysis and Design, Washington, DC, 1976.

[Menache et al. 2005] Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function
adaptation in temporal difference reinforcement learning. Annals of Operations Re-
search, 134(1):215–238, 2005.

[Mnih et al. 2013] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[Mohlenkamp and Pereyra 2008] Martin J Mohlenkamp and Maŕıa Cristina Pereyra.
Wavelets, their friends, and what they can do for you. European Mathematical
Society, 2008.

[Munos and Moore 2000] Rémi Munos and Andrew W. Moore. Rates of convergence for
variable resolution schemes in optimal control. In Proceedings of the Seventeenth
International Conference on Machine Learning, Stanford University, Stanford, CA,
USA, June 29 - July 2, 2000, pages 647–654, 2000.

[Munos and Moore 2002] Rémi Munos and Andrew Moore. Variable resolution discretiza-
tion in optimal control. Machine learning, 49(2-3):291–323, 2002.

Michael Mitchley 93

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

[Painter-Wakefield and Parr 2012] C. Painter-Wakefield and R. Parr. Greedy algorithms
for sparse reinforcement learning. In Proceedings of the International Conference on
Machine Learning, pages 1391–1398, 2012.

[Parr et al. 2007] Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael
Littman. Analyzing feature generation for value-function approximation. In Pro-
ceedings of the 24th international conference on Machine learning, pages 737–744.
ACM, 2007.

[Parr et al. 2008] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield,
and Michael L Littman. An analysis of linear models, linear value-function approx-
imation, and feature selection for reinforcement learning. In Proceedings of the 25th
International Conference on Machine Learning, pages 752–759. ACM, 2008.

[Petrik 2007] Marek Petrik. An analysis of Laplacian methods for value function approxi-
mation in MDPs. In International Joint Conferences on Artificial Intelligence, pages
2574–2579, 2007.

[Pujol 2007] Gerard Llort Pujol. Improvement of the Spatial Resolution for Multibeam
Echosounders. PhD thesis, Universite de Rennes I, 2007.

[Razo-Zapata et al. 2007] I.S. Razo-Zapata, J. Waissman-Vilanova, and L.E. Ramos-
Velasco. Reinforcement learning in continuous systems: Wavelet networks approach.
In Analysis and Design of Intelligent Systems using Soft Computing Techniques, vol-
ume 41 of Advances in Soft Computing, pages 727–736. Springer Berlin Heidelberg,
2007.

[Scherrer 2010] Bruno Scherrer. Should one compute the temporal difference fix point or
minimize the bellman residual? The unified oblique projection view. In Proceedings
of the 27th International Conference on Machine Learning, pages 959–966, 2010.

[Soman et al. 2009] K.P. Soman, T. Arathi, M.S. Augustine, and S.V. Arunima.
Daubechies-Lagarias algorithm — a simplified approach. In Proceedings of the 2009
International Conference on Advances in Computing, Control, and Telecommunica-
tion Technologies, pages 510–512, 2009.

[Strang 1989] G. Strang. Wavelets and dilation equations: A brief introduction. SIAM
Rev., 31(4):614–627, December 1989.

[Strela 1996] Vasily Strela. Multiwavelets: theory and applications. PhD thesis, Mas-
sachusetts Institute of Technology, 1996.

[Sutton and Barto 1998] R.S. Sutton and A.G. Barto. Reinforcement Learning: An In-
troduction. MIT Press, Cambridge, MA, 1998.

[Taylor et al. 2008] M.E. Taylor, G. Kuhlmann, and P. Stone. Autonomous transfer for re-
inforcement learning. In The Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 283–290, 2008.

[Triebel 2008] H. Triebel. Function spaces and wavelets on domains. European Mathe-
matical Soc.,, 2008.

[Tsitsiklis and Van Roy 1997] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-
difference learning with function approximation. Automatic Control, IEEE Trans-
actions on, 42(5):674–690, May 1997.

Michael Mitchley 94

Adaptive Value Function Approximation in Reinforcement Learning using Wavelets

[Unser et al. 1993] Michael Unser, Akram Aldroubi, and Murray Eden. A family of poly-
nomial spline wavelet transforms. Signal processing, 30(2):141–162, 1993.

[Unser 1997] Michael A Unser. Ten good reasons for using spline wavelets. In Optical
Science, Engineering and Instrumentation, pages 422–431. International Society for
Optics and Photonics, 1997.

[Watkins and Dayan 1992] C.J.C.H Watkins and P. Dayan. Q-learning. Machine Learn-
ing, 8:279–292, 1992.

[Whiteson and Stone 2006] Shimon Whiteson and Peter Stone. Evolutionary function ap-
proximation for reinforcement learning. The Journal of Machine Learning Research,
7:877–917, December 2006.

[Whiteson et al. 2007] S. Whiteson, M.E. Taylor, and P. Stone. Adaptive tile coding for
value function approximation. Technical report, Computer Science Department,
University of Texas at Austin, 2007.

[Wu and Meleis 2009] Cheng Wu and Waleed Meleis. Function approximation using tile
and Kanerva coding for multi-agent systems. In Proceedings of the Adaptive Learning
Agents Workshop, 2009.

Michael Mitchley 95

	Abstract
	Dedication
	Declaration
	Acknowledgements
	Notation
	Introduction
	Background and Related Work
	Introduction
	Reinforcement Learning
	Value Function Approximation
	Learning the Value Function Online
	Batch and Offline Learning

	Basis Function Schemes
	Tile Coding
	Radial Basis Functions
	Polynomial Basis Functions
	The Fourier Basis
	Nonlinear Schemes

	Adaptive Basis Functions
	Feature Selection
	Constructive Techniques
	Adaptive Techniques

	Conclusion

	The Wavelet Basis
	Introduction
	Wavelets and Their Properties
	Function Approximation using Wavelets
	Multiresolution Analysis
	Bases and Frames
	Wavelet Families

	The Wavelet Basis for Reinforcement Learning
	Extension to Multiple Dimensions
	Parameters
	Wavelet Families for Reinforcement Learning

	Wavelets on the Interval
	Empirical Results
	Methodology
	Discontinuous Room
	Mountain Car
	Acrobot
	Pinball
	3D Mountain Car
	Further Results

	Discussion and Conclusion

	Relevance Measures
	Introduction
	Novel Relevance Measure
	Weighted Relevance Measure
	Measuring Error
	Measuring the Relevance of Functions
	Empirical Results
	Discussion and Conclusion

	Adaptive Wavelet Refinement
	Introduction
	Related Work
	Adaptive Wavelet Refinement
	Theoretical Results

	Experimental Results
	Discontinuous Room
	Mountain Car
	Acrobot
	Pinball
	3D Mountain Car

	Discussion
	Conclusion

	Incremental Basis Function Dependency Discovery
	Introduction
	Related Work
	Incremental Basis Function Dependency Discovery
	Empirical Results
	Discontinuous Room
	Mountain Car
	Acrobot
	Pinball
	3D Mountain Car

	Discussion
	Conclusion

	The Multiscale Adaptive Wavelet Basis
	Introduction
	Multiscale Adaptive Wavelet Basis Algorithm
	Theoretical Results
	Empirical Results
	Discontinuous Room
	Mountain Car
	Acrobot
	Pinball
	3D Mountain Car
	Car Driving Simulation

	Discussion
	Conclusion

	Conclusion
	Contributions
	Future work

