
Programmavariatie voor softwarebeveiliging

Program Variation for Software Security

Bart Coppens

Promotoren: prof. dr. ir. K. De Bosschere, prof. dr. ir. B. De Sutter
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2012 - 2013

ISBN 978-90-8578-603-0
NUR 980
Wettelijk depot: D/2013/10.500/36

For my family and friends.

“You just keep on trying till you run out of cake.”
— GLaDOS. From Jonathan Coulton’s Still Alive.

Dankwoord

De weg naar een doctoraat is lang, en veel mensen hebben mij, al dan
niet indirect, geholpen. Het is helaas onmogelijk om in slechts enkele
paragrafen iedereen bij naam te bedanken die me de afgelopen jaren
heeft bijgestaan. Daarom wil ik starten met in het algemeen iedereen
te bedanken die me gedurende mijn doctoraat op de een of andere ma-
nier heeft bijgestaan. Ook al sta je misschien niet expliciet in deze tekst
vermeld, wees zeker dat ik dankbaar ben voor al je hulp en steun.

De invloed van mijn promotoren is natuurlijk wel het meest zicht-
baar in dit doctoraatswerk. Ik wil dus eerst en vooral mijn promotoren
Bjorn en Koen bedanken om mij de kans te bieden om te doctoreren en
om mij al die jaren bij te staan in mijn onderzoek. Als Koen mij des-
tijds niet had aangenomen als student en mij op weg had geholpen, en
als Bjorn de me de laatste jaren niet verder had geleid en had bijge-
staan met kritische maar hulpvolle opmerkingen over mijn onderzoek
en tekst, was dit werk er nooit gekomen.

Furthermore, I would also like to thank the other members of my exam
committee: Christian Collberg, Lieven Eeckhout, Roberto Giacobazzi, Eric
Laermans, Bart Preneel, and Luc Taerwe. I would especially like to thank
Christian and Roberto for traveling all the way to Ghent for my internal de-
fense despite their busy schedules.

Ik bedank ook graag het FWO–Vlaanderen voor hun financiering.
Financiele ondersteuning is echter niet de enige ondersteuning die ik
gekregen heb: er was ook goede technische ondersteuning. Daarbij wil
ik zeker Marnix, Michiel, en Ronny bedanken voor alle hulp die ze mij
geboden hebben.

Een doctoraat doe je (gelukkig) ook niet alleen: er zijn de vele col-
lega’s die de afgelopen jaren een pak aangenamer gemaakt hebben.
Eerst en vooral is er natuurlijk het ‘Security Team’ waarmee ik een
kantoor deel: Christophe, Jeroen, Ronald, en Stijn. Ondanks dat ze

iv

jaren met mij op slechts enkele vierkante meters samen hebben door-
gebracht, zijn ze me gelukkig nog niet hélemaal beu. We doen in het
System Software Team echter niet enkel aan beveiliging. Er zijn er ook
de collega’s van ‘de andere bureau’. Met sommigen heb ik nog een
tijdje op hetzelfde kantoor gezeten: Jonas, Niels, en Panagiotis. Ande-
ren kwamen na onze bureausplitsing: Hadi, Henri, en Tim. Allemaal
bedankt voor de fijne samenwerking de afgelopen jaren.

Collegialiteit stopt echter niet meteen bij de grenzen van wie je pro-
motor is. Samen met Francis en het hele WELEK-team heb ik veel
genoegen gehaald uit het helpen organizeren van de robotcompetitie.
Met Kenzo heb ik dan weer elk jaar met veel plezier de oefeningenles-
sen computerarchitectuur gegeven.

Een (bijna) vast onderdeel van mijn dagen waren de middagmaal-
tijden in de Brug. De vele middagen samen met de collega’s van -3 en
studenten waren een gezellig moment om elke keer weer naar uit te
kijken.

De afgelopen jaren waren ook op persoonlijk vlak een grote verrij-
king, meer dan ik vooraf had durven voorspellen. Niet alleen heb ik
er geen moeite meer mee om spontaan voor grote groepen mensen iets
(proberen) uit te leggen, maar ik reis met een minder absolute tegenzin
met het vliegtuig. En misschien het meest tegen alle verwachtingen in:
ik ben begonnen met sporten in de vorm van aikido en zwemmen, en
ik ben dat ook blijven doen. Daardoor heb ik zelfs een tijdje een appar-
tement in Gent gedeeld met mijn appartementsgenoot Cedric. Maar
veel belangrijker dan dat is dat ik daardoor ook veel nieuwe vrienden
gemaakt heb: Bojan, Kate, Michiel, Michelle, Sarah, Tom, etc. Ik denk
dus dat het duidelijk is dat ik tijdens mijn doctoraat op vele vlakken
opengebloeid ben, waarvoor ik heel dankbaar ben.

Ik wil ook al mijn mede-informatici: Bert, Davy, Femke DB, Femke
O, Jeroen F, Jeroen J, Niels, Pascal, en Stéphanie bedanken voor de ge-
zellige informatica-avonden de afgelopen jaren. Ze brachten enerzijds
de nodige afleiding, en anderzijds versterkten ze met de interfacultaire
en inter-universitaire doctoraatsanecdotes de zekerheid dat het er el-
ders gelijkaardig aan toe gaat bij een doctoraat.

Ik had helaas ook af en toe nood om eens te kunnen klagen over de
dingen des levens. Gelukkig waren er mensen die zonder klagen naar
mijn gezaag hebben willen luisteren. Michael, Robrecht, Tom, en Wim,
bedankt daarvoor.

Ten slotte zou ik ook van harte mijn familie willen bedanken voor

v

alle steun en hulp die ik de afgelopen 27 jaar van hun gekregen heb.
Mama, Papa, Bruno, meter Halet, en meter Statiestraat, bedankt dat
jullie altijd in mij zijn blijven geloven.

Bart Coppens
Gent, 7 juni 2013

vi

Examencommissie

Prof. Luc Taerwe, voorzitter
Vakgroep Bouwkundige Constructies
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, secretaris
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Bjorn De Sutter, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen De Bosschere, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Christian Collberg
Department of Computer Science
University of Arizona

Prof. Roberto Giacobazzi
Faculty of Mathematical, Physical and Natural Science
University of Verona

Prof. Eric Laermans
Vakgroep INTEC
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Bart Preneel
Vakgroep ESAT
Faculteit Ingenieurswetenschappen
Katholieke Universiteit Leuven

viii

Leescommissie

Prof. Bjorn De Sutter
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Christian Collberg
Department of Computer Science
University of Arizona

Prof. Roberto Giacobazzi
Faculty of Mathematical, Physical and Natural Science
University of Verona

Prof. Eric Laermans
Vakgroep INTEC
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Bart Preneel
Vakgroep ESAT
Faculteit Ingenieurswetenschappen
Katholieke Universiteit Leuven

x

Samenvatting

Software bevat vaak imperfecties en zelfs fouten. Eén type fout dat
regelmatig het nieuws haalt, is het veiligheidslek. Een veiligheidslek
kan een aanvaller toelaten om geheime informatie van gebruikers te
achterhalen, of om controle te verkrijgen over de computer van een
slachtoffer.

In dit doctoraatswerk bestuderen we hoe we gebruikers kunnen be-
schermen tegen veiligheidslekken in software. In het bijzonder zullen
we de interactie tussen variatie in software en de veiligheid van soft-
ware bestuderen. We onderzoeken twee soorten variatie: (1) variatie
tussen verschillende programmaversies, en (2) variatie in de uitvoe-
ringstijd van één enkel programma.

Variatie tussen programmaversies Nadat softwaremakers een veilig-
heidslek geı̈dentificeerd en weggewerkt hebben, zullen ze een gepatch-
te programmaversie naar hun klanten sturen. Bij zo een gepatchte ver-
sie zit vaak een korte beschrijving van het veiligheidslek, zonder echter
aanvallers op weg te helpen bij het opzetten van een aanval. De aan-
valler heeft echter meer informatie dan enkel deze beschrijving. Er is
een verschil tussen de oorspronkelijke en de gepatchte versie van het
programma, namelijk daar waar het veiligheidslek weggewerkt is. Een
aanvaller heeft er dus baat bij om niet enkel de beschrijving van het
lek te bestuderen samen met de gepatchte versie, maar om ook de ge-
patchte versie te vergelijken met de oorspronkelijke versie. Een aan-
valler kan hierbij gebruik maken van zogenaamde diffing tools. Dit zijn
tools die twee binaire programma’s vergelijken en een lijst met corres-
ponderende codefragmenten teruggeven.

Met onze eerste onderzoeksbijdrage tonen we hoe echte aanvals-
tools inderdaad op een efficiënte manier gebruikt kunnen worden door
aanvallers om veiligheidslekken te vinden. We tonen aan dat we een

xii SAMENVATTING

aanvaller die gebruik maakt van zulke aanvalstools automatisch kun-
nen modelleren. Dit leidt tot meerdere modellen die afhangen van
welke tools en welke heuristieken de gemodelleerde aanvaller gebruikt.
Deze modellen gebruiken we dan om automatisch te schatten hoeveel
moeite een aanvaller moet doen om een veiligheidslek op te sporen aan
de hand van een softwarepatch.

Vervolgens diversifiëren we de gepatchte binaire bestanden. Met
deze techniek voegen we kunstmatig variatie toe tussen de twee pro-
grammaversies. Hoewel softwarediversiteit reeds eerder voorgesteld
is, is het nog niet geëvalueerd op het ontdekken van veiligheidslekken
met echte aanvalstools. Met onze schatting van de aanvalsinspanning
tonen we aan dat softwarediversiteit ook effectief tegen zulke aanvallen
kan beschermen, maar dat er een grote impact kan zijn op de uitvoe-
ringstijd van de gediversifieerde programmaversies.

Onze tweede onderzoeksbijdrage is een verbetering ten opzichte
van de huidige stand van zaken in softwarediversiteit. Bestaande raam-
werken voor softwarediversiteit selecteren stochastisch de transforma-
ties die toegepast worden op codefragmenten. Hierbij worden vaste
kansen gebruikt om te beslissen welke transformaties op welke code-
fragmenten toegepast worden. Wij verbeteren dit door in het diversifi-
catieproces gebruik te maken van de informatie die gegenereerd wordt
door diffing tools. We beginnen met het automatisch vergelijken van
de ongepatchte en de gepatchte programmaversies. Dit levert ons een
lijst corresponderende codefragmenten op. Het doel van ons raamwerk
is om het resultaat van de diffing tool minder nuttig te maken voor
een aanvaller, en dit met zo weinig mogelijk overhead in programma-
omvang en/of uitvoeringstijd te introduceren. Ons raamwerk zal daar-
bij enkel codefragmenten transformeren die aan elkaar gelinkt kunnen
worden door de diffing tool. Bovendien gebruiken we ook informa-
tie over hoe de diffing tool deze codefragmenten aan elkaar gekop-
peld heeft om transformaties te kiezen om er op toe te passen. Hierna
vergelijken we het gediversifieerde programma opnieuw met het niet-
gepatchte programma. Dit levert ons opnieuw een lijst met correspon-
derende codefragmenten op, die we dan weer kunnen gebruiken als
invoer voor ons raamwerk. We kunnen dit proces dus iteratief toepas-
sen om uiteindelijk een gediversifieerde gepatchte programmaversie te
bekomen die zó getransformeerd is dat de aanvalstool nauwelijks nog
corresponderende codefragmenten vindt.

xiii

Variatie in uitvoeringstijd De uitvoeringstijd van programma’s kan
afhangen van geheime informatie, en dit via zowel controleafhankelijk-
heden als data-afhankelijkheden. Een aanvaller kan deze afhankelijk-
heden bestuderen, en hiervan gebruik maken om geheime informatie
te stelen van de gebruikers van de programma’s.

In onze derde bijdrage stellen we een compilertoolflow voor die au-
tomatisch programma’s transformeert zodat ze beschermd zijn tegen
aanvallers die gebruik proberen te maken van de uitvoeringstijd van
het programma. We beschermen het programma door de variatie in
uitvoeringstijd te verminderen. We evalueren onze compiler op recente
Intel x86 processors.

Onze compiler maakt gebruik van kennis van tijdsnevenkanalen
om de variatie in uitvoeringstijd te verminderen. We doen dit door
gebruik te maken van if-conversion. Dit is een transformatie die contro-
leafhankelijkheden omzet in data-afhankelijkheden. We tonen aan dat
deze data-afhankelijkheden geen extra tijdsvariatie introduceren. Bo-
vendien tonen we aan hoe controleafhankelijkheden verwijderd kun-
nen worden door enkel gebruik te maken van conditionele toewijzin-
gen, ook al vertonen de getransformeerde functies mogelijke nevenef-
fecten zoals het opgooien van fouten.

Verder bestuderen we ook twee bronnen van tijdsvariatie afkom-
stig van data-afhankelijkheden. De eerste bron van tijdsvariatie zijn de
deelinstructies op de Intel Core 2 Duo processors. We onderzoeken ver-
schillende strategieën om de mogelijke variatie door het gebruik van
deze instructies weg te werken. De andere bron van tijdsvariatie die
we onderzoeken is load bypassing. Load bypassing introduceert tijdsva-
riatie bij geheugentoegangen, ook al zijn deze toegangen onafhankelijk
van elkaar. Net zoals bij de deelinstructies stellen we ook hier voor hoe
we deze tijdsvariatie automatisch kunnen verhelpen.

Het eindresultaat van onze compiler is dus een programma dat sig-
nificant minder, of zelfs helemaal geen tijdsvariatie meer vertoont die
afhankelijk is van geheime invoer. Hierdoor zal de aanvaller dus geen
tijdsinformatie meer kunnen gebruiken om geheime informatie te ach-
terhalen.

De resultaten van dit onderzoek zijn drieledig. Ten eerste modelle-
ren we aanvallers die gebruik maken van de variatie tussen program-
ma’s om veiligheidslekken te vinden. We gebruiken deze modellering
dan om aan te tonen dat softwarediversiteit zulke aanvallen kan be-
moeilijken. Ten tweede tonen we aan hoe we betere resultaten kun-

xiv SAMENVATTING

nen bekomen dan bestaande diversiteitsraamwerken door op iteratieve
wijze feedback te gebruiken van diffing tools. Ten slotte stellen we
een compiler voor die rekening houdt met tijdsnevenkanalen. De door
deze compiler gegenereerde programma’s zullen geen variatie in uit-
voeringstijd vertonen die afhangt van geheime informatie.

Summary

Software may contain imperfections and errors. One kind of software
errors that often catches people’s attention are security vulnerabilities.
A security vulnerability may allow an attacker to extract private infor-
mation from users, or to gain control of a victim’s computer. This is
obviously undesirable.

In this PhD work we study how to protect users against such vul-
nerabilities in software. We focus on how variation affects security, and
how manipulating such variation can protect users against attacks. We
study two kinds of variation: (1) variation between different versions
of the same program, and (2) the variation in execution time of a single
program.

Variation between different versions of the same program After a
software vendor has identified and patched a vulnerability, the ven-
dor distributes a patched version of the program to customers. This
patched version usually comes with a short explanation of the fixed
vulnerability to help system administrators decide whether or not to
apply the patch. This explanation often does not contain practical hints
for attackers. However, an attacker has more information than the de-
scription of the patch. Observe that the patched program version dif-
fers from the original program version: their behavior will differ for at
least one input. This difference in behavior will be caused by a differ-
ence in the program’s binary representation. Knowledge of this binary
difference will lead the attacker to the difference in behavior, which
will in turn lead him to the patched vulnerability itself. This gives an
attacker who knows the difference between both versions a head start
compared to an attacker who only has a vague description of the fixed
vulnerability. An attacker can visualize the difference between binary
programs with so-called diffing tools. These are tools that compare two

xvi SUMMARY

binaries and return a list of code fragments that are matched between
them.

With our first contribution, we show that real-world attack tools
can be used effectively by attackers to find vulnerabilities. We show
that we can model the process of an attacker using different real-world
attack tools. This leads to multiple models for an attacker, depending
on which tools and heuristics the modeled attacker uses. We use these
to automatically approximate the effort required by an attacker using
such tools.

We then diversify the patched binaries. This is a technique that ar-
tificially increases the variation between two binaries. While software
diversification has been proposed before, it has not been evaluated us-
ing real-world attack tools to recover information about a patched vul-
nerability. Using our approximation of attack effort with real attack
tools, we show that software diversification indeed protects against ex-
isting attack tools, but that the overhead in execution time for such a
protection can be large.

Our second contribution is an improvement over the current state of
the art in software diversification. Existing diversification frameworks
use a stochastic process to select the transformations that are applied to
code fragments with the same probability throughout the binary. We
use feedback from a diffing tool to iteratively guide the diversification
process. We start by using a diffing tool to compare the unpatched bi-
nary to the patched binary. Our goal is that the attack tool finds as few
matching code fragments as possible, at the lowest overhead. Thus,
we only transform code fragments that are matched by the diffing tool.
Code fragments that are not matched, are not transformed. Which spe-
cific transformations are applied to the code fragments depends on ex-
actly how the attack tool matched the code fragments. We then iter-
atively use the attack tool to improve the output of the diversification
framework: we compare the unpatched binary to the diversified frame-
work and use this comparison as feedback for a new iteration of our
framework. The end result is a binary that has been specifically trans-
formed so that the attack tool finds as few matching code fragments as
possible.

Variation in execution time The execution time of a program may
depend on private information. An attacker can analyze how the ex-
ecution time depends on private information, and use this knowledge

xvii

to extract it. He will do this by measuring the execution time of the
program. The execution time of a program may depend on the private
information through either its control dependencies, or through its data
dependencies.

In our third contribution, we propose a compiler tool flow that au-
tomatically transforms programs so that they are protected against at-
tackers that exploit timing variation to extract private information. We
do this by reducing the timing variation that a program exhibits. We
evaluate our compiler on recent Intel x86 processors.

Our timing side-channel aware compiler removes control depen-
dencies in programs. We do this using if-conversion, which transforms
control dependencies into data dependencies. We show that these data
dependencies do not introduce execution time variation. Furthermore,
we show how to remove control dependencies using only conditional
move operations, even if the transformed functions possibly exhibit
side-effects such as causing exceptions.

We also investigate two sources of timing variation due to data de-
pendencies. We show that division instructions on Intel Core 2 Duo
processors have a variable execution time, and discuss different strate-
gies to remove this source of execution time variation from programs.
We also investigated timing variation due to load bypassing. In that
case we observe timing variation due to memory accesses, even if they
are not dependent on each other. As with the division instruction, we
propose a mechanism to automatically reduce this timing variation in
our compiler.

Binaries generated by our timing side-channel aware compiler will
thus exhibit significantly less, or, depending on the data dependencies
left, no execution time variation at all. Thus, an attacker will not be able
to use the timing information to extract private information.

The results of this research are threefold. Firstly, we show that we
can model attackers that use diffing tools to exploit variation between
program versions. We use this to show that software diversification
techniques are can effectively thwart such attackers. Secondly, we show
how to improve on existing diversification techniques by iteratively in-
cluding feedback from diffing tools in the diversification algorithm. Fi-
nally, we present a timing side-channel aware compiler that produces
binaries whose execution time does not depend on private informa-
tion.

xviii SUMMARY

Contents

Nederlandse samenvatting xi

English summary xv

1 Introduction 1
1.1 Abstracting binaries into models 3

1.1.1 Disassemblers . 4
1.1.2 Execution tracing 7
1.1.3 Tools for abstracting binaries 8

1.2 Characterization of patched binary code 11
1.3 Software matching and Exploit Wednesday 13
1.4 Software matching . 15

1.4.1 Binary patch generation tools 15
1.4.2 Graph-based matching approaches 16
1.4.3 Trace-based matching approaches 21
1.4.4 Polymorphic malware analysis 22
1.4.5 Attack tools for software matching 23

1.5 Diversification as protection against software matching . 25
1.6 Timing side channels . 27

1.6.1 Control flow . 27
1.6.2 Data flow . 29

1.7 Exploiting timing side channels 30
1.7.1 Measuring timing variation 30
1.7.2 Recovering private information 32

1.8 Protecting against timing side channels 33
1.9 Contributions . 35

2 The effectiveness of variation against patch-based attacks 39
2.1 Introduction . 39
2.2 SCIMs and TIMs . 41

xx CONTENTS

2.3 Heuristic attack model . 43
2.3.1 A framework for attack models 44
2.3.2 Binary diffing tools 46
2.3.3 Additional prioritization heuristics 55

2.4 Diversification as mitigation strategy 59
2.4.1 Diversifying transformations in Proteus 59

2.5 Evaluation . 65
2.5.1 Case studies . 65
2.5.2 Representing the results 69
2.5.3 Effectiveness of attacks on undiversified binaries 69
2.5.4 Diversification . 75

2.6 Conclusion . 77

3 Iterative feedback-driven diversification 81
3.1 Introduction . 81
3.2 Feedback-guided iterative diversification 82

3.2.1 Attack model . 82
3.2.2 Diversifying transformations 83
3.2.3 Transformation Selection 87

3.3 Evaluation . 91
3.3.1 Diffing results . 91
3.3.2 Overhead . 95
3.3.3 Representativeness 99

3.4 Discussion . 103
3.5 Conclusion . 105

4 Removing variation in execution time 107
4.1 Automatically removing control-dependent variation . . 107

4.1.1 Conditional execution of acyclic sequences 108
4.1.2 Cyclic control flow graphs 113
4.1.3 Function calls . 115

4.2 Removing data-dependent variation 117
4.2.1 Timing variation due to early exit 117
4.2.2 Timing variation due to the memory subsystem . 119

4.3 Implementation . 123
4.4 Evaluation . 124

4.4.1 Experiments . 124
4.4.2 Register-based dependencies 128
4.4.3 Effectiveness . 130
4.4.4 Efficiency . 132

CONTENTS xxi

4.4.5 Code size overhead 134
4.5 Comparison with existing techniques 135

4.5.1 Source-based solutions 136
4.5.2 Binary rewriting 138
4.5.3 Hardware instructions 138

4.6 Conclusion . 139

5 Conclusions & Future work 141
5.1 Conclusions . 141

5.1.1 Variation between program versions 141
5.1.2 Variation of execution time in a program 143

5.2 Future work . 144
5.2.1 Variation between program versions 144
5.2.2 Variation of execution time in a program 146

xxii CONTENTS

List of Tables

2.1 Different settings of the diversity system 64
2.2 Binary size characteristics of the case studies 69
2.3 The heuristics used for pruning the results of the attack

tools . 70

3.1 Glaucus default rule set 89
3.2 Diversification strategy for a function f() 90

4.1 Statistical results of if-conversion and the elimination of
variable-latency division instructions 133

xxiv LIST OF TABLES

List of Figures

1.1 Screenshot of the BinDiff diffing tool. 17
1.2 Example of how functions in a call graph can be matched

iteratively. 18
1.3 Example of how selectors and properties can be used to

match functions. 20
1.4 Software chain from vendor to user 26

2.1 The attacker’s return on attack investment 40
2.2 Attacker’s tool flow to find SCIMs in a binary patch. . . . 44
2.3 Schematic overview of the attack tools operating on byte

sequences. 46
2.4 Screenshot of the patchdiff2 diffing tool. 50
2.5 Screenshot of the TurboDiff diffing tool. 51
2.6 Screenshot of the BinaryDiffer diffing tool. 52
2.7 Screenshot of the BinDiff diffing tool. 53
2.8 The attacker will also study matched code fragments ad-

jacent to unmatched code fragments. 57
2.9 Tool flow when distributing a patched program version

using the Proteus diversification framework 58
2.10 An example of tail duplication. 60
2.11 Predicating a basic block by a two-way opaque predicate 61
2.12 Control flow flattening . 62
2.13 Schematic representation of a branch function 63
2.14 Source code changes for three of the four patches 66
2.15 Source-code induced mutations in three of the four bi-

nary code patches . 67
2.16 Detailed example of pruning and recall rates 70
2.17 Pruning and recall rates for bsdiff and xdelta 71
2.18 Pruning and recall rates for patchdiff2 and BinaryDiffer . 72
2.19 Pruning and recall rates for patchdiff2 and BinDiff 73

xxvi LIST OF FIGURES

2.20 Comparison of all tools on diversified and undiversified
binaries . 79

2.21 Size overhead of diversification 80
2.22 The overhead in execution time compared with attack

tool performance. 80

3.1 Iterative tool flow of Glaucus for generating protected
patches. 83

3.2 Branch function insertion 86
3.3 Detailed iterative diffing results for bzip2 93
3.4 Coarse diffing results for bzip2 94
3.5 Coarse diffing results for png debian 96
3.6 Coarse diffing results for png beta 97
3.7 Coarse diffing results for soplex 98
3.8 Binary code size of the transformed programs, relative to

the undiversified program 100
3.9 Binary patch size of the transformed programs, relative

to the undiversified patch 100
3.10 Execution times of the transformed programs, relative to

the undiversified program 101
3.11 Relative execution times vs. percentage of correctly matched

instructions. 101
3.12 Cross-validation of Glaucus with other diffing tools on

bzip2. 102
3.13 Cross-validation of Glaucus with other diffing tools on

soplex. 102

4.1 Parallel constant-time code to make the result of divi-
sions constant time as well. 119

4.2 C code equivalent of unsigned division computation us-
ing only fixed-latency divisions. 120

4.3 Execution times of a microbenchmark loop with 4-byte
load and store instructions executed for varying displace-
ments between the accessed locations. 121

4.4 Microbenchmarks on which we evaluated our timing side-
channel aware compiler. 125

4.5 Average (over pseudo-random inputs) execution slow-
down after applying if-conversion and elimination of variable-
latency division instructions. 134

4.6 Code size increase after applying if-conversion and elim-
ination of variable latency division instructions. 135

List of Abbreviations

AST Abstract Syntax Tree
BBL Basic Block
CFG Control Flow Graph
CG Call Graph
DCF Dynamic Call Graph
DDDG Dynamic Data Dependence Graph
IR Intermediate Representation
ISA Instruction Set Architecture
PRNG Pseudo-Random Number Generator
RSA Rivest-Shamir-Adleman public key algorithm
SCIM Source-Code Induced Mutation
SSA Single-Static Assignment
TIM Translation-Induced Mutation
VLIW Very Long Instruction Word

xxviii LIST OF ABBREVIATIONS

Chapter 1

Introduction

When people use software, they are typically unaware of all the risks
that accompany it. Software is vulnerable to attacks. While the power
of most vulnerabilities is limited to causing an attacked program to
crash, some vulnerabilities will enable attackers to run their own mali-
cious code on the victim’s machine, or to exfiltrate private information.
Two recent high-profile attacks are the Stuxnet worm and the Digi-
Notar break. Stuxnet is malware that uses multiple vulnerabilities in
Microsoft software to spread itself without detection. It was allegedly
used to break Iran’s centrifuges [61]. DigiNotar was a certificate au-
thority that signed certificates of identity to websites and to the Dutch
government. An attacker broke into their system through a web server
that had not been patched for a security vulnerability. The attacker was
able to gain access to DigiNotar’s signing server. This allowed him
to sign his own, fraudulent certificates to impersonate authenticated
Google servers [77].

There are different strategies with which an attacker can exploit
software. One strategy is to study the target program, to find a vul-
nerability in it, and then turn this vulnerability into an exploit. This
is the strategy used by the Stuxnet attack. Another kind of attacker
will wait for other people to disclose a security vulnerability, will find a
way to exploit this vulnerability himself, and then use it on his victims.
This is the strategy the DigiNotar attack used. There are of course also
attackers who merely re-use attack software made by other attackers
using one of the previous strategies.

In this PhD work, we will study how some attacks on software can
be mitigated. Our focus is on mitigating attacks that exploit the varia-

2 Introduction

tion that is present in software. In particular, we consider two different
kinds of variation and their impact on software security:

1. Variation between program versions. When a software vendor re-
leases a security patch for a vulnerability, the patch discloses the
location of the vulnerability in the program to the attacker. An at-
tacker can find this location by comparing the vulnerable version
of the program with the patched version. The attacker can then
try to exploit said vulnerability because not all users immediately
apply the patch.

We know this kind of attack exists because attackers sometimes
publicly describe how they reversed and created an exploit for
a vulnerability, solely based on the information in the security
patch [96, 99, 141].

2. Variation in execution time. An attacker can try to correlate the ex-
ecution time of a program with private information used in this
program. This is a case of an attacker trying to find a vulnerability
himself.

Exploiting timing variation in programs is quite old. One famous
example from the days when multi-user systems were first being
introduced, is checking the correctness of the log-in password of a
user [93]. To check the entered password, the log-in software will
compare the it character-wise with the stored password. When
this software stops checking the password as soon as the first mis-
matching character is found, an attacker can measure how long
the password check takes. Then he immediately knows if the
first character matches, or the first two characters, etc. That way,
the attacker converts an exponential search space into a linear
one. Even though password checks nowadays typically are im-
plemented using hashes, similar implementation problems still
occur [95].

We will defend against both kinds of attacks by modifying the
amount of variation that the attacker will observe. Our techniques will
focus on generating more secure binary code. In order to describe exactly
how we do this, it is useful to know how existing attacks and defenses
against these attacks work. In the next sections, we will describe both
the offensive and the defensive side in more detail.

In Section 1.1, we describe how to identify and interpret binary
code. The attacker has to know where the code is located in a program,

1.1 Abstracting binaries into models 3

and what this code does, before he can attack the program. This is the
case for both exploiting variation between program versions, as well as
for exploiting timing variation.

We then describe how to exploit variation between two binary pro-
gram versions. To interpret the changes in the binary code caused by
a binary patch, the attacker needs to understand how source a code
change affects the binary code. Section 1.2 describes different kinds of
change at the binary level that can be caused by source code changes.
Section 1.3 discusses how attackers can use the difference between the
patched and the unpatched program. We then explain how an attacker
can find the difference between two binary programs in Section 1.4.
Section 1.5 then describes existing techniques that try to prevent the
impact of such an attack.

This is followed by a discussion of attacks that exploit execution
time variation. Section 1.6 describes how the execution time of a pro-
gram can depend on its input. Section 1.7 then briefly describes differ-
ent strategies the attacker can use to exploit these variations to extract
private information. Finally, Section 1.8 describes existing techniques
that reduce the timing variation of programs.

With these attack strategies in mind, we finish with the contribu-
tions this PhD work makes in Section 1.9.

1.1 Abstracting binaries into models

To attack a binary program, an attacker needs to understand at least
part of the behavior of the program. The attacker can construct a model
of the binary program to reason on. The first step towards making a
model of the binary will be to locate and identify the instructions in the
binary. These instructions can be further modeled by grouping them
into more abstract representations. These representations can then be
used in conjunction with a debugger to increase the understanding of
the program interactively.

During the creation of a program binary by compiling and linking,
the program is viewed at different levels of abstraction. These differ-
ent representations are used to represent the structure of the program.
They offer a high-level model on which different analyses and transfor-
mations can be applied [110]. The attacker then aims to reconstruct the
structure of a program at a certain level of abstraction.

4 Introduction

At the lowest level of abstraction, the binary consists only of the raw
bytes that make up the code and data. Above this is the level of assem-
bly, where sequences of adjacent bytes are instructions which have cer-
tain semantics. Sequences of instructions that are not split by any con-
trol flow in the program are called basic blocks (BBLs). These BBLs can
be grouped into control flow graphs (CFGs). The nodes in a CFG are
BBLs, while the edges correspond to the possible control flow between
BBLs. Basic blocks are partitioned into functions, where each function
has a separate CFG. The caller-callee relationships between functions
can be modeled by a call graph (CG) in which the nodes model func-
tions and the edges model function calls.

One approach to modeling a binary is to describe the control flow
statically. This static representation of the binary takes into account
all possible control flow, including control flow that does not hap-
pen when executing the binary. Software vendors can try to thwart
static analyses with different techniques, which will we describe in
Section 1.1.1. Another approach to modeling a binary is to only model
the code that is executed. This dynamic representation can be used by
the attacker to reconstruct and approximate the exact CFG.

In this section, we discuss several techniques and tools that can be
used to detect and interpret the instructions in a binary, using either
static or dynamic information. We will also discuss the different caveats
associated with these techniques.

1.1.1 Disassemblers

The goal of a disassembler is to decode the bytes that make up the bi-
nary code into sequences of instructions. The only starting informa-
tion an attacker can usually rely on is the start address of the program,
and a list of sections in the program containing executable code. In
some cases, this information is augmented with the names and the en-
try points of individual functions. This information is then used to cre-
ate a list of disassembled instructions. An attacker can abstract this
information by grouping the disassembled instructions into BBLs and
CFGs. Disassembling binary code is not a trivial task: there are many
problems and subtleties that can make disassemblers return incomplete
and incorrect information. Incomplete information corresponds to false
negatives, which means that there are instructions in the binary that are
not decoded by the disassembler. Incorrect information is also referred

1.1 Abstracting binaries into models 5

to as false positives, which means that the disassembly does not reflect
the code that is actually executed when running the program. The goal
of the attacker is to gain as much useful information from the binary
as possible. As such, both incomplete and incorrect information can
present difficulties to the attacker.

Static disassemblers assume that the binary code representing the
instructions does not change during program execution. This assump-
tion is invalid with self-modifying code, in which a program creates or
overwrites instructions at run time. This means that the CFG changes
through the course of the program execution. To model this, dif-
ferent models of executable code such as a State-Enhanced CFG are
needed [9].

In this section, we describe several static disassembly algorithms
and their handling of incorrect and incomplete information.

Linear sweep disassemblers Linear sweep disassemblers assume
that all instructions are placed sequentially in a code segment. They
compute the starting address of the next instruction using the length of
the currently decoded instruction. Instructions are decoded until the
end of the code segment is reached [59].

Linear sweep disassemblers analyze the whole code section. When
all instructions have equal length and all memory fetches have to be
aligned at multiples of this length, a linear sweep will correctly decode
all instructions contained in the section. Thus, its results are complete
in the absence of self-modifying code. However, when these assump-
tions do not hold, disassembly becomes more difficult. A decoded se-
quence of bytes can overlap partially with the instructions present in the
binary. For example, the disassembler can start decoding in the middle
of an instruction. Because the start address of the next instruction is
computed using the length of the current instruction, once the disas-
sembler decodes a sequence of bytes that does not correspond exactly
to an instruction in the binary, subsequent bytes can be decoded incor-
rectly as well. It has been shown that sequences of incorrectly decoded
bytes will quickly synchronize with the correct instructions in the case
of, for example, x86 variable-length instructions [98]. Such synchro-
nization problems can occur when disassembling regular, compiler-
generated code. Some compilers will intersperse data in code sections,
which results in the disassembler trying to decode data. This might
result in a synchronization issue, possibly leading to an incorrect and

6 Introduction

incomplete disassembly. This can be used as a defense mechanism to
thwart attackers: regions of data can be interspersed with code to in-
tentionally introduce synchronization problems [98].

Recursive descent disassemblers Recursive descent disassemblers
are an extension of linear sweep disassemblers. They also decode
instructions sequentially, but only individual BBLs at a time are de-
coded [59]. The disassembly starts at the program’s entry point and
exported functions. Once a control transfer instruction is detected,
the disassembler can not only continue disassembling the instructions
in the fall-through path of this instruction, if it exists, but it can also
continue disassembling at the target address of the control transfer, if
possible.

Recursive descent disassemblers only disassembles code that is stat-
ically reachable from the program and function entry points, while data
blocks will not be disassembled. As such, this technique is more ro-
bust against compiler-inserted data blocks. However, this technique
can still return incorrect disassembly when certain obfuscation tech-
niques are used. Recursive descent disassemblers that assume that call
instructions return to the instruction following the call can be thwarted
by replacing direct jump instructions with a call that does not return
to the next instruction. The target function of such a call is called a
branch function [98]. Similarly, software developers can add conditional
control transfers that are known in advance to always transfer the con-
trol. The fall-through block can then contain data to introduce synchro-
nization problems in disassemblers [42]. Furthermore, techniques exist
to transform control transfer instructions into non-control transfer in-
structions [56, 121].

A major disadvantage of recursive descent disassembly is that it
can be hard to compute the target addresses of control transfers. For
example, function pointers and other forms of indirection make static
disassembly hard, if not impossible. In such cases, recursive descent
disassemblers may return incomplete information.

Symbolic execution for disassemblers Improvements can be made
to the recursive descent algorithm by increasing the resilience against
certain obfuscation transformations. Kruegel et al. [91] describe how
a disassembler can try to detect branch functions. Assuming that the
implementation of branch functions is simple and free of side effects,

1.1 Abstracting binaries into models 7

they symbolically evaluate calls to branch functions, in order to recover
the original control flow with direct jump instructions.

Trying all possible start addresses Another possibility is to start dis-
assembling at all possible start addresses. Using the aforementioned
synchronization property of the x86 ISA, a disassembler can re-use dis-
assembly of previously decoded memory locations once synchroniza-
tion occurs. All code that is part of the program is correctly disassem-
bled: there is no problem of computing control transfer targets, or dis-
assembled data overlapping with instructions. Such techniques can be
used in the context of binary program rewriting. They ensure that all
possible basic blocks that can be executed are considered when rewrit-
ing a program [154]. This technique thus produces a superset of all
instructions in the binary. While this is acceptable for program rewrit-
ing, this also presents additional basic blocks to the attacker that are
not actually present in the binary program, which makes this technique
less useful for attackers.

1.1.2 Execution tracing

An attacker can use the aforementioned methods to try to disassemble
all bytes in an entire code section or program. After disassembly, he can
try to reconstruct the static CFG of the program. To overcome the chal-
lenge of determining which bytes in a program represent instructions
and are thus part of the CFG, attackers can also consider a dynamic
CFG as an approximation of the static CFG.

A dynamic CFG can be obtained by tracing the execution of the pro-
gram. Multiple dynamic CFGs can exist: they depend on the inputs to
the program during tracing. By tracing the execution of the program, an
attacker knows the starting address of each executed instruction, and
can thus easily decode it correctly. A dynamic CFG can be constructed
by observing which control flow transfers are taken. Furthermore, by
tracing a program, an attacker can also deal with code that is generated
dynamically, including self-modifying code [103, 107].

The execution of a program can be traced by instrumenting the pro-
gram code [104]. Thus, the original program code executes, in ad-
dition to inserted code that reports on various properties of the run-
time behavior of the program. These properties include data values
that are produced by instructions, which data memory addresses are

8 Introduction

accessed by which instructions and whether or not these memory ad-
dresses have been initialized correctly, etc. [100, 113, 128].

Another commonly used technique for tracing the program execu-
tion is to use the processor’s native debugging infrastructure [82]. An
attacker can interactively break the execution of a program depend-
ing on dynamic conditions. For example, he can stop the execution
when certain instruction addresses are executed, when certain data is
accessed or modified, etc.

Finally, the execution of a program can also be observed by simu-
lating the whole system on which the program runs [21].

1.1.3 Tools for abstracting binaries

In this section, we give a quick overview of some of the tools that are
used by both attackers and defenders to abstract binaries into a higher-
level intermediate representation.

Disassemblers

gdb and objdump gdb1 and objdump2 are free software utilities
most commonly used to debug and analyze Linux ELF binaries. Both
can be used as a linear sweep disassembler. Furthermore, an attacker
can use gdb as a debugger, which can act as a tracing tool. The disas-
sembler can also be used interactively by an attacker. Since breakpoints
and watch points can be set to break the execution of a program under
certain conditions, an attacker can start disassembling code at program
points that are known to be executed.

IDA Pro IDA Pro3 is a commercial, graphical disassembler and de-
bugger framework. It is able to disassemble code compiled for a variety
of processor architectures. The attacker can use the disassembler inter-
actively: next to using the automatic recursive descent disassembler
functionality, attackers can manually select additional starting points
to disassemble, can select which parts of the program are data or code,
etc. The attacker can also improve on the heuristics IDA Pro uses to

1https://www.gnu.org/software/gdb/
2http://sourceware.org/binutils/docs/binutils/objdump.html
3http://www.hex-rays.com/products/ida/index.shtml

https://www.gnu.org/software/gdb/
http://sourceware.org/binutils/docs/binutils/objdump.html
http://www.hex-rays.com/products/ida/index.shtml

1.1 Abstracting binaries into models 9

detect and disassemble functions [129, 141]. Furthermore, IDA Pro of-
fers a graphical overview of the CFGs and CGs that have been recon-
structed. It offers a range of productivity features that help an attacker
in exploring and understanding the code. Another important feature
is its extensibility and the available plug-ins. It is scriptable through
a Python interface, C++ bindings for native modules, and a custom
scripting language, all of which are used by different third-party plug-
ins and scripts.

Immunity Debugger Immunity Debugger4 is a debugger targeted to-
wards the security industry for writing exploits and analyzing mal-
ware. It provides easy interfacing with fuzzers and other exploit de-
velopment tools. For example, it is possible to use the Immunity de-
bugger to fuzz kernel drivers [134]. It has special support for analyzing
the program’s heap memory. A Python API allows users to extend and
automate its functionality.

OllyDbg OllyDbg5 is a binary code analysis tool for Windows, fea-
turing the ability to disassemble, debug, and understand a program.
It is commonly used to reverse engineer binaries. It uses information
from Windows API calls to infer variable types on the program’s stack.
OllyDbg can be extended through a binary plug-in interface. Currently,
it only supports 32 bit Windows binaries.

vdb vdb6 is a debugger written in Python using the vtrace API. It is
targeted towards the security industry, and offers users both a GUI and
a Python API for scripting. It supports many target platforms for disas-
sembling binaries and debugging programs, such as Windows, Linux
and Android. An interesting addition to using vdb is vivisect7. This is a
fully programmable binary analysis framework in Python.

WinDbg WinDbg8 is a debugger with a linear sweep disassembler
that is part of Microsoft’s Debugging Tools for Windows. It offers de-

4https://www.immunityinc.com/products-immdbg.shtml
5http://www.ollydbg.de/
6https://code.google.com/p/vivisect/
7https://code.google.com/p/vivisect/
8http://msdn.microsoft.com/en-us/windows/hardware/gg463009.

aspx

https://www.immunityinc.com/products-immdbg.shtml
http://www.ollydbg.de/
https://code.google.com/p/vivisect/
https://code.google.com/p/vivisect/
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx

10 Introduction

velopers the ability to debug processes remotely over a network con-
nection, and to debug kernel-mode driver code. It supports debugging
native 32-bit and 64-bit Windows binaries as well as managed .NET
binaries.

Execution tracing

Anubis Anubis9 is a dynamic analysis framework for malware sam-
ples. In addition to execution tracing, it emulates a whole system to
observe the interaction between the malware and the host system.

Diota Diota10 is a dynamic instrumentation framework that explic-
itly handles self-modifying code [104]. Diota is also used for vertical
instrumentation, in which Diota instruments a Java Virtual Machine to-
gether with the Java programs the virtual machine executes [102].

DynamoRIO DynamoRIO11 is another dynamic instrumentation
framework. Its ability to dynamically detect out-of-bounds memory
accesses has been used in commercial security products. It has also
been used to instrument kernel code [62].

Dyninst Dyninst12 is a dynamic instrumentation framework that can
handle obfuscated binary code. It has also been used to apply security
patches to programs at run-time [137].

FIT FIT13 is a static link-time instrumentation toolkit [50]. Thus, it
allows users to rewrite programs without introducing a run-time over-
head to analyze and modify the executed code. However, because it is
a static tool, it does not support instrumenting self-modifying code.

Pin Pin14 is a dynamic instrumentation framework by Intel [100]. It
offers a higher-level programming API than the other toolkits. It is used

9http://anubis.iseclab.org
10http://www.elis.ugent.be/diota
11http://www.dynamorio.org/
12http://www.dyninst.org/
13http://www.elis.ugent.be/fit/
14http://software.intel.com/en-us/articles/

pin-a-dynamic-binary-instrumentation-tool

http://anubis.iseclab.org
http://www.elis.ugent.be/diota
http://www.dynamorio.org/
http://www.dyninst.org/
http://www.elis.ugent.be/fit/
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

1.2 Characterization of patched binary code 11

for the creation of program profiles for computer architecture research.

Valgrind Valgrind15 [113] is a dynamic instrumentation toolkit. It
is mainly used by application developers debugging memory issues,
such as identifying invalid memory accesses and finding large alloca-
tion sites.

1.2 Characterization of patched binary code

When a program distributed in binary form needs to be patched, the
developer patches the source code, recompiles that code, and dis-
tributes the resulting binary code either as a complete new binary or
as a differential update, i.e., a binary code patch. One of the attacks
we study in this PhD work is a patch-based collusion attack. In such
an attack, an attacker will study the update for a security vulnerability,
and use this to engineer a security exploit itself. Since the attacker can
generate the patched binary from the patch and the original program,
we will assume that the attacker has the patched binary as well as the
original binary.

It is the goal of the attacker to find the binary code that corresponds
directly to the changes in source code. We call such changes in the
binary code the source-code induced mutations (SCIMs). We give a formal
definition of such mutations in Chapter 2.

Mutations to binary code come in the form of inserted, modified,
and deleted instructions. New instructions can be inserted directly
as the result of a source code patch, e.g., when new functionality is
added to a program or when additional validity checks on input data
are added. Instructions can get modified directly as the result of a
source code patch as well. For example, a branch-if-zero conditional
branch opcode can be modified to become a branch-if-not-zero opcode,
or one of the operands of an instruction can be modified as part of an
off-by-one security fix. Instructions can also be deleted as a direct con-
sequence of source patches, for example when obsolete functionality
is replaced. These direct insertions, modifications and deletions corre-
spond to source-code induced mutations.

Source code patches can also introduce insertions, modifications
and deletions of instructions indirectly, i.e., as a result of the com-

15http://valgrind.org/

http://valgrind.org/

12 Introduction

piler’s application of global code analyses, global code optimizations,
and global code generation techniques. Those mutations are typically
spread throughout the binary code. Some important cases are:

• When code is inserted or deleted, other code is moved around in
memory. As a result, references to moved code, under the form
of both absolute and relative addresses change. These addresses
include the target addresses encoded in function calls and branch
instructions.

• In order to exploit micro-architectural optimizations such as
caches, a compiler will try to align code in memory to cache
line boundaries. This process is called padding, which consists
of adding the appropriate number of filler bytes, such as no-op
instructions in between code fragments. When code moves be-
cause of insertions or deletions, the amount of padding will also
change.

• Changes to a function’s size may make the compiler switch be-
tween not inlining, full inlining, partial inlining, and cloning a
function at some of its call sites.

• When profile-guided code optimizations are applied, the profile
of the structure of the code may change, which can result in code
being reordered and conditional branches being inverted. For
example, a branch-if-less-than can become a branch-if-greater-or-
equal.

• The addition of new variables in a source code fragment may in-
crease register pressure, causing unrelated variables to be spilled
on the stack.

These kinds of minor and major mutations do not affect the semantics
of the application, so they correspond to purely syntactic mutations
that are not relevant to an attacker. We call these mutations translation-
induced mutations (TIMs). To focus their effort on the relevant code,
attackers will rely on binary patching and matching tools. Their goal is
to automatically filter out as many instances of the translation-induced
mutations as possible, while not overlooking any relevant SCIMs.

This is not a trivial task. It is obvious that the attacker will have
to analyze more than the mutated instructions to determine whether a
mutation is source-code induced or translation induced. For example,

1.3 Software matching and Exploit Wednesday 13

in some cases the attacker will have to decide whether potentially in-
lined code is semantically equivalent to the original code. This is com-
plicated by the fact that an inlined function is typically optimized for
its unique, known calling context, whereas the original outlined code
will be more generic.

Even when only encoded addresses in instructions change in some
code fragment, this can have different causes. On the one hand, the
change can be a syntactic one, for example due to code motion. On the
other hand, the instruction can point to a different address because the
corresponding source code has changed. For example, when a call to
a function is changed in the source code, the encoded address of that
call will have changed as well, in which case the change is a seman-
tic, source-code induced one, rather than a translation-induced one. To
distinguish between these cases, the attacker might have to perform a
more global analysis.

By separating the syntactic changes from the semantic changes, the
attacker can try to deduce the vulnerability in the unpatched program.

1.3 Software matching and Exploit Wednesday

Attackers can study the changes between program versions to find and
exploit the patched vulnerabilities. A particularly popular target of
such attacks are Microsoft’s patches for Windows. Every second Tues-
day of the month, Patch Tuesday, Microsoft releases binary software up-
dates. These updates include security patches, most of which are doc-
umented to inform system administrators what they are vulnerable to.
Microsoft typically words this without giving concrete hints to hackers
as to how to exploit these vulnerabilities. Their descriptions do not al-
ways match the vulnerability being patched, however, and sometimes
the patched vulnerabilities are not mentioned at all [46].

As soon as attackers get their hands on the binary code patches, they
start inspecting them in preparation of Exploit Wednesday. This term
refers to their window of opportunity to target the users that did not yet
apply the patch. In some cases, binary code inspection also allows at-
tackers to identify incorrectly patched security issues. This then allows
attackers to target users who did apply the patch, but were left vulner-
able because the fix was not complete. There has been at least one case
where the analysis of a security patch showed that it did not cover all
possible inputs on which a vulnerability could be triggered [60].

14 Introduction

Brumley et al. [32] demonstrated that in some cases exploits can be
devised without any manual analysis or human understanding of the
patched code. All their attack needs is an accurate identification of the
modified binary code fragments before and after the patch. On that ba-
sis, it suffices to apply a specific form of constraint solving techniques
called fuzzing on the program inputs to generate attacks fully auto-
matically. This and all other published (automatic or manual) patch-
based attacks that we are aware of assume that it is easy if not triv-
ial to identify the relatively few relevant differences between the un-
patched and patched versions of a binary. Many authors simply do not
even consider it worthwhile to discuss how they identify the patched
code fragments. Others discuss it very briefly. Most describe the use
of diffing tools that point the attacker to mutated instructions. For ex-
ample, Protas and Manzuik [123] briefly describe their use of IDA Pro
and BinDiff diffing tool to analyze undiversified Microsoft patches for
Windows. Brumley et al. mention their use of the e-Eye Binary Diff-
ing Suite to analyze the syntactic difference between the two binaries.
Oh [116] observes that the engineering of most security exploits starts
with the manual or automatic analysis of the differences created by se-
curity patches, and briefly describes how EBDS and DarunGrim can
be used to analyze those differences. Many other security researchers,
hackers, and hobbyists tell a similar story [70, 76, 83, 96, 99, 109, 139,
141, 145, 148], conveying that spotting the relevant differences is trivial
with the existing tools.

Finally, we would like to note that while we will only study binary
security patches in this PhD thesis, similar attacks are a problem in the
open source world. Attackers can study commits made to public repos-
itories to find out which of these commits fixes a security issue, and
then make an exploit for those vulnerabilities. They can also try to cor-
relate commits with information from the software project’s bug track-
ers. They can then focus only on those commits that contain security
fixes. Attackers are thus able to create exploits to known vulnerabilities
before users have a chance to download patched binary programs [19].

The described attacks show that attackers can indeed extract enough
information from the difference between unpatched and patched bi-
nary programs to create exploits.

1.4 Software matching 15

1.4 Software matching

Attackers want to identify the SCIMs as fast as possible because their
window of opportunity closes quickly. Thus, they will use tools that
automatically prune the instructions that are unchanged between pro-
gram versions. Such tools are called matching tools or diffing tools.
Some of these tools have been designed for other applications, but can
nonetheless be used by an attacker. In this section, we discuss related
work relevant to the matching of different versions of binary programs.

1.4.1 Binary patch generation tools

A first type of matching tool are binary patch generation tools. These
tools are primarily used to reduce bandwidth costs when distributing
patched versions of software. These tools are tailored towards the prob-
lem of generating small binary patches. The binary patches encode the
differences between the two versions as efficiently as possible. Attack-
ers could try to use the encoded differences to point them to the source-
code induced mutations. The usefulness of these tools both as a tool to
create small binary patches, and as a tool to pinpoint SCIMs, depends
on how they encode translation-induced mutations.

The open source tool xdelta16 is a binary patch tool that encodes
patches in the the VCDIFF format as specified in the RFC 3284 [90] stan-
dard. According to this standard, a patched binary can be reconstructed
from the unpatched binary using only two kinds of operations: copying
fragments from the original binary, and adding raw data. This addition
of raw data can be compressed using a form of run-length encoding.
Thus, a property of the VCDIFF format is that, e.g., a code fragment
with only a changed offset needs to be split up into different copy-and-
add operations. This problem is addressed in bsdiff17, which copies
code fragments from the original binary that are similar to the patched
binary [118]. The remaining differences are then patched separately af-
ter a decompression using the bzip2 compression algorithm18.

The potential similarity between two binaries is even further ex-
ploited by Google’s Courgette binary patch system [122]. While Cour-
gette is designed to patch multiple executable and/or data files at once,

16http://xdelta.org/
17http://www.daemonology.net/bsdiff/
18http://www.bzip.org/

http://xdelta.org/
http://www.daemonology.net/bsdiff/
http://www.bzip.org/

16 Introduction

its innovation lies in additional processing for binary code patches.
Binary code is disassembled, and it is the disassembled plaintext for
which the patch is generated. Because the disassembly is a more ab-
stract representation of the code, syntactic changes such as changed
offsets are not included in the resulting patch.

1.4.2 Graph-based matching approaches

The algorithms used in binary patch tools operate at a low level of ab-
straction. At a higher level of abstraction there are tools that use graph-
based binary matching algorithms. Their purpose is not to generate
small patches between programs, but rather to identify at a higher level
which code fragments are related between program versions. Such
tools typically come with some kind of graphical user interface that
allows users to visualize the relations between the code fragments of
both program versions. Figure 1.1 is a screenshot of the BinDiff diffing
tool. An attacker has asked BinDiff to show the matching instructions
in a single pair of matched functions. As can be seen in the figure, the
attacker can easily see which code fragments are matched between the
program versions and which code fragments have been added.

The higher-level algorithms compare high-level structures such as
control flow graphs, as opposed to assembly or code bytes. This often
offers a more structured view of the relevant differences between the
two program versions. Because of their graph-based nature, they are
less prone to changes in the program layout.

Graph-based algorithms try to find graph isomorphisms between
subgraphs of the control flow graphs and call graphs of programs.
Since the programs are actually different, no full isomorphism will be
returned. Nodes for which no mapping can be found are considered
to have changed. Furthermore, as opposed to regular isomorphism
construction algorithms, these algorithms are constrained to matching
nodes with the same properties. This is to prevent that subgraphs with
similar structure but different behavior will be matched.

Sabin [131] constructs the isomorphisms for Windows binaries by
first enumerating the entry points of functions using the function ex-
port table. These functions are matched by name. Instructions in
matched functions are further matched by iteratively comparing pairs
of instructions during a traversal of the functions’ CFGs. These in-
structions are compared and assigned a match strength. Different

1.4 Software matching 17

Figure 1.1: Screenshot detail of BinDiff’s user interface showing the CFG of a
matched function. BinDiff identifies BBLs that match with green boxes, par-
tially matched BBLs with yellow boxes. Unmatched instructions have a grey
background.

18 Introduction

Program F

f1
(2,1,1)

f2
(1,0,1)

f3
(1,0,1)

Program G

g1
(2,1,1)

g2
(1,0,1)

g3
(1,0,1)

Program F

f1
(2,1,1)

f2
(1,0,1)

Program G

g1
(2,1,1)

g2
(1,0,1)

g3
(1,0,1)

Program F

f1
(2,1,1)

f2
(1,0,1)

f3
(1,0,1)

Program G

g1
(2,1,1)

g2
(1,0,1)

g3
(1,0,1)

Iteration 1 Iteration 2 Iteration 3

f3
(1,0,1)

Figure 1.2: Example of how functions in a call graph can be matched itera-
tively based on function signatures. Each box represents a particular function.
A bold border denotes a function that is matched, a grey box denotes a func-
tion that is skipped when comparing signatures.

match strengths are returned. The highest match strength is the full
match; it is assigned to pairs of instructions that are (1) completely
identical, or (2) have identical mnemonics. When the mnemonics are
identical, either the instructions must not have any operands, or their
encoded-but-different integer operands lie in the program’s address
space. Other instruction pairs are considered near matches when they
have the same mnemonic and the same types of operands (for example,
registers or immediates). Finally, no-operation instructions and direct
jumps with a single successor are ignored.

BMAT [151] is a binary matching tool that has been developed pri-
marily to reuse profile information in subsequent builds. Like Sabin,
the authors of BMAT initially match functions using their names. Ba-
sic blocks are matched as well. For BBLs, initially different kinds of
hashes are computed on the instructions of the BBLs, and BBLs with
the same hash are matched. Finally, the CFGs of the functions are tra-
versed, where BBLs that are in equivalent positions in the control flow
are matched.

Flake [64] constructs the isomorphism by matching the programs
structurally. The CGs and the CFGs are compared to match the pro-
gram versions, ignoring individual instructions. He employs iterative

1.4 Software matching 19

refinement of mappings. Initially, all functions are assigned a 3-tuple
containing the number of BBLs, the number of edges in their CFGs, and
the number of edges in the call graph originating from that function.
Functions are partitioned by their 3-tuple. If a group contains exactly
one function of each program version, these functions are considered
a match. The set of matched functions is then used as a base for iter-
atively improving the matched function set. In subsequent iterations,
functions are only considered when they have call edges originating
from already matched functions. This is illustrated for the call graphs
of Figure 1.2. For example, programs F and G each have one function
with the signature (2,1,1). This means that they both have 2 BBLs, with
one edge between those BBLs, and one outgoing edge in the CG. Since
they are unique in both programs, they are immediately matched (in-
dicated by the bold box around the function). The algorithm cannot
distinguish between the other functions because their signatures are
identical. In the next iteration, only the functions with an edge from
the already matched functions are considered. There is only a single
possible match for f2, being g2. In the third iteration, we again consider
the unmatched functions that have call edges originating in the already
matched functions. Now there is only a single possible match for the
function f3, being g3, after which all functions have been matched.

Dullien et al. [57] extend and generalize the work of Flake in two
significant ways. Firstly, their algorithm generalizes the partitioning of
functions with 3-tuples by considering generic selectors and properties
for matching graphs. A selector maps a single node from graph A to
the unique most similar node of graph B, if it exists. An example of
such a selector is using the 3-tuple from Flake to find a unique match in
the second binary. Properties are functions that, when given a graph,
return a subset of that graph’s nodes. They can thus be used to reduce
the size of the graphs fed to the selectors as input. For example, a prop-
erty for CGs could return only the nodes, i.e. functions, of the input
CG that contain a recursive function call. Another possible property is
the use of exported function names. The goal of reducing the graph is
to reduce the number of identical 3-tuples for a selector, improving the
chances of finding a unique match. This is illustrated in Figure 1.3. In
this example, the attacker compares two programs F and G with three
functions each. The selector is the number of edges per function. Since
f3 and g2 are the only functions in each program that have exactly one
edge, these two functions must match. However, we cannot match f1 or
f2 because there are two distinct functions with zero edges in G. How-

20 Introduction

Figure 1.3: Example of how selectors and properties can be used to match
functions.

ever, we can use the property ‘this function refers to the string “Hi!”’ to
limit the set of functions. This property restricts the set of functions to
f2 and g1. Thus, f2 has exactly one corresponding function with zero
edges in G: g1. Similarly, considering functions that ‘do not refer to any
string’, the only match with zero edges for f1 is g3, after which all func-
tions are matched.

The second extension Dulien et al. add to the work of Flake, is
that they do not only consider matching functions, but also apply the
same technique to the BBLs contained in the matched CFGs, as well
as the instructions in these BBLs. Initially, functions are matched us-
ing function-specific selectors and properties. Then, the basic blocks of
matched function pairs are again matched with selectors and properties
designed for matching basic blocks. Finally, instructions of matched
basic blocks are themselves matched. This work was extended by the
authors of BinSlayer [105] to include other graph matching algorithms.

BinHunt [72] uses symbolic execution and theorem proving in addi-
tion to comparing the control flow graphs and call graphs of programs.
BinHunt does a pairwise comparison of all functions from both pro-
grams. When comparing two functions, the maximum common sub-

1.4 Software matching 21

graph of their CFGs is computed. The BBLs in the common subgraph
correspond to matched BBLs. As a second match step, these matches
are verified by proving or disproving the semantic equivalence of the
matched BBLs. A theorem prover is used to prove that for all inputs,
the matched BBLs compute the same output. Because the registers used
for input and output may have changed between program versions, all
possible combinations of input and output registers are tried. This can
be computationally very expensive. As a solution to this, BinJuice was
proposed as a faster way to find similar BBLs by comparing their se-
mantics [92]. First, the semantics of BBLs is extracted. Next, the se-
mantics is generalized into ‘juice’, which forms a semantic template of
the code. The juice of different BBLs is then transformed further to effi-
ciently find BBLs with similar semantics.

1.4.3 Trace-based matching approaches

Trace-based matching approaches collect information about the execu-
tion of a program, such as dynamic control flow, values produced, ad-
dresses referenced and data dependencies exercised.

Techniques based on compact representations of dynamic program
slices [156] have been evaluated by comparing unoptimized and opti-
mized versions of a program [155].

Similar techniques have been used to compare original and obfus-
cated versions as well. Nagarajan et al. [111] describe a technique that
consists of two steps: an interprocedural matching step and an instruc-
tion matching step. The goal of the first step is to produce a mapping
between the functions of two program versions. To enable this match-
ing, each function is associated with a signature. By comparing sig-
natures, compatible functions can be determined. The compatible func-
tions are then matched using the structure of dynamic call graphs (DCGs)
of the two executions, which essentially yields the function mapping.
In the second step, an attempt is made to match the instructions within
the matching functions. To enable this matching, each instruction is
associated with a dynamic signature based on the values it produces.
By comparing signatures, compatible instructions can be determined.
The compatible instructions are then matched using the structure of
the dynamic data dependence graphs (DDDGs) of the two program ver-
sions. The DDDGs are matched using the iterative algorithm discussed
by Zhang et al [155]. First, the root nodes of the DDDGs are matched

22 Introduction

by comparing the signatures. Then, the interior nodes of the DDDGs
are matched using an algorithm that iteratively applies two passes. In
the forward pass, nodes, all of whose parent nodes match, are in turn
matched. In the backward pass, nodes that have at least one child that
is matched, are in turn matched. Repeated iteration of each of these
passes iteratively refines the instruction matches.

Another technique to match different obfuscated versions of pro-
grams was developed by Anckaert [7]. As opposed to Nagarajan et al.,
Anckaert does not try to detect and map functions, but matches only
basic blocks and instructions of both programs. This is done using a
matching framework that iteratively combines the different results of
fuzzy classifiers. At first, classifiers are used that match BBLs of both
programs. The matches of the BBLs are then propagated to the instruc-
tions contained in them, after which further classifiers are iteratively
applied to the instructions. The exact steps and classifiers applied can
vary, but the proposed evaluation of this framework combines infor-
mation from instruction syntax, produced data values, execution count
and order, system call information, and local control flow and data flow
dependencies. Let us give a small example of how this framework
can iteratively combine this information. First, the existing classifiers
can match all BBLs that contain the same system call. Next, matches
are added for all BBLs that have distance 1 from matched BBLs in the
dynamic CFG. Finally, all pairs of matched BBL that do not have the
same execution count are removed from the set of matches. Such classi-
fiers can be further extended and combined into matchers that produce
matches for individual instructions.

1.4.4 Polymorphic malware analysis

One specific context in which software matching techniques are play-
ing an increasingly important role is the analysis of polymorphic mal-
ware [10]. Such malware tries to avoid being detected by mutating it-
self, thus thwarting tools that rely on static properties or code signa-
tures. Anti-malware tools try to abstract these mutations, which can
lead to faster or better classification of malware samples [20].

To improve the quality of the matching techniques when applied
to polymorphic malware, code normalizers can be used [33, 38, 147].
These tools try to restructure the code into a normal form. Different
polymorphic forms of the same code are normalized to the same nor-

1.4 Software matching 23

mal form, which should improve the quality of the matching.
The polymorphic nature of this kind of malware typically mani-

fests itself in the code, but not in its data structures. This has lead to
the emergence of techniques that match programs based on their data
structures and shape rather than on their binary code [48].

1.4.5 Attack tools for software matching

Some of the diffing algorithms we described above have found their
way into tools that are commonly used by attackers. As already ex-
plained, attackers will use these tools to prune matched code, so they
can focus on code that is likely to have changed. These tools are also
called diffing tools.

All of the tools mentioned here are plug-ins for the IDA Pro disas-
sembler. As mentioned earlier, this is a recursive descent disassembler,
which can return both incorrect and incomplete disassembly informa-
tion. Furthermore, it may construct incomplete control flow graphs in
which basic blocks are mistakenly disconnected from the others and
in which many blocks mistakenly form additional entry points of dif-
ferent functions. When these types of mistakes are made, the diffing
plug-ins obviously face a difficult if not impossible task.

BinDiff BinDiff19 is a commercial plug-in for IDA Pro based on the
work of Flake and of Dullien et al [57]. It allows the attacker to find the
differences at the instruction level. A set of predefined properties and
selectors for matching functions and basic blocks is offered, which the
user can choose from. The authors of BinDiff defined a default list of
properties and selectors [159]. This default list contains different prop-
erties related to the call graph and control flow graph, but also call se-
quences, position-independent hashing of opcodes per basic block and
instruction counts. The correctness of the matches returned by the dif-
ferent properties varies significantly. A rough guide to their reliability
is offered by the authors of BinDiff. A final confidence and similarity
score is assigned to the matched functions and displayed to the user.
However, the BinDiff authors acknowledge that such scores are only a
very rough indication and should not be relied on too heavily.

19http://www.zynamics.com/bindiff.html

http://www.zynamics.com/bindiff.html

24 Introduction

EBDS, Darungrim, and BinaryDiffer The eEye Binary Diffing Suite20

(EBDS) is an open source suite of tools that can be used for matching
binaries. Its main use is to perform a batch comparison between two
versions of an entire Windows installation. By computing hashes on all
files, it finds the files that have been modified. For binary files, a list of
added functions in the changed files is generated by comparing the lists
of exported functions contained in the changed files. These functions
can then be compared at the basic block level by using the Darungrim
part of the suite, which is also available as a Python-based plug-in for
IDA Pro that can be used without using EBDS21. There also exists a C++
re-implementation of this IDA Pro plug-in called BinaryDiffer22. It uses
a combination of fingerprinting and matching on control flow graphs,
data flow, and call graphs to produce its diffing results.

TurboDiff TurboDiff 23 is a free plug-in for IDA Pro. It matches func-
tions and basic blocks using information from the control flow graph,
the call graph, references to strings and by computing hashes on basic
blocks. It considers functions identical if the functions have the same
CFG, have the same checksum and number of instructions for each
BBL. Functions are suspicious when the CFG is identical, but if hashes or
the number of instructions differ in at least one BBL. Otherwise, func-
tions can be considered changed when they can be matched using CG or
string references. Individual BBLs can be (partially) matched based on
their checksums and number of instructions.

patchdiff2 patchdiff224 is a free plug-in for IDA Pro. It only matches
whole functions, not basic blocks or instructions. It does this by gen-
erating and comparing function signatures based on the instructions
contained in the function, in string references, and in function refer-
ences.

While these diffing tools all have different user interfaces and differ-
ent underlying algorithms, at the most basic level their user experience
is the same. A user selects two binaries to be matched; the tool then

20http://www.eeye.com/resources/security-center/research/
tools/eeye-binary-diffing-suite-ebds

21http://www.darungrim.org/
22https://code.google.com/p/binarydiffer/
23http://corelabs.coresecurity.com/index.php?module=

Wiki&action=view&type=tool&name=turbodiff
24https://code.google.com/p/patchdiff2/

http://www.eeye.com/resources/security-center/research/tools/eeye-binary-diffing-suite-ebds
http://www.eeye.com/resources/security-center/research/tools/eeye-binary-diffing-suite-ebds
http://www.darungrim.org/
https://code.google.com/p/binarydiffer/
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff
https://code.google.com/p/patchdiff2/

1.5 Diversification as protection against software matching 25

presents a list of functions that match and a list of functions that do not
match. These functions can then be further inspected by viewing their
CFG either in the tool itself, or in IDA Pro. However, it is unknown to
the attacker whether or not the matched functions have been correctly
identified.

1.5 Diversification as protection against software
matching

Solutions have been proposed to thwart diffing and matching tools. For
example, it has been observed before that applying obfuscation trans-
formations to a binary makes it harder for a diffing tool to produce
useful results [32, 116].

In this PhD work, we will use a technique called software diversity
to defend against attackers using diffing tools. With software diversity,
various transformations (including but not limited to obfuscation trans-
formations) are applied to a binary to add artificial syntactic differences
without changing the program’s semantics.

Software diversity (or individualization) was first proposed by Co-
hen under the term program evolution to defend against malicious code
attacks [40]. When performing a malicious code attack, the attacker has
found a vulnerability, and will try to exploit this vulnerability. He does
this by sending specially crafted input to the target program that causes
it to execute his own code. This requires the attacker to have knowl-
edge of how the target program will behave on the victim’s computer.
Software diversity makes this harder for an attacker by randomizing
certain aspects of the program’s internals, making it harder for an at-
tacker to model the target system and to perform the attack. Numerous
transformation techniques have been presented, including control flow
transformations [7], memory layout randomization [24, 66] and instruc-
tion set randomizing [18, 84]. Other research assumes the presence of
diversity and studies the assignment of distinct software packages to
individual systems in a network [114] or uses different versions in a
framework for detection and disruption of attacks [47, 132] similar to
N-version programming for fault tolerance [16].

Software diversity can be applied at different points in the life-time
of a program. This is illustrated in Figure 1.4. The first point at which
software diversity can be introduced is at the source code level. This

26 Introduction

Source
code

Binary
object files

Executable
program

Program
install

Program
execution

compiler linker

Software vendor User

Figure 1.4: Different positions in the chain from software vendor to an end-
user at which software diversity can be applied.

can be done by applying a source-to-source transformation on the pro-
gram’s source code before passing it through the compiler [97]. This
has the disadvantage that the compiler can undo some of the transfor-
mations applied to the source code before generating the binary code.
The compiler itself can also be used to introduce diversity to the pro-
gram [67, 130]. After the binary code has been generated, diversity
can also be added through binary rewriting, such as link-time rewrit-
ing [7, 97]. When the application is installed by the user, diversity can
be introduced as well by rewriting the program at install time [112]. Fi-
nally, further changes can be introduced at run time. For example, the
program’s memory layout can be randomized by loading code and data
at different memory addresses each time the program is executed [24].
Of course, all of these techniques can also be used together.

Software diversity has also been used as a protection mechanism
against a malicious host. In that case, some sensitive software is run
on a host computer to which an attacker has full access. Existing work
focuses on randomization before distribution. Anckaert et al. propose
to rewrite the program in a custom instruction set and to ship it with
a matching virtual machine [8]. This approach turns out to have a sig-
nificant performance overhead. Rather than rewrite the entire program
into a virtual machine instruction set, De Sutter et al. replace infre-
quently occurring x86 instructions with instruction sequences consist-
ing of more commonly used instructions [52]. In essence, they rewrite
the code to a custom instruction set that is a subset of the instruc-
tion set that the processor supports natively. This reduces the perfor-
mance overhead. A different approach to rewriting code fragments
is to rewrite the data, rather than solely the instructions. Zhou et al.
transform code to use different, but equivalent operations on 32-bit in-
tegers [158]. More application-specific diversity mechanisms to change
data have been proposed as well. Using white-box cryptography, pro-
gram developers can create randomized implementations of encryp-
tion algorithms that are harder to extract the private key from [36, 37].

1.6 Timing side channels 27

Software diversity has been proposed as a solution against patch-
based attacks. However, their effectiveness against attackers using real
attack tools has not yet been investigated.

1.6 Timing side channels

So far, we discussed how attackers can exploit variation between pro-
gram versions. However, we also investigated mitigations against at-
tackers using the variation in execution time of programs. In such at-
tacks, an attacker is only interested in differences that can be observed
when executing the same program multiple times. These variations
can be measured and used to infer private information that an attacker
should not have been able to access. There are various sources of such
intra-program variation. In cryptography, such variation is also called
a side channel.

The variations that can be measured by an attacker include, but are
not limited to, execution time [86], temperature [28], power consump-
tion [87], electromagnetic radiation [5], etc. In this PhD work, we will
only consider variation in execution time of cryptographic code.

This section discusses various sources of variation in program ex-
ecution time. Only the variation in execution time that depends on
private information is considered. An example of such private infor-
mation is a private key in cryptography.

1.6.1 Control flow

The exact path that a program’s execution follows can depend on pri-
vate information. Consider, for example, the following naive imple-
mentation of the left-to-right square-and-multiply algorithm for mod-
ular exponentiation, which can be used in implementations of public-
key cryptographic systems [71]:

1 result = 1;
2 i = log2(exponent);
3 do {
4 result = (result*result) % n;
5 if (bit_set(exponent, i))
6 result = (result*a) % n;
7 i--;
8 } while (i >= 0);

28 Introduction

This do-while loop iterates over the bits in the exponent, and for each
bit the result variable is updated depending on the value of that bit.

We observe that the control flow depends on the exponent vari-
able on line 4. Therefore, the execution time on most modern proces-
sors depends on the number of ones in the binary representation of the
exponent. In the case of decrypting a ciphertext using the RSA algo-
rithm [126], this information is private. Thus, the execution time will
depend on this private information, possibly leaking this information.
Furthermore, if the execution time of the multiplication and division
operations also depends on their arguments, even more private infor-
mation can leak [86]. We now describe different ways in which the
program’s execution time depends on control flow.

Instruction count and mix The most obvious source of timing varia-
tion stems from a difference in the count and mix of executed instruc-
tions. For example, in the code example above, the control flow de-
pends on the private key.

Hidden state Most modern processors have an internal state that
does not affect the operational semantics of the instructions being ex-
ecuted, but can introduce timing variation nonetheless. In fact, most
of them have been introduced to speed up the execution of programs,
and will thus have an influence on the execution time of programs by
design [80, 136]. These include, but are not limited to:

1. Instruction cache. Processors have an instruction cache that speeds
up accesses to recently fetched instructions. Depending on
whether or not an instruction is cached, and in which of the
caches it resides, the latency to start executing this instruction can
vary significantly.

2. Branch predictor. When out-of-order processors encounter a dy-
namic jump target, they can speculate which instructions will be
executed next. Those instructions are then executed speculatively.
This speculation will typically be based on previous control flow.
The branch predictor keeps track of this control flow. When the
actual control flow confirms the prediction, the speculatively ex-
ecuted instructions can be committed, resulting in a speedup.
When the prediction turns out to be wrong, the speculatively ex-
ecuted instructions are flushed from the processor. Thus, the exe-

1.6 Timing side channels 29

cution time of a program depends on the behavior of the branch
predictor, which in turn depends on previous control flow.

3. Return address stack. This is an internal last-in first-out stack of re-
turn addresses for function calls. It mimics the operation of the
program’s stack for function calls. When the processor encoun-
ters a return operation, it uses this internal stack to speculatively
determine the return address while waiting for the actual return
address from the program stack. Because most function returns
can be correctly predicted in this manner, this can speed up the
execution [138].

1.6.2 Data flow

The execution time on most processors also depends on the data flow
and the values of instruction operands.

Variable latency instructions Some instructions have an execution
time that depends on their operands. Thus, there is a variable latency
between the time at which the instruction starts to execute and its result
is available. For example, some arithmetic operations such as multipli-
cation and division can have variable execution times [13, 41]. This
variation is caused by algorithms used in the processor’s implementa-
tion for these operations that feature early exits.

Similar to the timing variation introduced by the instruction cache,
processors also have data caches that can introduce data-dependent
timing variation. The execution time of a memory access will depend
on which cache has a local copy of the required data, if any.

Register dependencies Out-of-order processors will analyze the data
dependencies of instructions, and use this information to reorder the
execution of instructions and execute them concurrently where possi-
ble. For example, code in which each instruction’s operand is the result
of the previous instruction will execute slower than similar code with
no such dependencies.

Resource contention Some processors allow instructions from con-
current processes and execution threads to execute concurrently on the
same processor core. These threads then share the resources of one

30 Introduction

core. When two threads require access to the same resource, the execu-
tion time of both programs will be higher when they execute concur-
rently. For example, when such a processor core only has a single inte-
ger multiplier, the execution time of a thread doing multiplications will
depend on the number of multiplications done by other threads run-
ning concurrently [152]. An attacker measuring the execution time of a
fixed number of multiplications thus leaks information on the number
of multiplications executed by other threads.

1.7 Exploiting timing side channels

The discussed sources of timing variation can be used in different at-
tacks to learn private information.

1.7.1 Measuring timing variation

Side channel attacks are often categorized by the level of access the at-
tacker has to the target system. Three different kinds of attack are con-
sidered: (1) time-driven attacks, where the attacker can only measure the
total execution time of a system, (2) trace-driven attacks, where the at-
tacker produces a trace of some aspect (such as power) of the system
by continuously monitoring it, and (3) access-driven attacks, where the
attacker can access the system under attack and will measure the in-
fluence the target program has on the execution of the attacker’s own
code. Trace-driven attacks are typically not considered separately for
timing side channels, since producing traces requires access to the tar-
get system. We briefly discuss how time-driven attacks and access-
driven attacks can be performed.

Time-Driven Attacks A time-driven attack occurs when the attacker
only needs to observe time behavior to perform the attack. He will ei-
ther communicate directly with the target software, or will be able to
observe the communications and their timing characteristics of another
user communicating with the target software. By measuring the re-
sponse time of the program under attack, the attacker knows the total
execution time of this program under known inputs. This is a partic-
ular cause for concern for public-facing servers, to which the attacker
can freely send and receive requests [30, 31], but also for smart cards,

1.7 Exploiting timing side channels 31

in which a terminal can measure the time between sending a request to
the smart card and receiving a result [86].

Access-Driven Attacks An attack is an access-driven attack when it
requires an attacker to run his own code on the system running the pro-
gram under attack. On the one hand, this gives greater power to the at-
tacker to observe the program under attack, but on the other hand, this
also restricts the attacker because he needs access to the system. Be-
cause of this access requirement, we need to consider how an attacker
can gain access to the same machine. Apart from using a separate at-
tack to force access to the target machine, there are generally two ways
to get access to the same machine as the victim. The first is where the
target code runs on a server to which the attacker has access as well.
He can then attack (1) other users running code in parallel with the at-
tacker’s code, and (2) system code such as the kernel code that encrypts
file system accesses [26]. The second way to get access to the same ma-
chine is when the victim runs his code inside a virtual machine, and
the attacker gains access to a different virtual machine running on the
same physical machine. This can be the case when the victim makes
use of cloud computing services [125, 157].

Access-driven attacks exploit the fact that some hardware resources
are shared between different processes, in particular between the at-
tacked process, and a process under the control of the attacker. Shared
resources used in attacks include data caches [23, 117, 119], instruction
caches [2, 3], branch predictors [1], and shared functional units [152].
The attacker can measure how the target process interacts with the
shared resources in three ways:

1. The attacker starts by measuring the execution time of the target
program. Afterward, he makes a change to the shared resource,
and then times the target program again. This allows the attacker
to measure the influence the difference in states has on the target
program [117]. This influence leaks information on how the pri-
vate information interacts with the state. This requires multiple
executions of the target program to get one measurement.

2. The attacker first sets the resource to a known state. After this,
the target program executes. Finally, the attacker runs code that
analyses the access time to the shared resource to determine the
influence of the target program on the shared resource’s state, for

32 Introduction

example by measuring the number of cache misses [117]. Only a
single run of the target program is needed for one measurement.

3. The attacker can run his own attack concurrently with the target
code. He does this to get a trace of the shared resource’s state over
the course of a run of the entire target program. This way, the at-
tacker can construct a trace of the target program. Such traces can
be constructed at different granularities. For the finest possible
granularity, the attacker can target systems running on proces-
sors with Simultaneous Multi-Threading support enabled [4], or
he can abuse the scheduling behavior of operating systems [75]
and hypervisors [157] to obtain traces that reveal the influence of
almost every single instruction of the target program.

1.7.2 Recovering private information

While we cannot give an exhaustive discussion of how to use the ob-
tained timing information in an attack, we give some examples as back-
ground information. This serves to show that an attacker can indeed
recover this kind of information.

Most generic attacks use knowledge of the timing behavior of the
target software, and correlate this with the observed timing behav-
ior. For example, the first publicly known timing attack on RSA by
Kocher [86] sequentially reconstructs the private exponent of certain
implementations of modular exponentiation. As an example, take the
implementation we described in Section 1.6, and assume that its modu-
lar multiplication has a variable execution time. The attack starts with
recovering the leftmost bit. The attacker measures the execution time
of the modular exponentiation on random inputs. He also knows the
values of most variables in the first iteration: result is set to 1, a is a
value supplied by the attacker, and n is part of the public key. Thus,
he can model the execution time for the first iteration, with the private
exponent’s first bit set to either zero or one. The attacker subtracts the
modeled execution times of the first iteration from the measured exe-
cution times. The variation will be lower when the exponent bit of the
modeled execution matches the actual exponent bit used by the victim.
By comparing the variances, the attacker can deduce the first bit. Using
the first bit of the exponent, the attacker can then compute the values
of the variables in the second iteration of the modular exponentiation.
The attacker can thus sequentially discover all subsequent bits.

1.8 Protecting against timing side channels 33

Such attacks can be generalized to adaptive side-channel attacks,
where an attacker optimally chooses new inputs to the target program
based on his prior measurements, as opposed to using random inputs.
Using perfect knowledge of the implementation, an attacker can use
information theory to describe the uncertainty of the private informa-
tion. He can then decide which input to choose in each iteration to
reduce this uncertainty as much as possible [88].

Another avenue of attack is to use the mathematical structure of
the cryptographic algorithm under attack to speed up the attack. Take,
for example, the Digital Signature Algorithm. This scheme uses secret,
per-signature nonces in addition to a private key. Given a small number
of bits from many such nonces, techniques exist to recover the private
key [78, 120]. Some DSA implementations leak the number of leading
zero bits in the nonces through the execution time. Thus, even though
the implementation only leaks partial information, the mathematical
structure allows an attacker to recover the entire private key [30].

For some cases of trace-driven attacks, patient attackers can man-
ually study the traces, and annotate the different secret key-based op-
erations on the traces [119]. However, in most cases this is not fea-
sible because traces may be too noisy for a human to interpret eas-
ily, or the number of traces to perform the attack may be so high as
to make a manual interpretation infeasible. Automatically identifying
the internal states of the algorithm in regions of traces can be done us-
ing supervised classification techniques such as Hidden Markov Mod-
els [29, 157], Learning Vector Quantization [29], Support Vector Ma-
chines [157], etc.

1.8 Protecting against timing side channels

Since timing variation has been shown to be a problem of cryptographic
algorithms, different solutions have been proposed to mitigate and re-
move timing variation from implementation.

New cryptographic algorithms Since the introduction of side chan-
nel attacks, new algorithms and protocols have been developed that
are less vulnerable to the leakage of internal state, through timing and
other such information. These leakage-resilient cryptography proto-
cols [58] have the advantage that they are provably resistant to leaking

34 Introduction

information through timing. Unfortunately they require the design of
completely new algorithms.

Input blinding Sometimes, mathematical transformations can be ap-
plied to the structure of the cryptographic algorithm that make imple-
mentations more robust against timing side channels, instead of hav-
ing to design new algorithms. This can be done by randomizing (or
blinding) the input to the algorithm, and derandomizing the output af-
terward. Because the internal state of the program under attack is now
randomized, the attacker has less information about the internal state,
which makes attacking such implementations harder. For example, sig-
nature blinding has been used as a countermeasure against timing side
channels in the case of RSA [86]. In this case, the message to be signed
is multiplied with a randomly generated value before computing the
RSA signature, and the effect of this random value is removed after
computing the signature. While such techniques allow existing algo-
rithms to be re-used in a safer way, they still require modifying the
algorithm. Furthermore, blinded implementations are not necessarily
provably secure, and in fact have been shown to be vulnerable in the
case of RSA [17].

Hardware extensions Hardware vendors can implement specific al-
gorithms in hardware. They can then ensure that the execution time is
constant, and does not influence nor is influenced by shared resources.
The AES-NI [74] extension to Intel’s x86 instruction set provides soft-
ware authors with a fast, side-channel-free hardware implementation
of AES instructions.

More generally applicable hardware extensions can also be pro-
vided. For example, special cache architectures can be provided to lock
access to parts of the cache that store cryptographic look-up tables, or
to randomize the access time to certain sections of the cache [152, 153].
Similarly, some ARM CPUs have an extension that allows software to
specify whether or not multiplications should be performed in constant
time.

Timing-independent implementations Authors of cryptographic
software can try to protect their code by rewriting it so that it no
longer exhibits variable execution time. For example, table look-ups
depending on the state of data caches can be removed and replaced

1.9 Contributions 35

by constant-time instruction sequences that compute the required val-
ues [23]. Similarly, programs can be rewritten so that their control flow
no longer depends on private information. Such techniques have been
automated using source-to-source program rewriting techniques [108].

Rewriting programs to reduce their execution time variation will
typically increase their execution time. However, software vendors can
try to reduce the execution time variation of a program while still al-
lowing for some variation to exist. Because the information gained by
an attacker given timing measurements can be modeled [88], software
vendors can thus trade off security versus run-time overhead depend-
ing on how much variation still remains [89]. One way to reduce the
timing variation is by using epochs [14]. Epochs are time windows, and
events such as input and output operations can only occur at the end
of an epoch. Thus, the leaked information is related to the size of the
epochs.

Adding noise Another possible mitigation strategy is to add noise to
the execution time. When noise is added by the defender, the attacker
needs to perform more measurements before being able to recover pri-
vate information. This noise (or jitter) can either be introduced delib-
erately [87], or it might have been introduced inadvertently by the net-
work over which the software’s responses are routed [49]. However,
this protection is not absolute.

When the attacker has access to the same machine as the target, his
attack is limited by how precise his timing measurements are. Thus,
instead of adding noise, a defender can restrict the precision of the tim-
ing information available to the attacker [79, 146, 106]. However, these
techniques offer no protection for remote attackers who have an inde-
pendent source of timing information.

1.9 Contributions

Both in attacks using code variation and attacks using timing variation,
we note that variation can aid an attacker. When we want to protect
against attacks that exploit variation, we can either try to increase vari-
ation, or we can try to decrease it in order to protect the users. The
pros and cons of increasing or decreasing the timing variation can be
described as follows:

36 Introduction

1. More timing variation. As we already described, introducing more
timing variation is a potential defense mechanism against tim-
ing side channel attacks. However, this will also introduce an
overhead in execution time. Furthermore, the protection is not
absolute: timing information will still leak through the measure-
ments. Furthermore, access-driven attacks measure the influence
of shared resources. Accesses to these resources thus have to be
randomized as well. For example, even if the total execution time
is randomized, the control flow during the cryptographic opera-
tions must be randomized to thwart such attacks. Otherwise, an
attacker measuring the execution time of his own code will still
detect the influence the influence of the private information in the
cryptographic code on his own accesses to the branch predictor,
instruction cache, etc.

2. Less timing variation. We can reduce the timing variation by re-
moving the control dependencies and data dependencies on pri-
vate information. This protection is absolute in the sense that re-
moving dependencies on private information will remove the de-
pendent timing variation, which removes the attacker’s source of
information. The downside is that this can introduce a significant
overhead in execution time.

We can similarly try to protect against patch-based attacks by increas-
ing and decreasing the variation between the unpatched and patched
program version. The pros and cons of those possibilities can be de-
scribed as follows:

1. Less code variation. It is of course impossible to make the patched
program identical to the original program. However, we can still
try to reduce the variation to thwart the attacker. For example, we
could try to protect against tools that only match instructions and
not program data. In this case, we could try to make both pro-
grams have identical code, where only the data has changed. An
extreme example of such a solution would be a protection mecha-
nism where the program exists mainly of an emulator of a custom
instruction set for which the actual instructions are located in the
data section. These instructions will be encoded as custom in-
structions to be emulated. Even though a code matcher will com-
pletely match all program instructions, it will ignore the actual
variation in the data.

1.9 Contributions 37

2. More code variation. This is the strategy of software diversity. By
artificially increasing code variation, the attacker will find it more
difficult to identify a SCIM in the code.

In this PhD work, we have opted to defend against timing attacks
by removing the control flow dependencies on private information,
and to defend against patch-based attacks with software diversity. This
PhD work consists of three contributions based on these defense mech-
anisms.

In Chapter 2 we introduce an abstract attacker model for patch-
based attacks. We instantiate this abstract model using different real-
world attack tools and heuristics. These models allow us to evaluate
the effectiveness of different attack strategies in a patch-based attack,
and show that such strategies indeed allow attackers to efficiently re-
cover source-code induced mutations. Furthermore, we use these at-
tack models to show that the Proteus diversification framework [7] can
indeed be used as a defense strategy against attackers using real-world
tools. This chapter reports on work that has also lead to a journal pub-
lication:

• Protecting your software updates
Bart Coppens, Koen De Bosschere and Bjorn De Sutter
In IEEE Security & Privacy Magazine,
Volume 11, Number 2, March-April 2013, pp. 47-54 [43].

Next, in Chapter 3 we show how we can use the attack models that
make use of tools like BinDiff to improve the diversification strategy of
Proteus. We introduce the diversification framework Glaucus, which
uses the results of attack models as feedback. We show that with such
a feedback-driven approach, the performance overhead of the diversi-
fied program is less than when using Proteus, while the attack effort is
increased. This chapter reports on work that has also lead to a journal
publication:

• Feedback-Driven Binary Code Diversification
Bart Coppens, Bjorn De Sutter and Jonas Maebe
In ACM Transactions on Architecture and Code Optimization (TACO),
Volume 9, Issue 4, Article 24, January 2013 [44].

Finally, in Chapter 4 we show that we can use compiler transforma-
tions to protect effectively against control-flow based timing side chan-

38 Introduction

nel attacks. Furthermore, we also introduce different program trans-
formations that protect programs against some data-flow based timing
side channel attacks. This leads to a timing side-channel aware com-
piler. This chapter reports on work that has lead to a conference paper:

• Practical Mitigations for Timing-Based Side-Channel Attacks on
Modern x86 Processors
Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere and
Bjorn De Sutter
In IEEE Symposium on Security and Privacy (Oakland), 2009 [45].

In addition to these publications, I contributed to other publications
that are either tangentially related, or not at all related to this PhD dis-
sertation:

• Compiler mitigations for time attacks on modern x86 processors
Jeroen Van Cleemput, Bart Coppens and Bjorn De Sutter
In ACM Transactions on Architecture and Code Optimization (TACO),
Volume 8, Issue 4, Article 23, January 2012 [143].

• A Novel Obfuscation: Class Hierarchy Flattening
Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De
Bosschere
In International Symposium on Foundations & Practice of Security,
2012 [65].

• DNS Tunneling for Network Penetration
Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert, Koen
De Bosschere, Pieter Danhieux and Erik Van Buggenhout
In Annual International Conference on Information Security and Cryp-
tology, 2012 [124].

• An efficient algorithm for the generation of planar polycyclic hy-
drocarbons with a given boundary
Gunnar Brinkmann and Bart Coppens
In Match–Communications in Mathematical and in Computer Chem-
istry,
Volume 62, Issue 1, 2009, pp. 209-220 [27].

Chapter 2

The effectiveness
of variation against

patch-based attacks

2.1 Introduction

In this chapter, we focus on attacks based on code variation. Given a
patch for a program, an attacker can try to create an exploit for the un-
patched program by studying the difference between the unpatched
and patched program versions. All previous work on such attacks
starts from the assumption that the number of mutations as reported by
binary diffing tools is relatively small. The source-code induced muta-
tions to the program stand out, and the challenging part of such attacks
is generating an actual exploit.

Our approach to protect against such attacks consists of making the
source-code induced mutations stand out less from translation-induced
mutations by rewriting the entire program at a binary level. We build
on software diversification, which is the introduction of artificial syn-
tactic changes to generate different versions. Because of the additional
syntactic changes, the attack requires more effort to find the vulnera-
bility, which in turn delays the creation of the exploit. This gives users
more time to apply the patch, and decreases the attacker’s return on
investment. Figure 2.1 shows the effect of delaying the attacker on the
number of vulnerable users1. We can distinguish two kinds of attacks:

1This figure is stylized for clarity and is not based on any particular software. Some
data exists on the speed with which users apply security patches. Frei et al. present

40 The effectiveness of variation against patch-based attacks
U

se
rs

 w
it

h
p
a
tc

h
 a

p
p
lie

d

Time since patch release

patch
Tuesday

exploit
Wednesday

vulnerable
users

decrease in attack window

smaller return on
attack investment

Figure 2.1: The attacker’s return on attack investment decreases when more
users have applied the patch by the time the exploit is made.

non-persistent attacks and persistent attacks. In both cases, the attacker
uses a vulnerability to gain control of the victim’s computer. With a
non-persistent attack, the attacker only accesses the target computer
for a limited amount of time. For example, if the attacker only wants
to steal personal information, it is not important that the attacker loses
control over the victim once the victim restarts his computer or applies
the security patch. In such cases, when the attacker’s window of op-
portunity is decreased, his smaller return on investment is represented
by the number of victims he can no longer steal information from. This
number of lost potential victims is shown by the red vertical arrow in
the figure. With a persistent attack, however, the attacker wants long-
term control over the victim’s computer. This control needs to persist
across reboots and installed updates. For example, when an attacker
wants to use the target computer in a botnet, long-term control is re-
quired. When the attack is delayed in such cases, the attacker loses
future use of the potential victims who have installed the security up-
date in the meantime. This loss for the attacker is represented by the
shaded area for the case where the attacker persists even after the secu-
rity update is installed.

Software diversity has already been applied for defensive purposes
by Anckaert to hide similarities between programs from diffing tools
by making the patched program look dissimilar from the original pro-
gram [7]. He used his Proteus software diversification framework to
evaluate his custom binary diffing framework. Proteus was not evalu-
ated on tools that actual attackers use. It was evaluated on differently
diversified instances of the same program rather than on patches.

and analyze such data for the Firefox and Opera web browsers [69].

2.2 SCIMs and TIMs 41

The question remains whether or not software diversity can pro-
tect users against a patch-based attack with real-world attack tools. In
order to answer this question, we first formally define which binary
instructions correspond to the the source-code induced mutations of a
patch (Section 2.2). Since we will use real-world attack tools, we in-
troduce a novel abstract model of how these tools may be used by at-
tackers to find SCIMs, and offer concrete instantiations of these mod-
els (Section 2.3). These models can be used to compare both differ-
ent attack strategies, and different protection strategies. We evaluated
these models on programs diversified using the Proteus diversification
framework, which is described in Section 2.4. Our attack models then
allow us to show that existing attack tools can indeed significantly aid
patch-based attacks on unprotected binaries by pointing attackers to
a very limited set of changed instructions containing the SCIMs. Fur-
thermore, we then show that effectiveness of patch-based attacks are
indeed thwarted when the binaries have been diversified with the Pro-
teus framework (Section 2.5).

2.2 SCIMs and TIMs

The goal of the attacker is to find source-code induced mutations at the
binary code level. In Chapter 1 we already used this term informally,
but we never defined it. In order to evaluate attack tools, we need to
know which altered instructions an attacker should find. Thus, we need
to give a definition of SCIMs and TIMs.

An obvious definition would be to require SCIMs to be semantic
changes in the program, i.e., the changes to instructions that give rise
to a change in the input/output behavior of the program. However,
this definition would be too strict. We already described how the tim-
ing behavior of a program can leak information. A fix for such a vul-
nerability would not change the input/output behavior of the program
at all, while it is still a fix for an important vulnerability. Similarly,
some programs use algorithms with problematic worst-case behavior.
Attackers can exploit such worst-case behavior in denial-of-service at-
tacks [85]. Fixes for such issues again only affect the timing behavior of
the program.

Instead, we will base our definition source-code induced mutations
for binary programs on the effect of changes to source code.

42 The effectiveness of variation against patch-based attacks

Definition. The source code mutations of a source code patch are the pro-
gram statements and definitions that are changed by the patch.

These source code mutations can be identified by the textual repre-
sentation of the source patch. In order to produce a binary program,
the compiler front-end will parse the source code into an Abstract Syn-
tax Tree (AST). This AST will then be transformed into an intermediate
representation, on which the different compiler analyses and transfor-
mations will run. The end result of these transformations will then be
used by the compiler back-end to generate the binary code [110]. To do
so, we track source changes through the compilation process:

Definition. Given a set of altered source code statements or definitions, we
can tag the nodes that correspond with these statements or definitions in the
AST. These tags can be propagated through the compilation process to the bi-
nary code generation. All compiler transformations will update and create new
tags when refining or duplicating nodes that have been tagged. We call the
bytes of the target program that have been tagged the corresponding bytes of
the set of altered source code statements or definitions.

This means that if, for example, a tagged function call is inlined, the
compiler transformations will tag the duplicated code as well. When
the tagged function causes changes in, for example, register allocation,
such changes will not be tagged.

This allows us to define the binary source-code induced mutations
as follows:

Definition. The binary source-code induced mutations of a source code
patch are the corresponding bytes of the source code mutations of this patch.

We can then define translation-induced mutations by comparing
them to source-code induced mutations:

Definition. The translation-induced mutations of a source patch are all
mutations of a program that are not contained in the set of source-code induced
mutations for this source code patch.

For simplicity’s sake, when a SCIM or a TIM is located in an in-
struction, we will refer to the entire instruction when referring to this
mutation.

This enables us to specify which binary code instructions corre-
spond to source code changes. When a source code patch set consists

2.3 Heuristic attack model 43

of multiple patches, we can, at the source level, partition the different
changes and we can tag them differently, allowing us to distinguish be-
tween different subsets of a single patch set. We can also use different
tags when a software patch fixes multiple issues, some of which are
security-related, and some of which are not.

Such tags could be generated by existing compilers similarly to how
debugging information is generated. Debugging information typically
contains a mapping of source code lines to instructions. In this work,
we have not implemented this in a compiler. We manually inspected
the patched binary to determine the instructions corresponding to the
changed source code lines.

2.3 Heuristic attack model

The attacker needs to find the SCIMs as fast as possible to have the
largest possible attack window. As discussed in Chapter 1, an attacker
will try to separate the SCIMs from the TIMs using binary diffing tools
before trying to make an exploit. He will rely on the abstractions of
many syntactic changes provided by the diffing tools to focus on the
SCIMs. The attacker’s work flow is shown in Figure 2.2. The attacker
starts by applying the binary patch to the unpatched program, obtain-
ing the patched program. He then uses a binary diffing tool to find dif-
ferences between the unpatched and patched program versions. The
code fragments that the diffing tool reports as changed or unmatched
are then inspected by the attacker. When there are multiple code frag-
ments that need inspection, the attacker will try to prioritize them in
order to find the fragments containing the SCIM as quickly as possi-
ble. When he has found the SCIM corresponding to a vulnerability fix
amongst these code fragments, he can construct an exploit.

The goal of this chapter is to prove the effectiveness of diversity
when it is used to reduce the effectiveness of the diffing tools. We will
use real attack tools to show this. We will prove the effectiveness by
quantifying the “delay” incurred by attackers when software diversity
is applied. Ideally, we would perform a social study in which we give
different attackers either the original program and the software patch,
or diversified versions of the programs. By measuring how long it takes
the different attackers to create a working exploit (if they are able to cre-
ate one), we can measure the attack delay. However, such experiments
are time consuming, costly, and hard to repeat when new countermea-

44 The effectiveness of variation against patch-based attacks

binary v1 binary patch

bspatch tool

binary v2

GUI diffing tool

manual code
inspection

vulnerability

foo() v1 foo() v2

Figure 2.2: Attacker’s tool flow to find SCIMs in a binary patch.

sures need to be evaluated [34, 35, 142]. Furthermore, every attacker
can use a different combination of tools, prioritization heuristics, and
insights to find the SCIMs. As an alternative to performing studies
with human subjects, we model the way in which an attacker uses his
attack tools. We define an abstract framework to model an attacker,
and instantiate this model with different combinations of attack tools
and prioritization strategies. These models can then be evaluated and
compared.

2.3.1 A framework for attack models

The attack models we consider will be concrete instantiations of the
following abstract attack model:

2.3 Heuristic attack model 45

Definition. Given unpatched program version U , patched program version
P , and a prioritization strategy π, the attack model µπ(U,P) is the set of
instructions that obtain the highest priority when applying strategy π on the
pair of programs (U,P).

We assume that there is no further subdivision of this set. So in the
case of manual exploit generation, we envision that an attacker can ran-
domly select instructions to analyze from this set, or, as in the case of
automated fuzzing, target all instructions in this set. Thus, for a prior-
itization strategy π, we could use the cardinality of this set, |µπ(U,P)|,
as a proxy for the attack effort.

Note that in the case of an automated attack, the attack cost depends
on the number of instructions that need to be automatically evaluated
for creating an exploit. In that case, the cost is a computational one.
Based on the normalized set size, we can report how useful a strategy
has been for an attacker. First, we present the pruning rate:

Definition. The pruning rate of the attack model µπ(U,P) is

1− |µπ(U,P)|
|P |

.

As such, it directly relates, linearly or not, to the attacker’s effort
and time. The higher the pruning rate, the lower the attack time. This is
different from the more commonly used precision, because the pruning
rate focuses more on the effort for the attacker to analyze the returned
instructions.

An attacker cannot evaluate the effectiveness of his attack strategy
until after he has found the SCIMs. However, in order to evaluate and
compare different concrete attack models, we can use binary patches
for which we know the ground truth. We start from benchmarks that
we applied a binary patch to. For these benchmarks, we know the
ground truth, which is the set of binary instructions corresponding to
the source code patch. The ground truth for transforming program ver-
sion U into program version P is denoted by τpatch(U,P). We can then
express the success of the strategy using the recall rate:

Definition. The recall rate of the attack model µπ(U,P) is

|µπ(U,P) ∩ τpatch(U,P)|
|τpatch(U,P)|

.

46 The effectiveness of variation against patch-based attacks

Matched

Unmatched

(a) xdelta (b) bsdiff

Figure 2.3: Schematic overview of the attack tools operating on byte se-
quences.

If the recall rate is zero, none of the SCIMs are contained in the list
of instructions in the attack model and the attack will obviously fail.

We will evaluate different combinations of attack tools and prior-
itization strategies on the same pair of unpatched-patched programs
(U,P). It is possible that these tools only return a set of matched func-
tions, or of matched basic blocks. In such cases, we consider µπ(U,P)
to be all instructions inside those basic blocks and functions. Note that
we do not require that these instructions are assigned to the correct ba-
sic block or functions, or even that the instructions returned are actually
part of the program. The attacker can only use the information returned
by the attack strategy, and will rely on it to find the vulnerability.

With this attack model framework, we discuss the different strate-
gies π which combine attack tools with heuristic pruning strategies. We
will drop the arguments U and P from the attack model and ground
truth when they are clear from the context.

2.3.2 Binary diffing tools

The attacker can first prioritize his search based on raw diffing results.
These diffing results are a set of instructions that have been matched
between the program versions. With this information, the attacker can
use different heuristics to further prioritize his search.

In general, an attacker can try to prioritize the unmatched code frag-
ments; these will most likely contain SCIMs.

We first discuss how an attacker could use and interpret the raw
results returned by these diffing tools, and how we can capture this
attacker behavior.

2.3 Heuristic attack model 47

Byte-level diffing tools

Both xdelta and bsdiff create binary patches by comparing the patched
program to the original program. The resulting patches are binary
script files with instructions on how to transform the original binary
into the patched binary. The patched program then consists of bytes
copied directly from the original program, and bytes introduced by the
patch script. An attacker can tweak these tools to output a list of bytes
in the patched program that were not copied directly from the origi-
nal program. He will prioritize these bytes over the ones that could
be copied, and will use a disassembler or debugger to see to which in-
structions these bytes belong.

Figure 2.3 visualizes the information attackers can extract from the
patches generated by xdelta and bsdiff. Copied fragments are shown in
white. The arrows indicate the origin of copied regions in the patched
program. The fragments shown in black represent code fragments that
are not copied from the original binary, but have been stored in the
patch file itself. Additionally, bsdiff supports copy-and-patch opera-
tions that specify how a large chunk of bytes can be copied and then
patched. While these copy-and-patch operations were clearly designed
to handle small translation-induced mutations efficiently, their use is
not limited to TIMs. Hence the small patches applied to copied bytes
still have to be analyzed manually by the attacker. Figure 2.3 (b) hence
depicts them in black.

Byte-level tools consider bytes without interpreting them. When
bytes are copied by such tools, this only implies that the source and
destination bytes are identical. There need not be any semantic rela-
tion between the source and destination. For example, when a certain
byte sequence is repeated in different contexts throughout the binary,
byte-level tools can pick one such sequence and copy this to all destina-
tions. This is indicated in the figure by a single block having multiple
outgoing edges. This happens frequently, for instance with function
prologues and epilogues [53]. This clearly reduces the usefulness of
such tools.

It should also be noted that these tools try to optimize the size of
the patch. So they may prefer to produce one insert operation of a large
block over producing a sequence of smaller copy and insert operations,
thus hiding that there are actually many similarities between some code
fragments. This further reduces the usefulness of such tools in most
situations.

48 The effectiveness of variation against patch-based attacks

While at first sight the attacker’s search space has been reduced to
only the parts shown in black, we note that the mapping between iden-
tical white parts is not necessarily correct or useful. For example, when
the code can be mutated in such a way that the mutated code already
occurs in the original binary. The patch tool can thus return to the at-
tacker that this code has not mutated at all in the patched binary. So in
that case the tool turns the attacker away from the interesting code. On
the other hand, because of the level of abstraction of these tools, most
syntactic mutations are not abstracted away. This potentially increases
the attack effort significantly.

Even so, these tools help the attacker prioritize code fragments, by
pointing out code fragments in the patched program that do not corre-
spond to any fragment in the original program. The attacker could first
focus on these bytes, before trying to analyze more code.

We can model attacks using byte-level diffing tools by identifying
the bytes from the target program that have been copied from the orig-
inal program. We can prune these identified bytes. Since these byte-
level tools operate on the binary level, rather than at the assembly level,
we envision that the attacker will first try to disassemble the binary to
determine which instructions were added or modified. We model an
attacker prioritizing exactly the instructions that have changed accord-
ing to the binary patch tools (which is the set of code fragments shown
in black in the figure) as µbsdiff and µxdelta.

IDA Pro-based Tools

The other diffing tools we consider are plug-ins for the IDA Pro disas-
sembler. They give the attacker a list of code fragments that have been
matched in both program versions. These programs help the attacker
by differentiating between code fragments that form an exact match,
those that form a near match, and those fragments that do not match at
all at the level of abstraction of the tool.

As opposed to the binary patch tools, these attack tools all have a
Graphical User Interface (GUI) through which the attacker will study
and prioritize code fragments. We therefore have to model a prioritiza-
tion strategy on the GUI.

First, the attacker will run IDA Pro on the binaries to disassemble
the code. The attacker may instruct IDA Pro to disassemble code that
was incorrectly classified as data. Then, the attacker will run a diffing

2.3 Heuristic attack model 49

tool. This tool will return a list of matched function pairs, and a list
of unmatched functions. Some attack tools offer the possibility to show
potentially matched functions side by side, highlighting the unmatched
BBLs. We envision that the attacker will study each of the unmatched
code fragments one by one until he has studied all unmatched code
fragments. For this, we can prioritize the unmatched code using differ-
ent strategies.

To model these attacks, we identify the instructions that are matched
according to the diffing tools2. In the cases where the diffing tool only
returns matches of whole functions or BBLs, rather than individual in-
structions, we consider all the instructions contained in the unmatched
functions or BBLs. All instructions that are not matched by the diffing
tools are instructions that the attacker will have to analyze or prioritize
himself.

All tools that use IDA Pro as a base for disassembly and function
detection will have similar problems when IDA Pro fails at this task.
Code fragments that do not belong to a function according to IDA Pro
will not get matched by any tool, unless the tool adds additional heuris-
tics to group functionless code fragments. The tools that use IDA Pro
can also make abstraction of references to other code fragments: they
are automatically aware of when a change to an instruction is in an
offset.

Patchdiff2 The patchdiff2 IDA Pro plug-in only returns matches at
the function level. Figure 2.4 shows a screenshot of patchdiff2. It re-
ports functions either as being identical, being similar, or being un-
matched. These are grouped in three different lists. The only infor-
mation reported by patchdiff2 is the function addresses of the match-
ing functions, and the computed checksums of the functions. As can be
seen in the Figure, an attacker must open the two binaries in IDA Pro
side-by-side himself and manually navigate to the functions he wants
to study further.

An attacker can then study the functions that have not been matched
at all, after which he can investigate similar functions. When trying to
find the SCIMs using this information, he is left to analyze the differ-
ence between entire functions himself. The attacker can prioritize his

2To be able to analyze the diffing results automatically, we extended the plug-ins to
dump the diffing information to a file when this functionality was not present in the
tool.

50 The effectiveness of variation against patch-based attacks

Figure 2.4: Screenshot of the patchdiff2 diffing tool.

2.3 Heuristic attack model 51

Figure 2.5: Screenshot of the TurboDiff diffing tool.

52 The effectiveness of variation against patch-based attacks

Figure 2.6: Screenshot of the BinaryDiffer diffing tool.

2.3 Heuristic attack model 53

Figure 2.7: Screenshot of the BinDiff diffing tool.

54 The effectiveness of variation against patch-based attacks

results depending on the match strength of the matching functions. We
model two different prioritization strategies: µpatchdiff2: identical+similar,
where we use patchdiff2 and the attacker ignores identical and simi-
lar functions, and µpatchdiff2: identical, where we use patchdiff2 and the
attacker only ignores the instructions from identical functions.

BinaryDiffer and TurboDiff BinaryDiffer and TurboDiff are two bi-
nary diffing plug-ins for IDA Pro that both give information about
matches between different basic blocks. Figure 2.5 is a screenshot of
TurboDiff in operation. We see that TurboDiff can show the user a col-
ored representation of matching functions in a separate viewer, where
red BBLs are unmatched. The operation of BinaryDiffer is shown in Fig-
ure 2.6. Like patchdiff2, it requires the attacker to open two instances of
IDA Pro at the same time, each with one version of the binary program.
Like TurboDiff, it colors the matched BBLs differently, but it does so in
IDA Pro’s GUI, rather than in an external viewer.

BinaryDiffer reports pairs of corresponding, identical basic block,
pairs of corresponding, very similar but non-identical blocks, and pairs
of corresponding but more heavily mutated basic blocks. TurboDiff
reports only pairs of corresponding, identical basic block, and pairs of
corresponding, very similar but non-identical blocks.

The attacker can prioritize those basic blocks that are not reported
to be similar by the tools. If he learns no information on the SCIMs
from studying those basic blocks, he can look at the basic blocks that
have been identified as being similar, but not identical, etc.

Thus, we have attack models based on how similar the matched
BBLs are according to the attack tools. For BinaryDiffer we have the
models µBinaryDiffer: identical+similar+heavily mutated, µBinaryDiffer: identical+similar
and µBinaryDiffer: identical. For TurboDiff we have µTurboDiff: identical+similar
and µTurboDiff: identical.

BinDiff BinDiff is a binary diffing plug-in for IDA Pro that reports
matching instructions. This is shown in Figure 2.7. It has a separate
viewer that colors individual instructions in matched functions accord-
ing to whether or not they are matched with an instruction in the other
binary. Furthermore, the instructions and BBLs are laid out such that
they can easily be compared visually.

For BinDiff, instructions either match, or they do not match. The at-
tacker can thus focus first on the instructions that do not match accord-

2.3 Heuristic attack model 55

ing to BinDiff. We consider an attacker who only focuses on unmatched
instructions: µBinDiff: matched.

2.3.3 Additional prioritization heuristics

On top of the raw tool results, the attacker can use additional prioriti-
zation heuristics. We model these as follows.

Byte-level tools

The abstraction level at which the byte-level tools operate is signifi-
cantly lower than that at which the IDA Pro-based tools operate. The
latter ones can use disassembled instructions and can base their diffing
results on more abstract representations, while the former will report
more TIMs. An attacker using byte-level tools such as bspatch and
xdelta can try to prioritize the byte-level results, removing from the
byte-level output some of the changes that are not reported by the IDA
Pro-based tools.

Keep only instructions Since the byte-level tools make no distinction
between changes in code segments, and changes in data segments, the
attacker will also have to analyze the changes to data. A first prioriti-
zation heuristic is that the attacker only looks at changed instructions.

We implement this by basing the results of our models only on the
changes that happen in the code sections of the patched program. Be-
cause it is so basic, we already incorporated this prioritization strategy
in our attack models µbsdiff and µxdelta. However, attack models can be
designed so that they also include changed data.

Prune mutations limited to immediate operands of instructions As
explained in Chapter 1, when code is moved around in a program’s
memory due to a patch, both absolute and relative addresses encoded
in the binary code and in the data of a program get modified. The
number of changed offsets is typically much higher than the number
of instructions constituting the SCIM. Thus, the attacker can prioritize
code fragments by pruning instructions with only changed offsets.

We prune the instructions where the only changes are to the im-
mediate bytes of the instruction. We use a linear sweep disassembler

56 The effectiveness of variation against patch-based attacks

to decode the instructions and to determine where in the instructions
the immediate bytes of the instructions lie. We can extend a con-
crete attack model µπ with this heuristic, resulting in the attack model
µπ∧prune changed immediates.

IDA Pro-based tools

For the diffing tools based on the IDA Pro disassembler, the quality of
the results not only depends on the implementation of the diffing tool,
but also on the quality of the IDA Pro recursive descent disassembler.
To improve the quality of the results, we envision that an attacker could
use custom heuristics. We now present different heuristics we believe
might aid an attacker.

Extending IDA disassembly As mentioned before, IDA Pro’s auto-
matic recursive descent disassembly process does not automatically de-
tect all code in a program. In its interactive operation mode, an attacker
can indicate additional locations in the binary code that IDA Pro should
disassemble.

To automate this, we implemented a plug-in that mimics such an
attacker. This plug-in is invoked in between the standard IDA Pro dis-
assembler and the diffing plug-ins. It extends the standard disassem-
bler by forcing IDA Pro to disassemble all parts of the binary not yet
disassembled and not determined to be data. The attack model µπ after
extending IDA’s disassembly process is denoted by µπ∧extend IDA.

Considering code not disassembled as irrelevant Another potential
solution to the problem of IDA Pro not automatically finding all func-
tions is to ignore such code altogether and explicitly filter these instruc-
tions from those the attacker has to consider manually. By ignoring
these instructions, as opposed to trying to analyze them, the attacker
runs the risk of removing the SCIMs from his consideration. We denote
these attack models by µπ∧only disassembled.

Tool-specific CFG pattern pruning Some tools do not use certain
parts of the control flow graphs to determine the matching code frag-
ments. When certain parts of the CFG are unmatched, the attacker
would have to look for these unmatched code fragments. Again, he

2.3 Heuristic attack model 57

Figure 2.8: The attacker will also study matched code fragments adjacent to
unmatched code fragments.

can prioritize the changes by specifically ignoring such unmatched
code fragments.

We considered three specific code patterns that are not present in
the output of BinDiff. These are no-operation instructions, basic blocks
containing only a direct control transfer instruction, and basic blocks
that are unreachable from function entry points. We denote these attack
models by µπ∧prune patterns.

Generic prioritization strategies

Finally, we discuss prioritizing two heuristics that apply to both the
results of the byte-level tools, and the IDA Pro-based tools.

Only executed code Attackers can prioritize code that gets executed
on typical inputs. Code that gets executed is more easily studied by the
attacker by using a debugger and tracing tools. Furthermore, such code
will be easier to trigger, which may facilitate generating an exploit.

We simulate this by tracing the program execution on test inputs,
and prioritizing the executed instructions. We use the Diota3 dynamic
instrumentation framework to trace the programs. Such attack models
are denoted by µπ∧executed.

Expand the window of instructions To study the results of the diffing
tools, an attacker will use a disassembler and debugger. This disassem-
bler not only shows the unmatched code, but also the code around it.
Thus, the attacker will also view and study matched code fragments
around unmatched code. For example, in Figure 2.8, even though the

3http://www.elis.ugent.be/diota

http://www.elis.ugent.be/diota

58 The effectiveness of variation against patch-based attacks

Proteus
(diversifier)

Proteus
(diversifier)

original binary

diversified
original binary

compiler

original source
code files

random
seed

binary code patch

bsdiff

compiler

patched source
code files

patched binary

random
seed

diversified
patched binary

Figure 2.9: Tool flow when distributing a patched program version using the
Proteus diversification framework

mov instruction is matched by BinDiff, the attacker will still analyze it
when analyzing the code in the unmatched BBL that precedes it. An ex-
perienced attacker will in practice notice almost immediately that one
of the neighboring instructions is also relevant.

However, when computing the recall rate for our attacker model,
we only consider the unmatched instructions as reported by the diffing
tools. In order to make up for this problem, and to model an attacker
with a GUI, we include an additional type of “heuristic” that extends
the code window considered relevant by the tool with its immediate
neighbors. When we include this heuristic in an attack model, which
is denoted by µπ∧expand window. Different window sizes can be used for
different models. In the models we evaluated, we only expanded the
window when adjacent instructions are indeed part of a SCIM. Differ-
ent expansion strategies could be used instead of this optimistic win-
dow expansion.

2.4 Diversification as mitigation strategy 59

2.4 Diversification as mitigation strategy

As explained earlier, software diversity has been proposed as a mitiga-
tion against several collusion-based attacks, including Exploit Wednes-
day attacks. Our goal is to prove that this is indeed an effective pro-
tection against real-world attacks. We do this by evaluating differ-
ent concrete attack models both on undiversified and diversified pro-
gram pairs. To study the impact of diversification, we used the diver-
sifier Proteus [7] that comes with the Diablo link-time rewriting frame-
work4 [51]. Figure 2.9 shows the proposed tool flow of using the Pro-
teus diversifier. A software vendor using Proteus starts by compiling
and linking the source code of the programs to binary code. Proteus is
then run on these binaries before the resulting diversified binaries are
distributed to end users.

Proteus’ underlying Diablo framework supports a number of stan-
dard code generation, optimization and obfuscation techniques, but
rather than optimizing towards a performance or software protection
objective, Proteus applies them in a stochastic manner using a pseudo-
random number generator (PRNG). The order in which the different
transformations are applied is fixed. Different versions of a binary
can be generated simply by feeding the PRNG with different seeds.
To trade off the level of diversification with the overhead introduced
by the stochastic application of transformations, the user can select the
probabilities with which transformations are applied. These transfor-
mations will only be applied when the necessary preconditions are met,
ensuring their correctness. There is a further attempt at limiting the
overhead by ensuring that high-overhead transformations are only ap-
plied to cold code, i.e., code that is executed relatively little according
to collected profile information.

2.4.1 Diversifying transformations in Proteus

The transformations supported by the Proteus diversification frame-
work can be grouped into three categories: compiler optimizations,
code generation techniques, and obfuscation techniques.

4http://diablo.elis.ugent.be/

http://diablo.elis.ugent.be/

60 The effectiveness of variation against patch-based attacks

(a) Original BBL (b) Original & Duplicated BBL

Figure 2.10: An example of tail duplication for basic blocks. The transforma-
tion duplicates the BBL, and lets one of the incoming edges of the original BBL
point to the duplicate.

Compiler optimizations

Some transformations are typically used in a compiler for optimizing
the generated code for typical compilation objectives such as execution
time and code size.

Function inlining Function inlining replaces function calls with
copies of the body of the called function [110]. This is useful to op-
timize programs for speed, because it removes the call overhead, and it
allows analyzing and optimizing of the called function in the context of
the caller without having to use intra-procedural analyses. A potential
drawback of this method is that it can increase code size significantly.

Code factoring Code factoring is the opposite operation of function
inlining for functions; it merges identical code fragments into a single
copy [55]. Proteus can apply this transformation on entire functions, on
function epilogues and on basic blocks, which become a function.

Tail duplication Tail duplication duplicates a basic block with mul-
tiple incoming edges. This transformation is illustrated in Figure 2.10.
When a basic block has multiple incoming edges, we can duplicate the
basic block and redirect some of the incoming edges in the CFG to the
duplicate block.

Compiler code generation techniques

Compilers transform IR into machine code with code generation tech-
niques. The goal of these transformations is typically to produce in-
struction sequences that are as fast or as small as possible. These trans-

2.4 Diversification as mitigation strategy 61

C C C’

P?

(a) Original BBL

Garbage C

PTRUE

(b) One-way predicate, garbage
BBL

C C C’

P?

(c) Two-way predicate, duplicated
BBL

Figure 2.11: Predicating a basic block by a two-way opaque predicate

formations include changing the positions of basic block chains (i.e.,
sequences of basic blocks chained together in fall-through paths), the
reordering of the instructions in basic blocks insofar as their depen-
dencies allow this, and instruction selection. For diversity, we select
random alternatives for the code that needs to be generated, instead of
the optimal ones.

Obfuscation techniques

Obfuscation techniques aim to make the binary code less understand-
able, and harder to reverse engineer. Their primary goal is to hide the
functionality or location of the code. Proteus uses these techniques for
their ability to make code look dissimilar.

One-way opaque predicates One-way opaque predicates are condi-
tions that always evaluate to the same binary value during program
execution, but for which it is hard to prove this property statically [42].
This value is then used as the predicate of a conditional jump instruc-
tion. This jump instruction has two outgoing edges in the CFG: one
edge for when the predicate is true, one for when the predicate is false.
The edge in the CFG that corresponds to the value that is never gen-

62 The effectiveness of variation against patch-based attacks

1

2 3

4

1 2 3 4

switch1

2 3

4

1 2 3 4

switch

(a) Original CFG (b) Flattened CFG

Figure 2.12: Control flow flattening

erated by the program can point to anywhere in the program without
affecting the program’s semantics. In Proteus, this code path simply
points to a mutated copy of the basic block to which the opaque pred-
icate transformation was applied. This transformation is illustrated in
Figure 2.11 (b).

Proteus injects one-way opaque predicates taken from a small li-
brary of such predicates [11, 42].

Two-way opaque predicates Two-way opaque predicates are predi-
cates that can evaluate to both true and false during the program exe-
cution [42]. When transforming a basic block with this transformation,
this basic block is duplicated and added to the control flow graph so
that regardless of the condition, the required code is executed. This
transformation is illustrated in Figure 2.11 (c).

Control flow flattening Control flow flattening is a transformation
that transforms a CFG into one in which every basic block from the
original CFG has the same predecessor, the so-called switch block [149].
In the transformed CFG, the successor of a BBL is selected by letting a
BBL communicate its successor to the switch block using a variable.
Figure 2.12 illustrates this transformation. In the CFG of Figure 2.12
(a), the possible control flow is immediately obvious. This is no longer
the case for the flattened CFG in Figure 2.12 (b). The switch block trans-
fers control to one of its successor BBLs, depending on the value of the

2.4 Diversification as mitigation strategy 63

B

A
jump

branch
function

A

B

call

Garbage

(a) Direct jump (b) Transformed into a call

Figure 2.13: Schematic representation of a branch function

variable. Studying only the static CFG could give the impression that,
all BBLs could, through the switch block, be successors of one another.

Proteus only applies this transformation to a function’s entire CFG.

Branch function redirection Branch functions are functions that in-
stead of returning to the caller, immediately transfer control to a differ-
ent address. This is used to transform direct jumps into function calls
and indirect jumps [98]. Garbage code is inserted in the fall-through
path of the call to the branch function. This garbage code is chosen
such that it ends half-way an x86 instruction. Linear disassemblers will
thus disassemble this garbage code, and continue disassembling the
garbage into the next actual basic block, thwarting analyses that build
on this disassembly. This transformation is illustrated in Figure 2.13.

Proteus transforms direct jump instructions into two push instruc-
tions followed by a call to a single branch function. One of the pushes is
to store the flags register on the stack, because this register is modified
by the branch function. The other push is an offset that is used by the
branch function to compute the return address of the branch function.
Garbage data is added in the fall-through path of the added call.

Application of the transformations

As explained earlier, Proteus will stochastically apply these transforma-
tions using probabilities that can be set on a per-transformation basis.
Table 2.1 shows some of the selected probabilities that Proteus has been
used with previously to evaluate Anckaert’s matching framework [7].

There are multiple reasons to apply these particular transforma-

64 The effectiveness of variation against patch-based attacks

Table 2.1: Different settings of the diversity system

Transformation mapping CFG change CG change p1 p3
Compiler Optimizations
Code factoring [54] n-to-1 yes yes 0.45 0.50
Function inlining [110] 1-to-n yes yes 0.05 0.15
Tail duplication [110] 1-to-n yes yes 0.05 0.15
Obfuscation Techniques
Two-way opaque predicating [42] 1-to-2 yes no 0.05 0.15
Control flow flattening [150] 1-to-1 yes no 0.05 0.15
Branch function redirection [98] 1-to-1 yes yes 0.05 0.15
Opaque predicating [42] 1-to-1 yes no 0.05 0.15
Compiler Code Generation Techniques
Instruction selection [110] 1-to-1 no no on on
Instruction scheduling [110] 1-to-1 no no on on

tions. First, the compiler optimization techniques we use all have in
common that they duplicate code or remove code duplicates, as indi-
cated by their mapping column in Table 2.1. For example, code factor-
ing replaces n identical copies of a code fragment in a program by a
single copy. Such 1-to-n or n-to-1 transformations have the effect that a
single location in one program version may correspond to two or more
locations in another version. Not all tools keep track of such n-to-n
mappings, which will result in less accurate diffs. Binary differs that
want to give the attacker as accurate information as possible have to
handle such cases correctly. This increases their search space.

Furthermore, these transformations can mutate the program’s
global CG, and the CFGs of functions. Which transformations mutate
the CG and the CFGs are also shown in Table 2.1. Semantically identi-
cal functions having different CFGs will make it harder for diffing tools
to correctly identify functions and basic blocks that are identical, thus
leaving the attacker more code to study manually.

Finally, some of these transformations also thwart CFG reconstruc-
tion by hiding direct control flow transfers behind indirect ones, and
by changing the code layout. When diffing tools have to rely on poorly
reconstructed CFGs, the diffing tools’s ability to map functions will be
impaired. Thus, the amount of mapped code fragments will be lower,
again resulting in more code fragments the attacker has to study man-
ually.

2.5 Evaluation 65

2.5 Evaluation

In this section, we use our models of real-world attackers to prove the
effectiveness of software diversity against patch-based attacks. We will
first evaluate these models on undiversified binaries, after which we
will compare these results with attacks on diversified binaries. Thus,
we will prove the effectiveness of using diversification against attacks
that use binary patches to identify vulnerabilities in code. We begin by
presenting the case studies we evaluated our attack model on. We then
evaluate the different tools and prioritization strategies.

2.5.1 Case studies

In order to evaluate our approach, we have selected four different secu-
rity patches. The patches we selected all have a different impact on the
binary. The patches themselves range from mere changes in constant
values to changing the implementation of an algorithm.

Additional validation code The first patch on which we evaluated
our approach, hereafter called bzip2, fixed vulnerability CVE-2010-
04055 in the program bzip2 by inserting a validation check on an in-
termediate value as indicated in Figure 2.14(a). In the binary, this cor-
responds to a short 3-instruction sequence being inserted as shown in
Figure 2.15(a).

Off-by-one constant patch Our second patch is an off-by-one fix for
vulnerability CVE-2008-39646 in the pngtest utility. The fix decre-
ments a hard-coded value of 30 to 29, as shown in Figure 2.14(b). In
this case, the off-by-one error is solved by changing a constant value
in the source code. Other fixes for off-by-one errors could be by intro-
ducing additional validation checks or by changing instructions, and
as such are similar to the previous case study. In this case study, we
focus on the case in which at the source level, only changed constants
constitute the security patch. In particular, we study two instances of
fixes for the same off-by-one error.

5https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-0405

6https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-0405

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405

66 The effectiveness of variation against patch-based attacks

(a) bzip2 patch

(b) png debian patch

(c) png beta patch

Figure 2.14: Source code changes for three of the four patches

2.5 Evaluation 67

(a) bzip2 patch

(b) png debian patch

(c) png beta patch

Figure 2.15: Source-code induced mutations in three of the four binary code
patches

68 The effectiveness of variation against patch-based attacks

This fix was part of a larger update from libpng 1.2.23-beta01 to
beta02. In that larger update, which also contains patches not related
to CVE-2008-3964, the code fragments using the changed constant were
patched as shown in Figure 2.14(c). In addition to the changed constant,
the call to png strncpy is replaced by a call to png memcpy. The com-
piler inlines that call and unrolls the loop responsible for copying the
actual data in it, so in the patched binary the call to png strncpy,
including the preparation of arguments, is replaced by a sequence of
mov instructions as shown in Figure 2.15(c). The constant value 29
does therefore not occur in the patched binary. We refer to this patch as
png beta.

The Debian GNU/Linux distribution made a custom patch for this
security vulnerability instead of updating the version of libpng in its
entirety. The changes relevant to the security issue were extracted and
distributed as a separate patch. We made a similar patch for libpng
1.2.23-beta01, which contains just the changes in constants. We refer to
this patch as png debian. In the binary this patch resulted in four im-
mediate instruction operands being replaced: in two similar fragments
a constant operand 30 is replaced by 29 and the absolute address of
tIME string[30] is replaced by that of tIME string[29]. One of
those changed fragments is shown in Figure 2.15(b).

Changed algorithm Finally, we choose the SPEC benchmark program
soplex as the target of a patch that replaces two (out of several more)
calls to quicksort with calls to a newly added set of mergesort
functions. This patch is called soplex.

We compiled and statically linked the original and patched source
code on Linux with the gcc 3.2.2 compiler at optimization level -03
-fomit-frame-pointer. Table 2.2 shows the patched binary sizes
as well as the sizes of the binary patches generated with the bsdiff
tool that are typically distributed to the end-users. The three relatively
large patch sizes indicate that those patches indeed involve many TIMs
as discussed in Section 2.3. The attacker’s goal is therefore to weed
those TIMs out by means of BinDiff.

In the experiments we performed, we used the SPEC training in-
puts to collect profile information for bzip2 and soplex. Whenever
we report performance overhead, we used reference inputs. For the
png beta and png debian benchmarks, we used a PNG image that
accompanies the pngtest program as input.

2.5 Evaluation 69

Table 2.2: Binary size characteristics of the case studies

Use case Binary code size Binary patch size
bzip2 402 KiB 4.3KiB

png debian 503 KiB 191B
png beta 503 KiB 477KiB
soplex 835 KiB 826KiB

2.5.2 Representing the results

Evaluating our models results in both recall rates and pruning rates.
We represent these results with bar plots, rather than scatter plots so
that we can more easily highlight certain combinations of heuristics
that would otherwise lie too closely together. An example of such a
bar plot is shown in Figure 2.16. In this case, it shows the results ob-
tained with bsdiff. The top four bars show the raw results returned by
bsdiff, which we also call Set 1 in the figure. This represents the attack
model µbsdiff. The bottom four bars show the model where the attacker
has applied heuristics 1 and 2 from Table 2.3 to of Set 1. This represents
the attack model µbsdiff∧prune changed immediates∧executed. The small verti-
cal lines represent the recall on the top scale. The bars represent the
pruning factors on the bottom scale. Because some experiments have a
pruning rate of 100%, we modified the logarithmic scale at the bottom
to include 100% as its maximum value. Some models do not identify
any relevant instructions. For those useless result, we use grey bars for
the pruning factor. In some plots, we added circled symbols to refer to
from the text.

2.5.3 Effectiveness of attacks on undiversified binaries

We start by evaluating how the different tools and heuristics behave on
undiversified binaries. The heuristics that we combined in the different
models are summarized in Table 2.3.

Figure 2.17 presents the results obtained with the generic binary
patching tools bsdiff and xdelta. The raw output of these tools, which
are represented as Set 1 in the figure, are all instructions that these tools
did not copy directly from the original binary. Without any additional
heuristics, the attacker will have to study all these instructions. In the
case of bzip2, this leads to a pruning of 96.78% of the instructions in

70 The effectiveness of variation against patch-based attacks

Table 2.3: The heuristics used for pruning the results of the attack tools

Number Heuristic
1 Prune instructions with only changes to static

operand values
2 Keep only code covered by typical inputs
3 Keep only code analyzed by IDA Pro
4 Extend the disassembly process of IDA Pro
5 Prune certain patterns in the CFG
6 Expand the observed instruction window

bzip2 png_beta
png_debian soplex

recall
0% 20% 40% 60% 80%100%

0% 90% 99% 99.9% 100%99.99%

set 1
+ heuristics 1, 2

pruning factor

bsdiff

recall

pruning factor grey pruning: recall is 0

a

set 1:
all instructions returned

Figure 2.16: Detailed example of pruning and recall rates

2.5 Evaluation 71

bzip2 png_beta
png_debian soplexrecall recall

0% 20% 40% 60% 80%100%0% 20% 40% 60% 80%100%

0% 90% 99% 99.9% 100%99.99% 0% 90% 99% 99.9% 100%99.99%

set 1:
all instructions returned

set 1
+ heuristic 1

set 1
+ heuristics 1, 2

set 1
+ heuristics 1, 2, 6

set 1:
all instructions returned

set 1
+ heuristic 1

set 1
+ heuristics 1, 2

set 1
+ heuristics 1, 2, 6

pruning factor

bsdiff
pruning factor

xdelta

a a

b
c c

d d

Figure 2.17: Pruning rates (bars) and recall rates (lines) for bsdiff and xdelta.

72 The effectiveness of variation against patch-based attacks

0% 90% 99% 99.9% 100%
pruning factor

TurboDiff

0% 90% 99% 99.9% 100%
pruning factor

BinDiff

bzip2 png_beta
png_debian soplex recall

0% 20% 40% 60% 80%100%
recall

0% 20% 40% 60% 80%100%

set 1:
filter identical blocks

set 2:
filter identical

and matched blocks

set 1
+ heuristic 2

set 2
+ heuristic 2

set 1
+ heuristic 4

set 2
+ heuristic 4

set 1
+ heuristic 4

set 2
+ heuristic 4

set 2
+ heuristics 2, 4

set 2
+ heuristics 2, 4, 6

set 1:
filter matched
intstructions

set 1
+ heuristic 5

set 1
+ heuristic 2

set 1
+ heuristics 2, 5

set 1
+ heuristic 4

set 1
+ heuristics 2, 4

set 1
+ heuristic 4

set 1
+ heuristics 4, 5

set 1
+ heuristics 2, 4, 5

set 1
+ heuristic 2, 4, 5, 6

e

f

g h

k
l

mn

q

Figure 2.18: Pruning rates (bars) and recall rates (lines) for patchdiff2 and
BinaryDiffer.

2.5 Evaluation 73

bzip2 png_beta
png_debian soplexrecall recall

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80%100%

0% 90% 99% 99.9% 100% 0% 90% 99% 99.9% 100%99.99%
pruning factor

BinaryDiffer
pruning factor

PatchDiff2

set 1:
filter identical blocks

set 2:
filter identical

and almost identical blocks

set 3:
filter all known blocks

set 3
+ heuristic 2

set 1
+ heuristic 5

set 3
+ heuristic 5

set 3
+ heuristics 2, 5

set 3
+ heuristic 4

set 3
+ heuristics 2, 4

set 3
+ heuristic 2, 4, 6

set 1:
filter identical functions

set 2:
filter all matched functions

set 1
+ heuristic 2

set 2
+ heuristic 2

set 1
+ heuristic 5

set 2
+ heuristic 5

set 2
+ heuristic 4

set 2
+ heuristic 4, 5

set 2
+ heuristics 2, 4, 5

set 2
+ heuristics 2, 4, 5, 6

i j

o p

Figure 2.19: Pruning rates (bars) and recall rates (lines) for patchdiff2 and
BinDiff.

74 The effectiveness of variation against patch-based attacks

the case of bsdiff, and 97.25% in the case of xdelta. This means that,
even though just 3 instructions were added by the patch, about 3% of
the binary is reported as changed. Although the amount of changes is
overestimated by these tools, they do not report all SCIMs. This hap-
pens because some instruction sequences such as function entry and
return sequences can be copied verbatim from the unpatched binary,
even though they are part of a SCIM. This can be seen in a for soplex
and in b for bzip2.

In the case of png debian, the raw tool results are already optimal.
In this case, bsdiff and xdelta encode precisely the SCIMs to the four
immediate operands. The patch thus points the attackers directly to
nothing less than the relevant instructions (see c).

Adding the different heuristics described in Section 2.3 that are ap-
plicable to the generic binary patching tools, we see a significant in-
crease in the pruning rates. However, these heuristics can also prune
too many instructions. The attack models µπ∧prune changed immediates, de-
noted by d , no longer detect patched code where the SCIM is con-
tained in changes to operands. We observe that this is the case for the
minimal patch of png debian.

Figures 2.18 and 2.19 present the results obtained with ten combi-
nations of heuristics for the specialized diffing tools TurboDiff, BinDiff,
Patchdiff2 and BinaryDiffer.

Which tools and heuristics perform best depends on the use case.
For bzip2, we see in e that BinDiff gives the best pruning, but only
with the attack model µBinDiff∧exec.∧only disass.∧prune patterns∧expand window.
Note that the expanded window makes the recall 100%. As we ob-
serve in f , TurboDiff prunes less, but contrary to BinDiff, TurboDiff
identifies all relevant instructions without the need to expand the in-
struction window. When only considering direct identification of rel-
evant instructions, TurboDiff in general gives a higher recall than Bin-
Diff. Compare, for instance, g to h . Furthermore, we can see in i
that BinaryDiffer reports that the changed code in bzip2 as very simi-
lar. Similarly, observe in j that patchdiff2 labels this code fragment as
similar.

For png beta, we note in k that BinDiff scores best. As shown
in l , it also works best for soplex. For png debian, we see in see
m that BinDiff’s abstractions cannot identify any relevant instruction.
TurboDiff identifies the changed immediate operands (see n), but only
when using the appropriate heuristics. When those heuristics are ap-

2.5 Evaluation 75

plied for any other patch, they do not at all achieve the highest pruning
rate. While BinaryDiffer and patchdiff2 have higher pruning rates for
png debian than the BinDiff or TurboDiff (see o and p), neither is
actually able to find the SCIM.

This means that for the minimal patch of png debian, an attacker
could better use a binary patch tool, rather than one of the IDA-Pro
based diffing tools. However, this “shortcut” of using a byte-level diff-
ing tool is available only because all syntactic changes in this use case
are SCIMs. When such a minimal security fix involving only changed
constants is combined with other (non-related) fixes as in png debian,
the patch includes many more TIMs, which prevent this method from
being used as a shortcut.

The highest pruning factors obtained with BinDiff are 99.988% (e),
99.986% (k) and 99.909% (l). As the fractions of irrelevant instruc-
tions in those cases are 99.997%, 99.986%, and 99.923% respectively,
BinDiff proves to be able to prune more than 99.98% of all irrelevant
instructions for those three use cases.

The worst match rates are those of patchdiff2, which only finds
changes to soplex and bzip2. The best match rates are those of Tur-
boDiff, which finds all SCIMs for some combinations of heuristics, such
as in q . However, as already remarked, BinDiff’s maximum pruning
factors are higher in all cases, except for the mutations in png debian
which it fails to detect.

This demonstrates that for some types of patches and undiversified
code, diffing tools and heuristics are indeed valuable attacker tools. For
other types of patches however, they are much less effective than the
generic binary patch tools. Moreover, as an attacker typically does not
know beforehand which types of patches have been applied, he will be
hindered by not being able to fine-tune his heuristics.

2.5.4 Diversification

Now that we have shown that attackers, as represented by our attack
models, can indeed correctly identify SCIMs in binary code, we can
investigate if introducing software diversity can thwart these attacks.
Furthermore, we compare the overhead that is introduced by diversity
to the effect it has on an attacker.

We present and discuss results for binaries diversified at two levels
of diversification. Experiments with other settings confirm the trends

76 The effectiveness of variation against patch-based attacks

presented here. For the four use cases and two diversification levels,
we generated 10 pairs of an unpatched and a patched binary, using
80 different PRNG seeds. We then applied 60 combinations of tools
and heuristics on the 8 × 10 pairs of patched and unpatched program
versions, for a total of 4800 diffing attempts.

In Figure 2.20, the results of these 4800 attempts of all of our evalu-
ated diffing tools on different diversity settings are plotted next to the
Pareto-optimal results (as black symbols) from Figures 2.17, 2.18, and
2.19.

In a first experiment, the only diversification used is code layout
randomization. This is shown by the small, red dots in the figure. We
see that this layout randomization has an effect on all tools. The tools
that are affected most are the binary patch tools, for which in some
experiments less than 80% of the instructions can be pruned, and for
which all experiments perform worse than on the undiversified bench-
marks. The IDA Pro-based tools are affected as well, albeit less. This is
due to a lesser accuracy of the CFGs constructed by IDA Pro. This may
come as some surprise, but this is due to IDA Pro assuming that the in-
struction immediately after a call is returned to after the call, and thus
belongs to the same function’s CFG. However, this is not the case in the
relayouted code. Call instructions that never return end an instruction
chain. The subsequent instruction therefore need no longer belong to
the same function. Therefore, IDA Pro incorrectly groups code from
different functions, resulting in lower match rates of the IDA Pro-based
diffing tools, even when only little diversity is introduced.

In the next experiments, we increase the diversity applied to the
binaries by also applying other diversity transformations provided by
Proteus. We evaluated and compared two different diversification set-
tings: low diversity (represented by the medium-sized, blue circles in
the figures) and high diversity (represented by the large, green circles
in the figures). These settings correspond to the settings also used by
Anckaert [7]: the low diversity setting is the p1 default set of Proteus
parameters, and the high diversity setting is the p3 set of parameters.
The exact parameters for Proteus for each of these settings are summa-
rized in Table 2.1.

A first observation of the results is that, with the right heuristics, the
tools can still retrieve most relevant instructions from the diversified
binaries. Which heuristics are the right ones differs from experiment
to experiment. However, the tools and heuristics only retrieve these

2.6 Conclusion 77

relevant instructions at pruning rates less than 90%. This means that the
amount of code the attacker has to examine has has grown 100-fold. A
second observation is that the binaries transformed at the higher level
of diversification indeed have a smaller pruning rate than when the low
diversity setting is used, although the difference is rather small in most
cases. Third, in all tool results, there is a clear grouping of pruning rates
greater than 80%, and pruning rates that are significantly lower. This
distinction is caused by the executed-code-only heuristic that prunes
all unexecuted code. Since only about 20% of the code is executed, the
attack models that only use executed code have a higher pruning rate.
This shows that even the most simple use of dynamic information can
reduce the attack effort.

Finally, we note that occasionally BinDiff took more than 24 hours
to produce the diffing result when being executed on an Intel Core i7
running at 3.4GHz, or consumed all available memory and crashed.
This is probably caused by BinDiff splitting the code into too many
functions to analyze and compare. This is detrimental to the attacker,
who can waste time on waiting results that never emerge.

Table 2.21 shows that diversification as applied by Proteus comes
with considerable overhead in file size. While the binaries already grow
by 20% with low diversity, the patches that would be distributed typ-
ically become between 1 and 2 orders of magnitude larger. For the
small png debian, the patch becomes 1690 times bigger. Similarly,
Figure 2.22 shows that stochastic diversification results in considerable
slowdowns. Furthermore, we see that the slowdown does not correlate
well with the achieved pruning factors.

Whether or not the overheads in patch size, binary size, and exe-
cution time are are acceptable is a decision that must be made by the
software vendor. This decision will depend on multiple factors, such as
the severity of the fixed vulnerability, its ease of exploitation, and the
speed with which users apply software updates.

2.6 Conclusion

We introduced an abstract attacker model for patch-based attacks. We
described how different real-world attack tools can be used by attack-
ers, and we described different heuristics attackers can use to improve
the results of these tools. We instantiated the abstract attacker model
with combinations of attack tools and diffing tools.

78 The effectiveness of variation against patch-based attacks

The different attack models allowed us to show that the different
attack tools and strategies indeed allow attackers to efficiently recover
source-code induced mutations when the patched binaries are not pro-
tected against patch-based attacks. We then used our models to show
that software can indeed can successfully be protected against patch-
based attacks by applying diversification.

2.6 Conclusion 79

0% 90% 99% 99.9% 99.99% 100%

0%
20

%
40

%
60

%
80

%
10

0%

pruning factor

re
ca

ll

0% 90% 99% 99.9% 99.99% 100%

0%
20

%
40

%
60

%
80

%
10

0%

pruning factor

re
ca

ll
(a) results with bsdiff (b) results with xdelta

0% 90% 99% 99.9% 99.999%

0%
20

%
40

%
60

%
80

%
10

0%

pruning factor

re
ca

ll

0% 90% 99% 99.9% 100%

0%
20

%
40

%
60

%
80

%
10

0%

pruning factor

re
ca

ll

(c) results with BinDiff (d) results with TurboDiff

0% 90% 99% 99.9% 100%

0%
20

%
40

%
60

%
80

%
10

0%

pruning factor

re
ca

ll

0% 90% 99% 99.9% 100%

0%
20

%
40

%
60

%
80

%
10

0%

pruning factor

re
ca

ll

(e) results with BinaryDiffer (f) results with Patchdiff2

Figure 2.20: Comparison of all tools on diversified and undiversified binaries.
The black symbols represent the Pareto-optimal points of the different bench-
marks without diversity. The small, red dots represent the experiments with
layout randomization, the medium-sized, blue circles represent experiments
that are diversified with low diversity settings, and the large, green circles
represent experiments that are diversified with high diversity settings.

80 The effectiveness of variation against patch-based attacks

Benchmark avg. patch size increase avg. binary size increase
bzip2 4631% 20%
png beta 168946% 20%
png debian 2743% 20%
soplex 4011% 20%

(a) Light diversification

Benchmark avg. patch size increase avg. binary size increase
bzip2 5084% 28%
png beta 184772% 29%
png debian 3040% 29%
soplex 4482% 31%

(b) Heavy diversification

Figure 2.21: Size overhead of diversification

0% 90% 99% 99.9% 100%

10
0%

15
0%

20
0%

25
0%

30
0%

35
0%

pruning factor

ex
ec

ut
io

n
ov

er
he

ad

0% 90% 99% 99.9% 100%

10
0%

15
0%

20
0%

25
0%

30
0%

35
0%

pruning factor

ex
ec

ut
io

n
ov

er
he

ad

(a) bzip2 (b) soplex

Figure 2.22: The overhead in execution time is compared with the pruning
factors of BinDiff. The medium-sized, blue circles represent experiments that
are diversified with low diversity settings, and the large, red circles represent
experiments that are diversified with high diversity settings.

Chapter 3

Iterative feedback-driven
diversification

3.1 Introduction

In Chapter 2 we have shown how existing diversifying transformations
are effective against patch-based collusion attacks. However, those
transformations as applied by Proteus introduce significant overhead.
In this chapter, we will extend the Proteus diversification framework
to mitigate these problems. We call our extended framework Glaucus,
after the Greek mythological deity. Like Proteus, Glaucus is a sea-god.
He came to the help of sailors in storms, because he himself once had
been a mortal fisherman, or (according to other writers), had been
thrown overboard the ship Argo and been rescued by Zeus1. In a way,
this is similar to what our framework does. It is an iterative framework
that uses knowledge of previous iterations to guide the transforma-
tion process in the current iteration, just like Glaucus used his prior
sea-faring experience of being in a storm to help sailors in need.

Existing program diversification frameworks apply transforma-
tions randomly throughout the program binary [7, 97]. However, not
all these transformations are necessary to thwart an attacker. If the
diffing tools cannot successfully match some functions after applying a
single transformation to them, there is little reason to apply more trans-
formations to these functions, and introduce unnecessary overhead.

1[...]; and the sailors, safe in port, shall pay their vows on the shore to Glaucus, and to
Panopea, and to Melicerta, Ino’s son. – Publius Vergilius Maro, Georgica I, 432, translation
by H. R. Fairclough. For more information, see for example the Harpers Dictionary of
Classical Antiquities (1898) by Harry Thurston Peck.

82 Iterative feedback-driven diversification

In this chapter, we modify the existing diversifying framework Pro-
teus to mitigate this problem. We iteratively use feedback from the
attack tools to guide the diversification process. After every iteration,
Glaucus evaluates an attack model to compare the patched binary that
was generated in that iteration to the unpatched binary. The result of
this comparison is then used as input to the next iteration, in which
Glaucus then applies the same transformations as the previous itera-
tion to functions that are not matched. Functions that are matched by
the attack tool will be transformed differently and more heavily. Fur-
thermore, BinDiff tells the attacker the selector it used to match a pair
of functions. We use this information to select which specific transfor-
mations to apply the next iteration.

In this chapter, we first describe in detail how our feedback-guided
iteratively diversifying compiler works (Section 3.2). We continue by
evaluating the effectiveness and efficiency of this diversifying compiler
(Section 3.3). This is followed by a more thorough discussion of the
results (Section 3.4).

3.2 Feedback-guided iterative diversification

Figure 3.1 shows the tool flow of Glaucus. Compared to the tool flow
of Proteus in Figure 2.9, we have replaced the original diversification
backend with a framework that can be applied iteratively based on
feedback obtained from one or more attack models we want to defend
against.

In our proof-of-concept implementation, Glaucus consists of the
standard GCC 4.6 compiler plus an evolution of Proteus [7]. As op-
posed to the original design of Proteus, the application of the trans-
formations is no longer a purely stochastic process. Instead, we use a
configurable decision logic. This decision logic takes into account pro-
file information, feedback obtained from the diffing tools, and a log of
the transformations applied in the previous iteration. A PRNG is then
used to select among transformations chosen by the decision logic.

3.2.1 Attack model

With Glaucus we focus on using the diffing results obtained from Bin-
Diff. In Chapter 2 we already demonstrated that on most use cases,
the combination of BinDiff and appropriate heuristics outperforms the

3.2 Feedback-guided iterative diversification 83

source v1 source v2

source patch

compiler
toolbox

patch tool

diffing results
diversifying

compiler
toolbox

binary v2

diffing tool

bsdiff

binary patch

binary v2

Figure 3.1: Iterative tool flow of Glaucus for generating protected patches.

other diffing tools. Furthermore, BinDiff internally uses up to 19 heuris-
tics to match functions, and reports which heuristic was used to match
each pair of functions. We use this information as feedback for itera-
tive diversification. We focus on thwarting BinDiff’s output without
any pruning heuristics applied. Pruning heuristics use this output as a
starting point; by making the starting point useless we aim to make the
improvements upon it useless as well.

3.2.2 Diversifying transformations

We selected five transformations to be used by our diversifier. They
are similar to those included in Proteus. So here, our description fo-
cuses on the differences with their implementation in Proteus, on the
reasons for their inclusion in our iterative framework, on their impact
on performance, and on code size.

Code layout randomization The iterative code diversifier random-
izes the order in which basic block chains are placed in the executable’s
code section. A basic block chain is a sequence of BBLs that have to be
placed consecutively to each other in the generated binary. They are

84 Iterative feedback-driven diversification

linked together through their fall-through path, and end with a basic
block that performs a control transfer without fall-through path. These
BBLs have to be placed sequentially2; if not control flow through their
fall-through path would no longer be correct.

As a result, function bodies are not necessarily stored contiguously.
This complicates IDA Pro’s partitioning of the disassembled code in
functions and its construction of the CG and the CFGs.

The performance impact of reordering basic block chains is mini-
mal. The impact on code size incurred by this transformation is small.
For example, in the x86 ISA, branch targets are encoded as the offset
between the address of the next instruction and the branch target [81].
Since these offsets are small in undiversified programs, they can be en-
coded efficiently. However, when randomizing the locations, the aver-
age offsets become much larger, and require more space to be encoded.
In the case of 32 bit x86 binaries, the overhead introduced by this trans-
formation on most branch instructions is 3 bytes. On our benchmark
binaries, this results in 4 to 5% total code size increase.

Conditional branch flipping To thwart some very simple match-
ing heuristics, simple CFG transformations suffice. Conditional branch
flipping inverts the condition on the instruction. For example, a branch-
if-greater instruction is transformed into a branch-if-less-or-equal in-
struction. To compensate for this inversion, its successor BBLs in the
CFG are swapped, with unconditional jumps added if necessary.

Binary differs that consider distinct opcodes and jump conditions as
a reason not to match basic blocks and functions are thwarted with this
technique. In particular, BinDiff’s Instruction Signature selector matches
functions based on which instructions occur in the functions [159]. Be-
cause inverting the condition of a branch changes which instructions
are in a function, branch flipping can thwart this matching strategy.

This transformation has almost no influence on performance. The
influence on code size is minimal as well.

Partial control flow flattening As discussed in Chapter 2, control flow
flattening transforms a function’s CFG into one where all original basic
blocks have the same predecessor and successor [149].

Our iterative diversification tool can flatten parts of functions;

2Unconditional jumps could be inserted in the middle of a chain to break it.

3.2 Feedback-guided iterative diversification 85

hence the name partial flattening. The reason is that flattening in
our context does not aim for obfuscation, but for thwarting diffing tool
heuristics based on CFG topology properties. Changing parts of the
CFGs, such as the coldest parts, suffices for that purpose.

Since function flattening introduces code to redirect the control
flow, it can introduce a significant performance overhead, that can be
limited by applying flattening to cold code only, its impact on perfor-
mance. Similarly, the code size overhead scales with the number of
basic blocks. For every function to which it is applied, it adds 4 instruc-
tions for the control flow redirection, and additionally 7 instructions
per flattened basic block. The relatively large overhead per BBL is due
to the spilling of registers on the stack that are modified by the control
flow redirection code.

Two-way opaque predicate insertion As already explained in Chap-
ter 2, two-way opaque predicate insertion involves the duplication of
(part of) a basic block, and the insertion of a random branch condi-
tion [42]. Its implementation is identical to the one in Proteus.

The duplicate blocks can be transformed independently by later
transformations. Two-way opaque predicate insertion targets very sim-
ple matching heuristics that use static instruction counts and informa-
tion about control flow. BinDiff has multiple such heuristics, such as
Edges Flowgraph and Instruction Count.

Its impact on performance can be limited by applying the transfor-
mation to cold code only. Its impact on code size depends on the size
of the duplicated code.

Branch function insertion and call function insertion As explained
in Chapter 2, branch functions are functions that do not return to their
caller; instead they transfer control to a different address computed
from the return address and an offset passed to the branch function
as a parameter. So a direct jump or fall-through between two basic
blocks can be replaced by a call and an indirect jump based on the call’s
arguments. Figure 3.2(a) shows an unconditional jump, which is trans-
formed into a call to the branch function in Figure 3.2(b). We refer to
this as branch function insertion.

Direct control transfers now use dynamically computed values.
This makes correctly partitioning the BBLs into functions harder. When
control transfer targets can be statically determined, IDA Pro can follow

86 Iterative feedback-driven diversification

1

2

jump 2

(a) Original code

1

2

Branch
Function

thwart
disasm.

call branch

(b) Code using branch function

Figure 3.2: Branch function insertion

the control flow of a function, which is no longer the case after applying
this transformation. Furthermore, IDA Pro assumes that a function call
returns at the instruction following the call. However, with our branch
functions, the control flow continues at the target of the direct control
transfer, rather than at the next instruction. This is then exploited dur-
ing code layout randomization, where the code following a call to the
branch function can be code from any basic block in the entire program.
This will help in making IDA Pro incorrectly partition the basic blocks
into functions.

In addition to Branch Function Insertion, we also apply Call Function
Insertion. Such call functions are used to replace direct function calls by
indirect control flow. It suffices to emulate a call by pushing its return
address and call target on the stack and to transfer control to the branch
function. Branch functions can therefore thwart both CFG-based and
CG-based matching heuristics.

Branch Function Insertion can be applied in different places to to
thwart different selectors used by BinDiff. By inserting a branch func-
tion in the entry block of a function, most of its body becomes discon-
nected from its entry point. By inserting a branch function before a call,
that call is not removed, but it becomes disconnected from the preced-
ing code. This breaks selectors based on the call graph.3

3We also experimented with adding an additional branch function call at the func-

3.2 Feedback-guided iterative diversification 87

Branch functions clearly introduce a performance penalty when
they are inserted in frequently executed code. Each jump is statically
replaced with 3 instructions. Dynamically, one of these instructions
calls the branch function, which requires 5 additional instructions to
execute.

3.2.3 Transformation Selection

The selection of diversifying transformations to be applied is config-
ured on the basis of a set of rules encoded in a rule set table. The table
used for the experimental evaluation in Section 3.3 is depicted in Ta-
ble 3.1.

Each row in the rule set table specifies a necessary condition to ap-
ply a transformation. A row with signature S (we refer to the BinDiff
manual [159] for a detailed description of the exact signatures), relative
weight W , iteration I and transformation T specifies that in any itera-
tion i ≥ I , the transformation T can be applied to basic blocks with a
relative weight w ≤W in functions reported by the diffing tool to have
been matched on the basis of signature S in iteration i− 1.

We take profile information into account for the weight of a BBL.
This is its execution count given a training profile, multiplied by the
number of instructions in the block. The total weight of the program
equals the summed weights of all blocks. The relative weight of a block
is obtained by dividing its weight by the total program weight. In case
a transformation transforms multiple BBLs, the used weight is the sum
of all the individual BBL weights.

For example, the first row in Table 3.1 indicates that conditional
branches may be flipped in any iteration, in any function matched by
means of the “Hash Matching” signature, independent of the weight of
the block of the branches. The third row indicates that from the first it-
eration on, two-way predicates can be inserted in or before basic blocks
that have weight zero (i.e., that are not executed) in functions that were
matched on the basis of the “Edges Flowgraph” signature. It is clear
that gradually, transformations with higher overhead will be consid-
ered, and that their application onto ever hotter blocks is considered.

We designed the rules in Table 3.1 as follows. We started by in-
vestigating the selectors used by BinDiff. We aggregated the number

tion’s return address; however, this showed no improvement over having the branch
function only before the call instruction.

88 Iterative feedback-driven diversification

of matched instructions by selector. Thus, we were able to focus on
the heuristics that were most commonly used by BinDiff. We investi-
gated which program code characteristics these algorithms depend on.
Knowing which program characteristics are affected by the different
transformations enabled us to select the right program transformation
to thwart the different algorithms. We used our knowledge of the run-
time overhead of the transformations to decide the maximum weight
of code on which to apply the transformations.

This decision logic is extensible to more transformations and other
diffing tools, assuming they return info on used matches. Users of
Glaucus wanting to add a new transformation can just add it to the
rule set in a similar fashion to how we designed the default Glaucus
rule set. Like us, they can include knowledge of the transformation’s
effect on the diffing tools, and knowledge of the overhead in the mod-
ified rule set. To extend this process to other diffing tools, we have to
include feedback from these diffing tools into Glaucus. From the diffing
tools we evaluated in Chapter 2, we can easily extract the list of func-
tions that have (not) been matched. These can already be used as input
to Glaucus. However, BinDiff is the only tool that shows which match-
ing heuristics were used to match pairs of functions. We could extend
existing tools to export this information. Alternatively, we could opt to
transform matched functions with a fixed set of transformations, rather
than a set of transformations that is based on diffing feedback. Fur-
thermore, Glaucus could compute some of the code characteristics on
which the diffing tool bases its heuristics, and use those to guide the
feedback process.

We manually tuned the parameters in our decision logic by evalu-
ating the performance impact on bzip2. Users that apply Glaucus on
their own software can of course tune the parameters to fit their use
case best, or they can re-use the default Glaucus parameters.

During the successive iterations, a diversification strategy is built
for each function. This strategy is a log of the applied transformations:
the program point where each transformation was applied, the itera-
tion in which it was applied, the reason why it was applied (i.e., the
BinDiff signature targeted with it, which comes from the rules table),
and the PRNG seed that was used for selecting that transformation. An
example table for a function f() is shown in Table 3.2.

Initially, i.e., after iteration zero in which only the code layout is
randomized, each function’s strategy is empty. Then during each it-

3.2 Feedback-guided iterative diversification 89

Table 3.1: Glaucus default rule set

Signature Weight Iteration Transformation
Hash Matching 1.00000 1 Conditional Branch Flipping
Edges Flowgraph 1.00000 1 Conditional Branch Flipping
Edges Flowgraph 0.00000 1 Two-way Opaque Predicate Insertion
Edges Flowgraph 0.00005 5 Two-way Opaque Predicate Insertion
Edges Flowgraph 0.00005 6 Partial Control Flow Flattening
Edges Callgraph 0.00000 1 Branch Function Insertion (anywhere)
Edges Callgraph 0.00005 5 Branch Function Insertion (anywhere)
Edges Callgraph 0.00000 1 Two-way Opaque Predicate Insertion
Edges Callgraph 0.00005 5 Two-way Opaque Predicate Insertion
Instruction Signature 1.00000 1 Conditional Branch Flipping
Call Sequence 0.00000 5 Call Function Insertion
Call Sequence 0.00005 7 Call Function Insertion
Call Sequence 0.00015 9 Call Function Insertion
Call Sequence 0.00000 11 Branch Function Insertion (before calls)
Call Sequence 0.00005 13 Branch Function Insertion (before calls)
Call Reference 0.00000 5 Call Function Insertion
Call Reference 0.00005 7 Call Function Insertion
Call Reference 0.00015 9 Call Function Insertion
Call Reference 0.00000 11 Branch Function Insertion (before calls)
Call Reference 0.00005 13 Branch Function Insertion (before calls)
Call Sequence (Exact) 0.00000 7 Call Function Insertion
Call Sequence (Exact) 0.00005 9 Call Function Insertion
Call Sequence (Exact) 0.00015 11 Call Function Insertion
Call Sequence (Exact) 0.00000 13 Branch Function Insertion (before calls)
Call Sequence (Exact) 0.00005 15 Branch Function Insertion (before calls)
Call Sequence (Topology) 0.00000 7 Call Function Insertion
Call Sequence (Topology) 0.00005 9 Call Function Insertion
Call Sequence (Topology) 0.00015 11 Call Function Insertion
Call Sequence (Topology) 0.00000 13 Branch Function Insertion (before calls)
Call Sequence (Topology) 0.00005 15 Branch Function Insertion (before calls)
Hash Matching 0.00000 2 Branch Function Insertion (in entry blocks)
Edges Flowgraph 0.00000 2 Branch Function Insertion (in entry blocks)
Edges Callgraph 0.00000 2 Branch Function Insertion (in entry blocks)
Instruction Signature 0.00000 2 Branch Function Insertion (in entry blocks)
Call Sequence (Exact) 0.00000 2 Branch Function Insertion (in entry blocks)
Call Sequence (Topology) 0.00000 2 Branch Function Insertion (in entry blocks)
Call Sequence 0.00000 2 Branch Function Insertion (in entry blocks)
Call Reference 0.00000 2 Branch Function Insertion (in entry blocks)
String Reference 0.00000 2 Branch Function Insertion (in entry blocks)
Hash Matching 0.00005 3 Branch Function Insertion (in entry blocks)
Edges Flowgraph 0.00005 3 Branch Function Insertion (in entry blocks)
Edges Callgraph 0.00005 3 Branch Function Insertion (in entry blocks)
Instruction Signature 0.00005 3 Branch Function Insertion (in entry blocks)
Call Sequence (Exact) 0.00005 3 Branch Function Insertion (in entry blocks)
Call Sequence (Topology) 0.00005 3 Branch Function Insertion (in entry blocks)
Call Sequence 0.00005 3 Branch Function Insertion (in entry blocks)
Call Reference 0.00005 3 Branch Function Insertion (in entry blocks)
String Reference 0.00005 3 Branch Function Insertion (in entry blocks)

90 Iterative feedback-driven diversification

Table 3.2: Diversification strategy for a function f()

Transformation Program Point Iteration Signature Random Seed
Conditional Branch Flipping BBL 2356 1 Hash Matching 14562
Call Function Insertion BBL 2347 3 Call Sequence 16382
Call Function Insertion BBL 2349 3 Call Sequence 16382

eration, three actions can be performed on the strategy: it can remain
identical, it can be extended, or it can be adapted. Let us assume we are
in iteration i ≥ 1.

1. When a function is not matched by BinDiff according to the feed-
back of iteration i − 1, the strategy remains untouched. This
happens when the strategy succeeded in thwarting BinDiff com-
pletely for this function. It implies that we will apply exactly the
same transformations in iteration i.

2. When a function is matched by BinDiff with some signature s ac-
cording to the feedback of iteration i − 1, and that s is not the
same as the last signature s′ in the strategy, this implies that the
strategy was successful in thwarting matching based on s′, but
not in thwarting matching based on s. In this case, the strategy is
extended: from all transformations that meet the necessary condi-
tions as specified by the rule table, one is selected randomly and
appended to the strategy. By construction, this will be a transfor-
mation that targets signature s.

3. When a function is matched by BinDiff with a signature s that
already occurs in the transformation strategy for that function,
this implies that the strategy was not successful for this function.
We then remove the transformations from the last iteration from
the strategy, and replace them with a new selection of transfor-
mations. This selection happens on the basis of another random
seed. Furthermore, we now select one more transformation than
we selected in the previous iteration. Moreover, the set of applica-
ble transformations may have become bigger because new rules
become applicable in later iterations.

Given these rules, the diversification strategy from Table 3.2 can
be interpreted as follows. Assume, e.g., we are now after iteration
5, “Conditional Branch Flipping” succeeded in thwarting signature

3.3 Evaluation 91

“Hash Matching” in iteration 1. From then on signature “Edges Flow-
graph” became the target. Two transformations needed to be applied
in thwarting this signature, which was discovered in iteration 3. When
all three transformations are applied in combination with code layout
randomization, BinDiff is no longer able to match function f().

3.3 Evaluation

We use the use cases from Chapter 2 as benchmarks to evaluate Glau-
cus’s success of improving the attack cost, and the overhead in code
size and execution time.

3.3.1 Diffing results

Using the rule set of Table 3.1, we generated multiple diversified bi-
naries for our four use cases. We used the automated attack model
µBinDiff∧extend IDA from Chapter 2 to simulate an attacker using IDA Pro
in combination with BinDiff. We use this model after every iteration to
provide feedback for Glaucus.

For bzip2, the chart in Figure 3.3 (a) depicts the pruning rate the
attacker achieved with µBinDiff∧extend IDA. The different selectors BinDiff
used to match code, i.e., code that the attacker will prune, are indi-
cated by the color of the bars. For the precise meaning of the different
matching heuristics, we refer to the BinDiff manual [159]. For each it-
eration, the total height of the bars indicates the matches reported by
BinDiff. Some of those matches, in particular the ones based on low
quality heuristics and signatures, are false positive matches, however.

To study the influence of false positive matches, we evaluate if the
instructions BinDiff returns as a match are indeed in the same function.
We computed a ground truth for function matches for each instruction,
τfunction match. It consists of tuples of instructions, where the first instruc-
tion is from the original binary, and the second instruction is from the
patched binary. The ground truth contains all such pairs for which the
functions indeed correspond between the two binaries. Figure 3.3 (b)
shows how many of BinDiff’s instruction matches are in this set, i.e.,
µ̂BinDiff∧extend IDA ∩ τfunction match, where µ̂ is the mapping returned by the
attack model, rather than a list of matched instructions. While this frac-
tion of instructions is of course most useful to an attacker, he has no
ground truth to compute this fraction himself. We provide these mea-

92 Iterative feedback-driven diversification

sures thus as an indication for the defender. The charts in Figure 3.4
display the same fractions, but this time with an indication of the match
quality according to the BinDiff manual [159] rather than the heuristics
used to match the code. The numbers above or in the different bars
indicate how many of the relevant instructions (i.e., the instructions in
red in Figure 2.15) are found in each category. Numbers above the bars
indicate the number of those instructions that are in the unmatched
part of the code, i.e., the part of the code within which BinDiff provides
no help to the attacker at all. As in Chapter 2, we see that BinDiff ini-
tially incorrectly matches one instruction. This instruction is located in
a function that is matched correctly, but with a poor heuristic.

Note that the total number of relevant instructions can vary from
one iteration to the other when the relevant instruction sequences are
duplicated by transformations.

The leftmost “iteration” in all charts corresponds to diffing the un-
patched binary with the undiversified patched binary. It is clear that in
that case BinDiff is performing very well. As indicated in green, many
function matches are found by computing hashes over the ordered in-
structions in the functions. The hashes neglect immediate operands
and thus ignore changed offsets and changed absolute addresses. Most
of the matches are found recursively on the CG through so called “call
sequence”-based selectors: these build on the assumption that func-
tions whose callers match, are likely matches themselves.

The second iteration from the left in both charts is iteration zero, in
which only code layout randomization is applied. It is clear that while
BinDiff is hampered by this randomization, it still does a pretty good
job. The matching is now mainly based on more abstract CFG proper-
ties, however, that rely less on the order and occurrence of individual
instructions.

As soon as we start diversifying the code, the effectiveness of Bin-
Diff starts to drop. Almost immediately, the “very good” quality
matchers start to fail and the lower quality metrics take over. The
matcher based on the strings that are referenced in functions then be-
comes quite important, along with the different selectors based on the
CG. As more and more diversification is introduced during our itera-
tive approach, the amount of matched code drops significantly, and the
amount of correctly matched code drops even lower.

In this experiment, the best result is obtained after 14 iterations. For
the binary generated in that iteration, BinDiff can match about 15% of

3.3 Evaluation 93

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(a) All matches returned by BinDiff

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

1
2

100

80

60

40

20

0

(b) Correct matches returned by BinDiff

Figure 3.3: Diffing results for the bzip2 use case, indicating the decisive
matching heuristics.

94 Iterative feedback-driven diversification

3 3

1
2

1
2

1
2

2
1 3

2
1

2
1

2
1

2
1

2
1 3 3

3 3

2
1

2
1

3

2
1

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d

. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(a) All matches returned by BinDiff

1
2

1
2

1
2 3

3

1
2 3 3

3 3

3 3 3

3 3 3 3 3

3 3

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(b) Correct matches returned by BinDiff

Figure 3.4: Diffing results for the bzip2 benchmark, where we grouped the
match heuristics by match quality.

3.3 Evaluation 95

the code, and all relevant instructions are in the 85% unmatched code.
Clearly, BinDiff is of almost no use to an attacker at this point.

After 18 iterations, an even better result was obtained, but as we
shall see, that result was achieved at the expense of more performance
overhead.

Figure 3.5 shows the png debian benchmark. Recall from Chap-
ter 2 that the SCIMs in this benchmark are not matched by BinDiff. This
can also be seen in this figure: we see that the four changed instructions
reside in the functions that are matched with a “weak” matching strat-
egy. After four iterations of Glaucus, the SCIMs are no longer matched.
However, at the same time, only 30% of the instructions are matched, as
opposed to the 95% without any diversity. Figure 3.6 shows the result
for the png beta benchmark, where we observe that part of the SCIMs
are matched, while 26 SCIMs are not matched without diversity. Af-
ter 6 iterations, the SCIMs are no longer considered matched, but now
only 20% of the instructions are matched. In Figure 3.7 we see that for
the soplex benchmark, some SCIMs are incorrectly considered to be
matched by BinDiff, even at iteration 17. In this case, we see that the
lowest matching rate occurs at iteration 15.

3.3.2 Overhead

Figure 3.8 depicts the overhead of the diversification in terms of code
size. Starting with layout randomization, every transformation adds
additional code. In iterations 7 and 13, as new transformations become
applicable on executed fragments according to the rules in Table 3.1,
more overhead is added, compared to the previous iterations. For the
most interesting versions of the binaries, the code size overhead is 15
to 25%. As before, whether or not this overhead can be considered
acceptable, is a decision that has to be made by the software vendor.

Software distributors typically do not send the entire patched bi-
nary. Rather, they use binary patch generation tools to create patches
that are smaller to distribute than the entire binaries. For example, Ap-
ple, FreeBSD and Mozilla use bsdiff to create binary patches for distri-
bution [140]. Figure 3.9 depicts the overhead of diversification in terms
of binary patch size when we use bsdiff to create the binary patches.
The patches become significantly larger, up to the point where their
size becomes between 30% and 40% of the full code section size. For
isolated patches, such as in the pngtest debian use case, diversifi-

96 Iterative feedback-driven diversification

4

4 4 4 4

4

4

4

4 3
1

4

2
2

4

4 4

4 4 4

4

4

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(a) All matches returned by BinDiff

4

4 4 4

4

4

4

4

4

4

4 2
2

4

4 4

4 4 4

4

4

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(b) Correct matches returned by BinDiff

Figure 3.5: Diffing results for the pngtest debian benchmark, where we
grouped the match heuristics by match quality.

3.3 Evaluation 97

8
2

6

8
2

6

8
2

6

8
2

6

8
2

6

4

3
0

6
2

8

3
4

3
4 3
4

3
4

3
4 3
4

3
4

3
4

3
4

3
4

3
4

3
4 3
4

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d

. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(a) All matches returned by BinDiff

8
2

6

8
2

6

8
2

6

8
2

6

8
2

6

4

3
0

3
4

3
4

3
4 3
4

3
4 3
4 3
4 3
4

3
4

3
4 3
4 3
4

3
4 3
4

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(b) Correct matches returned by BinDiff

Figure 3.6: Diffing results for the pngtest beta benchmark, where we
grouped the match heuristics by match quality.

98 Iterative feedback-driven diversification

53
0

53
0

53
0

53
0

49
5

35

51
1

19

49
5

35

52
0

10 52
9

1

52
6

4

52
5

5

52
6

4

52
3

7

51
7

13

50
7

23

52
6

4

51
8

12

52
6

4

52
8

2

52
4

6

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(a) All matches returned by BinDiff

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

53
0

52
6

4

52
6

4

52
6

4

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d
. 1 2 3 4 5 6 7 8 9

1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100

80

60

40

20

0

(b) Correct matches returned by BinDiff

Figure 3.7: Diffing results for the soplex benchmark, where we grouped the
match heuristics by match quality.

3.3 Evaluation 99

cation can increase the binary patch size with a factor 1000. For larger
patches, as for pngtest beta, the overhead is limited to a factor 2.5.
The overhead to distribute diversified patches, e.g., over the Internet,
is therefore extremely variable. The trade-off between this overhead
and the provided protection against patch-based attacks is one of the
trade-offs that developers will have to make.

For the benchmarks for which we have training and reference in-
puts from the SPEC benchmark suite, we used the training input set
to collect profile information on the patched binary. We evaluated the
performance overhead on the transformed binaries with the reference
input set. Figure 3.10 presents the performance overhead of our ap-
proach.

For bzip2, we observe very low overheads until the last but two
iterations. The overhead is even negligible for the first 9 iterations. For
soplex, we initially obtain a low but non-zero overhead, which sur-
passes 5% as of iteration 13. At that iteration, BinDiff was only able to
correctly match about 6% of all code.

When we compare these results with those from Proteus in Chap-
ter 2, we see that we have less execution time overhead, as well as
less code size overhead. Furthermore, our increase with execution time
overhead actually correlates with a decrease in the pruning rate.

As the plot of slowdown versus diffing success in Figure 3.11 shows,
the developer can clearly make a trade-off between protection and
overhead. Our approach is able to thwart BinDiff more effectively
and efficiently than Proteus. At the same level of execution time over-
head and code size overhead, Glaucus reduces the pruning rates for
attackers using BinDiff.

3.3.3 Representativeness

Since Glaucus only uses feedback from BinDiff, it is interesting to
know how well Glaucus can protect against attackers that use the
other IDA Pro-based diffing tools. In Figure 3.12, we see the results
of µpatchdiff2∧extend, µTurboDiff∧extend, and µBinaryDiffer∧extend applied to the
bzip2 benchmark. The results for soplex are shown in Figure 3.13.
We see that both the pruning rate for both patchdiff2 and TurboDiff
drops to less than 10% after about four iterations. However, Binary-
Differ performs significantly better than those two tools, even after 18
iterations. Even though the pruning rate is less than 50%, it performs

100 Iterative feedback-driven diversification

Figure 3.8: Relative binary code size.

Figure 3.9: Relative binary patch size.

3.3 Evaluation 101

Figure 3.10: Execution times relative to the times of the undiversified binaries.

Figure 3.11: Relative execution times vs. percentage of correctly matched in-
structions.

102 Iterative feedback-driven diversification
%

 o
f

in
st

ru
ct

io
n
s

m
a
tc

h
e
d

Number of diversification iterations

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d

. 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

BinaryDiffer

TurboDiff
patchdiff2

BinDiff

Figure 3.12: Cross-validation of Glaucus with other diffing tools on bzip2.

%
 o

f
in

st
ru

ct
io

n
s

m
a
tc

h
e
d

Number of diversification iterations

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

N
o
 d

iv
e
rs

it
y

La
y
o
u
t

ra
n
d

. 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

BinaryDiffer

TurboDiff
patchdiff2

BinDiff

Figure 3.13: Cross-validation of Glaucus with other diffing tools on soplex.

3.4 Discussion 103

better than BinDiff after the same number of iterations. This means
that BinaryDiffer internally uses some matching heuristic that is not
as effectively thwarted by our set of transformations. One reason is
that BinaryDiffer internally matches BBLs even if they do not belong
to a function. The transformations currently implemented in Glaucus
mostly focus on changing the structure of functions and thwarting IDA
Pro’s function construction. Additional transformations can be added
to Glaucus that focus on thwarting BBL matching.

3.4 Discussion

The results from Section 3.4 indicate that strong protection against
patch-based attacks with BinDiff and other tools can be obtained at
a negligible performance overhead, but at a significant cost in patch
size. Several issues can still be raised about the proposed approach,
however.

First, one may question whether the proposed approach is specific
for BinDiff or whether it is more general. Our experiments with other
IDA Pro diffing plug-ins, including the results presented in Chapter 2,
demonstrate that the approach is effective against all other publicly
available plug-ins, but that the effectiveness varies among the differ-
ent tools. This could be mitigated by including feedback from addi-
tional tools. Furthermore, as discussed, it is always possible to extend
the attack tools with new analyses and transformations, which could
improve the success rate of an attacker. Attackers could try to detect
and undo specific transformations, including the obfuscations applied
in our approach.

Some of the most effective deobfuscation attacks like dynamic or
hybrid static-dynamic deobfuscation [101, 135] are not applicable on
some patch types. In such dynamic attacks, the program’s execution is
first monitored and traced. The traces are then used to remove some of
the never-taken execution paths from the program. This builds on the
assumption that never-taken execution paths with certain signatures
probably originate from obfuscating transformations such as opaque
predicates, and hence were not present in the original program. In the
case of patches that insert input validation checks that the attacker can-
not trigger yet, the traces he collects on the patched program will indi-
cate that the inserted checks are potential opaque predicates. So instead
of helping the attacker to obtain a better diffing result, his deobfusca-

104 Iterative feedback-driven diversification

tion will cause the SCIMs to be matched incorrectly. Even when such
deobfuscation will be successful on some kinds of patches, the attacker
does not know which kind of patch is being applied, and will thus not
know if deobfuscation will make his results useful.

The effectiveness of our approach remains to be studied against
more advanced tools such as deofbuscators and code normalization
tools. However, this situation is not uncommon in the software pro-
tection arms race: once a software protection scheme is in use, attack-
ers will try to break the transformations used. The fact that particular
transformations are defeated does not imply that the whole approach
using those diversifying transformations is flawed or broken. When at-
tacker tools become more effective, we can extend the set of relatively
simple transformations in our current implementation with more com-
plex ones to make attackers require even more complex tools. While the
complexity of our current set of link-time transformations is limited be-
cause of the lack of high-level semantic information in object files, sim-
ilar as well as much more complex diversifying transformations can
easily be integrated into a compiler. In general, the more complex the
tools in the attacker tool box need to become to overcome the protection
provided by diversification, the more time-consuming they will be, and
hence the smaller the attacker’s window of opportunity will become.
So we are quite confident that our approach, although it will have to
be tuned and extended in the future, provides a solid foundation for
protecting against patch-based attacks.

Secondly, it is worth mentioning that our approach can easily be
extended to protect successive patch releases. When a patch to v3 is
released, protection might be required against collusion attacks against
both v1 and v2. In such cases, it is important that an attacker can not
learn more by comparing v1 to v3, in addition to comparing v2 to v3.
When this is required, it suffices to use a new set of PRNG seeds and
to run the diffing tool twice in each iteration to diff v3 against v1 and
against v2, and to consider the union of the sets of matched functions
in the next iteration.

Thirdly, it is important to discuss some more qualitative, less quan-
titative types of costs of our approach. In particular, we have to look
at the impact our approach has on customer support and code mainte-
nance costs. This depends on the ease with which one can debug the
code and interpret bug and crash reports. In this regard, we should
point out that our approach so far only involves control flow transfor-

3.5 Conclusion 105

mations. The original code is not rescheduled, register allocation is not
changed, and all data layout remains untouched. The latter includes
the statically allocated data, as well as the stack (frames) and the heap.
As the developers know the mapping between code fragments in the
non-diversified binary and in the diversified binary, and all data ad-
dresses remain unchanged, we conjecture that debugging the diversi-
fied binaries or interpreting crash reports of them is not fundamentally
harder. The only requirement is that a map between original code ad-
dresses and diversified code addresses is generated and stored. These
maps can then be used to interpret the backtraces in crash reports.

3.5 Conclusion

We have shown that we can use the attack models to improve diversifi-
cation. We introduced the diversification framework Glaucus, that uses
feedback from an attack model to iteratively diversity binaries. The
output of BinDiff is used to selectively guide the diversification process
to code fragments that are matched, while applying no more transfor-
mations than strictly needed to code fragments that BinDiff does not
match. The transformations applied to individual code fragments are
selected to thwart the specific selectors BinDiff used to match these
code fragments.

We have shown that with the iterative feedback-driven approach of
Glaucus, the performance overhead of the diversified program is less
than when using Proteus. At the same time, the attack models show
that the attack effort for a patch-based attack increases, compared to
attacking programs diversified by Proteus.

106 Iterative feedback-driven diversification

Chapter 4

Removing variation
in execution time

As discussed in Chapter 1, execution time variation can be an attack
vector for software. This execution time variation can be measured,
and used to extract secret information from a program. We will dis-
cuss how to defend programs against all timing variation caused by
differences in the dynamic control flow of a program, and against some
timing variation caused by differences in the data flow. We introduce a
compiler-based technique that allows developers to remove these tim-
ing variations from their compiled program.

We first discuss how we remove control flow (Section 4.1). Next,
we discuss how we mitigate some data-flow dependent timing vari-
ation (Section 4.2). This results in a timing side-channel aware com-
piler, whose implementation we describe in Section 4.3. Our compiler
is particularly targeted at Intel’s x86 instruction set architecture (ISA).
We evaluate our timing side-channel aware compiler in Section 4.4, and
discuss its relative merits compared to other techniques, such as remov-
ing control-dependent timing using source-to-source transformations
in Section 4.5.

4.1 Automatically removing control-dependent
variation

As already mentioned in Chapter 1, the execution time of a program
depends on its control flow. When the control flow depends on se-
cret data, the attacker can use the variation of the measured execution

108 Removing variation in execution time

time to recover the secret data. To defend programs against attacks
that depend on control-dependent timing variation, we will remove
the variations in control flow that depend on secret information. We
do this by eliminating all control flow transfers that depend on the se-
cret information. The execution will then always be independent of
the secret input. All control-flow dependent timing behavior will then
be independent of the secret information, and can no longer leak se-
cret information. Indeed, the instruction mix is then independent of
the secret information, as are branch prediction, instruction order, data
flow dependencies through registers, and instruction fetching from the
instruction cache.

The elimination of key-dependent control flow transfers will be per-
formed in a compiler backend. Using such a backend, rather than a
source-to-source transformation tool, enables applying the technique
more easily to programs written in different source languages. Further-
more, it reduces the risk of the compiler middle-end undoing source-
to-source transformations.

We remove control dependencies from the program by rewriting
code fragments and break down the problem of rewriting the program
into three disjunct sub-problems:

1. Remove control dependencies from acyclic code fragments. We explain
in Section 4.1.1 how we remove the control flow from code that
contains no loops.

2. Remove control dependencies from cyclic code fragments in function
CFGs. In Section 4.1.2, we describe how to handle code fragments
containing loops. To transform loop bodies we will make use of
the technique for transforming acyclic code fragments.

3. Conditional execution of function calls. Once we have removed the
control dependencies from function bodies, calls originating from
those functions need to be timing-independent as well. This is
described in Section 4.1.3.

4.1.1 Conditional execution of acyclic sequences

For simple, acyclic code fragments not containing any function calls,
conditional execution provides an excellent mechanism to get rid of
key-dependent control flow. With conditional execution, control flow

4.1 Automatically removing control-dependent variation 109

dependencies on diverging non-cyclic execution paths such as if-then-
else constructs can be transformed into data flow dependencies on a
single path.

On architectures that support full conditional execution, either by
means of condition flags that activate or deactivate instructions, such
as the ARM instruction set [12], or by means of real predicate registers
that guard instructions, such as in the case of the TriMedia [144], this
transformation is trivial.

We can show how conditional execution works on source code. To
conditionally execute instructions, we transform if statements. The
goal is to make all instructions from the body of the statement execute,
independent from the private information. First, we compute the predi-
cate. Then we use this predicate to execute all statements conditionally
in the body of the if. Consider again the loop body of the modular
multiplication algorithm as discussed in Section 1.6.1:

4 result = (result*result) % n;
5 if (bit_set(exponent, i))
6 result = (result*a) % n;
7 i--;

To transform the statements of this C code into conditionally executed
statements, we first compute the condition of the if statement, and use
it as a predicate for conditionally executing individual statements:

4 result = (result*result) % n;
5 c = bit_set(exponent, i);
6 tmp_1 = c ? result * a : tmp_1;
7 tmp_2 = c ? tmp_1 % n : tmp_2;
8 result = c? tmp_2 : result;
9 i--;

The lines with the ternary ?: operator can then be translated into pred-
icated instructions. For example, when we compile this to ARM as-
sembly, making use of conditionally executed instructions (using the
division instruction to compute the remainder), compiler could gener-
ate code such as the following:

1 bl bit_set // c = bit_set(...)
2 cmp r0, #0 // set condition flag to c == FALSE
3 mulne r0, r6, r8 // if (c) tmp_mul = result*a;
4 udivne r6, r0, r7 // if (c) tmp_div = tmp / n;
5 mulne r4, r7, r4 // if (c) tmp_mod = tmp_div * n;
6 subne r6, r7, r4 // if (c) result = n - tmp_mod;
7 sub r1, r1, #1 // i--;

110 Removing variation in execution time

The conversion from code with branches to code with conditional
execution is called if-conversion [6], and it is well known in the field of
compiler techniques, in particular for VLIW and EPIC types of architec-
tures. Composing more complex conditional structures such as nested
if-then-else structures poses no problem. It only requires additional
instructions to compute the nested predicates or to set the correct con-
dition flags, depending on the expressiveness of the architecture with
respect to conditions [15].

However, this technique is not directly applicable to ISAs that sup-
port only limited or no predicated instructions. On Intel’s x86 ISA, only
some mov instructions can be executed conditionally. This can be miti-
gated for some instructions by converting them from conditionally ex-
ecuted instructions to unconditional ones that act on temporary vari-
ables. The computed value is then conditionally moved to the actual
target variable. If we then transform the above source fragment, we
get the following code fragment:

1 result = (result*result) % n;
2 c = bit_set(exponent, i);
3 tmp_1 = result * a;
4 tmp_2 = tmp_1 % n;
5 result = c? tmp_2 : result;
6 i--;

This predicate elimination, also called predicate speculation [133]
is fine when the instruction whose predicate is eliminated only affects
local variables and state that does not define the global program state,
or when the instruction causes no other side effects such as exceptions.
For example, in the code fragment above, the unconditional execution
of the multiplication in tmp_1 poses no problems. However, uncondi-
tionally executing the division instruction can lead to problems. Con-
sider the following example:

1 if (count != 0)
2 average = sum / count;
3 else
4 average = 0;

As we did before, we could try rewriting it as follows:
1 c = count != 0;
2 tmp_1 = sum / count;
3 average = c ? tmp_1 : average;
4 tmp_2 = 0;
5 average = !c ? tmp_2 : average;

4.1 Automatically removing control-dependent variation 111

In the original code, no division by zero can occur. In the transformed
code, however, we do divide sum by count even when count == 0,
triggering a division-by-zero exception. Thus, the transformed code
does not exhibit the same behavior as the original program, and is in-
correct. As mentioned earlier, the x86 ISA only supports conditional
move instructions, so we cannot fix the faulty transformation by ex-
ecuting the division conditionally. So when we remove all control de-
pendencies on the x86 architecture, we have to rely on some other trans-
form for instructions with side effects.

Our general solution to remove control dependencies on ISAs with
limited predication support, to be applied by the compiler backend,
consists of the following:

1. Before merging a path into other paths with if-conversion, en-
sure that all instructions without side-effects in this path oper-
ate on local, temporary variables. This can be easily done when
using single static assignment (SSA) for representing the instruc-
tions [110]. SSA is often used as an intermediate representation
in compilers. In SSA code, all instructions write into a new (vir-
tual) register. This means that all instructions already operate on
a register when using most modern compilers.

2. Separately transform the instructions that may cause exceptions
or that change the global state (for example because they store
something to memory). We do this by adding so-called operand
selection safe-guard instructions. These instructions conditionally
select a safe value that is used as input for the transformed in-
struction. The safe values are chosen so that they do not cause the
instruction to cause exceptions or to change the program state.
When the predicate for executing the transformed instruction is
true, the original input to the transformed instruction is used.

3. Merge the resulting code paths as in regular if-conversion.

Consider the following example code fragment:

1 if (c) {
2 *a = 10;
3 d = x/y;
4 } else {
5 b = 10;
6 }

112 Removing variation in execution time

Using the three steps discussed above, we rewrite this code fragment
into:

1 tmp_a = a;
2 if (!c) tmp_a = dummy_location;
3 *tmp_a = 10;
4 tmp_y = y;
5 if (!c) tmp_y = 1;
6 tmp_d = x / tmp_y;
7 tmp_b = 10;
8 if (c) d = tmp_d;
9 if (!c) b = tmp_b;

If c evaluates to false, the store operation will now write to a dummy
location where it does not harm the real program state, and the divi-
sion will be executed with divisor 1, which will not cause an exception.
Furthermore, in that case only the assignment to b will be executed, but
not the one to d. If c evaluates to true, the store and the division will be
executed as they should, and only the assignment to d will be executed,
not the one to b.

The most common instructions that should be safe-guarded this
way are divisions, loads, and stores. For loads and stores, we allo-
cate a memory location on the stack that is used as dummy value. An
interesting question is whether or not the execution of loads or stores
often depends on secret keys. The fact is that big integer functionality
for cryptographic purposes, such as RSA, is usually implemented us-
ing memory arrays of smaller integers. When computing the result of
an operation on such big integers, the final results, as well as the in-
termediate results, have to be written to memory into these arrays. So
in such libraries, conditional loads and stores are as likely as any other
conditional operation.

Note that if-conversion should only be applied when the involved
conditional branches depend on a secret key. Whether or not the
branches depend on secret information can be determined by means
of a compiler data flow analysis. However, such analyses are typically
not sufficient. The output of an encryption algorithm depends on both
the secret plaintext and the secret key, but the output of the encryption
itself is generally not considered to be secret information. Information
about when values depending on secret information is itself no longer
secret, can be taken into account with custom declassification proper-
ties [127]. In case the compiler lacks the required precision to compute
the correct dependencies, the compiler should either conservatively as-

4.1 Automatically removing control-dependent variation 113

sume that there is a dependency on the secret key, or user annotations
of the source code could clarify this for the compiler. In any case, the
user should already inform the compiler what exactly constitutes the
key from which control flow should be made independent, for example
by means of so-called attributes or by means of pragmas [39, 68].

Finally, we should point out that our implementation using condi-
tional execution of mov instructions relies on the fact that conditional
moves do not cause data-independent timing behavior. We discuss this
assumption in detail in Section 4.4.

4.1.2 Cyclic control flow graphs

Cyclic control flow graphs occur for program fragments containing
loops. In these loops, the number of iterations may be key-dependent
or not.1 A compiler can again either detect this by means of static data
flow analysis, or it can rely on user-annotations in the program.

For cryptographic code that resists side-channel attacks, loops
should have a number of iterations that does not depend on the value
of a secret key. However, cryptographers and programmers do not al-
ways keep this in mind, which makes the code possibly leak secret in-
formation. Furthermore, some cryptographic libraries are programmed
generically, e.g., for different key lengths, so that the number of iter-
ations of certain loops depends on the length of the key. In the latter
case, user-annotations specifying that a loop’s number of iterations is
not dependent on a key will be required. The compiler could aid the
user by giving warnings about loops for which it requires, but cannot
find, a user annotation.

When a loop’s iteration count does depend on the actual value of
a secret key, the compiler could try to determine (or the programmer
should specify) an upper bound on the number of iterations. The itera-
tion count of the loop can then be fixed to this fixed upper bound, and
the loop body will be executed conditionally: a separate condition will
keep track of whether real iterations are still being executed, or whether
additional iterations are being executed to reach the fixed upper bound.

Please note that from a performance point of view, increasing the
number of iterations in a loop to a fixed upper bound might be detri-

1In lower-level code, this corresponds to a conditional branch that determines
whether the loop is continued or exited. Such a branch, if taken, transfers control back
to the loop entry point. As such, it cannot be omitted with simple if-conversion.

114 Removing variation in execution time

mental. However, this is unavoidable. The best we can hope for is
getting a fixed execution time that is equal to the slowest time of the
original program. If this slows down the program on what originally
was its best-case performance input, so be it.

To rewrite a loop, we consider only loops with a single back edge,
which furthermore only have a single loop exit edge. The back edge
and the exit edge originate in the same basic block. Loops that do not
satisfy these constraints, are first restructured. When we remove the
control dependencies from a loop, we need to transform the loop body
and the back edge’s control transfer.

When the control transfer does not depend on the private informa-
tion, we can just leave the control transfer unaffected.

In the other case the control transfer depends on the private infor-
mation. As mentioned above, we assume that we have a static upper
bound on the number of iterations of the loop. Thus, the compiler can
transform the loop control into a simple counter with a bounds check
that is independent of the private information. The loop body is then
conditioned on the original control. For example, when we have a key-
dependent loop such as the following:

1 for (int i = 0; i < key->nr_bits; i++) {
2 key->bits[i] = 0;
3 }

We can transform this code as follows, assuming a static loop upper
bound of 16:

1 int execute_body = TRUE;
2 for (int i = 0; i < 16; i++) {
3 execute_body = execute_body && i < key->nr_bits;
4 if (execute_body) key->bits[i] = 0;
5 }

Up until now, we discussed loops that are entered unconditionally.
However, loops can be entered conditionally as well. We can easily ex-
tend the above transformation to deal with conditionally entered loops.
When we remove control dependencies from acyclic control flow with
if-conversion, we keep track of a predicate that signifies whether or not
instructions need to be executed. We also use this predicate to con-
ditionally execute a loop body. Rather than unconditionally setting
execute_body in the code fragment above to TRUE, we can initialize
it with the predicate on which the entire loop’s execution is predicated.
Thus, we can transform

4.1 Automatically removing control-dependent variation 115

1 if (key->valid) {
2 for (int i = 0; i < key->nr_bits; i++) {
3 key->bits[i] = 0;
4 }
5 }

into

1 int execute_body = key->valid;
2 for (int i = 0; i < 16; i++) {
3 execute_body = execute_body && i < key->nr_bits;
4 if (execute_body) key->bits[i] = 0;
5 }

Note that we introduced new control dependencies when trans-
forming the loop body. Furthermore, even the untransformed loop
body could already contain control dependencies. These need to be
removed to remove the variation in execution time due to control flow.
The loop body can also contain nested loops with their own control de-
pendencies. To remove all these control dependencies, we do a struc-
tural recursion on the loop as follows:

• The loop body is an acyclic code fragment. This is the base case for
the recursion. We just apply if-conversion to the loop body as
described in Section 4.1.1.

• The loop body itself is cyclic. We recursively apply the technique
from this section. The predicate for the execution of the nested
loop body will then not only depend on the nested loop condition,
but also on the outer loop’s execution predicate.

4.1.3 Function calls

Any realistic program contains functions and hence function calls. In
particular, big integer libraries usually represent operations on big in-
tegers with function calls, so function calls will also occur in crypto-
graphic code. These function calls will also need to be executed condi-
tionally.

A first solution to this problem constitutes inlining. When a callee’s
function body is inlined in a caller’s body, the call is removed and the
callee’s body can be executed conditionally like the caller’s code.

Because inlining may increase the code size of a program signifi-
cantly, which may not be acceptable for embedded devices with small

116 Removing variation in execution time

amounts of memory, an alternative solution is required. Our solution
adds an additional function parameter that specifies whether or not the
function would have been invoked in the original program. Instead of
executing a call conditionally, each call will now be executed uncondi-
tionally with the additional parameter. Inside the function, all code is
then executed conditionally based on the additional condition specified
by the added parameter.

For example, consider the following code fragment:

1 void f(int x) {
2 *a = x;
3 }
4

5 int main(int argc, char** argv) {
6 ...
7 if (c)
8 f(10);
9 ...

10 }

This will be converted into

1 void f(int c_f, int x) {
2 if (c_f) *a = x;
3 }
4

5 int main(int argc, char** argv) {
6 ...
7 f(c, 10);
8 ...
9 }

Here we used the previously described techniques for removing control
dependencies on the function f().

Please note that in practice, we duplicate a function like f and we
add the additional parameter to the duplicate only. That way, any call
to f that is not dependent on the secret key can still invoke the original
function version without the additional parameter, which will be better
for performance and which requires less code to be adapted.

Function calls can be either direct or indirect. Examples of indi-
rect function calls are function pointers and virtual method calls like
those in C++ or Java. While we only implemented our technique to
deal with direct function calls, our technique can also be extended to in-
direct function calls. We could store information on whether or not this

4.2 Removing data-dependent variation 117

indirectly called function needs to be executed conditionally in global,
thread-local storage, instead of passing it as an argument. The trans-
formed function can use this information from the thread-local stor-
age for conditionally executing its instructions. This way, we do not
change the function’s signature, and a program can mix indirect calls
to functions that have been transformed and functions that have not
been transformed.

Function pointers are data values that can be key-dependent as
well. Calls to such key-dependent functions need to be constant-time
as well. A pointer-analysis could determine to which functions this
pointer can refer. All possible functions could then be transformed so
that they all have the same execution time by combining all function
bodies into a single function. However, this could introduce a signifi-
cant performance overhead. Furthermore, like conditionally executed
memory operations can point to unallocated memory, so can condi-
tionally called function pointers point to invalid code addresses. For
such cases, we could provide a dummy function pointer to be called
similarly to how conditional stores and loads are handled.

4.2 Removing data-dependent variation

As discussed in Chapter 1, instructions exist whose execution time de-
pend on their operand values. Such instructions need to be considered
as well when designing a timing side-channel aware compiler. We con-
sidered two kinds of instructions with a variable execution time. First,
we discuss instructions whose execution time depends on their algo-
rithmic implementation in the processor. We use the division instruc-
tion as our test case for this class. The second kind of instruction are
instructions that use the memory subsystem.

4.2.1 Timing variation due to early exit

Similar to how programmers can introduce variation in execution time
by introducing control flow dependencies, so can hardware designers
for the execution time of a single instruction. For example, the execu-
tion time of an instruction to multiply or to divide two numbers can
depend on the number of leading zero-bits in the operands. Such a
behavior is also called early exit. As an example, we focus on the div
instructions of Intel’s Core 2 processors, whose execution time depends

118 Removing variation in execution time

on both operands on the processor versions we evaluated [41]. Similar
techniques could be used against ARM processors whose multiplica-
tion instruction has a variable execution time.

Processor designers can add options that configure the dependence
of the execution time of instructions on their operands. For example,
ARM processors optionally allow software to make multiplication in-
structions operate in constant time [13]. Intel could opt to add a similar
configuration option for the execution time of its division instructions.
Compilers that generate code for such processors can make use of such
a configuration option to make code execute in constant time regardless
of operand values for multiplications and divisions. However, since In-
tel processors offer no such option, our compiler will have to deal with
each sensitive division instruction individually. The most general ap-
proach our timing side-channel aware compiler supports, is to emulate
division instructions by calls to constant-time functions that perform
the same operation. We can easily extend this approach to architectures
that have similar variable-execution time instructions.

A downside of this approach is its significant overhead. To avoid
this, we can try to rewrite the program’s use of the variable latency in-
struction in such a way that the total execution time is constant, regard-
less of the secret inputs to the code fragment containing the instruction.
We evaluated different ways in which occurrences of the division in-
structions can be rewritten [143]. The full details of this research will be
published in the PhD work of Jeroen Van Cleemput. However, we will
briefly summarize those results here.

As a first approach we investigated to make the execution time con-
stant, by adding constant-time compensation code, which is executed
in parallel with the division instruction. We let every use of the di-
vision instruction’s result depend on the division and the compensa-
tion code. This is shown in Figure 4.1. The idea is that the execution
time of the compensation code exceeds the worst-case execution time
of the division instruction. The execution time of the resulting program
should then depend only on the execution time of the compensation
code, which is constant. However, we observed that such schemes do
not work in practice. The complex, out-of-order behavior of the Intel
CPUs on which we tested these schemes thwarts attempts to make the
execution time of transformed programs constant. While we could gen-
erate some programs in which the total execution time was constant,
whether or not a particular code fragment had a constant execution

4.2 Removing data-dependent variation 119

division
v
a
ri
a
b
le

ti
m
e

(a) The variable latency of the
division instruction

(b) Parallel constant-time com-
pensation code

Figure 4.1: Data dependency graph of parallel constant-time code to make
the result of divisions constant time as well. When adding parallel constant-
time compensation code, the end result depends on both the variable latency
division and the slower, constant-time code.

time depended heavily on the surrounding code and the compensation
code. We could not predict with which compensation code the total
execution time would be constant.

We could however achieve reliable, constant execution times by ex-
ecuting the division instruction multiple times. We observe that the
execution time of the division instruction only takes 6 discrete values
on the core version we evaluated. We call each of these distinct exe-
cution times a time class. For other core versions, the number of time
classes can be different. The operands to the division can be classified
according to which of these time classes their resulting division belongs
to. We insert code that computes this classification at run time. This is
followed by a division for all possible execution times, where we use
a similar approach to our dummy location values: we have dummy
operands for each time class, and choose dynamically between those
dummy operands and the original operands to the division. This is
illustrated in Figure 4.2.

4.2.2 Timing variation due to the memory subsystem

Emulating the functionality of instructions is not always possible. In
particular, we cannot emulate instructions that access the program’s

120 Removing variation in execution time

1 // Which execution time has this division?
2 class = divisor < 2 ? 1 :
3 divisor < 0x20 ? 2 :
4 divisor < 0x200 ? 3 :
5 divisor < 0x2000 ? 4 :
6 divisor < 0x20000 ? 5 : 6;
7 // use a fixed-latency bit-scan-reverse (bsrl) operation
8 leading_zeroes = 31 - bsrl(dividend);
9 dividend <<= leading_zeroes;

10 // Execute 1 division with fixed time per latency class:
11 result1 = dividend / (class == 1 ? divisor : 0x2);
12 result2 = dividend / (class == 2 ? divisor : 0x20);
13 result3 = dividend / (class == 3 ? divisor : 0x200);
14 result4 = dividend / (class == 4 ? divisor : 0x2000);
15 result5 = dividend / (class == 5 ? divisor : 0x20000);
16 result6 = dividend / (class == 6 ? divisor : 0x200000);
17 // Select the correct result:
18 quotient = class == 1 ? result1 :
19 class == 2 ? result2 : ...;
20 quotient >>= leading_zeroes;
21 remainder = dividend - (quotient * divisor);

Figure 4.2: C code equivalent of unsigned division computation using only
fixed-latency divisions. All selection statements a?b:c are implemented with
fixed-latency conditional moves. The (re)computation of the remainder is nec-
essary because the remainders computed using shifted dividends are not cor-
rect. Similar code can be used for signed division, but then the sign needs to
be corrected afterward.

memory to not require memory access. However, we can still try to
mitigate some of the variation introduced by the memory subsystem.

Variation due to cache behavior As discussed earlier, processors
have data caches to speed up accesses to program memory. However,
this introduces variation in the execution time of programs.

The best solution would be to modify the behavior of the pro-
cessor’s data caches, so that the caches no longer leak information
through their timing behavior. One way would be to disable the
caches entirely [82], which would however have a serious impact on
performance. Another approach would be to use specialized cache
architectures that focus on security. These will not leak information
through timing. An example of such cache architectures are partitioned

4.2 Removing data-dependent variation 121

Figure 4.3: Execution times of a microbenchmark loop with 4-byte load and
store instructions executed for varying displacements between the accessed
locations.

caches [153]. However, such cache architectures are not currently avail-
able in x86 processors. In this work, we do not try to resolve this
problem on x86 processors.

Load bypassing Even when the instructions always access data in the
cache, there remain possible sources of timing variation. We investi-
gated the potential timing variation due to load bypassing.

Consider the following loop body:

1 loop: mov dword [ebx], 2
2 add eax, [ecx]

This fragment will write to the memory location specified in ebx and
read from the memory location specified in ecx. If this fragment is
executed in a loop with enough iterations, the cache behavior will not
influence the timing behavior significantly because only two memory
locations are touched.

We measured the timing behavior of such a loop on an Intel Core
2 Duo, where we load and store 4-byte int values. We varied the dis-
placement between [ebx] and [ecx] over a large range in steps of 4
bytes. The resulting execution times are depicted in Figure 4.3. When
the store accesses the same data as the load (displacement 0), a higher
execution time is seen than when, e.g., there is a displacement of 12
bytes between the two accesses. The reason is a micro-architectural
feature called load bypassing [136]. When the store instruction and
the load instruction access the same memory location, the out-of-order

122 Removing variation in execution time

processor detects a data dependency between them by comparing the
addresses of the locations at which they access the memory. This de-
pendency forces the processor to let the load wait for the store. When
the address comparison indicates that there is no such dependency, as
when the displacement is 12 bytes, the load can be executed together
with the store without having to loose time waiting.

Surprisingly, we observe the same slowdown whenever the dis-
placement modulo 64 is in the range [0,7]. When we repeated the ex-
periment for loads and stores of other widths, such as with 1-byte char
accesses, we observed a similar slowdown. This illustrates that even
independent memory operations that always hit in the cache can still
cause timing effects as if they were dependent. These effects are not re-
lated to the particular combinations of cache lines or cache banks that
are accessed. Instead these effects are caused by so-called pessimistic
load bypassing [136]. Pessimistic in this context means that the processor
only compares a few bits in the memory addresses to decide whether or
not two memory accesses depend on each other. As soon as those bits
are identical, the processor pessimistically concludes that there may be
a data dependency. The execution is then slowed down, even when
there is in fact no need to.

For our purpose of defending against timing attacks, this observa-
tion indeed confirms that even if we can avoid all timing dependencies
on cache behavior, we still need to take care of other data dependencies
through memory. These dependencies can be true data dependencies
through memory, but they can also be dependencies between seem-
ingly independent operations that are caused by micro-architectural
pipeline implementation details.

We were able to solve this problem by inserting no-operation in-
structions between the store and load operations. Once we insert five
or more no-ops, the resulting curve of execution times became indis-
tinguishably flat. We applied t-tests [63] to show that the resulting
distributions indeed became indistinguishable. For other similar code
fragments, similar looking results were obtained, indicating that with
enough no-ops inserted where needed, this time side channel can be
closed. As with the mitigation technique for division instructions, a
full analysis of this mitigation strategy will be published in the PhD
work of Jeroen Van Cleemput.

4.3 Implementation 123

4.3 Implementation

In order to make an implementation of our proposed technique of
making code fragments execute in constant time practical, we need to
present it to programmers in a usable way. If a programmer has to
run a lot of different tools, or has little choice on how the technique is
applied, it cannot be considered really useful. As a proof-of-concept,
we implemented our technique as an extension for the LLVM compiler
framework2 [94]. The LLVM framework allows people to write custom
analyses and transformation passes. These can either be integrated
into the LLVM framework, but they can also be provided as plug-ins
so that users can easily combine the required transformation with their
own, custom analyses and transformations, without having to use or
adapt their code to a custom compiler. We opted for implementing our
technique as a plug-in.

In our proof-of-concept implementation, we implemented support
for annotations to let the programmer decide which functions need to
be transformed. The simple relatively form of annotations we have im-
plemented enables the programmer to specify which C functions must
have data-independent control flow. In our implementation, we call
this the control flow to be balanced, hence we add the attribute “bal-
anced” to the function. Consider the following code fragment:

1 int __attribute__((annotate("balanced")))
2 f(int a) {
3 if (a > 0)
4 return 1;
5 else
6 return -1;
7 }
8

9 int g(int* a) {
10 if (a!=0)
11 return *a;
12 else
13 return 0;
14 }
15

16 int __attribute__((annotate("balanced")))
17 h(int a, int* b) {
18 if (a & 2)

2http://www.llvm.org/

http://www.llvm.org/

124 Removing variation in execution time

19 return f(a);
20 else
21 return g(b);
22 }

In this fragment, functions f and h will be adapted, but g will
not. However, because h calls g, an adapted version of g with data-
independent control flow will be generated which will then be called
from within h.

Our current implementation lacks support for recursive function
calls and for loops with a variable execution count, but adding support
for those is merely an implementation issue that poses no fundamen-
tal challenges. Furthermore, that support is not needed to evaluate the
effectiveness and efficiency of our technique.

4.4 Evaluation

To evaluate our approach and the extent to which the x86 architec-
ture lends itself to executing timing-variation free code, we protected
a number of microbenchmarks against timing-based side-channel at-
tacks.

4.4.1 Experiments

We used a variety of microbenchmarks to evaluate the efficiency and
effectiveness of our proposed approach. Efficiency here corresponds to
the performance and code size, i.e., the execution time overhead and
code size overhead introduced by the if-conversion and elimination of
variable-latency division instructions in the protected software. Effec-
tiveness corresponds to the extent with which the protection is able to
make the timing behavior independent of sensitive data such as secret
keys. The C source code of these microbenchmarks appears in Fig-
ure 4.4. We measured this effectiveness by measuring the differences in
execution times for different, carefully selected inputs, both before and
after our code transformations. We selected the inputs so that the total
amount of executed instructions differs significantly, making it easier to
measure the variation in execution time. To demonstrate that our tech-
nique can defend against side-channel attacks based on branch predic-
tor behavior [1], we measured differences in branch prediction behav-
ior. Both measurements were performed using performance counters.

4.4 Evaluation 125

Code path benchmarks:
1 i n t a t t r i b u t e ((annotate (” balance ”)))
2 f1 (i n t a , i n t b , i n t c , i n t d) {
3 return a+b ;
4 }

1 i n t a t t r i b u t e ((annotate (” balance ”)))
2 f2 (i n t a , i n t b , i n t c , i n t d) {
3 i f (a < b)
4 return a+b ;
5 e lse
6 return c+d ;
7 }

1 i n t a t t r i b u t e ((annotate (” balance ”)))
2 f3 (i n t a , i n t b , i n t c , i n t d) {
3 i f (a < b) {
4 i f (c < d)
5 return c+d ;
6 e lse
7 return c−d ;
8 } e lse {
9 i f (a > d)

10 return a−d ;
11 e lse
12 return a+d ;
13 }
14 }

1 i n t a t t r i b u t e ((annotate (” balance ”)))
2 f4 (i n t a , i n t b , i n t c , i n t d) {
3 i f (a < b) {
4 i f (c < d) {
5 i f (a < 0)
6 return c+d ;
7 e lse
8 return c−d ;
9 } e lse {

10 i f (b < 0)
11 return b+c ;
12 e lse
13 return a+b ;
14 }
15 } e lse {
16 i f (a > d) {
17 i f (d < 0)
18 return a−d ;
19 e lse
20 return a+d ;
21 } e lse {
22 i f (c < 0)
23 return c+a ;
24 e lse
25 return c−a ;
26 }
27 }
28 }

Memory benchmarks:
1 i n t a t t r i b u t e ((annotate (” balance ”)))
2 memread1 (i n t a , char∗ b) {
3 i f (a == 0) {
4 return ∗b ;
5 } e lse {
6 return a ;
7 }
8 }
9 i n t a t t r i b u t e ((annotate (” balance ”)))

10 memread2 (i n t a , char∗ b) {
11 i f (a == 0) {
12 return b [0] + b [1] ;
13 } e lse {
14 return a ;
15 }
16 }

OpenSSL fragment:
1 for (i = min ; i != 0 ; i−−){
2 t1= ∗(ap ++) ;
3 t2= ∗(bp ++) ;
4 i f (carry) {
5 carry =(t1 <= t2) ;
6 t1 =(t1−t2−1)&BN MASK2;
7 } e lse {
8 carry =(t1 < t 2) ;
9 t1 =(t1−t 2)&BN MASK2;

10 }
11 ∗(rp++)= t1&BN MASK2;
12 }

Figure 4.4: Microbenchmarks on which we evaluated our timing side-channel
aware compiler.

126 Removing variation in execution time

The first set of microbenchmarks consist of a set of simple C func-
tions of increasing complexity. This set allows us to determine the cost
of protecting increasingly complex code. Four microbenchmarks f1,
f2, f3, and f4 contain an increasing number of nested if-then-else
constructs, and thus an increasing number of different execution paths.
Two microbenchmarks memread1 and memread2 contain memory ac-
cesses that have to be safe-guarded with dummy addresses.

The second set of microbenchmarks consists of three hand-written
implementations of modular exponentiation (similar to the code of
Chapter 1) as it occurs in, e.g., RSA encryption:

1. The experiment modexp32 uses 32-bit numbers for a modular ex-
ponentiation.

2. The experiment modexp64 uses 64-bit numbers for a modular ex-
ponentiation. This is the native word width on 64-bit platforms
such as the Intel Core 2 Duo machine we used for testing.

3. We implemented a minimal so-called big integer component
modexp256 that computes the modular exponentiation of 256-bit
integers. This is implemented in C++, using calculations on inte-
ger numbers represented as a sequence of 32-bit integers. These
32 bit integers are stored in memory rather than in registers.

These microbenchmarks thus represent the following code:

1 result = 1;
2 i = log2(exponent);
3 do {
4 result = (result*result) % n;
5 if (bit_set(exponent, i))
6 result = (result*a) % n;
7 i--;
8 } while (i >= 0);

When these microbenchmarks are compiled for 32-bit and 64-bit in-
tegers, the compiler maps the modulo computation onto x86 division
instructions.

To demonstrate the effectiveness of our approach, we ran these
three modular exponentiation microbenchmarks on inputs consisting
of (1) random modulo values, (2) random base values, and (3) four
different types of exponents.

4.4 Evaluation 127

• In the all zero input set, the exponent in binary format consists
of all zeroes, except for the two most-significant bits that are set
to one. This ensures that the variable result (see the modular
exponentiation code fragment in Chapter 1) does not remain con-
stant throughout the whole loop. Having all other bits set to zero
ensures that the conditional code in the original loop will only
be executed twice per loop. This pattern results in very accurate
branch prediction by the processor, and the fewest executed in-
structions.

• In the all one input set, all bits in the exponent are set to one.
This ensures that the conditional code in the loop is executed in
every iteration. So in total, the conditional code is then executed
32/64/256 times per loop for 32/64/256-bit numbers. This pat-
tern also results in very accurate branch prediction by the proces-
sor. So when this input is fed to a benchmark, much more code
is executed than with the all-zero input, but the branch predictor
performs similarly.

• In the regular input set, half of the bits are set to one in a regular
pattern. This is a repeating pattern of eight bits followed by eight
bits set to zero. This implies that the conditional code is executed
in half of the iterations.

• In the random input set, half of the bits are set to one as well, but
now the pattern of zeroes and ones is generated by a pseudo-
random generator. Consequently, this input will result in the
same amount of code executed as for the regular input set, but
branch prediction will be much less accurate, resulting in more
branch misses and higher execution times.

Together, these four input sets allow us to study to what extent our pro-
posed transformations are able to eliminate timing dependencies that
originate from different control flow for different keys or from branch
prediction behavior that depends on keys.

Please note that the number of times each loop was invoked per ex-
periment differs for the three microbenchmarks. For each benchmark,
the number of invocations was chosen to be a good balance between
short experimentation times and accurate measurements.

Finally we applied our approach to a function from the OpenSSL 3

3http://www.openssl.org

http://www.openssl.org

128 Removing variation in execution time

library, version 0.9.8i, that can be used to implement RSA. We studied
in particular the execution time of the function BN_sub. This library
code is executed on two different inputs that result in different timing
behavior in the original code. These inputs were obtained by running
the original code on multiple random-generated inputs, where we ob-
served how many times each code path was taken during the execu-
tion. For one input, only one code path was executed, while for the
other input both code paths were executed equally.

We ran all experiments on an Intel Core 2 Duo machine running
Linux at 2.2GHz. All versions were executed 20 times on all inputs
to collect statistics on the timing behavior and branch prediction. All
binary code was generated using LLVM 2.3’s standard compiler op-
tions to generate 64-bit code, except for the OpenSSL code. For the
OpenSSL code we disabled some compiler middle-end optimizations
because they resulted in partially if-converted code even when using
the unadapted compiler. Since we are measuring the impact of apply-
ing if-conversion, we use code without any if-conversion as a baseline.
These numbers represent an upper limit on the overhead.

4.4.2 Register-based dependencies

Our approach transforms control dependencies into data dependen-
cies. The effectiveness of our approach depends on whether or not
these data dependencies can introduce variations in the execution time
themselves. Since our compiler back-end uses conditional move in-
structions to remove the key-dependent branches from a program, we
investigated whether or not the use of conditional move instructions
can introduce variable execution times.

Consider the following loop bodies:

1 body1: mov ecx, edi
2 add eax, ebx
3

4 body2: mov eax, edi
5 add eax, ebx
6

7 body3: cmp edx, 0
8 cmove eax, edi
9 add eax, ebx

In the first two loop bodies, the second instruction adds the value in
register ebx to the value in register eax. If the first loop body is exe-

4.4 Evaluation 129

cuted in a loop, all additions in subsequent iterations are dependent on
each other: register eax serves as a kind of accumulator, to which the
value in ebx is added repeatedly. In the second loop body, each iter-
ation starts with a fresh value being copied into eax. The register re-
naming pipeline stages in out-of-order processors is able to detect this.
When we measured the execution of an unrolled loop of loop body 2 on
an Intel Core 2 Duo, it was 40% faster than the execution of an unrolled
loop of body 1.

The third loop body can, depending on the condition flag, do the
same computation as the first or second loop body. The cmove instruc-
tion is a conditional move instruction. When the zero flag is set to true,
cmove will copy the value of register edi into register eax, otherwise
the value of register eax remains unchanged. The zero flag is set by
comparing the value of register edx to zero. Thus, the computation
performed by loop body 3 will be the same as either body 1 or 2, de-
pending on the value of edx. Since loop bodies 1 and 2 had different
timing behavior, the question is whether the value of edx can influence
the timing behavior of loop body 3.

On an Intel Core 2 Duo, we measured the execution time of this loop
body in an unrolled loop for different values of edx, i.e., for the case in
which the conditional move is executed, and for the case in which it is
not executed. No significant timing differences were observed, indicat-
ing that the answer to the above question is no. So whereas loop body
1 and loop body 2 had different dependencies between instructions, re-
sulting in different timing behavior, the value of edx in loop body 3 has
no influence on the timing behavior.

The reason is that x86 processors implement the conditional move
instructions as an instruction that is executed unconditionally.4 This in-
struction has two source operands, one of which is implicitly the same
as the destination operand. From these two source operands, one is se-
lected based on the condition flags, and then written to the destination
operand. This can be implemented at the hardware level by a multi-
plexer.

Furthermore, we conjecture that this analysis holds for all proces-
sors. For the x86 processors and ARM processors we know of, the anal-
ysis holds. The reason is that these out-of-order processors rely on the

4We did not find public information on this subject, but the correctness of our find-
ings and our assumption on the implementation of the conditional move instructions
was confirmed privately by Intel engineers.

130 Removing variation in execution time

reordering of operations to achieve high performance. Fundamentally,
these processors try to execute instructions as soon as they can. This
means that the processor will consider an instruction ready for execu-
tion as soon as it can somehow determine that there are no more true
data dependencies that require the instruction to wait for the result of
other instructions still being executed. The technique used to differ-
entiate true data dependencies from false data dependencies is called
register renaming [136]. Register renaming is simplified significantly if
the processor already knows in the processor pipeline front-end which
instructions depend on which other instructions. So register renam-
ing is simplified by implementing a conditional move instruction by
means of a multiplexer instruction. The drawback of this implementa-
tion is that even when the processor somehow knows beforehand that
the condition flag is false, the processor cannot exploit this information
to get rid of superfluous dependencies. Furthermore, this multiplexer
requires an additional register read per conditional move instruction.
On most processors this drawback is not big enough to warrant the im-
plementation of more complex register renaming techniques. So it is
safe to assume that on x86 processors and on many other out-of-order
processors, such as the ARM Cortex-A9, conditional execution will not
introduce data-dependent timing behavior as long as the conditional
execution is limited to move instructions.

We verified this experimentally on both Intel and ARM processors.
For Intel, we verified this on the Core 2 Duo processors, and for ARM
we verified it on the in-order Cortex-A8 core, and the out-of-order
Cortex-A-9 and Cortex A-15 cores5.

4.4.3 Effectiveness

Table 4.1 presents average execution times and average branch mis-
predications, as well as other statistics on the various modular expo-
nentiation microbenchmarks and on the OpenSSL benchmark for the
different inputs.

Table 4.1(a) presents, for each microbenchmark version and for
the appropriate input set, the execution times averaged over 20 runs.
Table 4.1(b) presents the standard deviation of the measured times.
Clearly, for all of the benchmarks, the original versions behave quite

5For the Cortex-A9, ARM engineers confirmed our theoretical analysis in private
communication.

4.4 Evaluation 131

differently for their different inputs. Hence, these benchmark versions
leak information about the secret inputs.

The if-converted benchmarks have significantly longer execution
times, because of the overhead introduced by the if-conversion, but the
execution times obtained with the different inputs now display signifi-
cantly more similarity. The same can be observed in the benchmarks af-
ter if-conversion and division elimination, indicating that our approach
has indeed removed all timing dependence on the secret inputs.

To assess the confidence with which we can draw the above con-
clusion, we have performed multiple t-tests [63]. Table 4.1(c) depicts
the p-values obtained from t-tests applied to three combinations of in-
puts: combination all zero - all one, combination regular - random, and
combination input1 - input2.

For the 32-bit and 64-bit modular exponentiation, we see that if-
conversion alone does not suffice to achieve a high confidence. This
follows from the presence of a variable-latency division instruction. For
the same microbenchmarks, we then emulated the division instruction
with a call to a constant-time division instruction, as described in Sec-
tion 4.3. Table 4.1 also contains measurements with emulated division
instructions. From those measurements, we can conclude with confi-
dence that our approach does in fact result in key-independent timing
behavior.

For the 256-bit modular exponentiation, if-conversion alone proves
to be sufficient to eliminate all key-dependent timing behavior. In this
256-bit big integer implementation, the divisor of all executed division
instructions is the fixed 64-bit value 0x00000000ffffffff. The compiler
replaces this division by a constant with a multiplication and a shift.
As as result, no division instructions occur in the compiled code.

For the OpenSSL code, the same reasoning holds: there are no divi-
sion instructions, so we only need to apply if-conversion to make this
code’s timing behavior independent of the input key.

Tables 4.1(d), 4.1(e) and 4.1(f) present similar statistical information
for the number of branch mispredictions measured with performance
counters. Similar conclusions can be drawn. Here as well, we can be
confident that if-conversion and division instruction elimination are
successful in eliminating timing behavior dependencies on the secret
inputs. Still, two remarks need to be made here.

Firstly, very high standard deviations were obtained in the num-
bers of measured branch mispredictions with several versions of mod-

132 Removing variation in execution time

exp32. We repeated these experiments multiple times, but never ob-
tained more consistent results. We can not explain why the standard
deviations of 1193.2 and 514.8 are as high as they are. Clearly, however,
these high standard deviations do not occur in the if-converted code.
Lower standard deviations are important to us because they allow us
to draw stronger conclusions about the transformed programs.

Secondly, the confidence scores 0.0077 and 0.2701 for the number
of branch mispredicts of the if-converted modexp32 and modexp64
benchmarks are relatively low, notwithstanding the fact that there is no
key-dependent control flow present in those benchmarks. The expla-
nation for this result can presumably be found in the complex pipeline
behavior of the Intel Core 2 Duo pipeline. Remember that there still are
variable-latency division instructions present in these benchmark ver-
sions. The actual latencies of those instructions occurring during the ex-
ecution of the program have an effect on the number of branches that
are fetched by the processor and issued speculatively [136]. So while
the number of truly executed branches (so-called retired branches) is
independent of the secret inputs of these benchmarks, the number of
speculatively issued branches is not. Hence the number of mispre-
dicted branches, some of which were speculative, is not independent
either. While we cannot verify this behavior due to the closed nature
of Intel’s processor, this is a reasonable explanation, given the measure-
ments and an abstract knowledge on how out-of-order processor archi-
tectures work. If division instructions are eliminated as well, this effect
does not play anymore, and then we can conclude with much higher
confidence that the number of branch mispredictions does not depend
on the secret inputs anymore.

4.4.4 Efficiency

Figure 4.5 displays the average performance overhead of applying
if-conversion and, where necessary, the elimination of division instruc-
tions. We averaged this overhead over a large number of pseudo-
random inputs. Since the performance overhead will depend on the
original execution time, which depends heavily on the input, we have
opted to show the average overhead of the transformation on pseu-
dorandom inputs. Because the LLVM middle-end itself already if-
converted the code in f2, and because the code in f1 only features a
single execution path, these fragments undergo no additional trans-
formations in our approach. So we observe no slowdown for them.

4.4 Evaluation 133

Table 4.1: Statistical results of if-conversion and the elimination of variable-
latency division instructions

134 Removing variation in execution time

Figure 4.5: Average (over pseudo-random inputs) execution slowdown after
applying if-conversion and elimination of variable-latency division instruc-
tions.

Surprisingly, the simple functions f3 and f4 became faster after if-
conversion. This can be attributed to the improved branch prediction.
As there are less branches to predict in the converted code, and in par-
ticular less branches that depend on pseudo-random inputs, less cycles
are lost after mispredictions.

For the other microbenchmarks, increasing complexity results in
additional overhead. The maximum overhead observed corresponds to
a slowdown with a factor 24.0. This is very large, but it will only occur
in those program fragments that (1) involve computations on sensitive
keys, and (2) include division instructions.

4.4.5 Code size overhead

The increase in code size due to if-conversion and elimination of di-
visions is depicted in Figure 4.6. As is to be expected, our control ex-
periment, f1, has kept the same size, since the original function already
had straight-line control flow. There is also no increase in code size
for experiment f2, because the compiler middle-end had already ap-
plied if-conversion. The other experiments also behave as expected: the
more complicated the control flow, the greater the increase in code size
after if-conversion. Similarly, the more memory operations there are,
the more the code size increases. Without the elimination of variable-

4.5 Comparison with existing techniques 135

Figure 4.6: Code size increase after applying if-conversion and elimination of
variable latency division instructions. The horizontal bars indicate the addi-
tional overhead due to the constant-time division function.

latency division instructions, the code becomes up to 2.75 times larger.
When we also replace the division instructions by calls to a subroutine,
the code sizes become up to 3.21 times larger.

To assess these results correctly, two observations need to be made.
Firstly, in real applications, these code size increases will only occur on
those fragments that need to be protected because they involve key-
dependent control flow. The remaining part of the code will remain the
same, so the overall code size increase will be much more limited. Sec-
ondly, in the code sizes after division instruction elimination, the size
of the subroutines that implement the division operations are included.
Their relative contribution to the total code size is marked with the hor-
izontal line in the bars in Figure 4.6: the fraction above the line comes
from the newly included division subroutines. Their absolute sizes are
77 bytes for the 32-bit version, and 80 bytes for the 64-bit version. Since
programs are typically much larger than 80 bytes, this clearly indicates
that their contribution to the code size increase in real applications will
be minimal.

4.5 Comparison with existing techniques

Several approaches have been proposed before to mitigate side chan-
nels in cryptographic code. In what follows, we discuss some existing

136 Removing variation in execution time

techniques and compare them to our approach.

4.5.1 Source-based solutions

One class of solutions is to rewrite the source code so that the source
code’s control flow no longer depends on the secret information. Mol-
nar et al. [108] presented an approach relying on source-to-source trans-
formations. Because conditional execution is not available on all archi-
tectures, Molnar et al. presented a variation on our use of conditional
execution. Consider the following C code fragment, which is very sim-
ilar to a fragment in their paper:

1 if (n != 0) {
2 if (n % 2) {
3 r = r * b;
4 n = n - 1;
5 } else {
6 b = b * b;
7 n = n / u;
8 }
9 }

They rewrite this fragment as

1 m1 = -(n != 0);
2 m2 = m1 & (-(n % 2));
3 r = (m2 & (r * b)) | (˜m2 & r);
4 n = (m2 & (n - 1)) | (˜m2 & n);
5 m2 = m1 & ˜ m2;
6 b = (m2 & (b * b)) | (˜m2 & b);
7 n = (m2 & (n / u)) | (˜m2 & n);

Rather than using conditional execution, Molnar et al. use bit masking.
Conditions are used to generate masks m1 and m2 that consists of all
zeros or all ones, and then they mimic the conditional execution by
using the masks. As is obvious from the example, this allows them to
handle nested conditions. However, there are very fundamental issues
with their approach, that we will discuss next.

Compilers As Molnar et al. indicate themselves, some compilers will
translate the negation operator into conditional branches. They found
this to be the case for the very popular GCC compiler, and for that rea-
son they could not use that compiler. Likewise, they found it necessary

4.5 Comparison with existing techniques 137

to write a static verifier that can validate whether the compiled code re-
ally provides key-independent control flow. This weakens their claim
that a source-to-source approach is practical.

This also hints at another problem of their approach: if the compiler
is able to see through their masking constructs, he will be able to opti-
mize the code to, for example, get rid of unnecessary copy operations
involving temporary variables or to propagate constant values through
the program [110]. Furthermore, it is possible that the compiler will
be able to optimize the code by reintroducing conditional branches. In
other words, if one uses a compiler that is smart enough to optimize
the rewritten code, one risks that the compiler is so smart that it will
optimize the code too much, from a security point of view. And if the
compiler is not smart enough to see through the masking, he will sim-
ply perform no optimizations.

By contrast, in our compiler back-end approach relying on condi-
tional execution, the compiler has already optimized the code using
the full potential of the original code that was much easier to analyze.
As such, full compiler optimization and guaranteed key-independent
control flow can be combined without any problem.

Exceptions and side-effects Molnar et al. treat side effects such as ex-
ceptions and store instructions incorrectly. They claim that they can
neglect exceptions because they only consider correct programs in the
first place, in which no exceptions occur. This is incorrect. In the above
code fragments, in the original code the division would only have been
executed if (n != 0) and if (n % 2) was zero. Hence, in the original
version, it does not matter what the value of u is if those conditions are
not met. So it is perfectly fine to execute the original fragment with, for
example, n being 5, and u being 0. No division-by-zero exception will
occur. In the rewritten code however, the exception will occur, as the
division is executed unconditionally in that code. This clearly changes
the program behavior, which is unacceptable for a program transfor-
mation.

Finally, Molnar et al. do not discuss how to handle conditional func-
tion calls, and conditional loads or stores. This is not a fundamental
issue of their approach, it is merely an incompleteness. Similar tech-
niques as the one we use to safe-guard instructions can be used in their
approach.

138 Removing variation in execution time

4.5.2 Binary rewriting

Other compiler-based techniques have been proposed as well. Bayrak
et al. [22] use compiler transformations to mitigate certain power-based
attacks. They first analyze the execution of the program, determine
which instructions introduce variation in the power traces, and then se-
lectively apply countermeasures in their compiler extension. Their ap-
proach is complementary to ours: while we do not consider any other
side channels than time, they do not consider any other side channels
than power.

4.5.3 Hardware instructions

Hardware extensions can offer secure and efficient solutions for deal-
ing with side channels in cryptographic code. Because they are ef-
ficient, they should be used whenever possible, rather than our ap-
proach. However, such extensions are limited in two ways.

Only some algorithms are supported When processor designers add
cryptographic extensions, they do not add support for all possible cryp-
tographic algorithms. This means that implementers of algorithms that
cannot be expressed in terms of the secure extensions, will still have to
rely on software-based mitigation techniques such as ours.

Long time before general availability Designing, testing, and mak-
ing processors takes time. Thus, there can be a significant amount of
time between the standardization of a cryptographic algorithm, and
the availability of the relevant hardware extensions. For example, the
Rijndael cipher was standardized as AES in 2001 [115]. The first cache
timing attacks against AES were published in 2005 [23, 119]. Still, it was
only in 2010 that Intel released its first processor to include support for
AES primitives [74]. Even then, not all customers of Intel processors
will immediately switch to such processors. Until all customers have
switched to processors with hardware mitigations, software-based mit-
igation techniques can still prove valuable.

Our side-channel aware compiler can include knowledge of existing
cryptographic hardware instructions, and generate code that uses them
if they are available, but can fall back to slower code when the used

4.6 Conclusion 139

extensions are not available on the processor on which the generated
code runs.

4.6 Conclusion

We introduced a timing side-channel aware compiler. It allows devel-
opers to automatically protect their applications against timing side
channels. We have showned how if-conversion can be applied to re-
move control flow that depends on private information from a pro-
gram. Furthermore, we introduced different solutions for two data-
flow dependent timing leaks. We we also discussed the overhead asso-
ciated with these different mitigation strategies.

140 Removing variation in execution time

Chapter 5

Conclusions & Future work

In this PhD work, we investigated the influence of different kinds of
program variation on the security of programs. In this chapter, we
summarize the conclusions obtained in the course of this work, and
add some further thoughts. Of course, no work is ever finished, which
is why we will also discuss some potential future research directions.

5.1 Conclusions

5.1.1 Variation between program versions

Real-world attack tools can be used effectively by attackers to recover
source-code induced mutations in programs by comparing an un-
patched binary with a patched binary. We introduced models that can
be used to automate the behavior of an attacker using real-world attack
tools. Thus, we can automatically approximate the effort required by
an attacker using such tools.

We used real attack tools to show that an attacker can indeed eas-
ily find the source-code induced mutations from a binary patch. The
efforts required by the attacker can be significantly increased by intro-
ducing artificial variation between the original and patched versions of
a program.

Furthermore, we have shown that we can include the output from
attack tools to introduce these artificial changes only in the locations
where it will increase the attack effort, while keeping the overhead low.
We iteratively use feedback from attack tools to choose which diversi-
fication transformations to apply to which code fragments. This itera-

142 Conclusions & Future work

tive, feedback-driven approach was implemented and evaluated in our
Glaucus diversification framework.

This research shows that software vendors that wish to protect their
patches from immediate exploitation can use software diversity to in-
crease the attack effort. However, there are some choices to be made in
order to apply software diversity. In fact, both attackers and software
vendors will have to make different trade-offs.

Software vendors will have to consider the urgency of the vulnera-
bility. When a white-hat hacker contacts a developer about a zero-day
vulnerability for which he has an exploit, it can be critical to fix the vul-
nerability without exposing it publicly by means of an all too obvious
patch. When some bug has been known publicly for a long time and no
exploit has ever been constructed, there will be little need to protect a
patch. Similarly, this urgency will also depend on the speed with which
users apply updates: software that automatically updates itself with se-
curity patches will have a faster adoption rate than software that users
have to re-install from scratch.

Software vendors will also need to decide how much overhead they
will tolerate. This is both overhead in execution time as overhead in
patch size. Too much overhead in execution time might be unaccept-
able, except in the most urgent cases. In cases of an urgent patch, the
software vendor could decide that a higher overhead is acceptable until
most users have upgraded, and then release a separate, undiversified
update without any performance overhead. Similarly, software diver-
sity can introduce a significant overhead in binary patch size. It has to,
since small patches will immediately point the attacker to the changed
instructions. However, this will also increase the bandwidth needed to
distribute the patch.

While we have shown how to represent these trade-offs, we cannot
decide on them ourselves. They will depend on the operational and
economic situation of the software vendor, in addition to the impor-
tance of the security issue that is being fixed.

Similarly, the attacker will have a trade-off to make as well. By fo-
cusing on small subsets of the attack tool’s output, the attacker can re-
duce his attack time. However, this comes at a cost of reducing the
amount of SCIMs he will be able to identify. When no SCIMs remain in
the set of changes the attacker studies manually, he will of course have
no success in finding the vulnerability. Either the attacker then aban-
dons his search, or starts again by considering a less constraining set of

5.1 Conclusions 143

heuristics. While we can represent the attacker’s options, we can only
do so with the additional knowledge of the ground truth. The quality
of the different attack heuristics depends on the SCIMs. The attacker’s
only a priori knowledge of SCIMs is contained in the description of
the security fix. Whether or not this description is enough to correctly
decide the best heuristics will depend on the specific situation. Thus,
while the software vendor has all the information needed to make an
informed decision of which strategy to use in an attack, the attacker
possibly himself starts without any required information to choose his
best option.

Once enough users have applied the patch, there is no longer a need
for the details of the SCIMs to remain protected. It is then up to the
software vendor to make a trade-off between the time the SCIMs are
protected and how much time users have to apply the patch. In fact, a
similar trade-off exists in the open source community, where it can be
argued that security patches should be developed into a private repos-
itory and only put into a public repository at a later time to hide the
details of security patches before they are released to the public [19].

5.1.2 Variation of execution time in a program

Execution time variation can leak a significant amount of information.
While the execution time will depend both on data flow and control
flow, this PhD work focused on removing the execution time varia-
tion caused by control flow, although we also investigated the effects
of some data-dependent operations. This work resulted in a timing
side-channel aware compiler, which can generate binary code without
timing variation. Thus, we have shown that a software vendor can ef-
fectively protect himself against attacks where the execution time vari-
ation depends on the control flow using this compiler.

However, rewriting the control flow dependencies into data flow
dependencies can introduce significant execution time overhead. Still,
software vendors want their programs to be as fast as possible. In this
respect, cryptographic software does not differ from other software.
The ideal scenario would obviously for all cryptographic code to have
private data-independent control flow by design. Then all a timing
side-channel aware compiler would have to do, is to ensure that it does
not introduce any new control flow dependencies through any of its
optimization passes. Sadly, this is not the case. Thus, software vendors

144 Conclusions & Future work

have a trade-off between cost and overhead. At the extreme points of
this trade-off are rewriting all cryptographic code manually to make it
free of timing side channels, or automatically rewriting all code with a
timing side-channel aware compiler. While manually rewriting code is
the most expensive solution, it can also result in the lowest overhead.
Similarly, the automatic solution will have the lowest cost, but may
incur more overhead. A middle ground could be to rewrite the most
computation-intensive code manually (or even to allow some variation
to still exist there), while automatically rewriting the remaining code.
How much code can be automatically protected will again depend on
the specific use case.

Our side-channel aware compiler will also remove some data-
dependent timing variation. It removes the timing variation by re-
placing some variable-latency instructions with custom fixed-latency
instruction sequences. This again introduces a significant execution
time overhead. However, since a compiler is able to target specific
architectures, a side-channel aware compiler might have knowledge
of which architectures actually exhibit the timing-dependent behavior.
Similarly, when some architectures have explicit support to disable
timing-dependent behavior, the compiler can have knowledge of this
as well. Thus, when the compiler generates code for a specific architec-
ture, it can generate code that is optimized for speed on this particular
architecture, while still being side-channel free.

5.2 Future work

5.2.1 Variation between program versions

Both attacks using program variation and defenses against such attacks
can be improved, based on our current work:

• An attacker could try to automatically detect which transforma-
tions have been applied to a binary, and undo or normalize their
effects before comparing the programs. Depending on how eas-
ily an attacker can normalize existing diversification transforma-
tions, more more resilient transformations could be investigated.

Currently we have a master thesis student working on imple-
menting and evaluating normalization transformations. The
transformations all use dynamic information. The first trans-

5.2 Future work 145

formation is to remove all unexecuted code, and rewriting all
remaining branch instructions so that all their edges point to
executed code, by replacing conditional branches with uncondi-
tional ones if necessary. Dynamically computed jump targets are
replaced by their dynamically observed values. Similarly, calls
to branch functions are replaced by the control transfers that are
dynamically observed. Preliminary results show a significant
improvement in the number of matched instructions.

• While the feedback to select specific transformations for Glaucus
currently only consists of the heuristics BinDiff used, it would be
worthwhile to also include feedback from other diffing tools. In
particular, including feedback on the heuristics used by Binary-
Differ would be worthwhile.

• While the cost function for Glaucus only uses execution count in-
formation, we could also include information about the code size
overhead that is introduced. This should result in binaries with
lower code size overhead. Furthermore, we could also use a bet-
ter estimation of the performance overhead.

• We could also try to decrease the apparent program variation as
seen by the different attack tools. One potential technique would
rewrite the programs so that they are emulators of a virtual in-
struction set. The actual program code is then rewritten in this
virtual instruction set and added to the program as data. Any
SCIM is then in the data section, which would remain undetected
by most diffing tools.

• Another possibility is to create a different kind of model for patch-
based attacks. Our current approach evaluates actual attack tools.
However, it might be possible to try and model the underlying
assumption all these tools make, and create an abstract model for
all similar diffing tools. This model can then be used in combi-
nation with a certified compiler to generate code that comes with
both a proof that the generated code is equivalent to the source
code, and a proof that the generated code is resilient against the
modeled attacks. Such models have already been proposed for
obfuscation [73] and have been integrated into the CompCert C
compiler [25].

146 Conclusions & Future work

5.2.2 Variation of execution time in a program

We introduced a timing side-channel aware compiler. We can extend
this work in multiple ways:

• Rewriting control dependencies into data dependencies can sig-
nificantly increase the overhead. We remove all key-dependent
control dependencies in the program. However, this need not be
quite so extreme. We could just as well only selectively remove
control dependencies. As described in the related work, work
already exists that can estimate the information leakage caused
by timing variation. This technique could be combined with our
side-channel aware compiler, so that it initially only removes the
control flow that leaks the most information. Then, depending on
how much overhead is considered acceptable, more control flow
could be removed, ordered by its information leakage.

• Our approach rewrites all code that depends on private informa-
tion, which introduces a slowdown. We could combine our tech-
niques with a just-in-time compiler that by default executes the
fast but time-dependent code. When it detects a potential attack,
it switches at run time to the slower but timing-independent code.
This line of research is currently being investigated by a PhD stu-
dent at our group.

• While our compiler is timing side-channel aware, other existing
work has introduced a power side-channel aware compiler [22].
Both approaches could be combined into a single side-channel
aware compiler. Such a compiler would probably have to tar-
get architectures more specifically than we do, since the possible
power leakages and their mitigations will depend more on the
features of the target architecture than our timing mitigations do.

• Our work focused on removing timing side channels. However,
it is not always clear if and how timing variation can be exploited
by an attacker. Some large time variations might not give useful
information to an attacker, while some small timing variations do.
An interesting line of research would be to automate timing side-
channel attacks as well. We could model the execution time of a
program on a processor core, and use this model to automate an
attack that extracts the private information.

Bibliography

[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the
power of simple branch prediction analysis. In ASIACCS ’07,
pages 312–320, 2007.

[2] Onur Acıiçmez. Yet another microarchitectural attack: exploiting
I-cache. In Proceedings of the First Computer Security Architecture
Workshop (CSAW), pages 11–18, 2007.

[3] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New
results on instruction cache attacks. Cryptographic Hardware and
Embedded Systems, CHES 2010, pages 110–124, 2010.

[4] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware paral-
lelism implies cheap security. In Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 80–91. IEEE, 2007.

[5] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj
Rohatgi. The EM sidechannel (s). Cryptographic Hardware and
Embedded Systems-CHES 2002, pages 29–45, 2003.

[6] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren.
Conversion of control dependence to data dependence. In POPL
’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 177–189, 1983.

[7] Bertrand Anckaert. Diversity for Software Protection. PhD thesis,
Ghent University, 2008.

[8] Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam
Venkatesan. Proteus: virtualization for diversified tamper-
resistance. In Proceedings of the workshop on Digital Rights Man-
agement, pages 47–58, 2006.

148 BIBLIOGRAPHY

[9] Bertrand Anckaert, Matias Madou, and Koen De Bosschere. A
model for self-modifying code. In Proceedings of the 8th Infor-
mation Hiding Conference, volume 4437 of LNCS, pages 232–248,
2007.

[10] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and
Terran Lane. Graph-based malware detection using dynamic
analysis. Journal in Computer Virology, 7:247–258, 2011.

[11] Geneviève Arboit. A method for watermarking Java programs
via opaque predicates. In The Fifth International Conference on Elec-
tronic Commerce Research (ICECR-5), 2002.

[12] ARM and Thumb-2 instruction set quick reference card.
http://infocenter.arm.com/help/topic/com.arm.
doc.qrc0001l/QRC0001_UAL.pdf.

[13] ARM architecture reference manual ARMv7-A and ARMv7-R
edition, 2010.

[14] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predic-
tive black-box mitigation of timing channels. In Proceedings of
the 17th ACM conference on Computer and Communications Security
(CCS), pages 297–307. ACM, 2010.

[15] David I. August, John W. Sias, Jean-Michel Puiatti, Scott A.
Mahlke, Daniel A. Connors, Kevin M. Crozier, and Wen mei
W. Hwu. The program decision logic approach to predicated ex-
ecution. In ISCA ’99: Proceedings of the 26th annual international
symposium on Computer architecture, pages 208–219, Washington,
DC, USA, 1999. IEEE Computer Society.

[16] Algirdas Avizienis and Liming Chen. On the implementation of
N-version programming for software fault tolerance during exe-
cution. In The 1st IEEE Computer Software and Applications Confer-
ence, pages 149–155, 1977.

[17] Michael Backes and Boris Köpf. Formally bounding the side-
channel leakage in unknown-message attacks. Computer Security-
ESORICS 2008, pages 517–532, 2008.

[18] Elena Gabriela Barrantes, David Ackley, Stephanie Forrest, and
Darko Stefanovi. Randomized instruction set emulation. ACM
Trans. on Info. and Syst. Secu., 8(1):3–40, 2005.

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf

BIBLIOGRAPHY 149

[19] Adam Barth, Saung Li, Benjamin Rubinstein, and Dawn Song.
How open should open source be? arXiv:1109.0507v1, 2011.

[20] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving
the efficiency of dynamic malware analysis. In Proceedings of the
2010 ACM Symposium on Applied Computing, SAC ’10, pages 1871–
1878, New York, NY, USA, 2010. ACM.

[21] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze:
A tool for analyzing malware. In 15th Annual Conference of the
European Institute for Computer Antivirus Research (EICAR), 2006.

[22] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-
Xavier Standaert, and Paolo Ienne. A first step towards auto-
matic application of power analysis countermeasures. In Design
Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages
230–235. IEEE, 2011.

[23] Daniel J. Bernstein. Cache-timing attacks on AES. Technical re-
port, The University of Illinois at Chicago, 2005.

[24] Sandeep Bhatkar, Daniel DuVarney, and R. Sekar. Address obfus-
cation: An efficient approach to combat a broad range of mem-
ory error exploits. In The 12th USENIX Security Symposium, pages
105–120, 2003.

[25] Sandrine Blazy and Roberto Giacobazzi. Towards a formally ver-
ified obfuscating compiler. In SSP 2012-2nd ACM SIGPLAN Soft-
ware Security and Protection Workshop, 2012.

[26] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In Cryptographic Hardware and Embedded Systems
CHES 2006, LNCS volume 4249, pages 201–215. Springer, 2006.

[27] Gunnar Brinkmann and Bart Coppens. An efficient algorithm for
the generation of planar polycyclic hydrocarbons with a given
boundary. Match-Communications in Mathematical and in Computer
Chemistry, 62(1):209–220, 2009.

[28] Julien Brouchier, Tom Kean, Carol Marsh, and David Naccache.
Temperature attacks. Security & Privacy, IEEE, 7(2):79–82, 2009.

[29] Billy Bob Brumley and Risto M. Hakala. Cache-timing template
attacks. Advances in Cryptology–ASIACRYPT 2009, pages 667–684,
2009.

150 BIBLIOGRAPHY

[30] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are
still practical. Computer Security–ESORICS 2011, pages 355–371,
2011.

[31] David Brumley and Dan Boneh. Remote timing attacks are prac-
tical. In SSYM’03: Proceedings of the 12th conference on USENIX
Security Symposium, 2003.

[32] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang
Zheng. Automatic patch-based exploit generation is possible:
Techniques and implications. In IEEE Symposium on Security and
Privacy, pages 143–157, 2008.

[33] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Code
normalization for self-mutating malware. Security & Privacy,
IEEE, 5(2):46–54, 2007.

[34] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Fal-
carin, Filippo Ricca, Marco Torchiano, and Paolo Tonella. To-
wards experimental evaluation of code obfuscation techniques.
In Proceedings of the 4th ACM workshop on Quality of protection,
pages 39–46. ACM, 2008.

[35] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Fal-
carin, Filippo Ricca, Marco Torchiano, and Paolo Tonella. The
effectiveness of source code obfuscation: an experimental assess-
ment. In Program Comprehension, 2009. ICPC’09. IEEE 17th Inter-
national Conference on, pages 178–187. IEEE, 2009.

[36] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van
Oorschot. White-box cryptography and an AES implementation.
In Selected Areas in Cryptography, pages 250–270. Springer, 2003.

[37] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van
Oorschot. A white-box DES implementation for drm applica-
tions. Digital Rights Management, pages 1–15, 2003.

[38] M. Christodorescu, S. Jha, J. Kinder, S. Katzenbeisser, and
H. Veith. Software transformations to improve malware detec-
tion. Journal in Computer Virology, 3(4):253–265, 2007.

[39] The Clang Team. Clang Compiler User’s Manual, 2013.

BIBLIOGRAPHY 151

[40] Frederick Cohen. Operating system evolution through program
evolution. Computers and Security, 12(6):565–584, 1993.

[41] J. Coke, H. Balig, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon,
J. Abel, and A. Valles. Improvements in the Intel Core 2 pro-
cessor family architecture and microarchitecture. Intel Technology
Journal, 12(03):179–192, 2008.

[42] Christian Collberg, Clark Thomborson, and Douglas Low. Man-
ufacturing cheap, resilient, and stealthy opaque constructs. In
Proceedings of the 25th Conference on Principles of Programming Lan-
guages, pages 184–196. ACM Press, 1998.

[43] Bart Coppens, Bjorn De Sutter, and Koen De Bosschere. Protect-
ing your software releases. IEEE Security & Privacy, 11(2):47–54,
2013.

[44] Bart Coppens, Bjorn De Sutter, and Jonas Maebe. Feedback-
driven binary code diversification. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 9(4):24:1–24:26, 2013.

[45] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and
Bjorn De Sutter. Practical mitigations for timing-based side-
channel attacks on modern x86 processors. In Proceedings of the
2009 30th IEEE Symposium on Security and Privacy, pages 45–60.
IEEE Computer Society, 2009.

[46] Core Security Technologies. Windows SMTP service DNS query
id vulnerabilities. CoreLabs Security Advisory, 2010.

[47] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,
Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and
Jason Hiser. N-variant systems: A secretless framework for secu-
rity through diversity. In The 15th USENIX Security Symposium,
pages 105–120, 2006.

[48] Anthony Cozzie, Frank Stratton, and Samuel T. King Hui Xue.
Digging for data structures. In Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

[49] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportu-
nities and limits of remote timing attacks. ACM Transactions on
Information and System Security (TISSEC), 12(3):17, 2009.

152 BIBLIOGRAPHY

[50] Bruno De Bus, Dominique Chanet, Bjorn De Sutter, Ludo
Van Put, and Koen De Bosschere. The design and implemen-
tation of FIT: a flexible instrumentation toolkit. In Proceedings of
the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 29–34. ACM, 2004.

[51] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique
Chanet, and Koen De Bosschere. Link-time optimization of ARM
binaries. In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, pages 211–220, 2004.

[52] Bjorn De Sutter, Bertrand Anckaert, Jens Geiregat, Dominique
Chanet, and Koen De Bosschere. Instruction set limitation in sup-
port of software diversity. In 11th International Conference on Infor-
mation Security and Cryptology ICISC 2008, number 5461 in LNCS,
pages 152–165, 12 2008.

[53] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Sifting
out the mud: Low level C++ code reuse. In ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages and
Applications, pages 275–291, 2002.

[54] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-
time binary rewriting techniques for program compaction. ACM
Trans. on Prog. Lang. and Syst., 27(5):882–945, 9 2005.

[55] Saumya Debray, William Evans, Robert Muth, and Bjorn De Sut-
ter. Compiler techniques for code compression. In Workshop on
Compiler Support for System Software, pages 378–415, 1999.

[56] Daniel Dolz and Gerardo Parra. Using exception handling to
build opaque predicates in intermediate code obfuscation tech-
niques. Journal of Computer Science & Technology, 8(2), 2008.

[57] Thomas Dullien and Rolf Rolles. Graph-based comparison of ex-
ecutable objects. In Symposium sur la Sécurité des Technologies de
l’Information et des Communications, pages 1–3, 2005.

[58] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient
cryptography. In IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 293–302. IEEE, 2008.

[59] Chris Eagle. The IDA Pro Book. No Starch Press, 2nd edition, 2011.

BIBLIOGRAPHY 153

[60] Nicolás Economou. Microsoft Virtual PC: The hyper-hole-visor
bug & MS10-048: Win32k window creation vulnerability (CVE-
2010-1897), 2010.

[61] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.Stuxnet
dossier, version 1.4. Technical report, Symantec, 2011.

[62] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Compre-
hensive kernel instrumentation via dynamic binary translation.
In Proceedings of the Seventeenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 135–146. ACM, 2012.

[63] Thomas S. Ferguson. Mathematical Statistics: A Decision Theoretic
Approach. Academic Press, 1967.

[64] Halvar Flake. Structural comparison of executable objects. In
Proceedings of the Detection of Intrusions and Malware & Vulnerabil-
ity Assessment, GI SIG SIDAR Workshop, pages 161–173, 2004.

[65] Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen
De Bosschere. A novel obfuscation: Class hierarchy flattening.
In Proceedings of 5th International Symposium on Foundations and
Practice of Security, 2012.

[66] Stephanie Forrest, Anil Somayaji, and David Ackley. Building
diverse computer systems. In The Workshop on Hot Topics in Oper-
ating Systems, pages 67–72, 1997.

[67] Michael Franz. E unibus pluram: massive-scale software diver-
sity as a defense mechanism. In Proceedings of the 2010 workshop
on New security paradigms, pages 7–16. ACM, 2010.

[68] Free Software Foundation, Inc. GNU Compiler Collection (GCC)
Manual, 2013.

[69] Stefan Frei, Thomas Duebendorfer, and Bernhard Plattner. Fire-
fox (in) security update dynamics exposed. ACM SIGCOMM
Computer Communication Review, 39(1):16–22, 2008.

[70] Jeroen Frijters. Reverse engineering the MS10-060 .NET security
patch. Blogpost, 2010.

[71] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cam-
bridge University Press, 2012.

154 BIBLIOGRAPHY

[72] Debin Gao, Michael K. Reiter, and Dawn Song. Binhunt: Au-
tomatically finding semantic differences in binary programs. In
Proceedings of the 10th International Conference on Information and
Communications Security, ICICS ’08, pages 238–255, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[73] Roberto Giacobazzi, Neil D Jones, and Isabella Mastroeni. Obfus-
cation by partial evaluation of distorted interpreters. In Proceed-
ings of the ACM SIGPLAN 2012 workshop on Partial evaluation and
program manipulation, pages 63–72. ACM, 2012.

[74] Shay Gueron. Advanced encryption standard (AES) instructions
set. Technical report, Intel Mobility Group, 2008.

[75] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
games–bringing access-based cache attacks on aes to practice. In
Security and Privacy (SP), 2011 IEEE Symposium on, pages 490–505.
IEEE, 2011.

[76] Shon Harris, Allen Harper, Chris Eagle, and Jonathan Ness. Gray
hat hacking: the ethical hacker’s handbook. McGraw-Hill, 2008.

[77] Hans Hoogstraaten, Ronald Prins, Daniël Niggebrugge, Danny
Heppener, Frank Groenewegen, Janna Wettinck, Kevin Strooy,
Pascal Arends, Paul Pols, Robbert Kouprie, Steffen Moorrees,
Xander van Pelt, and Yun Zheng Hu. Black Tulip – report of
the investigation into the DigiNotar Certificate Authority breach.
Technical report, Fox-IT, 2012.

[78] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks
on digital signature schemes. Designs, Codes and Cryptography,
23(3):283–290, 2001.

[79] W.M. Hu. Reducing timing channels with fuzzy time. Journal of
Computer Security, 1(3):233–254, 1992.

[80] Robert Hundt, Easwaran Raman, Martin Thuresson, and Neil
Vachharajani. Mao – an extensible micro-architectural optimizer.
In Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, CGO ’11, pages 1–10,
Washington, DC, USA, 2011. IEEE Computer Society.

[81] Intel. IA-32 Intel Architecture Software Developer’s Manual, 2003.

BIBLIOGRAPHY 155

[82] Intel. IA-32 Intel Architecture System Programming Guide, 2003.

[83] Nephi Johnson. From patch to proof-of-concept: MS10-081. Blog-
post, 2011.

[84] Gaurav Kc, Angelos Keromytis, and Vassilis Prevelakis. Coun-
tering code-injection attacks with instruction-set randomization.
In The 10th ACM Conference on Computer and Communications Se-
curity, pages 272–280, 2003.

[85] Alexander Klink and Julian ‘Zeri’. Effective denial of service at-
tacks against web application platforms. 28th Chaos Communi-
cation Congress.

[86] Paul Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Advances in Cryptology
- CRYPTO96, pages 104–113. Springer, 1996.

[87] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology - CRYPTO 99, LNCS 1666,
pages 388–397. Springer-Verlag, 1999.

[88] Boris Köpf and David A. Basin. An information-theoretic model
for adaptive side-channel attacks. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 286–
296. ACM, 2007.

[89] Boris Köpf and Markus Dürmuth. A provably secure and effi-
cient countermeasure against timing attacks. In Computer Security
Foundations Symposium, 2009. CSF’09. 22nd IEEE, pages 324–335.
IEEE, 2009.

[90] David G. Korn, Joshua P. MacDonald, Jeffrey C. Mogul, and
Kiem-Phong Vo. Request for comments: 3284, the VCDIFF
generic differencing and compression data format. Technical re-
port, The Internet Society, 2002.

[91] Christopher Krügel, William K. Robertson, Fredrik Valeur, and
Giovanni Vigna. Static disassembly of obfuscated binaries. In
Proceedings of the 13th USENIX Security Symposium, pages 255–
270, 2004.

156 BIBLIOGRAPHY

[92] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. Fast
location of similar code fragments using semantic ‘juice’. In Pro-
ceedings of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop, page 5. ACM, 2013.

[93] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and
William S. Choi. A taxonomy of computer program secu-
rity flaws, with examples. ACM Computing Surveys (CSUR),
26(3):211–254, 1994.

[94] Chris Lattner and Vikram Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. Tech. Re-
port UIUCDCS-R-2003-2380, Computer Science Dept., Univ. of
Illinois at Urbana-Champaign, Sep 2003.

[95] Nate Lawson and Taylor Nelson. Exploiting timing attacks in
widespread systems. Black Hat USA Briefings, 2019.

[96] Byoungyoung Lee and YeongJin Jang. Exploit shop website,
2012.

[97] Clifford Liem. Tools and Methodologies for Layered, Diverse,
and Renewable Security in Tethered Systems. In Second Int. Work-
shop on Remote Entrusting, 2009.

[98] Cullen Linn and Saumya Debray. Obfuscation of executable code
to improve resistance to static disassembly. In Proceedings of the
10th ACM conference on Computer and Communications Security,
pages 290–299, 2003.

[99] Mark Loveless. Corporate security: A hacker perspective, 2006.

[100] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim M. Hazelwood. Pin: building customized program anal-
ysis tools with dynamic instrumentation. In ACM SIGPLAN No-
tices, volume 40, pages 190–200. ACM, 2005.

[101] Matias Madou, Bertrand Anckaert, Bjorn De Sutter, and Koen
De Bosschere. Hybrid static-dynamic attacks against software
protection mechanisms. In Proceedings of the 5th ACM workshop on
Digital Rights Management, pages 75–82, 2005.

BIBLIOGRAPHY 157

[102] Jonas Maebe, Dries Buytaert, Lieven Eeckhout, and Koen
De Bosschere. Javana: a system for building customized Java
program analysis tools. In ACM SIGPLAN Notices, volume 41,
pages 153–168. ACM, 2006.

[103] Jonas Maebe and Koen De Bosschere. Instrumenting self-
modifying code. Workshop on Automated and Algorithmic Debug-
ging, pages 103–113, 2003.

[104] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. Diota: Dy-
namic instrumentation, optimization and transformation of ap-
plications. In Compendium of Workshops and Tutorials held in con-
junction with PACT02, 2002.

[105] Bourquin Martial, King Andy, and Robbins Edward. Binslayer:
Accurate comparison of binary executables. In 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop
(PPREW 2013), 2013.

[106] Robert Martin, John Demme, and Simha Sethumadhavan. Time-
warp: rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks. In Proceedings of
the 39th International Symposium on Computer Architecture, pages
118–129. IEEE Press, 2012.

[107] Barton P. Miller and Kevin A. Roundy. Binary-code obfuscations
in prevalent packer tools. ACM Computing Surveys, June 2012.

[108] David Molnar, Matt Piotrowski, David Schultz, and David Wag-
ner. The program counter security model: Automatic detection
and removal of control-flow side channel attacks, 2005.

[109] HD Moore. Exploiting IIS via HTMLEncode (MS08-006). Blog-
post, 2008.

[110] Steve Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[111] Vijayanand Nagarajan, Xiangyu Zhang, Rajiv Gupta, Matias
Madou, Bjorn De Sutter, and Koen De Bosschere. Matching con-
trol flow of program versions. In Proceedings of the 23rd IEEE In-
ternational Conference on Software Maintenance, pages 83–94, 2007.

158 BIBLIOGRAPHY

[112] Danny Nebenzahl, Shmuel Sagiv, and Avishai Wool. Install-
time vaccination of windows executables to defend against stack
smashing attacks. Dependable and Secure Computing, IEEE Trans-
actions on, 3(1):78–90, 2006.

[113] Nicholas Nethercote and Julian Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. ACM Sigplan
Notices, 42(6):89–100, 2007.

[114] Adam O’Donnell and Harish Sethu. On achieving software di-
versity for improved network security using distributed coloring
algorithms. In Proceedings of the 11th ACM conference on Computer
and Communications Security, pages 121–131. ACM Press, 2004.

[115] United States National Institute of Standards and Technology.
Federal information processing standards publication 197. Tech-
nical report, NIST, 2001.

[116] Jeongwook Oh. Fight against 1-day exploits: Diffing binaries vs
anti-diffing binaries. In BlackHat USA, 2009.

[117] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: the case of AES. In Topics in Cryptology -
CT-RSA 2006, The Cryptographers Track at the RSA Conference 2006,
pages 1–20. Springer-Verlag, 2006.

[118] Colin Percival. Naive differences of executable code. http://
www.daemonology.net/bsdiff/, 2003.

[119] Colin Percival. Cache missing for fun and profit. BSDCan 2005,
2005.

[120] Igor Shparlinski Phong Q. Nguyen. The insecurity of the digi-
tal signature algorithm with partially known nonces. Journal of
Cryptology, 15(3):151–176, 2002.

[121] Igor V Popov, Saumya K Debray, and Gregory R Andrews. Binary
obfuscation using signals. In USENIX Security Symposium, pages
275–290, 2007.

[122] The Chromium Projects. Software updates: Courgette. Technical
report, Google, 2010.

[123] Andre Protas and Steve Manzuik. Skeletons in Microsoft’s closet
- silently fixed vulnerabilities. BlackHat Europe, 2006.

http://www.daemonology.net/bsdiff/
http://www.daemonology.net/bsdiff/

BIBLIOGRAPHY 159

[124] Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert,
Koen De Bosschere, Pieter Danhieux, and Erik Van Buggenhout.
DNS tunneling for network penetration. In Annual International
Conference on Information Security and Cryptology, 2012.

[125] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings of the 16th
ACM conference on Computer and communications security, pages
199–212. ACM, 2009.

[126] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–126, 1978.

[127] Bruno P. S. Rocha, Sruthi Bandhakavi, Jerry den Hartog,
William H. Winsborough, and Sandro Etalle. Towards static flow-
based declassification for legacy and untrusted programs. In Se-
curity and Privacy (SP), 2010 IEEE Symposium on, pages 93–108.
IEEE, 2010.

[128] Michiel Ronsse, Bastiaan Stougie, Jonas Maebe, Frank Cornelis,
and Koen De Bosschere. An efficient data race detector backend
for diota. Advances in Parallel Computing, 13:39–46, 2004.

[129] Nathan E. Rosenblum, Xiaojin Zhu, Barton P. Miller, and Karen
Hunt. Learning to analyze binary computer code. Artificial Intel-
ligence (AAAI), Chicago, IL, pages 798–804, 2008.

[130] Daniel Y. Deng Ruirui C. Huang and and G. Edward Suh. Or-
thrus: Efficient software integrity protection on multi-cores. In
ACM SIGARCH Computer Architecture News, volume 38, pages
371–384. ACM, 2010.

[131] Todd Sabin. Comparing binaries with graph isomorphisms.
Technical report, BindView RAZOR Team, 2004.

[132] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz.
Orchestra: intrusion detection using parallel execution and mon-
itoring of program variants in user-space. In Proceedings of the 4th
ACM European conference on Computer systems, pages 33–46. ACM,
2009.

160 BIBLIOGRAPHY

[133] Michael Schlansker, Scott Mahlke, and Richard Johnson. Con-
trol cpr: a branch height reduction optimization for epic archi-
tectures. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 con-
ference on Programming language design and implementation, pages
155–168, New York, NY, USA, 1999. ACM.

[134] Justin Seitz. Gray Hat Python. No Starch Press, 2009.

[135] Monirul Sharif, Andrea Lanzi, Jonathon Griffin, and Wenke Lee.
Automatic reverse engineering of malware emulators. In IEEE
Symposium on Security and Privacy, pages 94–109, 2009.

[136] John Shen and Mikko Lipasti. Modern Processor Design: Funda-
mentals of Superscalar Processors. McGraw-Hill, 2005.

[137] Stelios Sidiroglou, Sotiris Ioannidis, and Angelos D. Keromytis.
Band-aid patching. In Proceedings of the 3rd workshop on on Hot
Topics in System Dependability, HotDep’07, Berkeley, CA, USA,
2007. USENIX Association.

[138] Kevin Skadron, Pritpal S Ahuja, Margaret Martonosi, and Dou-
glas W Clark. Improving prediction for procedure returns with
return-address-stack repair mechanisms. In Proceedings of the
31st annual ACM/IEEE international symposium on Microarchitec-
ture, pages 259–271. IEEE Computer Society Press, 1998.

[139] Slawlerguy. Reversing the ms08-067 patch... Blogpost, 2008.

[140] David Solomon. Data Compression: The Complete Reference.
Springer, 2007.

[141] Alexander Sotirov. Reverse engineering Microsoft binaries.
CanSecWest, 2006.

[142] Iain Sutherland, George E. Kalb, Andrew Blyth, and Gaius Mul-
ley. An empirical examination of the reverse engineering process
for binary files. Computers & Security, 25(3):221–228, 2006.

[143] Jeroen Van Cleemput, Bart Coppens, and Bjorn De Sutter. Com-
piler mitigations for time attacks on modern x86 processors.
ACM Transactions on Architecture and Code Optimization (TACO),
8(4):23, 2012.

[144] Jan-Willem van de Waerdt. The TM3270 Media-processor. PhD
thesis, Technische Universiteit Delft, 2006.

BIBLIOGRAPHY 161

[145] Nibin Varghese. Reverse engineering for exploit writers. Club-
hack, 2008.

[146] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Elimi-
nating fine grained timers in Xen. In Proceedings of the 3rd ACM
workshop on Cloud computing security workshop, pages 41–46. ACM,
2011.

[147] Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane,
and Arun Lakhotia. Constructing malware normalizers using
term rewriting. Journal in Computer Virology, 4(4):307–322, 2008.

[148] Harsimran Walia. Reversing Microsoft patches to reveal vulner-
able code. Nullcon, 2011.

[149] Chenxi Wang, Jack Davidson, Jonathan Hill, and John Knight.
Protection of software-based survivability mechanisms. In Pro-
ceedings of the 2nd International Conference of Dependable Systems
and Networks, pages 193–202. IEEE Computer Society Press, 2001.

[150] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson.
Software tamper resistance: Obstructing static analysis of pro-
grams. Technical Report CS-2000-12, University of Virginia, 12
2000.

[151] Zheng Wang, Ken Pierce, and Scott McFarling. Bmat – a bi-
nary matching tools for stale profile propagation. The Journal of
Instruction-Level Parallelism, 2:1–20, 2000.

[152] Zhenghong Wang and Ruby B. Lee. Covert and side channels due
to processor architecture. In ACSAC ’06: Proceedings of the 22nd
Annual Computer Security Applications Conference on Annual Com-
puter Security Applications Conference, pages 473–482, Washington,
DC, USA, 2006. IEEE Computer Society.

[153] Zhenghong Wang and Ruby B. Lee. New cache designs for
thwarting software cache-based side channel attacks. SIGARCH
Comput. Archit. News, 35(2):494–505, 2007.

[154] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and
Zhiqiang Lin. Binary stirring: Self-randomizing instruction ad-
dresses of legacy x86 binary code. In 19th ACM Conference
on Computer and Communications Security (CCS), pages 157–168,
2012.

162 BIBLIOGRAPHY

[155] Xiangyu Zhang and Rajiv Gupta. Matching execution histories
of program versions. In ESEC/FSE-13: Proceedings of the 10th Eu-
ropean software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engi-
neering, pages 197–206, 2005.

[156] Xiangyu Zhang and Rajiv Gupta. Whole execution traces and
their applications. ACM Trans. on Architecture and Code Optimiza-
tion, 2(3):301–334, 2005.

[157] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-VM side channels and their use to extract private
keys. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 305–316. ACM, 2012.

[158] Yongxin Zhou and Alec Main. Diversity via code transforma-
tions: A solution for NGNA renewable security. In NCTA - The
National Show, 2006.

[159] Zynamics. Zynamics BinDiff Manual, 2012.

	Nederlandse samenvatting
	English summary
	Introduction
	Abstracting binaries into models
	Disassemblers
	Execution tracing
	Tools for abstracting binaries

	Characterization of patched binary code
	Software matching and Exploit Wednesday
	Software matching
	Binary patch generation tools
	Graph-based matching approaches
	Trace-based matching approaches
	Polymorphic malware analysis
	Attack tools for software matching

	Diversification as protection against software matching
	Timing side channels
	Control flow
	Data flow

	Exploiting timing side channels
	Measuring timing variation
	Recovering private information

	Protecting against timing side channels
	Contributions

	The effectiveness of variation against patch-based attacks
	Introduction
	SCIMs and TIMs
	Heuristic attack model
	A framework for attack models
	Binary diffing tools
	Additional prioritization heuristics

	Diversification as mitigation strategy
	Diversifying transformations in Proteus

	Evaluation
	Case studies
	Representing the results
	Effectiveness of attacks on undiversified binaries
	Diversification

	Conclusion

	Iterative feedback-driven diversification
	Introduction
	Feedback-guided iterative diversification
	Attack model
	Diversifying transformations
	Transformation Selection

	Evaluation
	Diffing results
	Overhead
	Representativeness

	Discussion
	Conclusion

	Removing variation in execution time
	Automatically removing control-dependent variation
	Conditional execution of acyclic sequences
	Cyclic control flow graphs
	Function calls

	Removing data-dependent variation
	Timing variation due to early exit
	Timing variation due to the memory subsystem

	Implementation
	Evaluation
	Experiments
	Register-based dependencies
	Effectiveness
	Efficiency
	Code size overhead

	Comparison with existing techniques
	Source-based solutions
	Binary rewriting
	Hardware instructions

	Conclusion

	Conclusions & Future work
	Conclusions
	Variation between program versions
	Variation of execution time in a program

	Future work
	Variation between program versions
	Variation of execution time in a program

