36 research outputs found

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    MAC regenerative analysis of wireless Ad-Hoc networks

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe IEEE 802.11 is a fast growing technology all over the world. This growth is essentially due to the increasing number of users in the network. Despite the increasing number of users, not all of them need the same quality of service. Thus, service differentiation is an important aspect that shall be considered in mathematical models that describe network performance. Moreover, users typically communicate using point-to-point connections(unicast transmission scheme) and point-to-multipoint connections (broadcast transmission scheme). The co-existence of unicast and broadcast traffic impacts the network performance and its importance cannot be neglected in the network performance evaluation. This motivates the work presented in this thesis, which characterizes the network accounting for these important parameters. This thesis formulates a model to describe the behavior of the medium access control used in IEEE 802.11-based networks. This is the first step to develop a model that considers both different groups of users configured with different medium access control parameters and the co-existence of two different transmission schemes (unicast and broadcast). The model also assumes a finite number of retransmissions for unicast packets and it is confirmed that several models already proposed in other works are especial cases of the proposed model. Finally, a theoretical validation of the model is done as well as some simulations to assess its accuracy and, some realistic network features are discussed

    Mean-field limits for large-scale random-access networks

    Get PDF
    We establish mean-field limits for large-scale random-access networks with buffer dynamics and arbitrary interference graphs. While saturated-buffer scenarios have been widely investigated and yield useful throughput estimates for persistent sessions, they fail to capture the fluctuations in buffer contents over time, and provide no insight in the delay performance of flows with intermittent packet arrivals. Motivated by that issue, we explore in the present paper random-access networks with buffer dynamics, where flows with empty buffers refrain from competition for the medium. The occurrence of empty buffers thus results in a complex dynamic interaction between activity states and buffer contents, which severely complicates the performance analysis. Hence we focus on a many-sources regime where the total number of nodes grows large, which not only offers mathematical tractability but is also highly relevant with the densification of wireless networks as the Internet of Things emerges. We exploit time scale separation properties to prove that the properly scaled buffer occupancy process converges to the solution of a deterministic initial-value problem, and establish the existence and uniqueness of the associated fixed point. This approach simplifies the performance analysis of networks with huge numbers of nodes to a low-dimensional fixed-point calculation. For the case of a complete interference graph, we demonstrate asymptotic stability, provide a simple closed-form expression for the fixed point, and prove interchange of the mean-field and steady-state limits. This yields asymptotically exact approximations for key performance metrics, in particular the stationary buffer content and packet delay distributions. The methodological framework that we develop easily extends to various model refinements as will be illustrated by several examples

    Scheduling algorithms for next generation cellular networks

    Get PDF
    Next generation wireless and mobile communication systems are rapidly evolving to satisfy the demands of users. Due to spectrum scarcity and time-varying nature of wireless networks, supporting user demand and achieving high performance necessitate the design of efficient scheduling and resource allocation algorithms. Opportunistic scheduling is a key mechanism for such a design, which exploits the time-varying nature of the wireless environment for improving the performance of wireless systems. In this thesis, our aim is to investigate various categories of practical scheduling problems and to design efficient policies with provably optimal or near-optimal performance. An advantage of opportunistic scheduling is that it can effectively be incorporated with new communication technologies to further increase the network performance. We investigate two key technologies in this context. First, motivated by the current under-utilization of wireless spectrum, we characterize optimal scheduling policies for wireless cognitive radio networks by assuming that users always have data to transmit. We consider cooperative schemes in which secondary users share the time slot with primary users in return for cooperation, and our aim is to improve the primary systems performance over the non-cooperative case. By employing Lyapunov Optimization technique, we develop optimal scheduling algorithms which maximize the total expected utility and satisfy the minimum data rate requirements of the primary users. Next, we study scheduling problem with multi-packet transmission. The motivation behind multi-packet transmission comes from the fact that the base station can send more than one packets simultaneously to more than one users. By considering unsaturated queueing systems we aim to stabilize user queues. To this end, we develop a dynamic control algorithm which is able to schedule more than one users in a time slot by employing hierarchical modulation which enables multi-packet transmission. Through Lyapunov Optimization technique, we show that our algorithm is throughput-optimal. We also study the resulting rate region of developed policy and show that it is larger than that of single user scheduling. Despite the advantage of opportunistic scheduling, this mechanism requires that the base station is aware of network conditions such as channel state and queue length information of users. In the second part of this thesis, we turn our attention to the design of scheduling algorithms when complete network information is not available at the scheduler. In this regard, we study three sets of problems where the common objective is to stabilize user queues. Specifically, we first study a cellular downlink network by assuming that channels are identically distributed across time slots and acquiring channel state information of a user consumes a certain fraction of resource which is otherwise used for transmission of data. We develop a joint scheduling and channel probing algorithm which collects channel state information from only those users with su±ciently good channel quality. We also quantify the minimum number of users that must exist to achieve larger rate region than Max-Weight algorithm with complete channel state information. Next, we consider a more practical channel models where channels can be time-correlated (possibly non-stationary) and only a fixed number of channels can be probed. We develop learning based scheduling algorithm which tracks and predicts instantaneous transmission rates of users and makes a joint scheduling and probing decision based on the predicted rates rather than their exact values. We also characterize the achievable rate region of these policies as compared to Max-Weight policy with exact channel state information. Finally, we study a cellular uplink system and develop a fully distributed scheduling algorithm which can perform over general fading channels and does not require explicit control messages passing among the users. When continuous backoff time is allowed, we show that the proposed distributed algorithm can achieve the same performance as that of centralized Max-Weight algorithm in terms of both throughput and delay. When backoff time can take only discrete values, we show that our algorithm can perform well at the expense of low number of mini-slots for collision resolution

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT
    corecore