201 research outputs found

    DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization

    Full text link
    Recent research has demonstrated that Intel's SGX is vulnerable to various software-based side-channel attacks. In particular, attacks that monitor CPU caches shared between the victim enclave and untrusted software enable accurate leakage of secret enclave data. Known defenses assume developer assistance, require hardware changes, impose high overhead, or prevent only some of the known attacks. In this paper we propose data location randomization as a novel defensive approach to address the threat of side-channel attacks. Our main goal is to break the link between the cache observations by the privileged adversary and the actual data accesses by the victim. We design and implement a compiler-based tool called DR.SGX that instruments enclave code such that data locations are permuted at the granularity of cache lines. We realize the permutation with the CPU's cryptographic hardware-acceleration units providing secure randomization. To prevent correlation of repeated memory accesses we continuously re-randomize all enclave data during execution. Our solution effectively protects many (but not all) enclaves from cache attacks and provides a complementary enclave hardening technique that is especially useful against unpredictable information leakage

    Software Grand Exposure: SGX Cache Attacks Are Practical

    Full text link
    Side-channel information leakage is a known limitation of SGX. Researchers have demonstrated that secret-dependent information can be extracted from enclave execution through page-fault access patterns. Consequently, various recent research efforts are actively seeking countermeasures to SGX side-channel attacks. It is widely assumed that SGX may be vulnerable to other side channels, such as cache access pattern monitoring, as well. However, prior to our work, the practicality and the extent of such information leakage was not studied. In this paper we demonstrate that cache-based attacks are indeed a serious threat to the confidentiality of SGX-protected programs. Our goal was to design an attack that is hard to mitigate using known defenses, and therefore we mount our attack without interrupting enclave execution. This approach has major technical challenges, since the existing cache monitoring techniques experience significant noise if the victim process is not interrupted. We designed and implemented novel attack techniques to reduce this noise by leveraging the capabilities of the privileged adversary. Our attacks are able to recover confidential information from SGX enclaves, which we illustrate in two example cases: extraction of an entire RSA-2048 key during RSA decryption, and detection of specific human genome sequences during genomic indexing. We show that our attacks are more effective than previous cache attacks and harder to mitigate than previous SGX side-channel attacks

    Program variation for software security

    Get PDF

    A software approach to defeating side channels in last-level caches

    Full text link
    We present a software approach to mitigate access-driven side-channel attacks that leverage last-level caches (LLCs) shared across cores to leak information between security domains (e.g., tenants in a cloud). Our approach dynamically manages physical memory pages shared between security domains to disable sharing of LLC lines, thus preventing "Flush-Reload" side channels via LLCs. It also manages cacheability of memory pages to thwart cross-tenant "Prime-Probe" attacks in LLCs. We have implemented our approach as a memory management subsystem called CacheBar within the Linux kernel to intervene on such side channels across container boundaries, as containers are a common method for enforcing tenant isolation in Platform-as-a-Service (PaaS) clouds. Through formal verification, principled analysis, and empirical evaluation, we show that CacheBar achieves strong security with small performance overheads for PaaS workloads

    Execution Integrity with In-Place Encryption

    Full text link
    Instruction set randomization (ISR) was initially proposed with the main goal of countering code-injection attacks. However, ISR seems to have lost its appeal since code-injection attacks became less attractive because protection mechanisms such as data execution prevention (DEP) as well as code-reuse attacks became more prevalent. In this paper, we show that ISR can be extended to also protect against code-reuse attacks while at the same time offering security guarantees similar to those of software diversity, control-flow integrity, and information hiding. We present Scylla, a scheme that deploys a new technique for in-place code encryption to hide the code layout of a randomized binary, and restricts the control flow to a benign execution path. This allows us to i) implicitly restrict control-flow targets to basic block entries without requiring the extraction of a control-flow graph, ii) achieve execution integrity within legitimate basic blocks, and iii) hide the underlying code layout under malicious read access to the program. Our analysis demonstrates that Scylla is capable of preventing state-of-the-art attacks such as just-in-time return-oriented programming (JIT-ROP) and crash-resistant oriented programming (CROP). We extensively evaluate our prototype implementation of Scylla and show feasible performance overhead. We also provide details on how this overhead can be significantly reduced with dedicated hardware support

    Analysing Flow Security Properties in Virtualised Computing Systems

    Get PDF
    This paper studies the problem of reasoning about flow security properties in virtualised computing networks with mobility from perspective of formal language. We propose a distributed process algebra CSP_{4v} with security labelled processes for the purpose of formal modelling of virtualised computing systems. Specifically, information leakage can come from observations on process executions, communications and from cache side channels in the virtualised environment. We describe a cache flow policy to identify such flows. A type system of the language is presented to enforce the flow policy and control the leakage introduced by observing behaviours of communicating processes and behaviours of virtual machine (VM) instances during accessing shared memory cache
    • …
    corecore