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Abstract
A temporal constraint language Γ is a set of relations with first-order definitions in (Q;<). Let
CSP(Γ) denote the set of constraint satisfaction problem instances with relations from Γ. CSP(Γ)
admits robust approximation if, for any ε ≥ 0, given a (1− ε)-satisfiable instance of CSP(Γ), we
can compute an assignment that satisfies at least a (1−f(ε))-fraction of constraints in polynomial
time. Here, f(ε) is some function satisfying f(0) = 0 and lim

ε→0
f(ε) = 0.

Firstly, we give a qualitative characterization of robust approximability: Assuming the Unique
Games Conjecture, we give a necessary and sufficient condition on Γ under which CSP(Γ) admits
robust approximation. Secondly, we give a quantitative characterization of robust approximabil-
ity: Assuming the Unique Games Conjecture, we precisely characterize how f(ε) depends on ε
for each Γ. We show that our robust approximation algorithms can be run in almost linear time.
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1 Introduction

In the Constraint Satisfaction Problem (CSP), we are given a set of constraints over a set
of variables, and the task is to decide whether there exists an assignment of values to the
variables that satisfies all the constraints. CSP can express general combinatorial and temporal
problems in artificial intelligence, computer science, discrete mathematics, operations research,
and elsewhere [11, 23].

In this paper, we consider the Temporal CSP (TCSP), a particular class of CSP where
variables represent times and constraints represent sets of allowed temporal relations among
them. Formally, a temporal relation is a relation with a first-order definition in (Q;<). TCSP
forms a fundamental and important class of CSP over infinite domains [4]. Since TCSP is
NP-hard in general, one of the major line of research is to identify tractable subclasses and
develop efficient algorithms for them. One of the standard way to define subclasses of TCSP
is restricting constraint languages.

A temporal constraint language, denoted by Γ, is a finite set of temporal relations. CSP(Γ)
denotes the set of TCSP instances where each instance consists of constraints from Γ.
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Polynomial-time algorithms have been developed for larger and larger classes of constraint
languages, see, e. g., [27, 26, 21], whereas TCSP for several specific constraint languages are
known to be NP-complete [13]. Building on previous works, Bodirsky and Kára [7] finally
showed the complete complexity classification of TCSP. Namely, they obtain a necessary and
sufficient condition on Γ under which CSP(Γ) is tractable. The proof technique relies on a
machinery from universal algebra, which plays an important role when we investigate the
computational complexity of CSP in various settings.

In this paper, we study the complexity of Max-TCSP, instead of satisfiability of TCSP. We
are interested in robust approximability of TCSP. An algorithm is called a (c, s)-approximation
algorithm for CSP(Γ) if, given any c-satisfiable instance (some assignment satisfies at least
a c-fraction of constraints) of CSP(Γ), it outputs an assignment that satisfies at least an
s-fraction of constraints. An algorithm is called a robust approximation algorithm for CSP(Γ)
if it is (1 − ε, 1 − f(ε))-approximation algorithm for any ε ≥ 0, where f is some function
satisfying f(0) = 0 and lim

ε→0
f(ε) = 0. When we want to specify f(ε), we call it a f(ε)-robust

approximation algorithm. A robust approximation algorithm is polynomial-time if for any
fixed ε ≥ 0, it runs in polynomial-time. Note that if CSP(Γ) admits polynomial-time robust
approximation, then satisfiability of CSP(Γ) is solvable in polynomial-time. However, the
reverse statement does not hold in general. For example, CSP({<}) (also known as the Acyclic
Graph Problem) is solvable in polynomial-time, but (1− ε, 1/2 + ε)-approximation is known
to be UG-Hard [14], i. e., NP-Hard under Khot’s Unique Games Conjecture (UGC) [17].

The notion of robust approximation is natural and useful, e. g., let us consider the
Correlation Clustering Problem [1], which is equivalent to CSP({=, 6=}). Here, a variable stands
for a datum and a constraint u = v (resp., u 6= v) means u and v is similar (resp., dissimilar).
The objective is to find a partition of the data into groups that agrees as much as possible
with the constraints. If we are given a data set with a perfect (satisfiable) partition, then
we can find it easily. However, if a small fraction of constraints are wrongly given by some
reason, e. g., measurement error, then recovering the optimal partition may become much
harder. Motivated by such practical applications, it is natural to ask what class of constraint
languages admits robust approximation.

Our Contribution

In this paper, we give a complete complexity classification of robust approximability of TCSP.
We say that a constraint language Γ is trivial if every instance of CSP(Γ) is satisfiable

unless it contains an individual constraint that is unsatisfiable such as xi 6= xi. Informally, Γ
is a Horn equality constraint language if each relation in Γ can be defined as a Horn formula
whose atoms are of the form x = y. See Preliminaries for the more detailed definition.

We have the following qualitative characterization:

I Theorem 1. Let Γ be a temporal constraint language. Then, CSP(Γ) admits polynomial-
time robust approximation if either Γ is trivial or a Horn equality constraint language.
Otherwise, it is UG-Hard to robustly approximate CSP(Γ).

We also show a more fine-grained classification that almost tightly (up to logarithmic
factor) characterizes how f(ε) depends on ε.

Informally, Γ is a negative equality constraint language if each relation in Γ can be defined
as a disjunction of negative literals or a single positive literal whose atoms are of the form
x = y. See Preliminaries for the more detailed definition.

We have the following quantitative characterization:
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I Theorem 2. Let Γ be a Horn equality constraint language.
1. If Γ is not trivial, it is UG-Hard to compute o(

√
ε)-robust approximation of CSP(Γ).

2. If Γ is negative, there is a polynomial-time O(
√
ε log(1/ε))-robust approximation algorithm

for CSP(Γ).
3. If Γ is not negative, it is UG-Hard to compute o(1/ log(1/ε))-robust approximation of

CSP(Γ).
4. There is a polynomial-time O(log log(1/ε)/ log(1/ε))-robust approximation algorithm for

CSP(Γ).

Here O(·) notation hides a constant depending on Γ.
Furthermore, we give almost linear time algorithms for the above mentioned robust

approximation results.

I Theorem 3. There exist algorithms that achieve the approximation guarantee mentioned
in Items 2 and 4 of Theorem 2 in O(m · poly logn · exp(1/ε)) time, where n is the number of
variables and m is the number of constraints.

Related Works

Motivated by obvious applications, CSP over finite domains has been a central problem in a
lot of research areas. In their seminal paper [12], Feder and Vardi posed a famous dichotomy
conjecture; “for any constraint language Γ over a finite domain, CSP(Γ) is either in P or
NP-complete.” The conjecture has been a driving force of the theoretical study of CSP
and although it still remains open, we have developed deep mathematical insights on the
structure of CSP, see, e. g., [9].

A systematic study of robust approximation algorithms was initiated by Zwick [28].
He gave polynomial-time robust approximation algorithms for 2SAT and Horn-SAT, which,
combined with previous works [16, 24], implies a complete complexity classification of robust
approximability of Boolean CSP. Later Dalmau and Krokhin [10] gave a more fine-grained
classification which determines how f(ε) depends on ε for each constraint language.

For CSP over general finite domains, Guruswami and Zhou conjectured that CSP(Γ)
admits polynomial-time robust approximation if and only if CSP(Γ) has “bounded-width,”
which informally means that CSP(Γ) is solvable by a local consistency method. Dalmau and
Krokhin [10], and Kun et al. [20] obtained robust approximation algorithms for the special
case of width-1 and finally Barto and Kozik [2] confirmed the conjecture. Unlike Boolean
CSP, a quantitative version of the classification has not been obtained so far, see [10].

As far as the authors know, there is only one paper that systematically studies the robust
approximablity of CSP over infinite domains. Ordering CSP (OCSP) is TCSP with additional
hard constraints that the variables need to be given different values. Guruswami et al. [14]
showed that for any constraint language Γ, the best approximation algorithm for CSP(Γ)
as OCSP is random assignment algorithms, assuming UGC. In particular, this implies that
if Γ is nontrivial, then it is UG-hard to robustly approximate CSP(Γ) as OCSP. We notice
that our results do not follow easily from [14] since the existence of hard constrains in OCSP
affects the approximability of CSP.

As for specific CSP over infinite domains, we are only aware of the result for CSP({=, 6=});
Charikar et al. [8] gave a polynomial-time O(

√
ε log(1/ε))-robust algorithm for it.

Our Technique

First we would like to emphasize that our contribution is the results themselves and not the
techniques to prove them. Each technical proof is non-trivial but not too difficult to come

APPROX/RANDOM’14
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up with for experts on each topic such as universal algebra, approximation algorithms based
on SDP, and connection between hardness of approximation and integrality gap. We briefly
describe the overall proof structure below.

To prove Theorem 1, first we must identify the borderline which separates tractable and
intractable cases. By the results of Bodirsky and Kára [6, 7] and Guruswami et al. [14], we
see that if CSP(Γ) admits robust approximation, then Γ must be a Horn equality constraint
language. Then, we show that Γ is a Horn equality constraint language is sufficient by giving
robust approximation algorithms.

To prove Theorem 2, first we show that the “easiest” non-trivial TCSP is CSP({=, 6=}).
The approximation hardness of CSP({=, 6=}) follows a simple reduction from Max-CUT. Next
we extend the robust approximation algorithm for CSP({=, 6=}) due to Charikar et al. [8]
and obtain an algorithm with the same approximation guarantee when Γ is negative. If Γ
is not negative, we can show CSP(Γ) is as hard as CSP({ODD3, 6=}). The approximation
hardness of CSP({ODD3, 6=}) follows by modifying the approximation hardness of Horn SAT
due to Guruswami and Zhou [15].

Our algorithms are based on semidefinite programming (SDP) relaxation. One might
think Raghavendra’s canonical SDP relaxation for CSP over finite domains [22] can be
extended to handle TCSP. This is the case in the sense that its integrality gap turns out
to match UG-Hardness [14]. However, it is hard to explicitly analyze its approximation
guarantee, and existing rounding techniques introduce errors depending on the domain size,
which is huge for TCSP. Thus, we use an SDP relaxation tailored to equality constraint
languages so as not to be affected by the domain size.

Our inapproximability results rely on UGC, which states that for any ε > 0, there exists an
integer q > 0 such that it is NP-hard to compute (1− ε, ε)-approximation of CSP where each
constraint is a two-variable linear equation over Zq. This complexity theoretic assumption
enables us to prove optimal inapproximability results for various optimization problems
such as Max-CUT, Vertex Cover etc., though proving them under P 6=NP seems beyond our
current proof techniques. See, e. g., [18] for discussion on UGC. To show inapproximability
results in Theorem 2, we use the fact that the integrality gap matches UG-Hardness and
explicitly give bad integrality gap instances.

Organization

In the next section, we introduce notion and standard tools to analyze TCSP. Then, we
prove Theorem 1, which is a “qualitative” characterization of robust approximability. Next,
we prove Theorem 2, which is a “quantitative” characterization of robust approximability.
Finally, we prove Theorem 3, which gives almost linear time algorithms for the robust
approximability results in Theorem 2.

2 Preliminaries

For an integer n, [n] denotes the set {1, . . . , n}. We often use n and m to denote the number
of variables and constraints of the instance we are concerned with, respectively.

For two real vectors x and y, ∠(x,y) denotes the angle between them, i. e., arccos(〈x,y〉/
(‖x‖ · ‖y‖)).

Temporal Constraint Language

A temporal constraint language Γ is a finite relational structure (Q;R1, R2, . . .) with a first-
order definition in (Q;<), the rational numbers with the dense linear order. Each Ri is a
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temporal relation, i. e., Ri ⊆ Qki for some finite ki such that there is a first-order formula φi
with ki free variables that defines Ri over (Q;<).

An instance of the problem CSP(Γ) is I = (V, C), where V is a set of variables and C is a
set of constraints. Each constraint C ∈ C is of the form (x1, . . . , xk;R), where x1, . . . , xk ∈ V
are variables and R ∈ Γ is a k-ary relation. We say that β : V → Q satisfies a constraint
(x1, . . . , xk;R) ∈ C if the tuple (β(x1), . . . , β(xk)) is in R. We say that β satisfies I if it
satisfies all the constraints. When β satisfies a constraint C (resp., instance I), we write
β |= C (resp., β |= I). We denote by opt(I) the maximum fraction of constraints of I
simultaneously satisfiable by some assignment.

An equality constraint language Γ is a temporal constraint language such that each relation
can be defined with a =-formula, i. e., an AND-OR formula of atoms of the form x = y or
their negations.

For each relation R from an equality constraint language, we can find a formula φR of
the equality relation that defines R. In particular, we can assume that φR is represented in
conjunctive normal form. We say that R is Horn if each clause in φR contains at most one
positive literal. We say that R is negative if each clause in φR consists of a single positive
literal or a disjunction of negative literals. We say that an equality constraint language Γ is
Horn (resp., negative) if every relation in Γ is Horn (resp., negative). The problem CSP(Γ) is
called Horn =-SAT (resp., Negative =-SAT) if Γ is a Horn (resp., negative) equality constraint
language Γ.

Universal Algebra

We introduce several definitions from universal algebra, which is a standard tool to investigate
computational complexity of CSP.

An l-ary operation f preserves (or is a polymorphism of) a k-ary relation R if for any
tuples (ai1, . . . , aik) ∈ R (i ∈ [l]), the tuple (f(a1

1, . . . , a
l
1), . . . , f(a1

k, . . . , a
l
k)) belongs to R as

well. We say that f preserves (or is a polymorphism of) a constraint language Γ if f preserves
all relations in Γ.

Let Γ be a constraint language and R be a relation. Then, R is pp-definable in Γ if R can
be defined as R(x1, . . . , xk) = ∃y1, . . . , yl(ψ(x1, . . . , xk, y1, . . . , yl)), where ψ is a conjunction
of atomic formulas with relations in Γ and the equality =. If ψ does not contain the equality
= then we say that R is pp-definable in Γ without equality. It is known that the set of
relations pp-definable in Γ is exactly the set of relations whose polymorphisms are the same
as Γ [3].

We introduce the notation CSP(Γ) ≤RA CSP(Γ′) as a shorthand for the following. For
any error function f with lim

ε→0
f(ε) = 0 and f(0) = 0, if some polynomial-time algorithm

f(ε)-robustly approximates CSP(Γ′), then there is a polynomial-time algorithm that O(f(ε))-
robustly approximates CSP(Γ).

Though the following lemma is originally proved for Boolean CSP, the proof is also valid
for TCSP.

I Lemma 4 ([10]). Let Γ be a constraint language and let R be a relation pp-definable in Γ
without equality. Then CSP(Γ ∪ {R}) ≤RA CSP(Γ).

Thus, if Γ itself contains the equality relation, robust approximability of CSP(Γ) is determined
by polymorphisms. Indeed, any non-trivial equality constraint language turns out to contain
the equality relation. To show this, we use the following fact.

I Lemma 5 ([6]). Let Γ be an equality constraint language that is not preserved by any
constant operation. Then, 6= is pp-definable in Γ.

APPROX/RANDOM’14
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I Lemma 6. Let Γ be a non-trivial equality constraint language. Then, Γ pp-defines = and
6=.

Proof. Since Γ is non-trivial, in particular, Γ is not preserved by any constant operation.
Thus, 6= is pp-definable in Γ from Lemma 5.

Since Γ is non-trivial, there exists a satisfiable relation R(x1, . . . , xk) pp-definable in Γ
such that it is not satisfied by any all-different assignment β, where β(xi) 6= β(xj) holds for
every i 6= j. This means that for any satisfying assignment β for R(x1, . . . , xk), β(xi) = β(xj)
holds for some i 6= j. As long as there is a pair of arguments (xi, xj) such that there is a
satisfying assignment β with β(xi) 6= β(xj), we add a constraint (xi 6= xj) to R. Let R′ be
the resulting constraint. Note that R′ is pp-definable in Γ as 6= is pp-definable in Γ. Since
R is not satisfied by the all-different assignment, R′ must have some pair (xi, xj) such that
we have not added the constraint (xi 6= xj). Since R′ becomes unsatisfiable if we add a
constraint (xi 6= xj) to R′, xi must be equal to xj in any satisfying assignment of R′. Thus,
the projection of R′ to {xi, xj} is the equality constraint. J

Combining Lemmas 4 and 6, the following holds.

I Corollary 7. Let Γ be a non-trivial equality constraint language. Let R be a relation
pp-definable in Γ. Then, CSP(Γ ∪ {R}) ≤RA CSP(Γ).

Semidefinite Programming

We introduce an SDP relaxation BasicSDP. For an instance I = (V, C) of a standard CSP
over the domain [q], we want to find a collection of vectors {xu,a}u∈V,a∈[q] and a collection
of probability distributions {µC}C∈C :

max E
C∈C

Pr
β∼µC

[β |= C]

s. t. Pr
β∼µC

[β(u) = a, β(v) = b] = 〈xu,a,xv,b〉 ∀C ∈ C, u, v ∈ V, a, b ∈ [q],

Pr
β∼µC

[β(u) = a] = 〈xu,a, I〉 ∀C ∈ C, u ∈ V, a ∈ [q].

Here, I is any unit vector. Since µC is a probability distribution, we implicitly impose
〈xu,a,xv,b〉 ≥ 0 and

∑
a xu,a = I. See [22] for detailed explanation of BasicSDP. We define

sdp(I) as the optimal SDP value of BasicSDP for I. For TCSP, since we only need n values
though the domain is Q, we can write down BasicSDP as well. Guruswami et al. showed
that, assuming UGC, BasicSDP gives a tight approximation ratio to Ordering CSP, which is
a large subset of TCSP. The difference is that, in Ordering CSP, we only consider constraints
that can be satisfied only when all variables have different values. However, it is almost
direct to modify the argument to cover the whole TCSP:

I Lemma 8 ([14]). Let Γ be a temporal constraint language. Suppose that there is an
instance I of CSP(Γ) with sdp(I) = c and opt(I) = s. Then, it is UG-Hard to compute
(c− ε, s+ ε)-approximation for CSP(Γ) for any ε > 0.

Let Γ be an equality constraint language and I be an instance of CSP(Γ). Then, sdp(I)
is determined by

∑
a∈[q]〈xu,a,xv,a〉 for u, v ∈ V . Thus, by letting xu = ⊕qa=1xu,a :=

(xu,1, . . . ,xu,q), we can transform BasicSDP to the following SDP relaxation.

max E
C∈C

Pr
β∼µC

[β |= C]

s. t. Pr
β∼µC

[β(u) = β(v)] = 〈xu,xv〉 ∀C ∈ C, u, v ∈ V.
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Again, we implicitly impose 〈xu,xv〉 ≥ 0 and ‖xu‖2 = 1. (Strictly speaking, the above
formulation might be weaker than the original BasicSDP but suffices for our purpose.) Note
that semidefinite programs can be solved within an additive error δ for any δ > 0 in time
polynomial in the size of an instance and log(1/δ).

3 Qualitative Characterization

In this section, we prove Theorem 1, which is a “qualitative” characterization of robust
approximability.

First we introduce well-known relations (See [7]).
Betw is the ternary relation {(x, y, z) ∈ Q3 | (x < y < z) ∨ (z < y < x)}.
Cycl is the ternary relation {(x, y, z) ∈ Q3 | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)}.
Sep is the 4-ary relation {(x1, y1, x2, y2) ∈ Q4 | all distinct and the interval [min{x1, y1},
max{x1, y1}] and the interval [min{x2, y2},max{x2, y2}] overlap}.

Then, we use the following classification result.

I Lemma 9 (Theorem 20 (and proof of Theorem 50) in [7]). A temporal constraint language
Γ satisfies at least one of the following:
1. Γ is trivial,
2. There is a pp-definition of <, Cycl, Betw, or Sep in Γ, or
3. Γ is an equality constraint language.

For the first case, robust approximation is meaningless since every instance is satisfiable. As
for the second case, robust approximation is hard from the following and Corollary 7.

I Lemma 10 ([13, 7, 14]). It is NP-Complete to solve CSP({Betw}), CSP({Cycl}), and
CSP({Sep}), and it is UG-Hard to compute (1− ε, 1/2 + ε)-approximation of CSP({<}) for
any ε > 0.

Now we focus on the third case, i. e., Γ is an equality constraint language. The following
lemma gives the condition under which CSP(Γ) is solvable.

I Lemma 11 (Theorem 1 and Lemma 8 in [6]). Let Γ be a non-trivial trivial equality constraint
language. The problem CSP(Γ) is polynomial-time solvable if Γ is Horn and NP-complete
otherwise.

We show the following robust approximation algorithm for Horn =-SAT in the next
section.

I Lemma 12. For any ε > 0, there is a polynomial-time O( log log 1/ε
log 1/ε )-robust approximation

algorithm for Horn =-SAT.

We finish the proof of Theorem 1 by combining Lemmas 9, 10, 11 and 12. Note that we
combine two algorithms of Lemmas 11 and 12 to handle the cases ε = 0 and ε > 0.

3.1 Approximability of Horn =-SAT
Now we prove Lemma 12. For an integer k, let Γk be the equality constraint language that
consists of Horn clauses of at most k literals. Note that every Horn formula is pp-definable
in Γ3 and Γ3 contains the equality relation. Thus, from Lemma 4, it suffices to consider
CSP(Γ3) to prove Lemma 12. In this section, however, we give an O( log(k log 1/ε)

log 1/ε )-robust
approximation algorithm for CSP(Γk) to see the dependency on k.

APPROX/RANDOM’14
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Let I = (V, C) be an instance of CSP(Γk). We let yC = Prβ∼µC
[β |= C] in the BasicSDP.

Then for each constraint C ∈ C, we have a constraint of the form:

yC ≤
∑

(u6=v)∈C

(1− 〈xu,xv〉) +
∑

(u=v)∈C

〈xu,xv〉.

Note that the latter sum contains at most one summand.
Let I be an instance with opt(I) ≥ 1− ε. Clearly sdp(I) ≥ 1− ε holds, and it follows

that yC ≥ 1−
√
ε for at least a (1−

√
ε)-fraction of constraints. Then, we discard constraints

C with yC < 1−
√
ε. For simplicity of exposition, we assume that every constraint C satisfies

yC ≥ 1− ε. This does not affect the final result since O( log(k log 1/ε)
log 1/ε ) remains the same by

replacing ε with
√
ε. We also assume that ε < 1/2.

Our rounding scheme is as follows. Let s ≥ 1 and δ = δ(k, ε) � ε be parameters
determined later. Let h = 2

√
k
δ log 1

δ . We pick t from {h0, h1, h2, . . . , hs} uniformly at random.
Then, we choose t random hyperplanes, which divides the entire space into 2t cells. For each
cell, we introduce a new value and assign the value to all variables in the cell. Note that the
resulting assignment β only uses at most 2t different values.

The following lemma is useful to analyze the performance of our algorithm.

I Lemma 13. Let x,y be unit vectors. The probability that two unit vectors x and y are in
the same cell given by t random hyperplanes is (1 − ∠(x,y)

π )t. In particular, the following
hold.

If 〈x,y〉 ≥ 1− ε, then the probability that x and y are in the same cell is 1−O(t
√
ε).

If 〈x,y〉 ≤ 1− ε, then the probability that x and y are in the same cell is exp(−Ω(t
√
ε)).

Proof. The first claim is obvious. If 〈x,y〉 ≥ 1− ε, then ∠(x,y) ≤ 2
√
ε holds, and it follows

that (1− ∠(x,y)
π )t ≥ (1− 2

√
ε

π )t ≥ 1− 2t
√
ε

π . If 〈x,y〉 ≤ 1− ε, then ∠(x,y) ≥
√

2ε holds, and
it follows that (1− ∠(x,y)

π )t ≤ (1−
√

2ε
π )t ≤ exp(− t

√
2ε
π ). J

The following three lemmas show that each kind of constraints is satisfied with high
probability.

I Lemma 14. Let C be a constraint of the form (u = v). If yC ≥ 1− ε, then Pr[β |= C] =
1−O(hs

√
ε).

Proof. Since 〈xu,xv〉 ≥ 1 − ε, from Lemma 13, we have Pr[β |= C] = Et[1 − O(t
√
ε)] =

1−O(hs
√
ε). J

I Lemma 15. Let C be a constraint of the form (u1 6= v1) ∨ · · · ∨ (ul 6= vl). If yC ≥ 1− ε,
then Pr[β 6|= C] = 1/s+ exp(−Ω(h/

√
2l)).

Proof. We have
∑l
i=1〈xui

,xvi
〉 ≤ l− 1 + ε. Thus, there exists some i ∈ [l] with 〈xui

,xvi
〉 ≤

1 − 1−ε
l . From Lemma 13, we have Pr[β 6|= C] = Et[exp(−Ω(t

√
(1− ε)/l))] = 1/s +

exp(−Ω(h/
√

2l)) (We used ε < 1/2). J

I Lemma 16. Let C be a constraint of the form (u1 6= v1) ∨ · · · ∨ (ul−1 6= vl−1) ∨ (ul = vl).
If yC ≥ 1− ε, then Pr[β |= C] = 1−O(hs

√
ε)− δ − 1/s.

Proof. Let η = 1− 〈xul
,xvl
〉. Suppose that η < 2ε. Then, from Lemma 13, Pr[β |= C] ≥

Pr[βul
= βvl

] = Et[1−O(t
√
ε)] = 1−O(hs

√
ε)

Suppose that η ≥ 2ε. Then, there exists some i ∈ [l− 1] such that 〈xui
,xvi
〉 ≤ 1− η−ε

l−1 ≤
1 − η

2l . Let p+
t = Pr[β |= (ul = vl) | t] and p−t = Pr[β 6|= (ui 6= vi) | t]. We want to bound

from above the number of t such that neither p+
t ≥ 1−δ nor p−t ≤ δ. We will choose δ so that



S. Tamaki and Y. Yoshida 427

p+
1 ≥ 1− δ. Let t∗ ∈ {hi}si=0 be the smallest value such that p+

t∗ < 1− δ. If t∗ ≥ hs, then we
always have p+

t ≥ 1− δ and we are done. Suppose t∗ < hs. Then, by choosing s = 1
δ and

δ = log(k log 1/ε)
log 1/ε , we have p−ht∗ ≤ δ as follows. From Lemma 13, 1−δ > p+

t∗ ≥ 1− 2t∗√η
π , hence

δ <
2t∗√η
π . Multiplying h both sides and using the definition of h, we have log 1

δ <
ht∗
√
η/k

π .
Again from Lemma 13,

p−ht∗ ≤ exp(−
ht∗
√
η/l

π
) ≤ exp(−

ht∗
√
η/k

π
) < exp(− log 1

δ
) = δ.

Thus, all but one choice of t, p+
t ≥ 1− δ or p−t ≤ δ holds. Thus, Pr[β |= C] ≥ 1

s · 0 + (1−
1
s )(1− δ) ≥ 1− δ − 1

s . J

Proof of Lemma 12. If a constraint C is in Γk, then from Lemmas 14, 15, and 16, the
probability that β does not satisfy C is at most O(hs

√
ε) + 1/s+ exp(−Ω(h/

√
2k)) + δ. From

the choice of s, δ, we have Pr[β |= C] = 1−O(δ).
In general, if a constraint C is defined as a conjunction of w relations in Γk, we have

Pr[β |= C] = 1−O(w · δ) by union bound. J

4 Quantitative Characterization

In this section, we prove Theorem 2, which is a “quantitative” characterization of robust
approximability. Item 4 is already proved in Lemma 12. Items 1, 2 and 3 will be proved in
the following sections.

4.1 Inapproximability of Correlation Clustering
In this section, we prove Item 1 of Theorem 2. Since any non-trivial Γ pp-defines = and 6=
from Lemma 6, it suffices to show the following.

I Lemma 17. It is UG-Hard to compute o(
√
ε)-robust approximation of CSP({=, 6=}).

We show a reduction from Max-CUT to CSP({=, 6=}), then apply the following theorem.

I Theorem 18 ([19]). It is UG-Hard to compute o(
√
ε)-robust approximation for Max-CUT.

The reduction is as follows. Let a graph G = (V,E) be an instance of Max-CUT. We
construct a weighted graph Ĝ = (V̂ , E= ∪ E6=,W ) as: (i) V̂ := {vi | v ∈ V, i ∈ {0, 1}}.
(ii) E= := {(ui, v1−i) | (u, v) ∈ E, i ∈ {0, 1}}. (iii) E 6= := {(v0, v1) | v ∈ V }. (iv)
W : E= ∪E6= → [0, 1] as W (e) = 1

4|E| if e ∈ E=, W (e) = d(v)
4|E| if e = (v0, v1) ∈ E 6=. Here d(v)

denotes the degree of v in G. Note that
∑
e∈E=

W (e) =
∑
e∈E 6= W (e) = 1

2 . We can regard
Ĝ as an instance of CSP({=, 6=}), and the following two lemmas hold.

I Lemma 19. If opt(G) ≥ 1− ε, then opt(Ĝ) ≥ 1− ε/2.

Proof. Let l : V → {0, 1} be a labeling for G with opt(G) ≥ 1− ε. Define l̂ : V̂ → {0, 1}, a
labeling of Ĝ, as: l̂(v0) = l(v) and l̂(v1) = 1− l(v). Then, l̂ satisfies a 1− ε fraction of edges
in E= and every edge in E6=. Therefore, opt(Ĝ) ≥ (1− ε)× 1/2 + 1/2 = 1− ε/2. J

I Lemma 20. If opt(Ĝ) ≥ 1− ε, then opt(G) ≥ 1− 2ε.
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Proof. First we show that if opt(Ĝ) = 1, then opt(G) = 1. Without loss of generality, we can
assume that G is connected. An optimal cut l : V → {0, 1} is defined as follows. Pick an arbit-
rary vertex v∗0 ∈ V̂ and define V0 := {v0 ∈ V̂ | v0 is reachable from v∗0 using only edges in E=},
and l(v) = 0 iff v0 ∈ V0. Note that if (u, v) ∈ E, then exactly one of u0, v0 is in V0, thus, l is
an optimal cut.

Now we assume opt(Ĝ) ≥ 1− ε and a labeling l̂ : V̂ → {1, 2, . . . . , 2|V |} is optimal. We
say a pair of vertices (v0, v1) is good if l̂(v0) 6= l̂(v1). Consider a subgraph Ĝ′ induced by
good vertices from Ĝ. To obtain Ĝ′, we need to remove at most an ε fraction of edges from
Ĝ. Thus, the total weight of satisfied edges is at least 1− 2ε in Ĝ′. Let Ĝ′′ be a subgraph
obtained from Ĝ′ by deleting all unsatisfied edges. Then, we can construct a cut from the
labeling of Ĝ′′ so that opt(G) ≥ 1− 2ε, by similar reasoning for the case of opt(Ĝ) = 1. J

Combining Theorem 18 and Lemmas 19, 20, we complete the proof of Lemma 17.

4.2 Approximability of Negative =-SAT
In this section, we prove Item 2 of Theorem 2. For an integer k, let Γk be the equality
constraint language consisting of negative clauses of at most k literals. Since every negative
formula is pp-definable in Γk for some k, we consider CSP(Γk).

Given an instance I = (V, C) of CSP(Γk), let C= be the set of constraints of the form
(u = v) and C 6= = C \ C=. Then, we solve BasicSDP. For each constraint C ∈ C, we let
yC = Prβ∼µC

[β |= C]. Then, we have:

yC ≤ 〈xu,xv〉 if C ∈ C=,

yC ≤
∑

(u6=v)∈C

(1− 〈xu,xv〉) if C ∈ C6=.

Our rounding scheme uses t random hyperplanes to define an assignment β as was the
case for Horn =-SAT, but here we fix t = 10

√
k log(1/ε).

Proof of Item 2 of Theorem 2. We can safely assume that each constraint C satisfies yC ≥
1/2 (At most an O(ε)-fraction of constraints can satisfy yC < 1/2). For a constraint C ∈ C,
we set εC = 1− yC .

We consider the loss caused by C=. From Lemma 13, if yC ≥ 1 − δ for C ∈ C=, then
Pr[β |= C] = 1−O(

√
kδ log(1/ε)). Thus, the total loss is proportional to

1
m

∑
C∈C=

√
kεC log(1/ε) ≤

√
k log(1/ε)
m

√
|C=|

∑
C∈C=

εC

≤
√
k log(1/ε)

√
1
m

∑
C∈C=

εC ≤
√
kε log(1/ε).

The first inequality is by Cauchy-Schwartz.
We now turn to C6=. Let C ∈ C 6= be a constraint of l literals. Then, we have∑l
i=1〈xui

,xvi
〉 ≤ l − 1 + 1/2 = l − 1/2 from εC ≤ 1/2. Thus, there exists some i ∈ [l] with

〈xui
,xvi
〉 ≤ 1 − 1

2l . From Lemma 13, we have Pr[β 6|= C] = exp(− t
√

1/l
π ) = O(

√
ε). Thus,

the total loss is at most 1
m

∑
C∈C 6= O(

√
ε) = O(

√
ε).

In summary, if a constraint C is in Γk, then the total loss is at most O(
√
kε log(1/ε)) +

O(
√
ε) = O(

√
kε log(1/ε)). In general, if a constraint C is defined as a conjunction of w

relations in Γk, the total loss is at most O(w ·
√
kε log(1/ε)) by union bound. J
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4.3 Inapproximability of Non-Negative =-SAT
In this section, we prove Item 3 of Theorem 2. We introduce a relation ODD3(x, y, z) =
{(x, y, z) ∈ Q3 | |{x, y, z}| = 1 or 3}. We use the following fact.

I Lemma 21 ([5]). Let Γ be an equality constraint language such that Γ is not preserved by
a constant operation and some relation R ∈ Γ is not negative. Then, ODD3 is pp-definable
in Γ.

From Corollary 7, Lemmas 5 and 21, it suffices to show the following inapproximability
result.

I Lemma 22. It is UG-Hard to compute o( 1
log 1/ε )-robust approximation of CSP({ODD3, 6=}).

We will give an instance I with sdp(I) = 1− ε and opt(I) = 1−O( 1
log 1/ε ). Then, we

have the desired result from Lemma 8. We borrow several ideas from [15], which shows
that computing o( 1

log 1/ε )-robust approximation of Horn SAT (over the Boolean domain) is
UG-Hard.

Given a parameter k, our integrality gap instance I = (V, C) looks as follows.

Variables : u1, . . . , uk, v1, . . . , vk

Initial constraint : ODD3(u1, u1, v1)

Block i (1 ≤ i ≤ k − 1) :
{

ODD3(ui, vi, ui+1),
ODD3(ui, vi, vi+1)

Final constraint : (uk 6= vk)

We intend to set u1 = v1 using the initial constraint and to set ui = vi = ui+1 = vi+1 using
Block i. Because of the final constraint, the instance I is unsatisfiable. Since I has 2k
constraints, we have opt(I) ≤ 1− 1

2k .
Now we show that sdp(I) ≥ 1 − 1

exp(k) . Suppose that we have fixed SDP vectors
x = {xv}v∈V in BasicSDP. Then, for each constraint C ∈ C, the optimal probability
distribution µC is locally determined from x. Thus, to construct a good SDP solution, we
can concentrate on constructing good SDP vectors x. We say that x satisfies a constraint C if
there is a probability distribution µC that is consistent with x such that Prβ∼µC

[β |= C] = 1.
For δ = 1

exp(k) , our SDP vectors x will satisfy the initial constraint up to 1 − δ and
completely satisfy Block i (1 ≤ i ≤ k − 1) and the final constraint. Since it is hard to
construct all the SDP vectors at once, we make SDP vectors for each block first so that they
agree with each other on some interface, and then we coalesce them together. The following
definition and claim help us bring down the difficulty.

I Definition 23 (partial SDP solution). Let C′ ⊆ C be a set of constraints. Then, SDP vectors
{xv}v∈V ′ for V ′ ⊆ V is said to be a partial SDP solution on C′ if every constraint in C′ is
satisfied by x. (In particular, xv must be defined for every variable v that appears in C′.)

An easy modification of Claim 7 of [15] gives the following.

I Lemma 24 ([15]). Let C1, C2 ⊆ C be two disjoint set of constraints. Let x1 = {x1
v}v∈V1

and x2 = {x2
v}v∈V2

be partial SDP solutions on C1 and C2, respectively. Suppose that, for all
u, v ∈ V1 ∩ V2, it holds that 〈x1

u,x
1
v〉 = 〈x2

u,x
2
v〉. Then, there exists a partial SDP solution y

on C1 ∪C2 that preserves inner products between vectors corresponding to variables in C1 ∩C2.

Now we construct a partial SDP solution for each block.
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I Lemma 25. For any 0 ≤ δ ≤ 1/2 and 1 ≤ i ≤ k − 1, there exists a partial SDP solution
{xui

,xvi
,xui+1 ,xvi+1} to Block i such that

〈xui ,xvi〉 = 1− δ and 〈xui+1 ,xvi+1〉 = 1− 2δ.

Proof. Consider the following matrix whose columns and rows correspond to xui , xvi , xui+1 ,
xvi+1 in this order and each element represents the inner product between corresponding
vectors.

A =


1 1− δ 1− δ 1− δ

1− δ 1 1− δ 1− δ
1− δ 1− δ 1 1− 2δ
1− δ 1− δ 1− 2δ 1

 .

This matrix A satisfies the condition of the lemma, and we can construct a probability
distribution satisfying Block i that is consistent to inner products determined by A. For
example, for the constraint ODD3(ui, vi, ui+1), we can use the probability distribution for
which |{ui, vi, ui+1}| = 1 with probability 1− δ and |{ui, vi, ui+1}| = 3 with probability δ.

To ensure there are vectors realizing the matrix A, we need to show that A is positive
semidefinite. Let J be the all-one matrix. Then,

A = (1− 2δ)J + δ


2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 2

 .

We can check that last matrix is positive semidefinite. Thus, A is a sum of semidefinite
matrices and hence A is also positive semidefinite. J

I Lemma 26. sdp(I) ≥ 1− 1
k2k+1 .

Proof. Let δ > 0 be a sufficiently small value. By combining partial SDP solutions given
by Lemma 25 iteratively using Lemma 24, we have an SDP solution x = {xv}v∈V with the
following property: it is a partial SDP solution for all constraints in Blocks 1 to k − 1, and

〈xu1 ,xv1〉 = 1− δ, 〈xuk
,xvk
〉 = 1− 2kδ.

Then, the loss from the initial constraint is δ, and the loss from the final constraint is 1− 2kδ.
By choosing δ = 1/2k, the optimal SDP value is at least 1− δ

2k = 1− 1
k2k+1 . J

Since opt(I) ≤ 1 − 1
2k whereas sdp(I) ≥ 1 − 1

k2k+1 , we have Lemma 22 from Lemma 8,
which gives Item 3 of Theorem 2.

5 Robust Approximation of Horn =-SAT in Almost Linear Time

In this section, we show that we can solve BasicSDP for Horn =-SAT in almost linear time.
Since rounding can be done in linear time, we can obtain an O(log log(1/ε)/ log(1/ε))-robust
approximation for Horn =-SAT as well as an O(

√
ε log(1/ε))-robust approximation for Negative

=-SAT in almost linear time. Recall that Negative =-SAT is a special case of Horn =-SAT.
For a TCSP instance I, let Iq be the instance whose domain is restricted to [q] instead

of Q. The following lemma says that, if q is large enough, then the optimal value does not
decrease much by using only q values.
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I Lemma 27. Let I be an instance of Horn =-SAT. Then, opt(Iq) ≥ (1− 1
q )opt(I) holds.

Proof. Let β∗ : V → Q be the optimal assignment for I. Let φ : Q → [q] be a random
mapping. (We do not have to define the whole mapping explicitly as the size of the range
of β∗ is bounded by |V |.) Then, we construct q-valued β from β∗ by setting βv = φ(β∗v).
Let C be a constraint satisfied by β∗. If C is of the form (u = v), then Pr[β |= C] = 1.
If C is of the form ∧ki=1(ui = vi) → false for some k ≥ 1, then there exists some i ∈ [k]
such that β∗(ui) 6= β∗(vi). Thus, Pr[β |= C] ≥ 1 − 1

q . Finally, suppose C is of the form
∧k−1
i=1 (ui = vi) → (uk = vk) for some k ≥ 1. Then, β∗(uk) = β∗(vk) holds or there exists

some i ∈ [k] such that β∗(ui) 6= β∗(vi). From the same reasoning, Pr[β |= C] ≥ 1 − 1
q

holds. J

For CSP over finite domains, it is known that an almost optimal SDP solution can be
obtained in almost linear time as follows.

I Lemma 28 ([25]). Let I = (V, C) be a CSP instance on n variables over the domain [q]
with m constraints and maximum arity k. Suppose sdp(I) ≥ α. Then for every ε > 0,
we can compute in time m · poly(kq/ε) · poly logn an SDP solution of value at least α− ε
that is feasible for a CSP instance I ′ obtained from I by discarding at most an ε-fraction of
constraints.

I Lemma 29. Let I = (V, C) be an instance of Horn =-SAT of maximum arity k with
opt(I) ≥ α. Then, we can compute in time m · poly(k1/ε/ε) · poly logn an SDP solution of
value at least α−O(ε).

Proof. We set q = 1/ε. From Lemma 27, opt(Iq) ≥ α − ε. Using Lemma 28, we obtain
a feasible SDP solution {xu,a}u∈V,a∈[q] of value at least α−O(ε). Here, the O(·) notation
arises since we have discarded an ε-fraction of constraints from Iq,

Now, we define xu as ⊕qi=1xu,i and claim {xu}u∈V is a good SDP solution for I. The
objective value does not change since 〈xu,xv〉 =

∑
i∈[q]〈xu,i,xv,i〉 and the objective value is

only determined by these inner products. Moreover, constraints in BasicSDP are satisfied
since ‖xu‖2 =

∑q
i=1 ‖xu,i‖2 = 1 and 〈xu,xv〉 =

∑
i〈xu,i,xv,i〉 ≥ 0. J

Combining the rounding method given in Sections 3 and 4, we have the following.

I Corollary 30. For Horn =-SAT (resp., Negative =-SAT) of maximum arity k, In m ·
poly(k1/ε/ε) · poly logn, we can compute an O( log(k log 1/ε)

log 1/ε )-robust approximation (resp., an
O(
√
ε log(1/ε)-robust approximation).
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