786 research outputs found

    Network Coding Tree Algorithm for Multiple Access System

    Full text link
    Network coding is famous for significantly improving the throughput of networks. The successful decoding of the network coded data relies on some side information of the original data. In that framework, independent data flows are usually first decoded and then network coded by relay nodes. If appropriate signal design is adopted, physical layer network coding is a natural way in wireless networks. In this work, a network coding tree algorithm which enhances the efficiency of the multiple access system (MAS) is presented. For MAS, existing works tried to avoid the collisions while collisions happen frequently under heavy load. By introducing network coding to MAS, our proposed algorithm achieves a better performance of throughput and delay. When multiple users transmit signal in a time slot, the mexed signals are saved and used to jointly decode the collided frames after some component frames of the network coded frame are received. Splitting tree structure is extended to the new algorithm for collision solving. The throughput of the system and average delay of frames are presented in a recursive way. Besides, extensive simulations show that network coding tree algorithm enhances the system throughput and decreases the average frame delay compared with other algorithms. Hence, it improves the system performance

    ALOHA With Collision Resolution(ALOHA-CR): Theory and Software Defined Radio Implementation

    Full text link
    A cross-layer scheme, namely ALOHA With Collision Resolution (ALOHA-CR), is proposed for high throughput wireless communications in a cellular scenario. Transmissions occur in a time-slotted ALOHA-type fashion but with an important difference: simultaneous transmissions of two users can be successful. If more than two users transmit in the same slot the collision cannot be resolved and retransmission is required. If only one user transmits, the transmitted packet is recovered with some probability, depending on the state of the channel. If two users transmit the collision is resolved and the packets are recovered by first over-sampling the collision signal and then exploiting independent information about the two users that is contained in the signal polyphase components. The ALOHA-CR throughput is derived under the infinite backlog assumption and also under the assumption of finite backlog. The contention probability is determined under these two assumptions in order to maximize the network throughput and maintain stability. Queuing delay analysis for network users is also conducted. The performance of ALOHA-CR is demonstrated on the Wireless Open Access Research Platform (WARP) test-bed containing five software defined radio nodes. Analysis and test-bed results indicate that ALOHA-CR leads to significant increase in throughput and reduction of service delays

    An efficient data transmission policy in an integrated voice-data ds-cdma network

    Get PDF
    CDMA schemes appear to be promising access techniques for coping with the requirements of third-generation mobile systems, mainly because of their flexibility. This paper proposes an adaptive S-ALOHA DS-CDMA access scheme as a method for integrating non-real time (i.e. Internet applications) and real-time (i.e. voice) services, by exploiting the potentials of CDMA under time-varying conditions. The adaptive component terminals autonomously change their transmission rate according to the total (voice+data) channel occupancy, so that the minimum possible data delay is almost always achieved.Peer ReviewedPostprint (published version

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Stable Throughput and Delay Analysis of a Random Access Network With Queue-Aware Transmission

    Full text link
    In this work we consider a two-user and a three-user slotted ALOHA network with multi-packet reception (MPR) capabilities. The nodes can adapt their transmission probabilities and their transmission parameters based on the status of the other nodes. Each user has external bursty arrivals that are stored in their infinite capacity queues. For the two- and the three-user cases we obtain the stability region of the system. For the two-user case we provide the conditions where the stability region is a convex set. We perform a detailed mathematical analysis in order to study the queueing delay by formulating two boundary value problems (a Dirichlet and a Riemann-Hilbert boundary value problem), the solution of which provides the generating function of the joint stationary probability distribution of the queue size at user nodes. Furthermore, for the two-user symmetric case with MPR we obtain a lower and an upper bound for the average delay without explicitly computing the generating function for the stationary joint queue length distribution. The bounds as it is seen in the numerical results appear to be tight. Explicit expressions for the average delay are obtained for the symmetrical model with capture effect which is a subclass of MPR models. We also provide the optimal transmission probability in closed form expression that minimizes the average delay in the symmetric capture case. Finally, we evaluate numerically the presented theoretical results.Comment: Submitted for journal publicatio
    • …
    corecore