6,106 research outputs found

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Hop-Based dynamic fair scheduler for wireless Ad-Hoc networks

    Get PDF
    In a typical multihop Ad-Hoc network, interference and contention increase when flows transit each node towards destination, particularly in the presence of cross-traffic. This paper observes the relationship between throughput and path length, self-contention and interference and it investigates the effect of multiple data rates over multiple data flows in the network. Drawing from the limitations of the 802.11 specification, the paper proposes a scheduler named Hop Based Multi Queue (HBMQ), which is designed to prioritise traffic based on the hop count of packets in order to provide fairness across different data flows. The simulation results demonstrate that HBMQ performs better than a Single Drop Tail Queue (SDTQ) scheduler in terms of providing fairness. Finally, the paper concludes with a number of possible directions for further research, focusing on cross-layer implementation to ensure the fairness is also provided at the MAC layer. © 2013 IEEE

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Quality of Service-Based Medium Access Control Mechanism for Multimedia Traffic in Mobile Ad Hoc Networks

    Get PDF
    This thesis describes an investigation on the problem of quality of service (QoS) support in mobile ad hoc networks (MANETs). The decentralized nature of wireless ad hoc networks makes them suitable for a variety of applications where central nodes cannot be relied on. This thesis presents a medium access control (MAC) QoS mechanism for multimedia applications in IEEE 802.11e based MANETs. IEEE 802.11e standard draft includes new features to facilitate and promote the provision of QoS guarantees in wireless networks with a long-term solution based on QoS-architectures. The motivation is driven by the need to support increasing demand of time-sensitive applications such as Voice over IP (VoIP) and video conferencing applications. IEEE 802.11e enhances the Distributed Coordination Function (DCF) and the Point Coordination Function (PCF) of the legacy IEEE 802.11, through a new coordination function: the Hybrid Coordination Function (HCF). Within the HCF, there are two methods of channel access: HCF Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). EDCA operates in infrastructure-less ad hoc mode and is widely used in MANETs, unlike HCCA, which further assures QoS provisioning operates in infrastructure mode in the presence of access points (AP). Recent researches showed that EDCA lacks QoS support of real-time traffic in MANETs due to its contention based medium access method. This thesis takes HCCA QoS provisioning potentials to MANETs by implementing a MAC mechanism in which HCCA is employed on top of EDCA to work in infrastructure-less environment like MANET with the help of multiple channels. The mechanism dedicates a unique receiver-based channel to every mobile node. It will act as virtual hybrid coordinator (VHC) to exercise control over the channel in contention-free manner while maintaining a common channel in which all mobile nodes can exchange broadcast and routing related messages. The mechanism can be easily integrated with existing 802.11 systems without modification to existing protocols while ensuring a level of admission control and resource reservation over the medium. Simulation results indicate that the mechanism significantly improves the overall network throughput by 20% at the saturation point and improves average delay by 20% at the saturation point compared to pure EDCA with or without multiple channels. Even with multi-channel EDCA, our mechanism guarantees better performance in terms of throughput and MAC delay for high priority traffic in MANET. The research contribution on MAC layer can be integrated into a larger framework for QoS support in MANETs, which opens a wide range of further research in QoS provisioning in MANETs and solve QoS multi-layer design and implementation issues

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    corecore