16 research outputs found

    A simulation-based algorithm for solving the resource-assignment problem in satellite telecommunication networks

    Get PDF
    This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.En este trabajo se propone una heurística para la programación de las solicitudes de capacidad y la asignación periódica de los recursos de radio en las redes de satélites geoestacionarios (GEO) con topología en estrella, con la demanda de acceso múltiple de asignación (DAMA) de protocolo en la capa de enlace, y el Multi-Frequency Time Division (Acceso múltiple por MF-TDMA) y codificación y modulación Adaptable (ACM) en la capa física.En aquest treball es proposa una heurística per a la programació de les sol·licituds de capacitat i l'assignació periòdica dels recursos de ràdio en les xarxes de satèl·lits geoestacionaris (GEO) amb topologia en estrella, amb la demanda d'accés múltiple d'assignació (DAMA) de protocol en la capa d'enllaç, i el Multi-Frequency Time Division (Accés múltiple per MF-TDMA) i codificació i modulació Adaptable (ACM) a la capa física

    Call admission control for interactive multimedia satellite networks.

    Get PDF
    Master of Science in Engineering (Electronic). University of KwaZulu-Natal, Durban 2015.Satellite communication has become an integral component of global access communication network due mainly to its ubiquitous coverage, large bandwidth and ability to support for large numbers of users over fixed and mobile devices. However, the multiplicity of multimedia applications with diverse requirements in terms of quality of service (QoS) poses new challenges in managing the limited and expensive resources. Furthermore, the time-varying nature of the propagation channel due to atmospheric and environmental effects also poses great challenges to effective utilization of resources and the satisfaction of users’ QoS requirements. Efficient radio resource management (RRM) techniques such as call admission control (CAC) and adaptive modulation and coding (AMC) are required in order to guarantee QoS satisfaction for user established connections and realize maximum and efficient utilization of network resources. In this work, we propose two CAC policies for interactive satellite multimedia networks. The two policies are based on efficient adaptation of transmission parameters to the dynamic link characteristics. In the first policy which we refer to as Gaussian Call Admission Control with Link Adaptation (GCAC-LA), we invoke the central limit theorem to statistically multiplex rate based dynamic capacity (RBDC) connections and obtain an aggregate bandwidth and required capacity for the multiplex. Adaptive Modulation and Coding (AMC) is employed for transmission over the time-varying wireless channel of the return link of an interactive satellite network. By associating users’ channel states to particular transmission parameters, the amount of resources required to satisfy user connection requirements in each state is determined. Thus the admission control policy considers in its decision, the channel states of all existing and new connections. The performance of the system is investigated by simulation and the results show that AMC significantly improves the utilization and call blocking performance by more than twice that of a system without link adaptation. In the second policy, a Game Theory based CAC policy with link adaptation (GTCAC-LA) is proposed. The admission of a new user connection under the GTCAC-LA policy is based on a non-cooperative game that is played between the network (existing user connections) and the new connection. A channel prediction scheme that predicts the rain attenuation on the link in successive intervals of time is also proposed. This determines the current resource allocation for every source at any point in time. The proposed game is played each time a new connection arrives and the strategies adopted by players are based on utility function, which is estimated based on the required capacity and the actual resources allocated. The performance of the CAC policy is investigated for different prediction intervals and the results show that multiple interval prediction scheme shows better performance than the single interval scheme. Performance of the proposed CAC policies indicates their suitability for QoS provisioning for traffic of multimedia connections in future 5G networks

    Asynchronous multi-class traffic management in wide area networks

    Full text link
    The emergence of new applications brings multi-class traffic with diverse quality of service (QoS) requirements to wide area networks (WANs), motivating research in traffic engineering (TE). In recent years, novel centralized and hierarchical TE schemes have used heuristic or machine learning techniques to orchestrate resources in closed systems such as datacenter networks. However, these schemes suffer from long delivery delays and high control overhead when applied to general WANs. To provide low-delay services, this paper proposes an asynchronous multi-class traffic management (AMTM) scheme. We first establish an asynchronous TE paradigm in which distributed nodes locally perform low-complexity and low-delay traffic control based on link prices, and the TE server updates link prices to eliminate decision conflicts between edge nodes. By modeling the asynchronous TE paradigm as a control system with non-negligible control loop delay, we find that the traditional pricing strategy cannot simultaneously achieve a low packet loss rate and a low flow delivery delay. To address this issue, we propose a new pricing strategy based on the observations of virtual queues in intermediate nodes. We also present a system design and related algorithms that utilize a dynamic step size mechanism of link price update. Simulation results show that AMTM can effectively reduce the end-to-end flow delivery delay

    Resource Allocation in Relay-based Satellite and Wireless Communication Networks

    Get PDF
    A two-level bandwidth allocation scheme is proposed for a slotted Time-Division Multiple Access high data rate relay satellite communication link to provide efficient and fair channel utilization. The long-term allocation is implemented to provide per-flow/per-user Quality-of-Service guarantees and shape the average behavior. The time-varying short-term allocation is determined by solving an optimal timeslot scheduling problem based on the requests and other parameters. Through extensive simulations, the performance of a suitable MAC protocol with two-level bandwidth allocation is analyzed and compared with that of the existing static fixed-assignment scheme in terms of end-to-end delay and successful throughput. It is also shown that pseudo-proportional fairness is achieved for our hybrid protocol. We study rate control systems with heterogeneous time-varying propagation delays, based on analytic fluid flow models composed of first-order delay-differential equations. Both single-flow and multi-flow system models are analyzed, with special attention paid to the Mitra-Seery algorithm. The stationary solutions are investigated. For the fluctuating solutions, their dynamic behavior is analyzed in detail, analytically and numerically, in terms of amplitude, transient behavior, fairness and adaptability, etc.. Especially the effects of heterogeneous time-varying delays are investigated. It is shown that with proper parameter design the system can achieve stable behavior with close to pointwise proportional fairness among flows. Finally we investigate the resource allocation in 802.16j multi-hop relay systems with rate fairness constraints for two mutually exclusive options: transparent and non-transparent relay systems (T-RS and NT-RS). Single-Input Single-Output and Multi-Input Multi-Output antenna systems are considered in the links between the Base Station (BS) and Relay Stations (RS). 1 and 3 RSs per sector are considered. The Mobile Station (MS) association rule, which determines the access station (BS or RS) for each MS, is also studied. Two rules: Highest MCS scheme with the highest modulation and coding rate, and Highest (Mod) ESE scheme with the highest (modified) effective spectrum efficiency, are studied along with the optimal rule that maximizes system capacity with rate fairness constraints. Our simulation results show that the highest capacity is always achieved by NT-RS with 3 RSs per sector in distributed scheduling mode, and that the Highest (Mod) ESE scheme performs closely to the optimal rule in terms of system capacity

    Design and analysis of scheduling algorithms for next generation broadband wireless access systems

    Get PDF
    Efficient utilization of network resources is a key goal for emerging Broadband Wireless Access Systems (BWAS). This is a complex goal to achieve due to the heterogeneous service nature and diverse Quality of Service (QoS) requirements of various applications that BWAS support. Packet scheduling is an important activity that affects BWAS QoS outcomes. This thesis proposes a new packet scheduling mechanism that improves QoS in mobile wireless networks which exploit IP as a transport technology for data transfer between BWAS base stations and mobile users at the radio transmission layer. In order to improve BWAS QoS the new packet algorithm makes changes at both the IP and the radio layers. The new packet scheduling algorithm exploits handoff priority scheduling principles and takes into account buffer occupancy and channel conditions. The packet scheduling mechanism also incorporates the concept of fairness. The algorithm also offers an opportunity to maximize the carriers’ revenue at various traffic situations. Performance results were obtained by computer simulation and compared to the well-known algorithms. Results show that by exploiting the new packet scheduling algorithm, the transport system is able to provide a low handoff packet drop rate, low packet forwarding rate, low packet delay, ensure fairness amongst the users of different services and generates higher revenue for the telecom carriers. Furthermore this research proposes a new and novel measure named “satisfaction factor to measure the efficacy of various scheduling schemes and finally this s research also proposes four performance measurements metric for NodeB’s of Next Generation Wireless Network

    Packet scheduling in satellite LTE networks employing MIMO technology.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2014.Rapid growth in the number of mobile users and ongoing demand for different types of telecommunication services from mobile networks, have driven the need for new technologies that provide high data rates and satisfy their respective Quality of Service (QoS) requirements, irrespective of their location. The satellite component will play a vital role in these new technologies, since the terrestrial component is not able to provide global coverage due to economic and technical limitations. This has led to the emergence of Satellite Long Term Evolution (LTE) networks which employ Multiple-In Multiple-Out (MIMO) technology. In order to achieve the set QoS targets, required data rates and fairness among various users with different traffic demands in the satellite LTE network, it is crucial to design an effective scheduling and a sub-channel allocation scheme that will provide an optimal balance of all these requirements. It is against this background that this study investigates packet scheduling in satellite LTE networks employing MIMO technology. One of the main foci of this study is to propose new cross-layer based packet scheduling schemes, tagged Queue Aware Fair (QAF) and Channel Based Queue Sensitive (CBQS) scheduling schemes. The proposed schemes are designed to improve both fairness and network throughput without compromising users’ QoS demands, as they provide a good trade-off between throughput, QoS demands and fairness. They also improve the performance of the network in comparison with other scheduling schemes. The comparison is determined through simulations. Due to the fact that recent schedulers provide a trade-off among major performance indices, a new performance index to evaluate the overall performance of each scheduler is derived. This index is tagged the Scheduling Performance Metric (SPM). The study also investigates the impact of the long propagation delay and different effective isotropic radiated powers on the performance of the satellite LTE network. The results show that both have a significant impact on network performance. In order to actualize an optimal scheduling scheme for the satellite LTE network, the scheduling problem is formulated as an optimization function and an optimal solution is obtained using Karush-Kuhn-Tucker multipliers. The obtained Near Optimal Scheduling Scheme (NOSS), whose aim is to maximize the network throughput without compromising users’ QoS demands and fairness, provides better throughput and spectral efficiency performance than other schedulers. The comparison is determined through simulations. Based on the new SPM, the proposed NOSS1 and NOSS2 outperform other schedulers. A stability analysis is also presented to determine whether or not the proposed scheduler will provide a stable network. A fluid limit technique is used for the stability analysis. Finally, a sub-channel allocation scheme is proposed, with the aim of providing a better sub-channel or Physical Resource Block (PRB) allocation method, tagged the Utility Auction Based (UAB) subchannel allocation scheme that will improve the system performance of the satellite LTE network. The results show that the proposed method performs better than the other scheme. The comparison is obtained through simulations

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    Διασύνδεση ασύρματων ευρυζωνικών δικτύων με δορυφορικά δίκτυα

    Get PDF
    Η παρούσα Διδακτορική Διατριβή πραγματεύεται το πρόβλημα της διασύνδεσης μεταξύ ενός Δορυφορικού Διαδραστικού Δικτύου και ασύρματων ευρυζωνικών δικτύων. Η εκχώρηση της χωρητικότητας στις τελικές συνδέσεις του ευρυζωνικού δικτύου γίνεται μετά από χρονικό διάστημα 500 msec από τη στιγμή που στάλθηκε το αντίστοιχο αίτημα από το αντίστοιχο δορυφορικό τερματικό. Οι περισσότερες υπηρεσίες πραγματικού χρόνου δεν μπορούν να ανεχθούν τόσο μεγάλες καθυστερήσεις. Για το λόγο αυτό εισάγουμε την λογική της πρόβλεψης των αναγκών των συνδέσεων κατά την αίτηση της χωρητικότητας. Ο προτεινόμενος μηχανισμός διασύνδεσης αποτελείται από τρία τμήματα: το πρώτο είναι υπεύθυνο για τη διευθέτηση των αιτήσεων χωρητικότητας, το δεύτερο είναι υπεύθυνο για την εκχώρηση χωρητικότητας ανά δορυφορικό τερματικό, και το τρίτο είναι υπεύθυνο για τον διαμοιρασμό της δοσμένης χωρητικότητας στους συνδρομητές του ευρυζωνικού δικτύου. Στην συνέχεια της διατριβής μας, βελτιώνουμε και τα τρία τμήματα του προτεινόμενου μηχανισμού, ειδικά όσο αφορά κίνηση πραγματικού χρόνου που έχει μικρότερες ανοχές σε καθυστερήσεις. Χρησιμοποιούμε τον NLMS αλγόριθμο πρόβλεψης στο πρώτο τμήμα του μηχανισμού, επεκτείνουμε το δεύτερο τμήμα ώστε η κατανομή των χρονοθυρίδων να γίνεται σε MFTDMA, και, βελτιώνουμε τον χρονοπρογραμματιστή που λειτουργεί στο τρίτο τμήμα, ώστε ο διαμοιρασμός της χωρητικότητας στις συνδέσεις πραγματικού χρόνου του ευρυζωνικού δικτύου να γίνεται βάσει μετρικών αντίληψης ποιότητας.This doctoral thesis deals with the problem of interconnection between a satellite interactive network and broadband networks. The time difference between the capacity request of a satellite terminal and the capacity grant from the satellite network is at least equal to the round trip delay. To address this issue, schemes for predicting the needs of connections are used for capacity allocation purposes. An interconnection mechanism is proposed, which consists of three parts: 1) an entity at the satellite terminal responsible for capacity requests, 2) resource allocation to the satellite terminals and 3) sharing the capacity of a satellite terminal among the subscribers of the broadband network. We improve all three parts of the interconnection mechanism aiming to improve the overall performance of the system, especially for real time traffic that can tolerate less delay. Τhe NLMS (Normalized Least Mean Square) algorithm is chosen to be used in the first part of the proposed mechanism. We extend the second part of the mechanism for performing the slot allocation in MF-TDMA. Finally, we improve the scheduler of the third part in order to schedule traffic of real time connections of the broadband network based on Quality of Experience (QoE) metrics

    Channel assembling policies for heterogeneous fifth generation (5G) cognitive radio networks.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file
    corecore