10 research outputs found

    Robust Approximation of Temporal CSP

    Get PDF
    A temporal constraint language G is a set of relations with first-order definitions in (Q; = 0, given a (1-e)-satisfiable instance of CSP(G), we can compute an assignment that satisfies at least a (1-f(e))-fraction of constraints in polynomial time. Here, f(e) is some function satisfying f(0)=0 and f(e) goes 0 as e goes 0. Firstly, we give a qualitative characterization of robust approximability: Assuming the Unique Games Conjecture, we give a necessary and sufficient condition on G under which CSP(G) admits robust approximation. Secondly, we give a quantitative characterization of robust approximability: Assuming the Unique Games Conjecture, we precisely characterize how f(e) depends on e for each G. We show that our robust approximation algorithms can be run in almost linear time

    Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

    Get PDF
    We study the complexity of estimating the optimum value of a Boolean 2CSP (arity two constraint satisfaction problem) in the single-pass streaming setting, where the algorithm is presented the constraints in an arbitrary order. We give a streaming algorithm to estimate the optimum within a factor approaching 2/5 using logarithmic space, with high probability. This beats the trivial factor 1/4 estimate obtained by simply outputting 1/4-th of the total number of constraints. The inspiration for our work is a lower bound of Kapralov, Khanna, and Sudan (SODA\u2715) who showed that a similar trivial estimate (of factor 1/2) is the best one can do for Max CUT. This lower bound implies that beating a factor 1/2 for Max DICUT (a special case of Max 2CSP), in particular, to distinguish between the case when the optimum is m/2 versus when it is at most (1/4+eps)m, where m is the total number of edges, requires polynomial space. We complement this hardness result by showing that for DICUT, one can distinguish between the case in which the optimum exceeds (1/2+eps)m and the case in which it is close to m/4. We also prove that estimating the size of the maximum acyclic subgraph of a directed graph, when its edges are presented in a single-pass stream, within a factor better than 7/8 requires polynomial space

    Robustly Solvable Constraint Satisfaction Problems

    Full text link
    An algorithm for a constraint satisfaction problem is called robust if it outputs an assignment satisfying at least (1−g(ε))(1-g(\varepsilon))-fraction of the constraints given a (1−ε)(1-\varepsilon)-satisfiable instance, where g(ε)→0g(\varepsilon) \rightarrow 0 as ε→0\varepsilon \rightarrow 0. Guruswami and Zhou conjectured a characterization of constraint languages for which the corresponding constraint satisfaction problem admits an efficient robust algorithm. This paper confirms their conjecture

    Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs

    Full text link
    Building on work of Cai, F\"urer, and Immerman \cite{CFI92}, we show two hardness results for the Graph Isomorphism problem. First, we show that there are pairs of nonisomorphic nn-vertex graphs GG and HH such that any sum-of-squares (SOS) proof of nonisomorphism requires degree Ω(n)\Omega(n). In other words, we show an Ω(n)\Omega(n)-round integrality gap for the Lasserre SDP relaxation. In fact, we show this for pairs GG and HH which are not even (1−10−14)(1-10^{-14})-isomorphic. (Here we say that two nn-vertex, mm-edge graphs GG and HH are α\alpha-isomorphic if there is a bijection between their vertices which preserves at least αm\alpha m edges.) Our second result is that under the {\sc R3XOR} Hypothesis \cite{Fei02} (and also any of a class of hypotheses which generalize the {\sc R3XOR} Hypothesis), the \emph{robust} Graph Isomorphism problem is hard. I.e.\ for every ϵ>0\epsilon > 0, there is no efficient algorithm which can distinguish graph pairs which are (1−ϵ)(1-\epsilon)-isomorphic from pairs which are not even (1−ϵ0)(1-\epsilon_0)-isomorphic for some universal constant ϵ0\epsilon_0. Along the way we prove a robust asymmetry result for random graphs and hypergraphs which may be of independent interest

    Approximation Algorithms for CSPs

    Get PDF
    In this survey, we offer an overview of approximation algorithms for constraint satisfaction problems (CSPs) - we describe main results and discuss various techniques used for solving CSPs

    A Blueprint for Semidefinite Relaxations of Binary-Constrained Quadratic Programs Computing tight bounds on NP-hard problems using ADMM

    Get PDF
    This thesis looks at the solution techniques of two NP-hard, large scale problems, the quadratic assignment problem, QAP, and the side chain positioning, SCP, problem. We summarize existing approaches from and look at the two problems in a unified way using a binary-constrained quadratic program, BCQP. We show how to obtain upper and lower bounds for the BCQP by formulating the semidefinite programming (SDP) relaxation and applying the Alternating Direction Method of Multipliers (ADMM) algorithm to solve it. By unifying the two problems under the umbrella of the BCQP, we better understand why the method is so successful for these two problems and obtain a blueprint for applying ADMM to similar combinatorial optimization problems

    SDPs and Robust Satisfiability of Promise CSP

    Full text link
    For a constraint satisfaction problem (CSP), a robust satisfaction algorithm is one that outputs an assignment satisfying most of the constraints on instances that are near-satisfiable. It is known that the CSPs that admit efficient robust satisfaction algorithms are precisely those of bounded width, i.e., CSPs whose satisfiability can be checked by a simple local consistency algorithm (eg., 2-SAT or Horn-SAT in the Boolean case). While the exact satisfiability of a bounded width CSP can be checked by combinatorial algorithms, the robust algorithm is based on rounding a canonical Semidefinite programming(SDP) relaxation. In this work, we initiate the study of robust satisfaction algorithms for promise CSPs, which are a vast generalization of CSPs that have received much attention recently. The motivation is to extend the theory beyond CSPs, as well as to better understand the power of SDPs. We present robust SDP rounding algorithms under some general conditions, namely the existence of particular high-dimensional Boolean symmetries known as majority or alternating threshold polymorphisms. On the hardness front, we prove that the lack of such polymorphisms makes the PCSP hard for all pairs of symmetric Boolean predicates. Our method involves a novel method to argue SDP gaps via the absence of certain colorings of the sphere, with connections to sphere Ramsey theory. We conjecture that PCSPs with robust satisfaction algorithms are precisely those for which the feasibility of the canonical SDP implies (exact) satisfiability. We also give a precise algebraic condition, known as a minion characterization, of which PCSPs have the latter property.Comment: 62 pages, to appear in STOC 202
    corecore