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Next generation wireless and mobile communication systems are rapidly evolving

to satisfy the demands of users. Due to spectrum scarcity and time-varying nature of

wireless networks, supporting user demand and achieving high performance necessitate

the design of efficient scheduling and resource allocation algorithms. Opportunistic

scheduling is a key mechanism for such a design, which exploits the time-varying nature

of the wireless environment for improving the performance of wireless systems. In this

thesis, our aim is to investigate various categories of practical scheduling problems and

to design efficient policies with provably optimal or near-optimal performance.

An advantage of opportunistic scheduling is that it can effectively be incorporated

with new communication technologies to further increase the network performance.

We investigate two key technologies in this context. First, motivated by the current
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under-utilization of wireless spectrum, we characterize optimal scheduling policies for

wireless cognitive radio networks by assuming that users always have data to transmit.

We consider cooperative schemes in which secondary users share the time slot with

primary users in return for cooperation, and our aim is to improve the primary systems

performance over the non-cooperative case. By employing Lyapunov Optimization

technique, we develop optimal scheduling algorithms which maximize the total expected

utility and satisfy the minimum data rate requirements of the primary users. Next,

we study scheduling problem with multi-packet transmission. The motivation behind

multi-packet transmission comes from the fact that the base station can send more

than one packets simultaneously to more than one users. By considering unsaturated

queueing systems we aim to stabilize user queues. To this end, we develop a dynamic

control algorithm which is able to schedule more than one users in a time slot by

employing hierarchical modulation which enables multi-packet transmission. Through

Lyapunov Optimization technique, we show that our algorithm is throughput-optimal.

We also study the resulting rate region of developed policy and show that it is larger

than that of single user scheduling.

Despite the advantage of opportunistic scheduling, this mechanism requires that

the base station is aware of network conditions such as channel state and queue length

information of users. In the second part of this thesis, we turn our attention to the

design of scheduling algorithms when complete network information is not available

at the scheduler. In this regard, we study three sets of problems where the common

objective is to stabilize user queues. Specifically, we first study a cellular downlink

network by assuming that channels are identically distributed across time slots and

acquiring channel state information of a user consumes a certain fraction of resource

which is otherwise used for transmission of data. We develop a joint scheduling and

channel probing algorithm which collects channel state information from only those

users with sufficiently good channel quality. We also quantify the minimum number

of users that must exist to achieve larger rate region than Max-Weight algorithm with

complete channel state information.

Next, we consider a more practical channel models where channels can be time-
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correlated (possibly non-stationary) and only a fixed number of channels can be probed.

We develop learning based scheduling algorithm which tracks and predicts instanta-

neous transmission rates of users and makes a joint scheduling and probing decision

based on the predicted rates rather than their exact values. We also characterize the

achievable rate region of these policies as compared to Max-Weight policy with exact

channel state information. Finally, we study a cellular uplink system and develop a fully

distributed scheduling algorithm which can perform over general fading channels and

does not require explicit control messages passing among the users. When continuous

backoff time is allowed, we show that the proposed distributed algorithm can achieve

the same performance as that of centralized Max-Weight algorithm in terms of both

throughput and delay. When backoff time can take only discrete values, we show that

our algorithm can perform well at the expense of low number of mini-slots for collision

resolution.
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YENİ NESİL HÜCRESEL TELSİZ AĞLAR İÇİN ÇİZELGELEME

ALGORİTMALARI

Mehmet Karaca

Doktora Tezi, 2013

Tez Danışmanı: Doç. Dr. ÖZGÜR ERÇETİN

Anahtar Kelimeler: Telsiz hücresel aǧlari, fırsatçı çizelgeleme problemleri,

kaynak tahsisleme, telsiz haberleşme, stokastic kontrol

Yeni nesil telsiz haberleşme sistemleri kullanıcıların artan isteklerini karşılamak

için hızlı bir gelişme göstermektedir. Fakat, sınırlı frekans tayfı genişliği ve kablo-

suz kanal karakteristiğinin zamanda ve frekansta değişkenlik göstermesi sebebi ile kul-

lanıcıların isteklerini karşılamak ve yüksek verim elde etmek için kolay uygulanabilir

çizelgeleme ve kaynak tahsis algoritmalarının geliştirilmesi gerekmektedir. Bu tezde,

farklı çizelgeleme problemleri incelenmiş ve bu problemler için verimli çizelgeleme algo-

ritmaları geliştirilmiştir.

Fırsatçı çizelgeleme algoritmalarının en önemli özelliklerinden biri yeni gelişen

teknolojiler ile kolay bir şekilde bütünleşebilmesidir. Bu bağlamda, iki önemli teknoloji

incelenmiştir. İlk olarak, frekans tayfının halihazırda verimsiz kullanımını azaltmak için

geliştirilmiş olan bilişsel radyo ağları için optimum çizelgeleme algoritmları tasarlanmış
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ve incelenmiştir. Bu problemde, ikincil ve birincil kullanıcılar arasında işbirlikçi bir

yöntem benimsenerek, birincil kullanıcıların performansının arttırılması amaçlanmıştır.

Lyapunov en iyileme yöntemi ile kullanıcıların isterlerini karşılarken toplam sistem

faydasını en iyileyen algoritmalar geliştirilmiştir. Frekans tayfının daha verimli kul-

lanılmasına yarıyacak olan diğer bir teknoloji ise çoklu-bilgi iletimi yöntemidir. Bu

yöntem ile baz istasyonu iki veya daha fazla kullanıcıya aynı anda hizmet verebilecek-

tir. Bu tezde, çoklu bilgi iletim yöntemi ile yeni çizelgeleme algoritması geliştirilmiş ve

bu algoritmanın optimum olduğu Lyapunov analiz yöntemi ile ıspatlanmıştır.

Fırsatçı çizelgeleme algoritmalarının birçok faydası olmasına rağmen, bu tür al-

goritmaların uygulanabilmesi için baz istasyonunun bütün ağ durumunu bilmesi gerek-

mektedir. Bu durumlar ise bütün kullanıcıların kanal durumunu ve kuruk uzunluğunun

bilinmesini içermektedir. Tezin ikinci bölümü, bu durum bilgisi baz istasyonunda ol-

madığında geliştirilen çizelgeleme algoritmalarını içermektedir. Bu kısımda üç temel

problem belirlenmiş olup bütün problemler için kullanıcıların kuyruk işleminin denge-

lenmesi amaçlanmıştır. İlk problem için, kullanıcıların baz istasyonundan veri aldıkları

varsayılarak ve kullanıcıların kanal durumlarının zaman içinde bağımsız olarak değiştiği

kabul edilerek en iyi çizelgeleme algoritması geliştirilmiştir. Ayrıca, bu algoritmanın

Max-Weight algoritmasına göre ne kadar performans kazancı sağladığı matematiksel

olarak gösterilmiştir.

İkinci problemde ise daha gerçekçi kanal durumları benimsenip ve baz istasyonun

ise sadece belli sayıdaki kullanıcıdan kanal durum bilgisi alabileceği kabul edilip yeni

çizelgeleme algoritması geliştirilmiştir. Bu algoritma kanal durum bilgisini tahmin ed-

erek ve bu tahmin değeri ile hangi kullanıcılardan gerçek kanal bilgisini alacağına karar

vermektedir. Daha sonra ise en iyi kullanıcıya kanalı tahsis etmektedir. Bu algoritmanın

destekleyebileceği hız bölgesi tanımlanmış ve belirli durumlar için bu bölge matematik-

sel olarak belirlenmiştir. Son olarak kullanıcıların baz istasyonuna veri iletmek istedik-

leri durum incelenmiş, kanal ve kuyruk bilgisi olmadan ve bir merkezi sisteme gerek

duymayan dağıtık çizelgeleme algoritması tasarlanması amaçlanmıştır. Sürekli zamanlı

geri adım olduğu varsayılarak geliştirilen algoritmanın merkezi sistem olduğundaki ver-

ime erişebileceği gösterilmiştir. Daha sonra ayrık zamanlı geri adım kabul edilerek yeni
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bir dağıtık çizelgeleme algoritması geliştirilmiş olup bu algoritma için ne kadar masraf

gerekeceği hesaplanmıştır.
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Chapter 1

Introduction

1.1 Overview

The goal of future wireless networks is to meet the excessive demand for multimedia

traffic such as rapid file transfers, peer-to-peer sharing, online gaming and real-time

audio/video streaming, all of which require ubiquitous high data rate connection. Next-

generation wireless standards such as Long Term Evolution (LTE) [1] and Worldwide

Interoperability for Microwave Access (WiMAX) [2] have been developed to be able

to provide high-speed transmission over long-distance wireless. For instance, LTE is

expected to achieve data rates as high as 1 Gbit/s for users with low mobility, and

100Mbit/s for users with high mobility. However, supporting such bandwidth hungry

applications and maintaining an acceptable quality of service (QoS) to network users

necessitate high performance requirements on today’s wireless systems.

There are many performance metrics to be considered when evaluating a wireless

system. The most important performance metric of the present and future wireless

networks is the throughput, i.e., the rate of successful data delivery over a communica-

tion channel. Another important design and performance metric is the network delay,

which specifies how long it takes for a message to travel across the network from source

to destination. Network delays have direct impact real-time applications such as voice

over IP and real-time audio/video streaming. Also, fairness among users and delay

jitter can be considered as performance metrics for quantifying network performance.
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Compared with wireline networks, wireless resource is very scarce because in wire-

less communication users must share a limited radio frequency spectrum. Dynamic re-

source management in which resources such as bandwidth and frequency are allocated

by taking advantage of changing network conditions has been widely applied in mod-

ern wireless systems. The key function of effective resource management is scheduling

which allocates system resources to a single or subsets of network users at each time,

depending on user requirements and a given objective. Although many scheduling algo-

rithms are available for wireline networks [3], they cannot be directly applied to wireless

networks. This is due to the fact that i) network conditions vary randomly over time;

ii) transmissions of users interfere with each other.

In wireless systems, channel states vary randomly over time due to unavoidable

effects such as mobility and fading. These states determine the maximum rate at which

data can be reliably transferred across the channel. For instance, users experiencing

good channel conditions (e.g., those that are close to the base station) achieve higher

data rate, and the contribution of those users to the system is higher in terms of

throughput. Hence, good scheduling algorithms must take into account the variability

of channel conditions and benefit from it to further improve the performance of wire-

less system. This type of scheduling is known as opportunistic scheduling and is widely

applied in wireless system to improve the spectrum efficiency. In many practical cases,

some form of fairness or QoS guarantees must be provided to users, and hence, con-

sidering only users’ channel conditions may not be sufficient for an efficient scheduling.

For instance, the number of data packets buffered in users’ queues should be considered

when some level of delay guarantees is required. Hence, the network state information

which includes channel conditions and the amount unfinished work in user’s buffers

plays an important role when making a scheduling decision.

The availability of network state information at the scheduler depends on the type

of communication. Specifically, in a typical cellular network, communication may occur

from users to the base station (uplink communication) or from the base station to the

users (downlink transmission) as shown in Figure 1.1. In a downlink transmission, the

base station is aware of queue lengths of users but not channel state information (CSI),

3



Figure 1.1: Cellular Network.

and this information must be sent back to the base station from users. In modern

systems such as LTE and WiMAX, this information is sent back to the base station

from users every 1-2 milliseconds. For uplink communication, the scheduler is neither

aware of CSI nor queue backlog information. Hence, when designing scheduling policies

these issues in uplink and downlink systems must be taken into account.

.

1.2 Focus of Thesis

In this thesis, we focus on designing opportunistic scheduling and resource allocation

algorithms by considering both complete and incomplete network state information at

the scheduler. We first explore how new communication techniques can be incorporated

to further increase the network performance in terms of throughout and delay with

complete network information at the scheduler. Then, we study scheduling problems

with incomplete network information.

1.2.1 Utilization of emerging technologies

When complete network state information (i.e., both channel state and queue backlog

information of all users) are available at the scheduler the key communication tech-

niques can be incorporated with opportunistic scheduling to further improve the wire-
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less spectrum efficiency in order to meet the future demand for high-data-rate wireless

communication.

Cooperative Communication: Cooperative communication is one of the most

important example of emerging techniques, which has recently been migrated as one of

the state-of-the-art features of 3GPP LTE-Advanced (LTE-A). The basic idea behind

cooperative transmission is that in a wireless environment, the signal transmitted by

a source user, is also received by other users, which may aid in transmission as relay

nodes. The relays may process and retransmit the signals that they receive. The

destination then combines the signals coming from the source and the relays, thereby

creating spatial diversity by taking advantage of the multiple receptions of the same

data over various terminals and transmission paths. However, in contrast to single-

user transmissions, cooperative communications involve multiple nodes transmitting

simultaneously to a receiver. This feature of cooperative communication necessities new

scheduling algorithms which tend to be further complicated with additional constraints

imposed on source and relays nodes.

Multi-packet Transmission: The classical opportunistic scheduling limits its

scope to the policies in which only a single user’s data is transmitted at any time.

Although transmitting to the user with the best channel achieves the maximum ag-

gregate throughput, the channel access rate of a user can be low, which causes long

packet delay experienced at the queue buffer. This motivates the design of opportunistic

scheduling schemes which can schedule multiple users simultaneously (i.e., multi-user

scheduling), consequently, can provide more frequent channel access and low delay.

Fortunately, recent advancements in digital signal processing and radio hardware help

in multi packet transmission and reception which makes multi-user scheduling possible

in future wireless systems. In fact, it is possible to schedule two or more users at the

same time by employing new communication techniques such as orthogonal coding and

hierarchical modulation for code division multiple access (CDMA) and broadcast sys-

tems, respectively. Since two or more users are involved in the transmission within these

schemes, more intelligent scheduling algorithms are required, and these algorithms must

both take into the account user constraints, and perform interference management and
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power allocation for the optimal scheduling. As a result, even though complete net-

work state information is available at the scheduler integrating opportunistic scheduling

algorithms with new communication techniques bring their own set of challenges.

1.2.2 Incomplete Network State Information

Opportunistic scheduling can provide high system performance by exploiting the vari-

ation of user channels. However, in downlink transmission this is not cost-free since

the scheduler requires the complete CSI in order to take advantage of the variations

of the users’ channels, which necessitates a certain amount of signalling between users

and the base station. Ideally, the CSI should be sent back to the base station from

every user via the uplink control channel at each scheduling instant. The amount of

this information becomes too high as the number of users grow. Moreover, it may be

impossible to collect CSI from all users due to the limited bandwidth of uplink control

channel.

To give an idea of how much resource needs to be allocated for channel state

feedback, CDMA/HDR (High Data Rate) system [4] can be considered, where the

Signal-to-Noise Ratio (SNR) of each link is measured as channel state information.

The value of the SNR is mapped to a value representing the maximum data rate that

can support a given level of error performance. There are 11 different SNR levels in

HDR system, hence, the channel state information of a single user is 4 bits long. This

value is then sent back to the base station via the reverse link data rate request channel

(DRC) every 1.67 ms. For instance if there are 25 users in a cell, 100 bits of channel

state information is sent back to the base station every 1.67 ms. This requires 60Kbps

of channel rate dedicated only for reporting channel states. Comparing this with the

minimum data rate of HDR system of 38.4Kbps, and the average data rate of 308Kbps,

one can immediately appreciate the need for method to reduce the amount of this

feedback. The overhead due to the feedback of channel state information becomes even

more significant in a multichannel communication system such as LTE. Also, for uplink

transmissions the base station must be aware not only CSI but also queue lengths of

users, which in turn results in even higher overhead. Therefore, it is important to design
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scheduling algorithms which not only achieve high throughput/delay performance but

also minimize the cost of acquiring network state information.

1.3 Contributions and the Outline of the Thesis

This thesis studies the problem of maximization of wireless network performance under

both complete and incomplete network state information by designing efficient schedul-

ing and resource allocation policies. In this regard, the thesis develops scheduling

algorithms which integrates and utilizes the key communication technologies to achieve

higher performance, and also presents scheduling algorithms which can operate under

incomplete network state information. The contributions are organized in a progressive

way, following the different system assumptions that are considered:

• In Chapter 3, assuming infinite backlog at user buffers (i.e., a saturated system)

and complete CSI at the base station, we develop optimal scheduling policies

which exploit the time-varying channel conditions and realize the benefits of co-

operative transmission in a cognitive radio network. We first propose a novel

model in which secondary users have the opportunity to transmit their own data

if they can improve the performance of a primary user via cooperation. Then, our

scheduling policies find the optimal time sharing between primary and secondary

users, based on the minimum data rate requirements of primary users. The ba-

sic structure of our optimal policies has the form of maximum weight where the

weight depends on the online parameters in stochastic approximation technique

and the virtual queues in Lyapunov optimization tools.

• In Chapter 4, taking into account randomness in packet arrivals (i.e., unsaturated

system) and assuming that complete CSI is available at the base station, we

address the problem of stability of user queues by utilizing multi-user scheduling

at the base station. We develop a throughput-optimal algorithm which selects two

users to be transmitted to at each time slot. This optimal algorithm jointly decides

the best two users for scheduling and performs power allocation between those
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users. In addition, we analytically prove that the proposed algorithm achieves

larger achievable rate region compared to the conventional Max-Weight algorithm

in which only a single user is allowed to transmit.

• In Chapters 5, 6 and 7, we focus on scheduling problems with incomplete networks

state information at the scheduler. Specifically, In Chapter 5 we design a joint

scheduling and channel feedback algorithm for a downlink system when channel

process is Independent identically distributed (iid) over time slots. We consider

a channel probing model where acquisition of a single channel state consumes a

certain fraction of data slot. With this probing model, it is possible to obtain

the complete CSI at the expense of decreased throughput. Under this setup, we

develop joint scheduling and channel probing algorithm whose main property is

that it always schedules the user with the highest queue backlog and channel

rate product. We characterize the achievable rate region of the algorithm by

comparing it with the rate region of Max-Weight algorithm when CSI from all

users are collected. For homogenous and heterogeneous channel conditions, we

determine the minimum number of users that must be present in the network so

that the rate region is expanded.

• In Chapter 6, we extend the channel model introduced in Chapter 5 by consid-

ering more practical channels which may be time-correlated (or continuous) and

possibly non-stationary. We also consider a more realistic probing model where

the base station acquires CSI from only a limited number of users due to the

bandwidth constraint on the feedback channel. We develop a joint scheduling

channel probing algorithm which tracks and predicts the instantaneous channel

conditions by employing Gaussian Process Regression technique based on the ac-

tual CSI observed in previous slots. Then, this algorithm determines the set of

channels to be probed by considering not only the queue sizes and predicted trans-

mission rates but also by the level of the uncertainty in each channel prediction.

We show that the algorithm can stabilize a scaled version (fraction) of the rate

region. For two-user case, we quantify the fraction explicitly.
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• In Chapter 7, we consider uplink communication channel and aim to stabilize the

network when there is neither CSI nor queue size information of users. In this re-

gard, we develop fully distributed scheduling algorithm which requires no message

passing between users and performs with only local queue size and channel state

information. By assuming continuous backoff time, we develop fully distributed

algorithm which is able to schedule the best user at each time slot, and is prov-

ably throughput optimal. In other words, the algorithm can achieve the same

performance as that of a centralized scheme in terms of both rate region and de-

lay. Then, we consider a more practical IEEE 802.11 network where only discrete

backoff time is available. We show that our algorithm is still throughput-optimal

but a small number of mini-slots must be introduced for collision resolution.
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Chapter 2

Background and Related Literature

In this chapter, we briefly list out some necessary techniques and knowledge that will

applied later to solve our problems. We begin with the definition of queue and network

stability. We then explain the basic idea behind Lyapunov drift theory which will be

used through out this thesis as a framework for the analysis. We also explain well known

Max-Weight algorithm developed by Lyapunov drift theory. We end the chapter with

a detailed review on opportunistic scheduling, cognitive radio, Max-Weight scheduling

and other related literature.

2.1 Queues and Stability

Congestion may occur at many real life situations such as waiting lines at post of-

fices, supermarkets, elevators, and in road traffic and computer-communication systems.

Roughly, a queueing system describes contention on the resources, where resources are

called servers. Queue process is directly related to congestion, and exhibits randomness

and variation due to the random nature of arrival and service processes.

Queueing systems provide an important tool in modeling the performance analysis

of telecommunication systems. First-in-first-out (FIFO) queues are among the most

basic and widely used queueing form. The following equation to represent the dynamics
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of a discrete time queue

Q(t+ 1) = max{Q(t)−D(t), 0}+ A(t), (2.1)

where Q(t) represent the amount of unfinished work at the buffer and is called backlog

at time t, A(t) and D(t) are real valued random variables which belong to a certain

stochastic process. A(t) and D(t) represent the amount of new task arriving at queue

and the amount of work processed by the server at time t, respectively. It is assumed

that both A(t) and D(t) are non-negative and they are independent of each other.

In communication networks, user’s data in bits or packets are stored until being

transmitted. The service process usually does not change over time in wired networks

whereas it varies according to the instantaneous channel condition in wireless networks.

Specifically, in wireless systems, the channel between a user and the base station varies

randomly. We represent the channel process of user n by hn(t). The maximum trans-

mission rate at which user n transmits (or receives) without decoding error is given

by [5],

Rn(hn(t)) = log2

(
1 +

Phn(t)

σ2

)
, (2.2)

where P is the transmission power and σ2 is the power of the additive white Gaussian

noise. In practice, there are finite number of modulation and coding schemes and only

a fixed set of data rates can be supported. For instance, in CDMA/HDR system [4]

there 11 SNR levels, which means there are 11 different transmission rates which vary

between 34.8 kb/s to 2400 kb/s. Also, let A(t) represent the amount of new arrivals

that enter the queue during slot t. Let Q(t) represent the current backlog in the queue

which may be interpreted as the number of packets or/and bits at time slot t. Then,

Q(t+ 1) = max{Q(t)−R(t), 0}+ A(t), (2.3)

Regarding a queueing system, the most important performance metrics are stability,

throughput and delay experienced by a packet at queue buffer. In this thesis, one of our

12



primary concern is the stability of queue that refers to the behavior of the queue-length

process. In a stable network the total number of packets or bits in the network will

not become infinite, whereas in an unstable network, queue lengths grow unboundedly.

The stability property of a queueing network is a good indicator to the average delay

experienced and the throughput achieved by the users. There are a variety of stability

definitions of a queue. The most common constraint of queue stability is as follows;

E[A(t)] ≤ E[D(t)]

The intuition behind this constraint is that as long as arrival rate does not exceed

departure rate, the server is able to perform all the task in finite time, and the queue

is stabilized. However, this definition is not sufficient to describe every situation. For

example, in the case where there are multiple queues that are served by a server as

we consider in our chapters the departure rate or average throughput is actually the

optimization objective. Therefore E[D(t)] cannot be determined before solving the

problem at the first place. As a result, we need more general definition for the queue

stability. First, we introduce the rate stability:

Definition 2.1. A queue is rate stable if

lim sup
t→∞

Q(t)

t
= 0 with probability 1 (2.4)

However, rate stability requires that arrival rate or departure rate have well-

defined limits. For the case where arrival rate or departure rate does not have well-

defined limits, we present a more general stability definition.

Definition 2.2. A queue is strongly stable if

lim sup
t→∞

1

t

t−1∑
τ=0

E(Q(t)) < ∞ (2.5)

According to the definition of strong stability, the queue backlog will always be

finite on average.
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Definition 2.3. A network is strongly stable if all individual queues of the network are

strongly stable.

2.2 Lyapunov Optimization

For general case where there are N users (N ≥ 1) in the network, a controller (or

scheduler) allocates the channel to a single user (or a subset of users) at a given time

slot. Let In(t) be the scheduler decision, where In(t) = 1 if user n is scheduled (e.g.,

full power is assigned to user n) for transmission in slot t, and In(t) = 0 otherwise.

Let I(t) = (I1(t), I2(t), · · · , IN(t)) be the corresponding vector, and I be the set of all

possible scheduling vectors. Since transmission rate of a user is completely characterized

given channel states and the schedule vector, we have

Rn(t) = Rn(hn(t), I(t))

and in vector form,

R(t) = R(h(t), I(t))

Let λ be time average expected arrival rate, i.e., λ = E[A(t)]. Also let λ = (λ1, λ2, · · · , λN)

be the arrival rate vector.

Definition 2.4. The achievable rate region of a network denoted by Λ is the closure

of the set of all arrival rate vectors λ that can be stably supported by the network,

considering all possible strategies for scheduling and resource allocation.

In [6] and [7] it has been shown that the rate region is given by

Λ =
∑

h∈H
π(h)Convex-hull{R(h(t), I(t))|I(t) ∈ I} (2.6)

where H is the set of all possible channel states. Next, we introduce the theory of

Lyapunov drift.
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Definition 2.5. An algorithm is said to be throughput-optimal if it ensures network

stability for any rate vector within rate region Λ.

In [6], the authors have developed a throughput-optimal algorithm called Max-

Weight algorithm by using Lyapunov drift theorem which we explain next. Basically,

Max-Weight algorithm schedules the user with the highest queue backlog and trans-

mission rate product at every time slot:

n∗ = argmax
n

Qn(t)Rn(t) (2.7)

The Max-Weight algorithm uses queue lengths as user weights so that if a user does

not receive enough service, its queue builds up, which forces the algorithm to allocate

more resources to that user. This interaction between queue lengths and scheduling

guarantees the throughput optimality of resource allocation.

Lyapunov drift is an important mathematical tool that enables us to develop

control algorithms for the strong stability of a network. The idea is based on a Lyapunov

function which is a non-negative function of all queues in the network [8]. Network

control decisions are then given such that Lyapunov function from one slot to the next

is minimized. LetQ(t) = (Q1(t), Q2(t), · · · , QN(t)) in a network with N users. Suppose

that the goal is to stabilize the backlog process Q(t). Define the following quadratic

Lyapunov function and the one-slot conditional Lyapunov drift;

L(Q(t)) ,
N∑

n=1

Q2
n(t), (2.8)

∆(Q(t)) , E [L(Q(t+ 1))− L(Q(t))|Q(t)] . (2.9)

where the expectation is taken over all possible states of Q(t) in one time slot. The

Lyapunov drift has the following important theorem relating to queue stability.

Lemma 2.1 ( [8], Lemma 4.1). If there exits constants B > 0 and ε > 0, such that for
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all time slots t we have:

∆(Q(t)) , E [L(Q(t+ 1))− L(Q(t))|Q(t)] ≤ B − ε

N∑
n=1

QN(t) (2.10)

then the network is strongly stable and

lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=1

E(Qn(t)) ≤ B

ε
(2.11)

Lyapunov drift represents the expected change in the Lyapunov function from one

slot to the next. If the condition (2.10) is satisfied then these exits a positive δ > 0 such

that ∆(Q(t)) < −δ whenever
∑N

n=1Qn(t) ≥ (B + δ)/ε. In other words, when queue

sizes are sufficiently large then the expected Lyapunov drift becomes negative, which

implies that queue sizes do not increase and network stability is achieved. Lyapunov

drift theory can also be used to to deal with performance optimization and queue

stability problems simultaneously in a unified framework.

Suppose that the goal is to stabilize the backlog process Q(t) while maximizing

the time average of a scalar-valued utility function g(·) of transmission rate process

R(t). Suppose that the optimal value of g(·) is g∗. Define the following quadratic

Lyapunov function and conditional Lyapunov drift

L(Q(t)) ,
N∑

n=1

Q2
n(t), (2.12)

∆(Q(t)) , E [L(Q(t+ 1))− L(Q(t))|Q(t)] . (2.13)

We restate a result of [8].

Theorem 2.1. (Lyapunov Optimization citeGeorgiadis:Resource06, Theorem 5.4) For

the scalar valued function g(·), if there exists positive constants K, ε, B, such that for

all time slots t and all unfinished work vectors Q(t) the Lyapunov drift satisfies the
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condition

∆(Q(t))−KE[g(R(t))|Q(t)] ≤ B − ε

N∑
n=0

Qn(t)−Kg∗, (2.14)

then the time average utility and queue backlog satisfy:

lim inf
t→∞

1

t

t−1∑
τ=0

g(E]R(τ)]) ≥ g∗ − B

K
, (2.15)

lim sup
t→∞

1

t

t−1∑
τ=0

L∑

l=1

E[Qn(τ)] ≤ B +K(ḡ − g∗)
ε

, (2.16)

where ḡ = lim supt→∞
1
t

∑t−1
τ=0 E[g(R(τ))].

This is the one of the most important theorem in Stochastic Lyapunov Optimiza-

tion theory, which establishes the tradeoff between the utility function g(·) and queue

backlog Q(t). Note that the aim of conventional optimization methods is to maximize

the system utility. Unlike conventional methods, Lyapunov Optimization first trans-

forms system constraints into queue stability constraints which are usually referred as

virtual queues. Then, it minimizes the drift ∆(Q(t)) plus the penalty KE[g(R(t))|Q(t)]

in the lefthand side of (2.14). By doing that, the system constraints is satisfied as

in (2.16) and the penalty is minimized (or utility is maximized) as in (2.15). Here,

the parameter K > 0 is introduced, and K controls the tradeoff between the system

constraints and penalty. Specifically, the system utility approaches its maximum (or

penalty decreases) as K increases. On the other hand, the queuing backlog increases

with K. Hence, at this point it brings the tradeoff between penalty (utility) and system

delay: If more emphasis is placed for minimizing the penalty (or maximizing utility),

we should choose a larger K; if more emphasis is placed for minimizing the average

delay, we should choose a smaller K.
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2.3 Related Literature

Scheduling is one of the most active research areas in wireless networking and a large

body of work in the literature has been devoted to the development of opportunistic

wireless scheduling under different performance criteria and constraints. Depending on

the considered system models, these works can be categorized into two primary groups:

unsaturated and saturated systems.

There has been a plethora of work designing scheduling polices for saturated

systems where users are infinitely backlogged and always have data to transmit. In

the literature the assumption of infinite backlogged queues has been widely applied

to various communication systems. This is because with this assumption it is easy

to obtain closed form solutions with important insights into the problem of utility

maximization. In particular, throughput of a system with infinite backlogged queues

provides an upper bound on the maximum achievable performance of any arbitrary

system. The works [9], [10], [11], [12], [13], [14], [15], [16], [17], [18] considering saturated

system with complete CSI are often concerned with channel assignment so that the user

with the best channel quality accesses the channel at any given time. Notable among

these are Proportional- Fair (PF) scheduling [11], [12], [13] that optimizes aggregate

logarithmic utility. Particularly, under resource sharing constraints, the long term

fairness is achieved by assigning offsets to user utility functions [9].

In fact, when complete CSI is available at the scheduler, the developed algorithms

for both saturated and unsaturated systems can be adapted to the new communication

techniques to further improve the performance of wireless networks. Cognitive radio,

cooperative communication (Chapter 3) and multi-packet transmission (Chapter 4) are

three important examples of such emerging techniques, which we focus on in this thesis.

In Chapter 3 of this thesis, we study the scheduling problem for a saturated system

with complete CSI in cognitive radio networks, which was first promoted by Mitola [9].

The motivation for cognitive radios comes from the observation that regulatory bod-

ies [19], [20] in the world (i.e., the Federal Communications Commission) found that

most radio frequency spectrum was inefficiently utilized. Cellular network bands are
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overloaded in most parts of the world, but other frequency bands (such as military, am-

ateur radio and paging frequencies) are insufficiently utilized. Such a spectrum usage

pattern is mainly due to the fact that government agencies assign fixed pieces of the

spectrum to license holders (primary users) often on a long-term basis and for large

geographical regions. Fixed spectrum allocation prevents rarely used frequencies (those

assigned to specific services) from being used, even when any unlicensed users would not

cause noticeable interference to the assigned service. Therefore, regulatory bodies in

the world have been considering to allow unlicensed users (secondary users) in licensed

bands if they would not cause any interference to licensed users. These initiatives have

focused cognitive-radio research on dynamic spectrum access.

Approaches to cognitive radio can be divided into two categories: commons model

and property-rights model [21], [22]. In the commons model, the primary network

is oblivious to the secondary network activity and the aim of secondary users is to

detect the spectrum holes without interacting with the primary system and exploit

the detected transmission opportunities. These spectrum holes represent the absence

of primary activity either in time, frequency, or space. A key challenge here is to

maximize secondary user’s opportunities while limiting the interference caused to the

primary users due to imperfect knowledge of the primary user channel occupancy state.

Hence, such a scheme naturally requires spectrum sensing for opportunity detection

and spectrum access and sharing [23].

In the property-rights model (spectrum leasing), primary users (PUs) are aware

of the existence of secondary users (SUs) on a given bandwidth, and willing to lease the

spectrum for a fraction of time. In literature, spectrum leasing model is usually coupled

with cooperative communication which is an emerging and powerful solution that can

improve the performance of wireless systems [24], [25]. The basic motivation behind

cooperative transmission is based on the broadcast nature of wireless transmission where

the signal transmitted by a source node, it can be received by other nodes in the network,

which are usually referred as relay nodes. These relay nodes retransmit the received

message, and the destination node can combine the signal coming from both relays and

source node and creates spatial diversity by taking advantage of the multiple receptions
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of the same data. It was shown in [26], [27] that cooperative communication promises

significant capacity and multiplexing gain increase in wireless networks.

Cognitive radio system applying spectrum leasing approach was investigated in

[28], [29], [30] by considering only one primary transmitter. In [28], the authors pre-

sented a spectrum leasing scheme that allows PU to lease its own bandwidth for a

fraction of time in exchange for enhanced performance guarantee via cooperation with

SUs. As a result, more spectrum access opportunity is left for SU to transmit their own

data. The authors in [29], [30] developed a game theoretic framework for a spectrum

leasing in which PU actively participates in a non-cooperative game with SUs. In these

works, PU plays an active role and allows SUs’ access while meeting its own minimum

Quality-of-Service (QoS) requirement. On the other hand, SUs aim to achieve energy

efficient transmissions as long as they do not cause excessive interference to PU. Ex-

tending to the work [28], [29], [30] to a more general case, where there are multiple PUs

and SUs, requires more complex scheduling algorithms.

Another emerging technology that can improve the spectrum efficiency is multi-

user scheduling. In the classical opportunistic scheduling, only a single user which

usually refers to the user (or subset of users) with the best channel quality is allowed to

access to the channel at the same time slot and frequency band. However, in a multi-user

scheduling scheme, multiple users can be assigned the same time-frequency resource.

One method to perform multi-user scheduling is the orthogonal code allocation-based

scheduling which was proposed to schedule two users simultaneously over CDMA based

network [31]. For 4G cellular systems such as LTE, another multi-user scheduling tech-

nique hierarchical modulation (also known superposition coding or embedded modula-

tion) has been applied [32], [33], [34].

Hierarchical modulation (HM) is a a physical layer and modulation-assisted multi-

user scheduling scheme. The basic idea behind HM consists of the partitioning the data

stream into two parts: the coarse or high-priority (HP) information and the refinement

or low-priority (LP) information. After channel encoding, the HP and the LP infor-

mation are de-multiplexed into a single stream and mapped on non-uniformly spaced

constellation (Fig. 2.1.b) points creating different levels of error protection. The HP
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Figure 2.1: 4-QAM (a) and Hierarchical 4/16-QAM (b) constellations.

information is to be received correctly by the corresponding user even in a very bad

channel environment, while the LP information is mostly designated to user whose

channel has better qualities and higher signal-to-noise ratios (SNR).

The idea behind HM was first applied to digital broadcast systems [35], and it was

shown that the proposed scheme improves the throughput of the system compared to the

classical opportunistic scheduling. In [36], the authors proposed a multi-user scheduling

algorithm and showed that HM offers lower queueing delay at the transmission buffer.

This is due to the fact that by scheduling two or more users simultaneously, users can

access to the channel more frequently. Actually, as stated in [37] one of the main reasons

for the poor delay performance of Max-Weight algorithm is that only one queue is served

at a time. This motivates us to design multi-user scheduling algorithm for Max-Weight

scheduling by employing hierarchical modulation at the physical layer (Chapter 4).

In unsaturated systems, there is arrival of traffic with finite workload to each

user, and queueing and packet arrival dynamics are considered. Under such systems,

the primary goal is to stabilize queues (i.e., average queue size is finite). In their seminal

work, Tassiulas and Ephremides have shown that opportunistic Max-Weight algorithm

which schedules the user with the highest queue backlog and transmission rate product

at every time slot can stabilize the network and achieves the maximum throughput [6].
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They also establish the achievable rate region (also known as stability region, network

capacity region) which is the convex hull of the set of all arrival rate vectors that can be

supported by an appropriate scheduling policy. Next, we explain Max-Weight algorithm

in detail.

The work in [6] adopts some idealized assumptions such as i.i.d. packet arrivals

and channel conditions over time. These assumptions, however, do not necessarily hold

in practice. Furthermore, the same analytical techniques and Max-Weight policy do

not necessarily work when these assumptions are removed. Naturally, the result in [6]

has been further extended by many researchers [7], [38], [39], [40]. In particular, in

the context of general power allocation and routing, Neely and Modiano have extended

the results in [6] and established the network layer capacity region for general ergodic

channels, arrival processes, and general interference models [39]. They have also shown

that Max-Weight type policy is still throughput-optimal in the general network setup.

Max-Weight type algorithms have also been studied in a variety of contexts with

different objectives. For instance, Neely developed energy optimal scheduling algo-

rithm which also satisfies the network stability for both single and multi-hop wireless

networks [41]. He also studied the energy-delay [42] and utility-delay tradeoff [43], and

showed that the performance of the network in terms of both energy and utility can

be arbitrarily close to the optimal operating point at the expense of increasing the

end-to-end delay. The scheduling policy of [6] has also inspired the congestion con-

trol [44], [45], rate control [46] problems. The work in [6] also provided the discovery

of another throughput-optimal scheduling algorithm namely the exponential rule [47].

The main difficulty in implementing Max-Weight type scheduling policies for

downlink network is having access to channel conditions of users. Hence, all of these

papers largely rely on the availability of this information from all users, which could be

prohibitively large with increasing numbers of users. There has been significant interest

in developing joint channel feedback and scheduling algorithms for downlink wireless

systems. Opportunistic feedback has been proposed in [48], [49], [50], [51] where the

system is designed primarily for exploiting multiuser diversity. In [48] users contend

for the feedback channel if the channel state exceeds a pre-defined threshold. Similarly,
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in [50], multiple threshold levels are used to reduce the cost for obtaining CSI. For

uplink scheduling, the authors in [49] propose an optimization framework in OFDM

systems. A random access based feedback protocol for achieving multiuser diversity

with limited feedback was proposed in [51]. More recently, similar idea was proposed

in [52] where only the users with channels good enough are allowed to send feedback.

We refer to the readers to [53] and the references therein for more information on acquir-

ing limited feedback. Most prior works study network capacity and feedback tradeoff

by assuming infinitely backlogged user queues (i.e., saturated system). However, when

network stability problem, where the aim is to stabilize all user queues, is considered

this trade-off cannot be analyzed in the same way since queue size of each user should

be taken into account. Network stability problem with infrequent channel state mea-

surements was investigated in [54] and it was shown that achievable rate region shrinks

as the frequency of CSI feedback decreases.

On the other hand, employing Max-Weight scheduling for uplink communication

not only requires complete CSI but also queue length information from all users at

every scheduling time, which brings much more cost than that of downlink system.

Hence, the cost of Max-Weight policy has motivated many researchers to develop dis-

tributed algorithms for the practical implementation of Max-Weight policy. Carrier

Sense Multiple Access (CSMA) is one of the most popular random access protocols in

practice, which provide distributed algorithms. Simply, with CSMA each user senses

the medium and transmits a packet only if the medium is sensed idle. Due to its simple

and distributed nature, it has been widely used in current wireless networks,such as

IEEE 802.11 networks. Thus, there exists a huge number of works on CSMA. One of

the earliest work in this direction is proposed [55], where randomized policies based on

the Pick-and-Compare is proposed. In a more recent work [56], the authors propose

distributed schemes to implement a randomized policy similar to the one in [55] that

can stabilize the entire rate region. Both policies in [55] and [56]; however, are pro-

posed for time-invariant channels and require message passing. Recently, [57], [58], [59]

showed that simple CSMA-type algorithms can achieve throughput-optimality without

requiring any message passing between users. However, these works consider static
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channel model and their delay performance can be very poor.
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Chapter 3

Optimal Scheduling in Cognitive

Radio Network

In this Chapter, optimal scheduling policies are characterized for wireless cognitive

networks under the spectrum leasing model. Such a study is motivated by the ob-

servation that these networks through dynamic spectrum access improve the current

under-utilization of the spectrum. We propose cooperative schemes in which secondary

users share the time slot with primary users in return for cooperation. Cooperation is

feasible only if the primary system’s performance is improved over the non-cooperative

case. First, we investigate a scheduling problem where secondary users are interested

in immediate rewards. Here, we consider both infinite and finite backlog cases. Then,

we formulate another problem where the secondary users are guaranteed a portion of

the primary utility, on a long term basis, in return for cooperation. Finally, we present

a power allocation problem where the goal is to maximize the expected net benefit

defined as utility minus cost of energy. Our proposed scheduling policies are shown to

outperform non-cooperative scheduling policies, in terms of expected utility and net

benefit, for a given set of feasible constraints. Based on Lyapunov Optimization tech-

niques, we show that our schemes are arbitrarily close to the optimal performance at

the price of reduced convergence rate.
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3.1 Overview

Cognitive Radio Networks (CRNs) have recently been investigated extensively [60], [23].

As discussed in Chapter 2, the main advantage that CRN presents is the efficient

utilization of the scarce radio spectrum resources. By opportunistically exploiting the

under utilized spectrum, unlicensed (i.e., secondary) users can transmit over the licensed

bands, provided that they do not hurt the performance of the licensed (i.e., primary)

users.

One of the most important spectrum sharing model for cognitive radio is spectrum

leasing [21], [22], where primary users (PUs) own the spectrum and are willing to lease

it to SUs in return for some form of service, for instance, cooperation via relaying.

Consider the following motivating scenario: in a cellular network, a licensed wireless

user is far away from the base station and is experiencing low transmission rates. At

the same time, a cognitive user is half way between the licensed user and the base

station and thus has better channel conditions. The cognitive user desires to access

the channel to send some of its own data to the base station. After coordination, PU

agrees to share a portion of its own time slot with SU in exchange for SU relaying PU’s

data to the base station. In this Chapter, we exploit this cooperative scheme between

primary and secondary systems to improve the overall performance.

Optimal scheduling in wireless networks has been extensively studied in the litera-

ture under various assumptions and purposes [61], [62], [9], [11], [10], [63], [64], [63], [64].

However, these works assumed a sing-hop system, and no cooperation among users was

investigated. Opportunistic scheduling was recently studied for cognitive radio net-

works under the commons model [65], [66]. In these works, Lyapunov optimization

tools were used to design flow control, scheduling and resource allocation algorithms

and explicit performance bounds were derived. Using the technique of virtual queues,

the joint problem of stabilizing the queues of SUs in addition to satisfying long term

constraint on the collision probability or interference on the primary channels is trans-

formed into a queue stability problem. In addition, cognitive radio system applying

spectrum leasing approach was investigated in [28], [29], [30]. In [28], the authors pre-
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sented a spectrum leasing scheme that allows PU to lease its own bandwidth for a

fraction of time in exchange for enhanced performance guarantee via cooperation with

SUs. As a result, more spectrum access opportunity is left for SU to transmit their own

data. The authors in [29], [30] developed a game theoretic framework for a spectrum

leasing in which PU actively participates in a non-cooperative game with SUs. In these

works, PU plays an active role and allows SUs’ access while meeting its own minimum

Quality-of-Service (QoS) requirement. On the other hand, SUs aim to achieve energy

efficient transmissions as long as they do not cause excessive interference to PU.

In this Chapter, we propose optimal opportunistic scheduling policies for primary

and secondary users in a cognitive radio network under the spectrum leasing model.

Unlike previous work, we consider scheduling of cooperative primary and secondary

networks with multiple users sharing a common destination. For example, [28], [29],

[30] considered only one primary transmitter and separate receivers for primary and

secondary systems. Thus, the only coordination required is among the transmission

between the single PU and a subset of SUs. In addition, the authors in [29], [30] did

not explicitly model the price paid by SUs to PUs to share the licensed spectrum.

In our work, we first consider the optimization of the total expected utility of both

primary and secondary systems while satisfying an average performance constraint for

each primary user in the network. Here, we develop a cooperative scheduling policy by

which the performance is improved and shown to be at least as good as the original

primary-only system. For a given time slot, users cooperate using decode-and-forward

multihop scheme [67] where SUs relay the messages of PUs to a common destination in

a portion of the time slot as a levy of using the already licensed spectrum for a fraction

of that time slot. The parameters specifying the cooperation strategy are the fraction

of the time slot during which SU relays PU’s data and the fraction used to transmit

SU’s own data.

Next, another formulation is considered in which SUs are guaranteed some portion

of the primary utility in an average sense, in return for cooperation. This formulation

presents a model of banking between primary and secondary systems where rewards

are gained over the long term. Finally, we formulate a power control problem where
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the objective is to maximize the net benefit defined as the difference between the value

of the utility and the cost of the energy consumption, under minimum requirement

constraints on PUs. We employ Lyapunov optimization tools developed in [68], [8]

to analyze our proposed schemes and to derive explicit bounds on the performance

achieved. We show that our proposed schemes can be pushed arbitrarily close to the

optimal with a tradeoff between optimality and the convergence rate of the algorithms.

3.2 Network Model

We consider a cognitive radio network ofM PUs andN SUs, all wishing to communicate

with a common destination D as shown in Figure 3.1. This destination can be viewed

as a base station in a single-cell of a cellular network or as an access point in a Wi-Fi

network. We consider a time-slotted system where the time slot is the resource to be

.
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Figure 3.1: Network Model.

shared among different nodes. We adopt a non-interference model where only one node,

either primary or secondary, is transmitting at any given time. Random channel gains

between each node and other nodes in the network are assumed to be independent

and identically distributed (i.i.d) across time according to a general distribution and

independent across nodes with values taken from a finite set. Moreover, we assume that
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channel gains are time-varying, but fixed over the time slot duration. We assume the

availability of perfect channel state information of all channels at the scheduler, i.e.,

knowledge of channel coefficients immediately prior to transmission.

In the following analysis, we use the notation Rp
m(t), R

s
n(t) to denote the trans-

mission rates from PU m to destination and from SU n to destination, respectively, at

time slot t. The corresponding random rate vectors are denoted as Rp(t), Rs(t). The

transmission rate from PU m to SU n is denoted as Rr
mn(t), where the correspond-

ing rate matrix is Rr(t). The transmission rate is a function of the random channel

conditions, and thus a measure of the channel quality. We assume that transmission

rate processes are ergodic and bounded. As will be clear in the next subsection, since

our scheme works by selecting a pair of users (primary and secondary) to transmit at

a given time slot, the utility achieved by a user is a function of the cooperating pair.

Consequently, the utility function of a PU m when it cooperates with SU n at time

slot t is denoted as Umn(t). Similarly, the utility function of a SU n that cooperates

with PU m is denoted as Vmn(t) . These utility functions are measures of the level of

satisfaction of users and thus they are generally assumed to be non-decreasing concave

functions of the transmission rate.

3.2.1 Cooperative Scheme

To schedule transmissions of different users, a scheduling policy is required. In our co-

operative framework, we allow the scheduling policy to either schedule a PU to transmit

during a given time slot, or to schedule a pair of primary and secondary users to share

the time slot, according to the channel conditions. The scheduling policy Q is a rule

that selects the four-tuple (m,n, α, β) to transmit at time-slot t, where α and β specify

the cooperation strategy the pair of primary and secondary users m,n use. In a time

slot t, the scheduling policy is a function of the rate vectors Rp(t), Rs(t), rate matrix

Rr(t) and possibly other variables related to past performance. Note that the schedul-

ing policy we adopt is opportunistic in the sense that it exploits the time-varying nature

of the wireless channel.

In our model, we focus on a cooperation based spectrum leasing scenario. Under
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this model, scheduling is done such that, if feasible, a pair of primary and secondary

users cooperatively share a single time slot to improve the performance of the origi-

nal primary system and allow unlicensed users to access the licensed spectrum, where

feasibility is to be defined. Cooperation is achieved as follows: for a fraction (1 − α),

0 ≤ α ≤ 1, of the time slot, PU m sends its data (intended to destination) to SU n

(relay). In the remaining portion of the time slot, the scheduled SU uses the channel

to relay PU’s data over a β fraction, 0 ≤ β ≤ 1, and then, transmits its own data

during the rest of the time slot, i.e., over α(1 − β) fraction. A schematic of the time

slot structure is shown in Figure 3.2. This cooperative scheme is a form of implementa-

tion of the spectrum leasing cognitive radio framework where SUs help primary system

improve its performance to access the licensed spectrum. By this scheme, our system

is in fact trying to reap the benefits of a form of spatial diversity. We note that the

structure of our scheme is similar to the cooperative scheme of [28], however, we do not

employ distributed space time coding and allow only one SU to cooperate in a given

time slot. We set n = 0 by definition for the case when a PU m is scheduled to transmit

Relay to Receiver Secondary to ReceiverPrimary to Relay

(1 − α) αβ α(1 − β)

Figure 3.2: General Time Slot Structure.

directly to the destination without cooperating with SUs. This is the case when cooper-

ation is either infeasible or leads to suboptimal utility values. We set Rr
m0(t) = Rp

m(t),

m ∈ {1, 2, · · · ,M} and α = 0 in such cases.

The utility function is taken to be a non-negative non-decreasing concave function

of the rate. This choice is of practical interest, since a small increase in the rate in the

low rate regime is generally more appreciated than a small increase in the high rate

regime. Given a scheduling decision Q = (m′, n′, α, β), we define the utility of the
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selected primary and secondary users, Um′n′(Q, t) and Vm′n′(Q, t), respectively, as

Um′n′(Q, t) =





h1(R
p
m′(t)) ; if n′ = 0

h1((1− α)Rr
m′n′(t)) ; otherwise

(3.1)

Vm′n′(Q, t) =





0 ; if n′ = 0

h2(α(1− β)Rs
n′) ; otherwise

(3.2)

in a given time slot t. For all other primary and secondary users (m,n) such that

m 6= m′ and n 6= n′, we set Umn(Q, t) = Vmn(Q, t) = 0. In the following, we sometimes

use the shorthand Umn(t) and Vmn(t) in place of Umn(Q, t) and Vmn(Q, t) for simplicity.

Examples of utility functions that can be used include hi(x) = log(1 + x) and hi(x) =

x, i ∈ {1, 2}.
Note that we assume scheduler’s knowledge of the transmission rates for the pri-

mary and secondary users at each time slot. For the scheduler to choose a pair to

transmit over a given slot rather than scheduling a PU for direct transmission, fea-

sibility conditions should hold. For a time slot t, the feasibility conditions can be

summarized as follows:

0 < (1− α)Rr
mn(t) ≤ αRs

n(t). (3.3)

The strict inequality in (3.3) guarantees validity of the cooperation whereas the second

inequality asserts that SU n has a sufficiently good channel to relay primary transmis-

sion at a given time slot t. Given α, it can be seen that the optimal value of β is given

by

β∗ =
(1− α)Rr

mn

αRs
n

. (3.4)

If β < (1−α)Rr
mn

αRs
n

, SU n does not have sufficient time to relay the data of m. If β >

(1−α)Rr
mn

αRs
n

, then unnecessary time is wasted by SU n. Thus, in the following we use the

notation Q = (m,n, α) for the decision of a scheduling policy Q. Note that (3.3) implies

β ≤ 1.
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Since we are interested in the maximization of the total expected utility of both

primary and secondary systems, (3.4) is required to ensure superiority over non-cooperative

schemes as will be clear in Section 3.3.

Let F be the set of feasible policies at a given time slot. The set F is constructed

from all the tuples (m,n, α) such that (3.3) holds for some 0 ≤ α ≤ 1. We set the tuple

(m, 0, 0) ∈ F by definition.

Let the total utility of the system (both primary and secondary), when scheduling

policy Q is employed at a given time slot t, be W (Q, t). Then,

W (Q, t) =
M∑

m=1

N∑
n=0

Umn(Q, t) + Vmn(Q, t). (3.5)

Note that when the scheduling policy Q selects the tuple (m′, n′, α), the system

receives a reward of W (Q, t) = Um′n′(Q, t) + Vm′n′(Q, t). The total expected utility is

defined as W̄ (Q, t) , E[W (Q, t)] where the expectation is taken over the random trans-

mission rates (random channel conditions), and possibly over the randomized policy.

3.2.2 Lyapunov Drift with Optimization

In our work, we use Lyapunov drift and optimization tools to show the optimality

of our schemes. The advantage of this tool is the ability to provide a simple way to

find optimal scheduling algorithms for complex models and to prove their optimality.

Basically, this simplicity comes from defining each constraint as a virtual queue and

then transforming the problem into a network stability problem [68].

We first introduce two definitions: Let Zi(t), i ∈ {1, 2, · · · , L} be a queue backlog

process and Z(t) = (Z1(t)Z2(t) · · ·ZL(t)) in a network with L nodes. Suppose that the

goal is to stabilize the backlog process Z(t) while maximizing the time average of a

scalar-valued utility function g(·) of another process R(t). Suppose that the optimal

value of g(·) is g∗. Define the following quadratic Lyapunov function and conditional
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Lyapunov drift

L(Z(t)) ,
L∑

l=1

Z2
l (t), (3.6)

∆(Z(t)) , E [L(Z(t+ 1))− L(Z(t))|Z(t)] . (3.7)

We give a modified version of Theorem 2.1.

Theorem 3.1. (Lyapunov Optimization) [8] For the scalar valued function g(·), if there
exists positive constants K, ε, B, such that for all time slots t and all unfinished work

vectors Z(t) the Lyapunov drift satisfies the condition

∆(Z(t))−KE[g(R(t))|Z(t)] ≤ B − ε

L∑

l=0

Zl(t)−Kg∗,

then the time average utility and queue backlog satisfy:

lim inf
t→∞

1

t

t−1∑
τ=0

E[g(R(τ))] ≥ g∗ − B

K
, (3.8)

lim sup
t→∞

1

t

t−1∑
τ=0

L∑

l=1

E[Zl(τ)] ≤ B +K(ḡ − g∗)
ε

, (3.9)

where ḡ = lim supt→∞
1
t

∑t−1
τ=0 E[g(R(τ))].

We note that Theorem 3.1 is a modified version of Theorem 2.1. Specifically, in

our analysis, the function g(·) represents the total utility of the system in a time slot

given by (3.5) which is function of the utility matrices (3.1), (3.2) and the scheduling

policy Q. Hence, our objective is to maximize the time average of the instantaneous

utilities. On the other hand, in [8], the utility of each user is a function of the time

average of the instantaneous rates. However, by using Jensen’s inequality and noting

that the utility function is concave, the same lower bounds in (3.8) and (3.9) apply

for our objective. We note that by using T-slot Lyaponuv drift techniques [8], similar

results can be derived for more general (i.e., correlated) channel processes.

In our problem, since the utility of individual primary and secondary users is
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bounded, since achievable rates are bounded the total utility W (Q, t) is bounded. It

follows that the total expected utility can be pushed arbitrarily close to the optimum by

choosing K sufficiently large. However, this leads to increasing bound on the average

queue size given in (3.9).

3.3 Primary Constraints and Immediate Rewards

In this section, the goal is to schedule the transmissions of primary and secondary

nodes to achieve maximum average sum utility of primary and secondary systems while

maintaining minimum performance levels for each primary node. Here, the secondary

node n is allowed to access the spectrum only if cooperation improves the instantaneous

utility of a primary node m Hence, we define F1 as the set of tuples (m,n, α) satisfying

the following condition:

Rp
m(t) ≤ (1− α)Rr

mn(t) ≤ αRs
n(t). (3.10)

for some 0 < α < 1. This constraint sets an upper bound on the range of α for

the possible cooperation between each pair (m,n). Note that F1 ⊂ F . We discuss

two types of scheduling policies. First, we consider stationary scheduling polices that

depend only on the values of the rates Rp(t),Rs(t),Rr(t). Then we investigate the

more general time-varying policies.

3.3.1 Problem Formulation

The optimal opportunistic scheduling problem with minimum performance constraints

was previously solved in [9]. By including N SUs to the system, our model can be

viewed as a generalization to the model in [9]. In addition, setting N = 0 in our scheme

yields the scheme in [9] as will be shown in the next subsection.
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The problemcan be stated formally as follows:

max
Q∈F1

W̄ (Q, t)

s.t. E

[
N∑

n=0

Umn(Q, t)

]
≥ Cm, (3.11)

m ∈ {1, 2, . . . ,M}, where Cm is the minimum performance constraint for each PU m.

To compare to the non-cooperative system, an example of the choice of the constraints

Cm is given at the end of Section 3.3.2.

The aforementioned problem formulation along with (3.10) implies that SUs are

rewarded access to the channel immediately during a time slot if their cooperation

improves the performance of the primary system.

3.3.2 Optimal Stationary Policy

In this subsection, we propose a stationary scheduling policy in a form similar to the

optimal policies reported in [9], and show that it solves (3.11) for the given cognitive

radio network.

Scheduling Algorithm Q1a:

For every time slot t and the given the values of Umn(t) and Vmn(t) for all (m,n),

the solution to the scheduling problem (3.11) is given by

Q1a = argmax
(m,n,α)∈F1

{λ∗
mUmn(Q, t) + Vmn(Q, t)} , (3.12)

where λ∗
m,m ∈ {1, 2, . . . ,M} are real-valued parameters satisfying:

1. minm λ∗
m = 1.

2. E
[∑N

n=0 Umn(Q1a, t)
]
≥ Cm for all m.

3. If E
[∑N

n=0 Umn(Q1a, t)
]
> Cm, then λ∗

m = 1.

Theorem 3.2. Scheduling Algorithm Q1a solves (3.11).
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Proof. The proof is similar to the proof of the optimal policies in [9]. However, the

scheduling policy Q1a in our work decides a tuple of three variables each time slot

instead of only choosing a primary user.

In the following, we drop the parameter t. Let Q be a scheduling policy satisfying

E
[∑N

n=0 Umn(Q)
]
≥ Cm for all m ∈ {1, 2, . . . ,M}. Then,

W̄ (Q) ≤ W̄ (Q) +
M∑

m=1

(λ∗
m − 1)

(
N∑

n=0

E [Umn(Q)]− Cm

)

=
M∑

m=1

N∑
n=0

E[Umn(Q) + Vmn(Q)]

+
M∑

m=1

N∑
n=0

(λ∗
m − 1)E[Umn(Q)]

−
M∑

m=1

(λ∗
m − 1)Cm

=
M∑

m=1

N∑
n=0

E[λ∗
mUmn(Q) + Vmn(Q)]

−
M∑

m=1

(λ∗
m − 1)Cm

where the first inequality follows since λ∗
m ≥ 1. From the definition of Q1a, we have

M∑
m=1

N∑
n=0

E[λ∗
mUmn(Q) + Vmn(Q)]

≤
M∑

m=1

N∑
n=0

E[λ∗
mUmn(Q1a) + Vmn(Q1a)]

The structure of the derived scheduling policy suggests that when a primary user

m experiences unfavorable channel conditions, the associated parameter λ∗
m will be

larger than one. Then, it attains average utility that is only equal to its corresponding

constraint. Otherwise, this primary user is granted a utility strictly larger than its

minimum requirement.
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The policy in (3.12) is stationary since it only depends on the values of the utility

functions. Note that for any time slot t, given the values of Rp
m(t), R

s
n(t) and Rr

mn(t)

for all m and n, the scheduler is able to construct the set of feasible policies F1 by

associating the ranges r−α ≤ α ≤ r+α and r−β ≤ β ≤ r+β for each pair (m,n). These ranges

are chosen to satisfy the feasibility conditions (3.10), where 0 ≤ r−α , r
+
α , r

−
β , r

+
β ≤ 1. Then

it decides which pair (or single primary user) are relatively best according to (3.12).

The choice of the pair (m,n) is a combinatorial optimization problem which may require

discrete exhaustive search. The optimal value of α can be obtained since (3.12) can be

shown to be concave in α. The parameters λ∗
m,m ∈ {1, 2, . . . ,M} depend on the choice

of h1(.), h2(.) and the distribution of the utility functions which in turn depends on

the distribution of the underlying channel variations. Hence, λ∗
m needs to be estimated

online in practice. This can be carried out using stochastic approximation techniques

similar to the one explained in [9]. An estimation technique is presented in Section 3.6.

Example: The above algorithm can be compared to non-cooperative algorithms as

follows. Consider for example the utilitarian fairness constraints problem solved in [9]

with the constraints am = γmW̄ (Q̂) for each PU m ∈ {1, 2, . . . ,M} where
∑M

m=1 γm ≤
1 and W̄ (Q̂) is the average performance achieved under the optimal (primary-only)

scheduling policy Q̂. According to this definition of am, the problem is always feasible.

Let Γ be the improvement factor with respect to the system with no cooperation. Note

that SUs can have access to the channel if they help improving the performance of

primary system. Thus, PUs achieve utility which is at least the same as that in the

non-cooperative case (i.e., Γ ≥ 1). On the other hand, Γ is upper bounded such that

Γ ≤ Γmax due to the capacity region constraint (see Section 3.3.4). Hence, 1 ≤ Γ ≤
Γmax.

Now consider a network of M primary and N secondary users such that the

scheduler executes the optimal policy Q̂ to schedule only the PUs but does not act on

it and simultaneously executes and implements our cooperative scheduling policy Q1a.

Since the scheduling policy Q̂ converges as the number of time slots t → ∞ [9], we can

set Cm = Γam in (3.11). As long as 1 ≤ Γ ≤ Γmax, it follows that our cooperative

scheme improves the performance of individual PUs over the non-cooperative scheme,
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and hence improves the overall performance.

3.3.3 Optimal Time Varying Policy

In this subsection, we solve problem (3.11) using the stochastic network optimization

tool of [8]. This tool yields a scheduling policy that is similar in structure to (3.12).

However, the policy derived in this subsection does not need the computation of the

online parameters λ∗
m.

Define the time average expected utility as follows.

W̄ (Q) =
1

t

t−1∑
τ=0

E[W (Q, τ)], (3.13)

where W (Q, t) is defined in (3.5).

Let U t
m(Q, t) ,

∑N
n=0 Umn(Q, t), V t

n(Q, t) ,
∑M

m=1 Vmn(Q, t). For each of the

constraints in (3.11), we construct a virtual queue such that the queue dynamics is

given by

Xm(t+ 1) = [Xm(t)− U t
m(Q, t)]+ + Cm, (3.14)

m ∈ {1, 2, . . . ,M}, where [x]+ , max{x, 0}. Note that stabilizing the queues in (3.14) is

equivalent to satisfying the constraints in (3.11) since a queue is stable if the arrival rate

is less than the service rate. We assume that U t
m(Q, t) and V t

n(Q, t) are bounded such

that U t
m(Q, t) ≤ Umax, V t

n(Q, t) ≤ V max for all m ∈ {1, 2, . . . ,M}, n ∈ {1, 2, . . . , N},
t ≥ 0 and for all Q ∈ F1. These upper bounds are justified since we assume bounded

transmission rates. Let X(t) = (X1(t)X2(t) · · ·XM(t)) be the vector of virtual queues.

Define the following quadratic Lyapunov function and conditional Lyapunov drift:

L1(X(t)) ,
M∑

m=1

X2
m(t), (3.15)

∆1(X(t)) , E [L1(X(t+ 1))− L1(X(t))|X(t)] . (3.16)
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Define the following conditional expectation:

Ū t
m(Q, t) , E[U t

m(Q, t)|X(t)]. (3.17)

The following Lemma is useful in establishing the optimality of our algorithm.

Lemma 3.1. For every time slot t and any policy Q, the Lyapunov drift in (3.16) can

be upper bounded as follows:

∆1(X(t))−KE[W (Q, t)|X(t)] ≤ B1 + 2
M∑

m=1

Xm(t)Cm

−
M∑

m=1

(K + 2Xm(t))Ū
t
m(Q, t)−

N∑
n=1

KV̄ t
n(Q, t), (3.18)

where B1 =
∑M

m=1C
2
m +M(Umax)2 and K is a system parameter that characterizes a

tradeoff between performance optimization and delay in the virtual queues.

Proof. We use the simplified notation Ū t
m in place of Ū t

m(Q, t). From the dynamics of

the virtual queues (3.14), we can write

X2
m(t+ 1) ≤ X2

m(t) + C2
m + (U t

m(t))
2 − 2Xm(t)[U

t
m(t)− Cm]

for m ∈ {1, 2, . . . ,M}, where the above inequality follows from the fact that
(
[a]+

)2 ≤
(a)2∀a. Therefore, the Lyapunov drift in (3.16) can be upper bounded as

∆1(X(t)) ≤
M∑

m=1

C2
m + E[(U t

m(t))
2|X(t)]− 2Xm(t)Ū

t
m

+ 2Xm(t)Cm

Using the bounds on the utility functions Umax, we have

∆1(X(t)) ≤ B1 + 2
M∑

m=1

Xm(t)(Cm − Ū t
m)

where B1 =
∑M

m=1C
2
m+M(Umax)2. Subtracting the term KE[W (Q, t)|X(t)] from both
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sides, expanding terms, rearranging terms and using V t
0 (t) = 0 ∀ t, (3.18) follows.

Now, we present our opportunistic scheduling algorithm that involves cooperation

between primary and secondary nodes to achieve better performance.

Scheduling Algorithm Q1b: At each time slot t, observe the virtual queue

backlog Xm(t) for each primary node m and the achievable transmission rates, and

choose (m,n, α) solving the following optimization problem.

Q1b = argmax
(m,n,α)∈F1

{(
1 +

2Xm(t)

K

)
Umn(t) + Vmn(t)

}
(3.19)

Then, update the virtual queues according to the queue dynamics in (3.14).

Note that we assume knowledge of the utility functions and channel states at the

scheduler at each time slot. Hence, the queue states are known constants in the above

optimization problem. Comparing to Algorithm Q1a, let λ̃m(t) , 1 + 2Xm(t)
K

≥ 1. It

is clear that both algorithms have exactly the same form. However, contrary to the

algorithm in Section 3.3.2, Q1b does not require the knowledge of the statistics of the

channel states or need the computation of online parameters.

Compared to the non-cooperative scheme in [9] which requires M multiplications,

it can be seen that Q1b requires 2M(N + 1) operations (M(N + 1) multiplications and

M(N + 1) additions). In addition, an algorithm to compute the best α for each pair

(m,n) is needed in our scheme. However, the complexity of our scheme can be reduced

by allowing the base station to select only a subset of available SUs with strong channels

to be considered in scheduling.

We analyze our algorithm using the Lyapunov drift with optimization [8]. We

define a class of policies that will be useful to prove the optimality of the scheduling

algorithm Q1b. Consider the class of scheduling algorithms S that schedules nodes ac-

cording to a stationary and possibly randomized function of only the achievable rates

and independent of the queue states. It was shown in [8, 68] that the optimality is

achieved within the class of stationary policies S, for a large class of network flow prob-

lems including fairness problems. Since the channel states are chosen from a finite set

and the set {(m,n, α) | m ∈ {1, 2, · · · ,M}, n ∈ {1, 2, · · · , N}, α ∈ [0, 1]} is closed and
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bounded, we have the following lemma (which can be proved using similar arguments

as in [68]). Let the feasibility region of (3.11) be Λ and let ε , (ε ε · · · ε).

Lemma 3.2. If the vector C = (C1 C2 · · ·CM) is feasible (i.e., C ∈ Λ), then there

exists a stationary randomized policy Qs1 that solves (3.11) and satisfies the following:

E[W (Qs1 , t)] = W̄ ∗
1 , (3.20)

E
[
U t
m(Qs1 , t)

] ≥ Cm,m ∈ {1, 2, . . . ,M}, (3.21)

where W̄ ∗
1 is the optimal performance for the problem (3.11) over all scheduling policies.

Moreover, if C is strictly interior to Λ, then there exists ε > 0 such that (C+ε) ∈ Λ

and a stationary scheduling policy Qs1(ε) satisfying:

E
[
U t
m(Qs1(ε), t)

] ≥ Cm + ε,m ∈ {1, 2, . . . ,M} (3.22)

with an optimal total average utility W̄ ∗
1 (ε) such that W̄ ∗

1 (ε) ≤ W̄ ∗
1 where W̄ ∗

1 (ε) → W̄ ∗
1

as ε → 0.

We are now ready to present bounds on the performance of our proposed algorithm

Q1b. The following Theorem shows that all the virtual queues are strongly stable [8].

Hence, all time average constraints in (3.11) are satisfied.

Theorem 3.3. If C is strictly in the interior of Λ, then the proposed algorithm in Q1b

stabilizes the virtual queues and achieves the following bounds:

lim inf
t→∞

1

t

t−1∑
τ=0

E[W (Q1b, τ)] ≥ W̄ ∗
1 − B1

K
, (3.23)

lim sup
t→∞

1

t

t−1∑
τ=0

E

[
M∑

m=1

X2
m(τ)

]
≤ B1 +KWmax

εmax

, (3.24)

where Wmax = Umax + V max and B1 =
∑M

m=1C
2
m +M(Umax)2 and εmax is the largest

ε such that C+ ε ∈ Λ.

Proof. Consider the upper bound given by Lemma 3.1. From Lemma 3.2, there exists

a stationary policy Qs1(ε) that satisfies the constraints (3.22). By definition of Q1b,
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RHSQ1b
≤ RHSQs1(ε)

where RHSQ is the right hand side (RHS) of inequality (3.18)

evaluated for the policy Q. Now consider evaluating RHSQs1(ε)
using (3.22). Expanding

the RHS of (3.18) and using the property that the utility is independent of queue states,

it is straightforward to see that RHSQs1(ε)
= B1− 2ε

∑M
m=1Xm(t)−KW̄ ∗

1 (ε). It follows

that

∆1(X(t))−KE[W (Q1b, t)|X(t),Y(t)] ≤ RHSQ1b

≤ RHSQs1(ε)
= B1 − 2ε

M∑
m=1

Xm(t)−KW̄ ∗
1 (ε),

which is in exactly the same form of the condition in Theorem 3.1. Applying the result

of Theorem 3.1, we have the following bounds

lim inf
t→∞

1

t

t−1∑
τ=0

E[W (Q1b, τ)] ≥ W̄ ∗
1 (ε)−

B1

K
, (3.25)

lim sup
t→∞

1

t

t−1∑
τ=0

E

[
M∑

m=1

X2
m(τ)

]
≤ B1 +KWmax

2ε
, (3.26)

where (3.26) follows since 0 ≤ W (Q, t) ≤ Wmax for all Q. The choice of ε affects the

bounds only and does not affect the policy Q1b. Therefore, (3.25) and (3.26) can be

optimized separately. Taking ε → 0 in (3.25) yields (3.23) and taking ε = εmax

2
in (3.26)

yields (3.24), concluding the proof.

From (3.24) and (3.23), it is clear that the parameter K specifies a tradeoff be-

tween optimality and the average length of the virtual queues. Thus, for large virtual

queues, the system experiences larger transient times to achieve the optimal perfor-

mance and hence needs more time to adapt to possible changes in channel statistics [8].

3.3.4 A Note on Feasibility

In the algorithms developed in Sections 3.3.2 and 3.3.3, we assumed the feasibility

of the set of constraints on the primary users’ performance. In fact, the feasibility

region characterization depends on the statistics of the channel conditions. Since our
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scheduling schemes can only improve the performance of the primary-only network as a

special case, the feasibility region given in [9] is strictly a subset of the feasibility region

of our policy. In addition, it can be shown, using similar techniques as in [9], that our

feasibility region is convex. Specifically, the region is a subset of an M -dimensional

space such that the vertex on the mth axis is (0 0 · · ·E[Ũm] · · · 0), where E[Ũm] is the

average utility achieved by applying our cooperative algorithm on a network composed

of only the mth primary node in addition to N secondary nodes.

Considering the example presented in Section 3.3.2, Γmax specified the maximum

gain the cooperative system can achieve over the non-cooperative counterpart. It is

clear that Γmax can be characterized by the boundary of the feasibility region. More

specifically, if (a1 a2 · · · aM) is the performance vector in the non-cooperative system

defined in Subsection 3.3.2, and if the feasibility region of our cooperative system is Λ,

then Γmax is given by:

Γmax = max
Γ≥1

Γ

s.t. (Γa1 Γa2 · · ·ΓaM) ∈ Λ. (3.27)

The solution to (3.27) can be determined numerically if the channel statistics are known.

A more rigorous characterization of the feasibility region is beyond the scope of this

work and is part of our future work.

3.3.5 The Downlink Case

The analysis and algorithms developed in the work are mainly focusing on the uplink

scenario. However, it can be easily seen that the same analysis and results can be

applied in the downlink case. In this subsection, we state the differences for the sake of

completeness. In the downlink case and when cooperation is feasible, the base station

(or access point) D uses the first (1 − α) fraction of the time slot to transmit to a

secondary node n. Then, the secondary node relays data to the scheduled primary node

m during the next αβ fraction. The rest of the time slot is dedicated to the downlink

of the secondary node’s data. We denote the achievable transmission rates from base
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station to primary and secondary nodes m and n as R̃p
m(t) and R̃s

n(t), respectively, at

time slot t. We also denote the achievable rate from secondary node n to primary node

m as R̃r
mn. Similar to the uplink case, the utility functions for a scheduled pair (m,n)

are defined as

Ũmn(Q, t) =





h3(R̃
p
m(t)) ; if n = 0

h3((1− α)R̃s
n(t)) ; otherwise

(3.28)

Ṽmn(Q, t) =





0 ; if n = 0

h4(α(1− β)R̃s
n) ; otherwise

(3.29)

where h3(·) and h4(·) are some concave functions. Feasibility regions can be defined as

follows. For immediate rewards problem, it can be seen that optimal scheduling policy

selects the tuple (m,n, α) from Fd1 satisfying

R̃p
m(t) ≤ (1− α)R̃s

n(t) ≤ αR̃r
mn(t) (3.30)

for some 0 < α < 1. For the long term rewards problem, the feasibility set Fd is

constructed from all tuples (m,n, α) such that

0 < (1− α)R̃s
n(t) ≤ αR̃r

mn(t) (3.31)

for some 0 ≤ α ≤ 1, where

β∗ =
(1− α)R̃s

n

αR̃r
mn

(3.32)

for both cases.

3.3.6 The Finite Backlog Case

In Sections 3.3.2 through 3.3.5, we determined optimal stationary and time-varying

policies solving (3.11) with the assumption of all nodes having infinite backlogs. In this

section, we investigate the solution of the same problem when secondary nodes have
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finite backlogs. The main difference in this case is that secondary nodes will not be

willing to cooperate to relay primary nodes’ data if they do not have sufficient data

of their own to transmit to the base station. Hence, the achievable utilities for the

infinite backlogs case constitute an upper bound for the finite backlogs case. Also note

that we do not further elaborate on a system when both primary and secondary nodes

have finite backlogs, since the analysis of this more complicated model provides little

additional insight.

Let An(t) and Ln(t) be the amount of data arriving to secondary node n and the

current backlog of the same node at time t, respectively. Under scheduling decision

Q = (m′, n′, α), the time evolution of secondary node backlog Ln(t), n ∈ {1, 2, · · · , N}
is given as follows:

Ln(t+ 1) =





max{Ln(t)− α(1− β)Rs
n(t), 0}+ An(t) ; if n = n′

Ln(t) + An(t) ; otherwise
(3.33)

Unlike the infinite backlog case, when scheduled, secondary node n′ can transmit

only min{Ln′(t), α(1−β)Rs
n′(t)} amount of data at time slot t. Hence, under scheduling

decision Q = (m′, n′, α) the utility of secondary node with finite backlogs is modified

as follows:

V̂m′n′(Q, t) =





0 ; if n′ = 0

h2(min{Ln′(t), α(1− β)Rs
n′(t)})

; otherwise

(3.34)

The following scheduling algorithm opportunistically determines a primary-secondary

node pair.

Scheduling Algorithm Q1c: At each time slot t, observe the virtual queue

backlog Xm(t) for every primary node m, the actual queue backlog Ln(t) for every

secondary node n, the achievable transmission rates, and choose (m,n, α) solving the
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following optimization problem:

Q1c = argmax
(m,n,α)∈F

{(
1 +

2Xm(t)

K

)
Umn(t) + V̂mn(t)

}
(3.35)

Then, update the virtual and actual queues according to the queue dynamics in (3.14),

and (3.33), respectively.

Note that the only difference between Q1c and Q1b is that Vmn(t) in Q1b is replaced

by V̂mn(t) in Q1c. Hence, Q1c is the optimal scheduling algorithm. However, unlike Q1b,

Q1c is a non-convex optimization problem for a given (m,n) pair due to the definition

of V̂mn(t) given in (3.34). The problem can be transformed into a convex program using

auxiliary variables as shown in proof of Proposition 3.1.

Proposition 3.1. For a given primary-secondary node pair (m,n), let α be the solution

of (3.19), and β be defined as in (3.4). If α(1 − β) > Ln(t)
Rn(t)

, then the optimal α∗ for

(3.35) is given as

α∗ =
Ln(t) +Rr

mn(t)

Rr
mn(t) +Rs

n(t)
,

and if α(1− β) ≤ Ln(t)
Rn(t)

, then the optimal solution for (3.35) is α∗ = α.

Proof. By using a similar idea as in [43], we introduce an auxiliary variable πmn to

obtain a convex problem. For a given (m,n) pair, the solution of the following problem

gives the optimal α:

max
α,πmn

{
λ̃m(t)h1 ((1− α)Rr

mn(t)) + h2 (πmn)
}

(3.36)

s.t. Rp
m(t) ≤ (1− α)Rr

mn(t), (3.37)

(1− α)Rr
mn(t) ≤ αRs

n(t), (3.38)

Ln(t) ≥ πmn, (3.39)

α(Rr
mn(t) +Rs

n(t))−Rr
mn(t) ≥ πmn, (3.40)

Note that the objective function is modified and is expressed with respect to the aux-

iliary variable πmn and α. It can be shown that (3.36)-(3.40) is jointly concave in α
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and πmn (i.e., Hessian matrix of the objective function is negative semidefinite since

all eigenvalues of it are negative). Hence, at a given time slot first-order optimality

conditions given by KKT equations are sufficient for global optimality of (3.36)-(3.40).

In the following, we drop the parameter t. Let µ3 and µ4 be the dual variables

associated to the constraints in (3.39) and (3.40), respectively. Let µ∗
3, µ

∗
4, α

∗ and π∗
mn

denote the values taken by µ3, µ4, α and πmn at the optimal solution respectively. From

KKT conditions, the following equalities hold.

dh2

dπmn

|πmn=π∗
mn

− µ∗
3 − µ∗

4 = 0. (3.41)

µ∗
3(Ln − π∗

mn) = 0. (3.42)

µ∗
4

(
α∗ − π∗

mn +Rr
mn

Rr
mn +Rs

n

)
= 0. (3.43)

It is clear that the objective function in (3.36) decreases with α. If π∗
mn = Ln, at the

optimal solution α takes its minimum value which is given by (3.40). Thus, α∗ is given

as follows,

α∗ =
Ln +Rr

mn

Rr
mn +Rs

n

.

If π∗
mn 6= Ln, (3.41) and (3.42) yield the following equalities,

µ∗
3 = 0.

µ∗
4 =

dh2

dπmn

|πmn=π∗
mn

> 0

From (3.43), α∗ is given by

α∗ =
π∗
mn +Rr

mn

Rr
mn +Rs

n

.

Thus,

π∗
mn = α∗(Rr

mn +Rs
n)−Rr

mn. (3.44)
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Clearly, (3.44) states that α∗ is obtained following the same steps in infinite backlog

case. This completes the proof.

3.4 Secondary Constraints and Long Term Rewards

3.4.1 Formulation and Optimal Algorithm

In this section, we study a generalized version of the problem studied in Section 3.3.

Here, a long term constraint is imposed on the minimum performance of each secondary

node. More specifically, a portion of the primary utility achieved by cooperation is

guaranteed for each cooperating secondary node, in an average sense. In fact, the

formulation of the problem below allows for the idea of banking between primary and

secondary nodes. That is, in contrast to the immediate rewards of Section 3.3, here,

secondary nodes are guaranteed a specific share over a large number of time slots. This

is achieved by allowing α to take values such that α ≤ 1, i.e., we lift the constraint

imposed in the first inequality of (3.10). The problem is formulated as follows:

max
Q∈F

W̄ (Q)

s.t.:1) E
[
U t
m(Q, t)

] ≥ Cm, m ∈ {1, 2, . . . ,M}

2) E
[
V t
n(Q, t)

] ≥ E
[

M∑
m=1

φ(Umn(Q, t))

]
, (3.45)

n ∈ {1, 2, . . . , N},

where φ(·) is a non-negative, non-decreasing scalar-valued function. We assume that the

constraints in (3.45) are within the feasibility region. Define νn(Q, t) ,
∑M

m=1 φ(Umn(Q, t)).

For each of the constraints above, we construct virtual queues such that the queue dy-

namics are given by

Xm(t+ 1) = [Xm(t)− U t
m(Q, t)]+ + Cm, (3.46)

Yn(t+ 1) = [Yn(t)− V t
n(Q, t)]+ + νn(Q, t), (3.47)
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m ∈ {1, 2, . . . ,M}, n ∈ {1, 2, . . . , N}. We assume that νn(Q, t) ≤ νmax for all n ∈
{1, 2, . . . , N}, t ≥ 0 and for all Q ∈ F . Let Y(t) = (Y1(t)Y2(t) · · ·YN(t)) be the vector

of virtual queues of secondary nodes. Define the following quadratic Lyapunov function

and conditional Lyapunov drift

L2(X(t),Y(t)) ,
M∑

m=1

X2
m(t) +

N∑
n=1

Y 2
n (t), (3.48)

∆2(X(t),Y(t)) ,

E [L2(X(t+ 1),Y(t+ 1))− L2(X(t),Y(t))|X(t),Y(t)] . (3.49)

We also define the following conditional expectation.

ν̄n(Q, t) , E[νn(Q, t)|X(t),Y(t)]. (3.50)

The Lyapunov drift in (3.49) is bounded by the following Lemma where the proof is

very similar to the proof of Lemma 3.1 and is omitted for brevity.

Lemma 3.3. For every time slot t, the Lyapunov drift defined in (3.49) can be upper

bounded as follows.

∆2(X(t),Y(t))−KE[W (Q, t)|X(t),Y(t)]

≤ B2 + 2
M∑

m=1

Xm(t)Cm −
M∑

m=1

(K + 2Xm(t))Ū
t
m(Q, t)

−
N∑

n=1

(K + 2Yn(t))V̄
t
n(Q, t) +

N∑
n=1

2Yn(t)ν̄n(Q, t),

where

B2 =
1

2

(
M∑

m=1

C2
m +M(Umax)2 +N((νmax)2 + (V max)2)

)

and K is a system parameter that characterizes a tradeoff between performance opti-

mization and unfinished work in the virtual queues.

Now we present our opportunistic scheduling algorithm.
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Scheduling Algorithm Q2: At each time slot t, the scheduler observes the

virtual queue states Xm(t), Yn(t) and the achievable rates Rp
m(t), R

r
mn(t) and Rs

n(t) for

all m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . , N}, and then solves the following optimization

problem:

Q2 = argmax
(m,n,α)∈F

{(
1 +

2Xm(t)

K

)
Umn(t)

+

(
1 +

2Yn(t)

K

)
Vmn(t)−

(
2Yn(t)

K

)
φ(Umn(t))

}

The virtual queues are then updated according to the queue dynamics in (3.46), (3.47).

The structure of the scheduling policy suggests that when a secondary virtual

queue Yn(t) is congested, then the system has a debt to pay to SU n. This is ac-

complished by favoring instantaneous allocations that reduce this debt by increasing

payments (i.e., higher weight for Vmn(t)) and reduced additional debt (i.e., lower weight

for φ(Umn(t))). Therefore, it is possible that the system allocates an entire time slot to

a SU without requiring the relay of a PU’s data. Similarly, it is also possible that a SU

relays primary data without obtaining immediate share of that time slot to transmit

its own data.

3.4.2 Algorithm Analysis

The analysis follows the same strategy as in Section 3.3.3. Let W̄ ∗
2 be the optimal time

average system utility achieved over all scheduling policies for the problem (3.45), and

consider the class of stationary randomized scheduling algorithms that are independent

of the queue states.

Lemma 3.4. If vectors C and E[ν] = E[(ν1 ν2 · · · νN)] are feasible, then there exists a

stationary randomized policy Qs2 that solves (3.45) and satisfies the following:

E[W (Qs2 , t)] = W̄ ∗
2 , (3.51)

E
[
U t
m(Qs2 , t)

] ≥ Cm, m ∈ {1, 2, . . . ,M}, (3.52)

E
[
V t
n(Qs2 , t)

] ≥ E [νn(Qs2 , t)] , (3.53)
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where W̄ ∗
2 is the optimal performance for the problem (3.45) over all scheduling policies.

Moreover, if C and E[ν] are strictly interior to the feasibility region, then there exists

ε′ > 0 and a stationary scheduling policy Qs2(ε′) satisfying:

E
[
U t
m(Qs2(ε′), t)

] ≥ Cm + ε′, m ∈ {1, 2, . . . ,M}, (3.54)

E
[
V t
n(Qs2(ε′), t)

] ≥ E [νn(Qs2 , t)] + ε′, (3.55)

with an optimal total average utility W̄ ∗
2 (ε

′) such that W̄ ∗
2 (ε

′) ≤ W̄ ∗
2 where W̄ ∗

2 (ε
′) → W̄ ∗

2

as ε′ → 0.

Theorem 3.4. If the constraints in (3.45) are feasible, then the proposed algorithm Q2

stabilizes the virtual queues and achieves the following bounds.

lim inf
t→∞

1

t

t−1∑
τ=0

E[W (Q2, τ)] ≥ W̄ ∗
2 − B2

K
,

lim sup
t→∞

1

t

t−1∑
τ=0

E

[
M∑

m=1

X2
m(τ) +

N∑
n=1

Y 2
n (τ)

]
≤ B2 +KWmax

ε′max

,

where W̄ ∗
2 is the optimal value for the time average expected utility, B2 =

∑M
m=1C

2
m +

M(Umax)2 + N((νmax)2 + (V max)2), Wmax = Umax + V max and ε′max is the largest ε′

such that constraints (3.54) and (3.55) are feasible.

Proof. The proof uses Lemma 3.3 and Lemma 3.4 and is similar to the proof of Theorem

3.3.

3.5 Maximization of Net Benefit

Transmission power control is an essential part of wireless communications, and it is

especially important for wireless devices with limited energy resources. In this sec-

tion, our objective is to investigate scheduling and power control policies when PUs

and SUs are allowed to cooperate. For this purpose, we define “net benefit” of a user

as the difference between the total average utility and the total weighted average en-

ergy consumption. Our objective is to determine optimal dynamic joint power control
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and scheduling policy that maximizes aggregate net benefits of primary and secondary

systems considering immediate rewards.

Let Ep
mn(Q, t) and Es

mn(Q, t) be the consumed energy by PU m and SU n under

policy Q at time slot t, respectively. Also we define the net benefit of primary and

secondary users, Fmn(Q, t) and Gmn(Q, t), as follows [64]:

Fmn(Q, t) = Umn(Q, t)− ρ · Ep
mn(Q, t), (3.56)

Gmn(Q, t) = Vmn(Q, t)− ρ · Es
mn(Q, t), (3.57)

where ρ is the cost per unit transmission energy. Let the total net benefit of both

systems when policy Q is employed at a given time slot t, be H(Q, t). Then,

H(Q, t) =
M∑

m=1

N∑
n=0

Fmn(Q, t) +Gmn(Q, t). (3.58)

Define

F t
m(Q, t) ,

N∑
n=0

Fmn(Q, t)

, Gt
n(Q, t) ,

M∑
m=1

Gmn(Q, t)

, Ep
m(Q, t) ,

N∑
n=0

Ep
mn(Q, t).

These values are upper-bounded such that F t
m(Q, t) ≤ Fmax, Gt

n(Q, t) ≤ Gmax and

Ep
m(Q, t) ≤ Emax.

The total expected net benefit for time slot t is defined as H̄(Q, t) , E[H(Q, t)].

Now, we consider the following optimization problem:

max
Q∈G

H̄(Q, t)

s.t.1) E
[
U t
m(Q, t)

] ≥ Cm,m ∈ {1, 2, · · · ,M}
2) E

[
Gt

n(Q, t)
] ≥ 0, n ∈ {1, 2, . . . , N}, (3.59)
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where Cm is the minimum performance constraint for each PU m, and G is the set

of feasible policies to be defined later. If SU n relays the data of PU m then the net

benefit of SU may be negative. In this case, SU nmay not be willing to join cooperation.

Hence, we impose the non-negativity constraint on the expected net benefit of secondary

system in (3.59).

Here, the scheduling policy Q is a rule that selects (m,n, α, β, P p
mn, P

s
mn) at time

slot t where P p
mn and P s

mn are the transmission powers from PU m to SU n and from SU

n to destination to relay data of PU m, respectively. Under this model, if cooperation

is infeasible, PU m transmits directly to the destination at power of P p
m0. In addition,

SU n transmits its own data to the destination using the power level P s
0n. We use the

same notational convention with the data rates R.

Even though our results are general for all channel state distributions, in numerical

evaluations, we assume all channels to be Gaussian. We represent the uplink channel for

PU m, cross channel between PU m and SU n (m ∈ {1, 2, · · · ,M}, n ∈ {1, 2, · · · , N})
with a power gain (magnitude square of the channel gains) lm0(t) and lmn(t), respec-

tively, at time slot t. We normalize the power gains such that the (additive Gaussian)

noise has unit variance. In the following, we employ information theoretic expressions

for the achievable data rates. Thus,

Rp
mn(t) = log(1 + P p

mn(t)lmn(t))

Rs
mn(t) = log(1 + P s

mn(t)ln(t)).

In addition, peak power constraints are imposed in the network such that,

0 ≤ P p
mn,≤ Pm

max, (3.60)

0 ≤ P s
mn, P

s
n ≤ P n

max, (3.61)

∀m ∈ {0, 1, 2, · · · ,M} and n ∈ {0, 1, 2, · · · , N}. Given these definitions, the optimiza-

tion problem in (3.59) along with constraints (3.3), (3.60) and (3.61) is a non-convex

optimization problem. Hence, it is hard to find a closed form solution for this problem.
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Here, we consider a simplified version of the problem, where the values of α and β are

taken as constants satisfying the following,

(1− α) = αβ = α(1− β) =
1

3
. (3.62)

We fix the duration of each of the three phases in our cooperative scheme to one

third of the time slot as implied by (3.62). Clearly, this is a suboptimal solution, since

we do not consider α and β as decision variables. Nevertheless, this model has practical

applicability. In many real networks, including cellular networks [69], users are assigned

fixed time slots to complete their transmissions. In such systems, transmission power

control is the main tool to adjust transmission rates.

Since transmission durations are equal, the following holds for allm ∈ {1, 2, · · · ,M}
and n ∈ {1, 2, · · · , N},

Rp
mn(t) = Rs

mn(t). (3.63)

Thus, given instantaneous channel conditions and for a given value of P p
mn, we can

determine P s
mn. Hence, we use the notation Q = (m,n, P p

mn, P
s
0n) to denote the joint

scheduling and power control decision of policy Q.

Let G be the set of tuples (m,n, P p
mn, P

s
0n) satisfying (3.60), (3.61), (3.62), and the

following condition:

Rp
m0(t) ≤

1

3
Rp

mn(t) (3.64)

where ∀m ∈ {1, 2, · · · ,M}, n ∈ {1, 2, · · · , N}. Clearly, the above inequality states that

SU n is allowed to join cooperation if it improves the instantaneous utility of PU m.

Moreover, set G is constructed from all (m,n, P p
mn, P

s
0n). E

p
mn(Q, t) and Es

mn(Q, t) under
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scheduling policy Q are given as follows,

Ep
mn(Q, t) =





P p
m0 ; if n = 0

1
3
P p
mn ; otherwise

(3.65)

Es
mn(Q, t) =





0 ; if n = 0

1
3
P s
mn +

1
3
P s
0n ; otherwise

(3.66)

We solve problem (3.59) using the stochastic network optimization tool of [8]. For the

first set of constraints in (3.59) we construct the system of virtual queues defined in

(3.67). Also, for each of the second set of constraints in (3.59), we construct virtual

queues Sn(t) with queue dynamics given as follows,

Xm(t+ 1) = [Xm(t)− Um(Q, t)]+ + Cm, (3.67)

Sn(t+ 1) = [Sn(t)−Gt
n(Q, t)]+, (3.68)

n ∈ {1, 2, . . . , N}. Now we present our joint power allocation and scheduling algorithm.

Scheduling Algorithm Q3 : At each time slot t, observe the virtual queue

states Xm(t) and Sn(t) and select (m,n, P p
mn, P

s
0n) solving the following optimization

problem:

Q3 = argmax
(m,n,P p

mn,P
s
0n)∈G

{(
1 +

Xm(t)

K

)
Umn(t)− ρ · Ep

mn(t)

+

(
1 +

Sn(t)

K

)
Gmn(t)

}

Theorem 3.5. If the constraints in (3.59) are feasible, then the proposed algorithm Q3

stabilizes the virtual queues and achieves the following bounds:

lim inf
t→∞

1

t

t−1∑
τ=0

E[H(Q, τ)] ≥ H̄∗ − B3

K
,

lim sup
t→∞

1

t

t−1∑
τ=0

E

[
M∑

m=1

X2
m(τ) +

N∑
n=1

S2
n(τ)

]
≤ B3 +KHmax

εmax

,

where H̄∗ is the solution of (3.59) among class of policies G, Hmax is the maximum net
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benefit that can be achieved at any time slot, B3 =
1
2

(∑M
m=1C

2
m +M(Umax)2 +N(Gmax)2

)

and εmax can be defined similarly as εmax in Section 3.3.3.

Proof. The proof is similar to the proof of Theorem 3.3, and involves finding an upper

bound on the conditional Lyapunov drift for a quadratic Lyapunov function of virtual

queues Xm(t) and Sn(t), and uses Lemma 3.4.

It can be seen that when there is no cost for power consumption, i.e., ρ = 0, the

scheduling algorithm Q3 has the same form as the scheduling algorithm Q1b. In this

sense, Q1b can be considered as a specific case of Q3.

3.6 Numerical Results

In this section, we simulate a wireless network with M = 4 primary nodes and a vary-

ing number of secondary nodes all communicating with a common destination. First,

we present a comparison between our cooperative scheduling scheme and the optimal

non-cooperative scheme. Channel states vary randomly between ’Good’ and ’Bad’ for

primary and secondary users. Transmission rates corresponding to the channel states:

{’Good’, ’Bad’} are set to {100, 15} units/slot and channel states evolve independently

across users and across time. For all pairs (m,n), the transmission rates are given by

Rp
m(t) = {100, 10} with probability {0.5, 0.5}, Rr

mn(t) = {100, 10} with probability

{0.6, 0.4}, and Rs
n(t) = {100, 10} with probability {0.6, 0.4}. Given these channel

statistics, we run the simulation for 200, 000 time slots which is sufficient for the con-

vergence of algorithm Q1a for the above channel statistics. For the utility functions, we

employ the functions h1(x) = h2(x) = log(1 + x).

For the constraints on the primary users performance in the non-cooperative sys-

tem, we adopt a fair sharing policy, that is, the achievable primary system utility is to be

divided evenly among the primary users. We set the constraints Cm in (3.11) as in the

example given is Section 3.3.2 for the sake of comparison with non-cooperative systems.

Applying scheduling policy Q1a, we let Γ = 1.01 and use a stochastic approximation

approach to estimate the parameters λ∗
m,m ∈ {1, 2, . . . ,M} as follows. First, from the

56



constraints on the primary user performance, we see that for m ∈ {1, 2, · · · ,M}, λ∗
m is

the root to the following equation.

fm(λm) = (λm − 1)

(
E

[
N∑

n=0

Umn(Q1a, t)

]
− Cm

)

But since we only have knowledge about the instantaneous channel gains, we need to

estimate the distribution of the utility functions. Hence, using the observation we have,

we can write an estimate gkm of fk
m as:

gkm(λm) = (λk
m − 1)

(
N∑

n=0

Umn(Q1a, t)− Cm

)

where k is the iteration index. Since this estimator is unbiased (E[gkm−fk
m(λ

k
m)] =

0,∀m), then, we can use a stochastic approximation algorithm of the form

λk+1
m = λk

m − δkgkm

where δk can be taken to be 1/k [9]. For a given time slot t, it can be shown that

(3.12) is a concave function in α. The optimization is then done over all pairs so that

α satisfies the condition (3.10), then the tuple (m,n, α) ∈ F1 that maximizes (3.12) is

selected by the scheduler at this time slot. For a pair (m,n), since the objective function

is concave and the constraint is linear in α. Then, Karush-Kuhn-Tucker conditions are

both necessary and sufficient to solve the problem (3.12), along with (3.10) [70]. In

Figure 3.3, the average system utility is plotted with respect to the number of cognitive

users. The cooperative scheme achieves higher average system utility compared to the

non-cooperative scheme. For N = 1, the constraints are infeasible to achieve, however

theQ1a still performs better than the non-cooperative policy. ForN ≥ 1, the constraints

are feasible. Moreover, exploiting the opportunity relaying offers, we could achieve non

zero secondary system average utility. Figure 3.3 also shows the per user (primary)

performance. It can be seen that the smallest per user performance is still better than

the non-cooperative case with at least the value Γ. Scheduling policy Q1b yields the
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Figure 3.3: Average total system utility.

same results as Q1a under the same channel parameter selection, using K = 5, 000.

In the second experiment, we evaluate the performance of our scheduling policy

when SUs have finite backlogs. Figure 3.4 depicts the average utility per PU versus

average aggregate arrival rate when SUs have finite backlogs. In this experiment, we

apply scheduling policy Q1c for the same channel statistics used in the first simulation

and set M = 4, N = 3. It is assumed that at t = 0, all queues of SUs are empty, i.e.,

Ln(0) = 0 ∀n, and new data arrives at secondary users with the same arrival rate

according to independent Bernoulli processes. If all SUs have no data to transmit at a

time slot t, i.e., Ln(t) + An(t) = 0 ∀n, they do not join cooperation. In this case, PUs

transmit to the base station directly. Hence, the primary utility achieved is the same as

in the non-cooperative case. As the arrival rate increases, SUs start to be backlogged,

and join the network. Therefore, the utility of primary users increases as well. When
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secondary users have sufficiently large backlog, primary users can achieve the utility

obtained in infinite backlog case at most.

Next, in the third experiment, we simulate the long term rewards scenario and

apply scheduling policy Q2 whenM = 4 and the number of SUs is fixed at N = 5 for the

same channel statistics used in the first simulation. In Figure 3.5, the running average

of the expected utility of SU 3 up to time t is plotted and compared to the average

primary utility achieved through cooperation with SU 3 for φ(Umn(Q, t)) = bUmn(Q, t),

and b = 1.2 . In other words, for every packet of primary traffic SU n relays, SU n is

rewarded by being scheduled to send 1.2 of its own packets on the long term. In this

experiment, we set Cm = 3.5 ∀m. Stability is achieved for all primary and secondary

virtual queues.

We next evaluate the performance of the scheduling algorithm Q3 in terms of net

benefit, average utility and energy consumption. We assume a scenario where M = 4,
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ρ = 1 and for varying number of N . The utility achieved by primary users in the

non-cooperative system where the objective is to maximize the net benefit and ρ = 1

are taken as the minimum requirements in this experiment. We set Cm = 1.095 ∀m
(Γ = 1). We assume that all users have infinite backlog, and Pm

max = P n
max = 10.

In addition, the channel gains are adjusted so that the transmission rates in the first

simulation with the maximum transmission power can be obtained. In Figure 3.6, the

average system net benefit with respect to the number of SUs is plotted. Clearly, our

cooperative scheme performs better than non cooperative scheme in terms of average

system net benefit. Note that all constraints in (3.59) are satisfied in this experiment.

In Figure 3.7, the average utility and energy consumption of primary and sec-

ondary users are plotted for increasing values of ρ. We set M = 4, N = 5 and

Cm = 1 ∀m. If users do not pay a penalty cost for transmission power (i.e., ρ = 0)

they transmit at the maximum transmission power, thus the total average energy con-
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sumption is maximized. It is seen that the average utility achieved per a primary user,

which is equal to 1, is same as the minimum requirement of the corresponding PU.

However, energy consumption of primary system reduces by allowing SUs to join co-

operation. That is, PUs conserve energy by cooperating with SUs and applying power

control algorithm Q3. Thus, primary net benefit increases as shown in Figure 3.6. As

ρ increases, SUs become unwilling to join cooperation, and prefer not to transmit in

order to satisfy their net benefit requirements. Consequently, their average utility and

energy consumption decrease. When SUs leave cooperation, PUs transmit directly to

destination, and only the minimum primary requirements are achieved since the energy

expenditure is costly. The average energy consumption is fixed at approximately 0.025

in this case.

61



0 0.5 1 1,5 2
0

0.2

0.4

0.6

0.8

1

Average Utility per User

ρ

A
ve

ra
ge

 U
til

ity

 

 

Cooperative (Q
3
): Primary

Cooperative(Q
3
): Secondary

0 0.5 1 1.5 2
0

0.5

1

1.5

2
Average Energy consumption per User

ρ

A
ve

ra
ge

 E
ne

rg
y

 

 
Cooperative (Q

3
): Primary

Cooperative(Q
3
): Secondary

Figure 3.7: Average utility and energy consumption.

3.7 Chapter Summary

We have developed optimal scheduling policies by exploiting the time-varying channel

conditions and realizing the benefits of cooperative transmission in a cognitive radio

network. The proposed model is based on the idea that secondary users can have op-

portunity to transmit their own data if they can improve the performance of a primary

user via cooperation. First, we have studied the immediate reward strategy consider-

ing the cases in which secondary users have infinite and finite backlogs. Then, long

term rewards is studied where we introduce the idea of banking between primary and

secondary users. In this banking model, secondary users are guaranteed a portion of

the primary utility on a long term basis, instead of immediate utility. Finally, we have

investigated the energy-utility trade off by considering the power control and scheduling
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problems jointly where the objective is to maximize the net benefit. Numerical results

show that our cooperative schemes improve the basic primary network performance in

addition to giving SUs the ability to communicate in return for their cooperation. In

addition, energy consumption of primary system can be reduced by allowing secondary

users to join the network.
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Chapter 4

Multi-user Scheduling via

Hierarchical Modulation

In Chapter 3, we have investigated the performance of cognitive radio network which

is one of the most important emerging technologies. In this Chapter, we investigate

multi-user transmission that is considered as another key technology in future wireless

systems. We study the network stability problem when more than one users are allowed

to be scheduled simultaneously. The idea is to encode messages destined to multiple

users experiencing different channel conditions by employing hierarchical modulation.

For two-user scheduling problem, we develop a throughput-optimal algorithm which can

stabilize the network whenever this is possible (i.e., traffic load is within the achievable

rate region.). In addition, we analytically prove that the proposed algorithm achieves

a larger achievable rate region compared to the conventional Max-Weight algorithm

which employs uniform modulation and transmits to a single user. We demonstrate the

efficacy of the algorithm on a realistic simulation environment using the parameters of

High Data Rate protocol in a Code Division Multiple Access system [4]. Simulation

results show that with the proposed algorithm, the network can carry higher traffic load

with lower delays.
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4.1 Overview

As we mentioned in Chapter 2 Max-Weight algorithm is throughput-optimal, i.e., it

stabilizes the network for all arrival rate vectors that are strictly within the achievable

rate region. The performance of Max-Weight algorithm has been investigated in depth

for the single user scheduling case. However, determining a throughput-optimal algo-

rithm when more than one users are scheduled simultaneously has not received much

attention. Moreover, as stated in [37], the main reason for the poor delay performance

of Max-Weight algorithm is that only one queue is served at a time. In this Chapter,

we investigate multi-packet transmission technologies within Max-Weight algorithm,

which enables us to schedule more than one users at a scheduling time. In particular,

we propose a modulation-assisted multi-packet transmission technique that employs

hierarchical modulation (HM) that is also termed superposition coding or embedded

constellations. HM enables a base station (or a transmitter) to transmit information

to two or more users simultaneously rather than a single user in a given time slot.

Therefore, it is possible to serve more than one queue at a time.

The authors in [35] are the first to show the advantage of HM in broadcast sys-

tems. In [36], the authors proposed a multi-user scheduling algorithm and showed that

HM offers lower queueing delay at the transmission buffer. However, in neither of these

works, the authors considered the stability of the network. Network utility maximiza-

tion problem with HM was investigated in [71]. Meanwhile, [41] proposed scheduling

and flow control algorithms but did not take into account the effect of modulation on

the performance of the algorithm.

In this Chapter, our contribution can summarized as follows: i) we propose

a throughput optimal algorithm, namely Max-Weight with Hierarchical Modulation

(MWHM) when two users are scheduled simultaneously; ii) we give the conditions un-

der HM that should be employed by considering both analytical and implementation

issues. iii) we prove that the proposed algorithm achieves larger rate region compared

to the conventional Max-Weight algorithm; iv) we develop a lower complexity version

of MWHM algorithm; v) we demonstrate via realistic simulations that our algorithm
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not only keeps the network stable with higher arrival rate but also reduces the average

delay.

4.2 System Model

We consider a cellular system with a single base station (BS) transmitting to N users.

Let N denote the set of users in the cell. Time is slotted, t ∈ {0, 1, 2, . . .}. Let Ts

denote the length of the time slot in seconds. Let hn(t) represent channel gain of user

n at time t, n ∈ {1, 2, . . . , N}. The gain of the channel is constant over the duration of

a time slot but varies between slots.

HM is one of the techniques for multiplexing and modulating multiple data streams

into one single symbol stream, where those multiple symbols are superimposed together

before transmission. In this work, for the sake of ease of exposition we assume that only

two layers of hierarchical modulation is used to serve two users simultaneously. Let BS

transmit to two users, i.e., user n and user m, at time slot t by employing two layers of

HM. Assume that user j has a better channel than user i , i.e., hn ≤ hm. Then, user n

is assigned to QPSK constellation which we refer to as base layer. User m is assigned

to 16-QAM constellation which we refer to as incremental layer. More information

about hierarchical modulation can be found in [36] and references there in. Since two

modulated signals are mixed before being transmitted, they interfere with each other at

the receiver side. However, in [72], the authors propose a decoding technique to cancel

the interference seen at the incremental layer. Specifically, when mixed signal reaches

to the receivers, the data at the base layer is first decoded and removed. Hence, the

data at the incremental layer does not suffer from the transmission at the base layer.

In [72], the achievable rates for user n and user m are given respectively as follows:

Rb
n(t) = Ts ×BW × log

(
1 +

hn(t)Pn,b(t)

hn(t)Pm,i(t) + σ

)
, (4.1)

Ri
m(t) = Ts ×BW × log

(
1 +

hm(t)Pm,i(t)

σ

)
, (4.2)

where Pn,b(t) and Pm,i(t) are the transmission powers for user n and m at the base
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and incremental layers, respectively. σ is the noise power and BW is the bandwidth

of the channel. We assume that the BS transmits at fixed power and the total power

consumption is equal to P , i.e., Pn,b(t)+Pm,i(t) = P ∀t. Rk
n(t) is upper-bounded such

that Rk
n(t) ≤ µmax ∀t, k ∈ {b, i}. Note that when UM is applied at the physical layer,

full power is assigned to a single user and the amount of data that can be transmitted

in that case is given by,

Rum
n (t) = Ts ×BW × log

(
1 +

hn(t)P

σ

)
. (4.3)

where n ∈ {1, 2, . . . , N}. Let An(t) be the amount of data (bits or packets) arriving

into the queue of user n at time slot t and An(t) ≤ Amax ∀t, and assume that An(t)

is a time and user independent stationary process. We denote the arrival rate vector

as λ = (λ1, λ2, · · · , λN), where λn = E[An(t)]. Let Q(t) = (Q1(t), Q2(t), · · · , QN(t))

denote the vector of queue sizes, where Qn(t) is the queue length of user n at time slot

t. The dynamics of the queue of user n is given as,

Qn(t+ 1) = [Qn(t) + An(t)−Rk
n(t)]

+. (4.4)

where (x)+ = max(x, 0) and k ∈ {b, i}. Let Λ denote the achievable rate region (or rate

region) defined as the closure of the set of all arrival rate vectors for which there exists

an appropriate scheduling policy stabilizing the network.

4.3 Throughput Optimal scheduling

In this section, we give a throughput optimal scheduling algorithm when HM is em-

ployed. However, we start with the conventional Max-Weight algorithm employing UM

to schedule a single user at every time slot.

Max-Weight with UM (MWUM): At time t, given hn(t) and Qn(t) for all n ∈ N ,
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schedule user n∗ which has the maximum queue length and service rate product, i.e., [6]:

W um
n (t) = Qn(t)R

um
n (t) (4.5)

n∗ = argmax
n∈N

W um
n (t). (4.6)

We define W ∗
u (t) , W um

n∗ (t). Let Λu denote the rate region achieved by MWUM.

Max-Weight with HM (MWHM): At time t, given hn(t) and Qn(t) for all

n ∈ N schedule two users (n∗,m∗) such that hn∗(t) ≤ hm∗(t) to maximize the sum of

queue length and service rate products, i.e.,:

W hm
n,m(t) = Qn(t)R

b
n(t) +Qm(t)R

i
m(t) (4.7)

(n∗,m∗) = argmax
(n,m)∈N ,n6=m
hn(t)≤hm(t)

whm
n,m(t). (4.8)

We define W ∗
h (t) , W hm

n∗,m∗(t). Let Λh denote the rate region achieved by MWHM.

Since BS has limited power budget, power allocation must be performed to determine

Rb
n(t) and Ri

m(t).

Power Allocation with HM: Recall that Max-Weight type scheduling algo-

rithms aim to maximize the weight W hm
n,m(t) (or W

um
n (t)) at each time slot. It is easy

to determine the maximum weight achieved by UM, W um
n∗ (t). However, the maximum

weight under HM depends on power allocations P ∗
n,b(t) and P ∗

m,i(t). Without loss of

generality, for a given pair of users, e.g., user n and user m such that hn(t) ≤ hm(t),

the optimal power allocation maximizing the weight whm
n,m(t) is obtained by solving the

following optimization problem:

max
Pn,b(t),Pm,i(t)

Qn(t)R
b
n(t) +Qm(t)R

i
m(t) (4.9)

s.t. Pn,b(t) + Pm,i(t) = P (4.10)

Note that P ∗
n,b(t) and P ∗

m,i(t) both have a non-zero value when (4.9)-(4.10) is a convex

problem. Now, we give a Lemma which states the necessary conditions for this to hold.
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For notational convenience, we drop the time index. Let us define,

B , h2
n

(hnPm,i + σ)2
and C , h2

m

(hmPm,i + σ)2
,

where 0 ≤ Pm,i(t) ≤ P .

Lemma 4.1. The problem (4.9)-(4.10) is a convex optimization problem when the fol-

lowing inequality is satisfied

QnB ≤ QmC (4.11)

Proof. We show that the objective function in (4.9) is concave under the given condition.

The objective function can be rewritten by noting that Pn,b = P − Pm,i. Since the

parameters Ts and BW do not effect the concavity, we have the following objective

function,

f = Qn log

(
1 +

hn(P − Pm,i)

hnPm,i + σ

)
+Qm log

(
1 +

hmPm,i

σ

)
.

Taking the second derivative of f with respect to Pm,i yields,

d2f

dP 2
m,i

= QnB −QmC. (4.12)

For concavity, d2f
dP 2

m,i
must be less than or equal zero, i.e., d2f

dP 2
m,i

≤ 0. Thus, qnB ≤
qmC.

As long as the condition in Lemma 4.1 is satisfied, the optimal power allocation

can be found by taking the first derivative of f and setting it to zero. The first derivative

of f with respect to Pm,i is given by,

df

dPm,i

= −Qn

√
B +Qm

√
C = 0. (4.13)
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Thus, we have,

P ∗
m,i =

σ(Qmhm −Qnhn)

hnhm(Qn −Qm)
, (4.14)

P ∗
n,b = P − P ∗

m,i. (4.15)

Lemma 4.2. If λ ∈ Λh (i.e., λ is feasible), then MWHM algorithm stabilizes the

network and it is throughput optimal.

Proof. We can write the following inequality by using the fact ([a]+)2 ≤ (a)2, ∀a:

Q2
n(t+ 1) ≤Q2

n(t) + (Rmax)
2 + (Amax)

2

− 2Qn(t)[Rn(t)− An(t)] (4.16)

Define the following Lyapunov function and conditional Lyapunov drift:

L(Q(t)) ,
N∑

n=1

Q2
n(t), (4.17)

∆(t) , E [L(Q(t+ 1))− L(Q(t))|Q(t)] . (4.18)

By using (4.16) and (4.17), one can show that the Lyapunov drift of the system satisfies

the following inequality at every time slot,

∆(t) ≤ B −
∑
n

E {Qn(t)Rn(t)|Q(t)} −
∑
n

Qn(t)λn (4.19)

where B = N
2
((Rmax)

2 + (Amax)
2). Note that the second term in the right hand side of

(4.19) can be rewritten as follows when two users are scheduled:

∑
n

E {Qn(t)Rn(t)|Q(t)} =
∑

(i,j)
hi≤hj

E {Qi(t)Ri(t) +Qj(t)Rj(t)|Q(t)}

Now, it is easy to see that MWSC minimizes the right hand side of (4.19) at every time

slot. Therefore, according to Lyapunov-Foster criteria,Q(t) process is positive recurrent
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Markov chain and MWHM can stabilize the network whenever this is possible [8].

4.4 Max-Weight Algorithm with Dynamic Modula-

tion (MWDM)

Note that MWHM can only be used when there is an inner point solution to the problem

(4.9)-(4.10), i.e., 0 < P ∗
m,i < P . If the solution is on the boundary, i.e., P ∗

m,i = 0 or

P ∗
m,i = P , then full power is assigned to a single user and HM is no longer employed,

i.e., transmission to a single user is optimal.

Now, we propose Max-Weight algorithm with dynamic modulation (MWDM) that

dynamically decides which coding (HM or UM) must be employed at every time slot.

Let Wd(t) and Λd be the maximum weight at time t and the rate region achieved by

MWDM, respectively. MWDM is implemented as follows:

• Step 1: The scheduler applies MWUM and finds the maximum weight Wu(t) by

using (4.5) and (4.6).

• Step 2: The scheduler applies MWHM as follows: For every pair of users (n,m),

find W hm
n,m(t):

– if hn ≤ hm, then user n is embedded at the base layer whereas user m is the

incremental layer or vice versa.

– Check whether the condition in Lemma 4.2 is satisfied.

– If not, W hm
n,m(t) = max{W um

n ,W um
m } and UM is employed.

– Otherwise, determine the optimal power allocation P ∗
m,i and P ∗

n,b according

to (4.14) and (4.15), respectively.

– Then determine W hm
n,m(t) according to (4.7).

• Step 3: After finding W hm
n,m for all pairs, determine W ∗

h (t).
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• Step 4: If W ∗
h (t) > W ∗

u (t), then W ∗
d (t) = W ∗

h (t) and HM is employed. Otherwise,

W ∗
d (t) = W ∗

u (t) and UM is employed.

Note that the layer assignment within MWDM algorithm is done by only considering

the relative measures of hn and hm. When transmit power is another parameter, one

can design a different algorithm which considers SINR values of users.

Let us define the expected weights achieved by MWDM and MWUM as E[Wd(t)]

and E[Wu(t)], respectively.

Theorem 4.1. The achievable rate region of MWUM algorithm is a subset of the

achievable rate region of MWDM, i.e., Λu ⊆ Λd.

Proof. We use the theorem given in [40] to prove the Lemma. According to the theorem,

if E[Wd(t) ≥ E[Wu(t)], then MWDM can at least achieve the rate region of MWUM.

The average weight achieved by MWDM is always greater than or equal to the weight

achieved by MWUM since MWDM can either apply HM or UM according the maximum

weight. Thus, the following inequality holds at every time slot,

W ∗
d (t) ≥ W ∗

u (t) (4.20)

Taking the expectation of both sides of (4.20) yields that E[W ∗
d (t)] ≥ E[W ∗

u (t)].

Hence, MWDM can be used to increase the total network throughput.

4.4.1 A low complexity algorithm

Note that the implementation of MWDM algorithm requires the calculation of the op-

timal power allocation and the weight of every pair of users. This requires a computa-

tional complexity of O(N2). Now, we propose a low complexity algorithm (L-MWDM)

that has a computational complexity of O(N).

L-MWDM algorithm is implemented as follows:

• Step 1: Determine user n∗ according to (4.5) and (4.6) which is the optimal user

selected under UM. Determine Wu(t) by using (4.5).
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• Step 2: For every user m 6= n∗, m ∈ N do:

– if hn∗ ≤ hm, then user n∗ is embedded at the base layer whereas user m is

embedded at the incremental layer or vice versa.

– Check the condition in Lemma 2 is satisfied.

– If it is not, whm
n∗,m(t) = max{wum

n∗ , wum
m } and UM is employed.

– Otherwise, determine the optimal power allocation P ∗
n∗,b and P ∗

m,i according

to (4.14) and (4.15), respectively. Then, determine whm
n∗,m(t) according to

(4.7).

• Step 3: After finding whm
n∗,m(t) for every user m 6= n∗ determine Wh(t).

• Step 4: If W ∗
h (t) > W ∗

u (t), then Wd(t) = Wh(t) and HM is employed. Otherwise,

Wd(t) = Wu(t) and UM is employed.

Note that the difference between MWDM and L-MWDM is that MWDM checks the

weights achieved by every pair of users. Hence, its complexity increases quadratically

with the number of users. On the other hand, L-MWDM calculates the weights assum-

ing that user n∗ is always scheduled. Thus, its complexity is linear with N . However,

the maximum weight obtained with MWDM is always greater or equal to that of L-

MWDM.

4.5 Simulation Results

In our simulations, we model a single cell downlink transmission utilizing high data

rate (HDR) [4]. The base station serves 20 users and keeps a separate queue for each

user. Time is slotted with length Ts = 1.67 ms as defined in HDR specifications. We

set BW = 1.25 MHz, P = 10 Watts and σ = 10−6 Watts. Packets arrive at each

slot according to Bernoulli distribution. The size of a packet is set to 128 bytes which

corresponds to the size of an HDR packet. The wireless channel between the BS and

each user is modeled as a correlated Rayleigh fading according to Jakes’ model with

different Doppler frequencies varying randomly between 5 Hz and 15 Hz. Figure
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Figure 4.1: Average total queue sizes vs. overall mean arrival rate.

4.1 depicts the maximum arrival rate that can be supported by MWDM, L-MWDM

and MWUM. Clearly, as the overall arrival rate exceeds 30 packets/slot queue sizes

suddenly increase with MWUM and the network becomes unstable. However, MWDM

and L-MWDM improves over MWUM by supporting the overall arrival rate of up to

32 packets/slot. Therefore, MWDM can achieve a larger rate region than MWUM as

verified analytically in Theorem 4.1. Figure 4.1 also shows the sum of the queue lengths

vs. mean of overall arrival rate (packets/slot), i.e., the increase is about 1.2 Mbps. As

the average arrival rate increases the average queue backlogs increase as well in all

algorithms. Following Littles’ Law, larger queue backlogs yield longer network delays.

However, due to the possibility of serving more than one queue at a time, MWDM

and L-MWDM outperform MWUM in terms of the average delay. This result indicates

that MWDM and L-MWDM are better techniques for delay sensitive applications. In

addition, the delay performance of MWDM and L-MWDM are very close. Recall that
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Figure 4.2: Average total queue sizes vs. transmit power, P

L-MWDM always schedules user n∗ which is the optimal user in MWUM algorithm.

Similar to L-MWDM, MWDM schedules user n∗ most of the time.

Figure 4.2 shows the sum of the queue lengths vs. transmit power, P in Watts

when the overall mean arrival rate is 28 packets/slot. Clearly, as P increases, the

average queue size with both MWDM and MWUM decreases as well. However, the

steady state queue length is achieved with MWUM at P = 4 whereas MWDM reaches

to the steady state at P = 3. As a conclusion, HM based scheduling requires less power

than the uniform constellation based scheduling to stabilize the network.

4.6 Chapter Summary

In this work, we investigate the advantages of transmissions of more than one data

streams simultaneously in a network stability problem. We propose to use hierarchical
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modulation with Max-Weight algorithm when two user are scheduled simultaneously.

First, we give the optimal power allocation among users. Then, we show that the

proposed algorithm can support higher user traffic compared to the conventional Max-

Weight Algorithm. In addition, we demonstrate that with the proposed algorithm the

average delay reduces dramatically. HM is a good technique for scheduling problem

especially when the number of users in the system is large and BS transmits high

transmission powers.
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Chapter 5

Joint Scheduling and Selective

Channel Feedback

In previous Chapters, we have investigated the optimality of opportunistic scheduling

algorithms (including Max-Weight type scheduling algorithms) under the assumption

that the complete network state information (both CSI and queue length information of

all users) is available at the scheduler. The majority of existing works employing Max-

Weight algorithm make this assumption and the associated overhead of channel probing

usually is not taken into account. In this Chapter, we study Max-Weight algorithm with

incomplete CSI. We design Scheduling and Selective Feedback algorithm (SSF) taking

into account the overhead due to the acquisition of CSI. SSF algorithm collects CSI

from only those users with sufficiently good channel quality so that it always schedules

the user with the highest queue backlog and channel rate product at every slot. We

characterize the achievable rate region of SSF algorithm by showing that SSF supports

1 + ε fraction of the rate region when CSI from all users are collected. We also show

that the value of ε depends on the expected number of users which do not send back

their CSI to the base station. For homogenous and heterogeneous channel conditions,

we determine the minimum number of users that must be present in the network so

that the rate region is expanded, i.e., ε > 0. We also demonstrate numerically in a

realistic simulation setting that this rate region can be achieved by collecting CSI from

less than 50% of all users in a CDMA based cellular network utilizing high data rate
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(HDR) protocol.

5.1 Overview

To exploit the advantages of multi-user diversity in the downlink the base station re-

quires the instantaneous channel state information (CSI) of users. As other opportunis-

tic scheduling algorithms, throughput-optimal Max-Weight algorithm requires complete

CSI. A common assumption in the literature is that the exact and complete channel

state information of all users is available at every time slot. However, in general base

station is unaware of the users’ channel state information, which must be acquired by

consuming a fraction of resource which is otherwise used for data transmission. Hence,

acquiring full CSI is usually very costly.

As mentioned in Chapter 2, there has been significant interest in developing joint

feedback and scheduling algorithms for wireless systems [48], [49], [50], [51] [52]. We

refer to the readers to [53] and the references therein for more information on acquiring

limited feedback. Most prior works study network capacity and feedback tradeoff by

assuming infinitely backlogged user queues. However, when network stability problem

is considered this trade-off cannot be analyzed in the same way since the queue size of

each user should be taken into account.

In the sequel, we review the related work that studies the network control problem

with incomplete CSI. In [73], the authors proposed a joint scheduling and channel feed-

back algorithm stabilizing the network by allowing the base station to receive CSI from

a subset of users. However, throughput-optimality of that algorithm can only be shown

under certain conditions, i.e., when channel distributions are known. In [74], the authors

proposed a variant of the algorithm in [73] to analyze queue-overflow performance with

limited CSI. In [75], a feedback allocation algorithm was proposed for multi-channel

system where only a limited number of CSI can be acquired at a time and channel

distributions are known at the BS. Note that the algorithms in [73], [75], [74] require

channel statistics to achieve throughput-optimality, which is impossible in practice.

In [76], the authors proposed a scheduling algorithm under imperfect CSI in single-
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hop networks. In this work, the authors aimed to obtain a tradeoff between energy

consumption and network capacity, when energy cost of acquiring CSI is taken into

account.

In [77], the authors proposed joint channel estimation and opportunistic schedul-

ing algorithm by assuming i.i.d. channel processes. In [78], the authors proposed to

estimate the channel statistics by using some portion of the time slots for observation

slot with some probability over i.i.d. channels. Unlike [77] and [78], we do not estimate

channel statistics at all. Hence, our algorithm is robust under more general channel

conditions such as time-correlated or non-stationary channels. In [79], it was assumed

that wireless channels evolve as Markov-modulated ON/OFF processes. With this as-

sumption, a exploitation-exploration trade-off was investigated. Similarly, in [80], a two

state discrete time Markov chain with a bad state which yields no reward and a good

state which yields reward was considered. The performance of [79] and [80] depends on

the underlaying stochastic process of the channel evolves according to a fixed station-

ary process such ergodic Markov chain. In practice, such an assumption does not hold

most of the time. For instance, the measurement study in [81] shows that the wireless

channel exhibits time-correlated and non-stationary behavior.

Unlike the works above, we assume a more flexible channel acquiring model where

receiving CSI from a single user consumes a certain portion of resource which is oth-

erwise used for transmission of data (e.g., β fraction of a time slot). A similar model

was also considered in [82]. However, in that work the network stability problem was

not investigated. In this sense, the most related work is [83], where the optimal feed-

back and scheduling scheme for a single-channel downlink is determined. Specifically,

in [83], the server has a cost for obtaining CSIs and it gains a reward (defined as queue

weighted throughput) for each scheduled user. The problem of finding optimal set of

users from which CSI is obtained. Then, the user scheduled in each slot is transformed

into an optimal stopping time problem which is solved as a Markov Decision Process

(MDP) given a priori channel distributions of all users. Unlike our algorithm, the opti-

mal algorithm in [83] has high computational complexity due to its MDP formulation

especially when the number of channel states is large. However, the performance of
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Figure 5.1: Cellular Network Model

our algorithm does not suffer from larger number of channel states and, interestingly,

it improves as the the number of channel state increases.

In this work, our contributions are summarized as follows:

• We develop a scheduling and selective feedback (SSF) algorithm that schedules

users according to the queue-lengths at the base station without full CSI. We

show that SSF algorithm achieves a fraction 1+ ε of the achievable rate region of

Max-Weight algorithm acquiring channel state information from all users.

• For homogeneous and heterogeneous channels, we identify the minimum number

of users that must be present in the system to reap benefits of SSF algorithm.

• We evaluate the performance of the proposed SSF algorithm with numerical ex-

periments, and demonstrate that SSF can support higher arrival rates than that

of another prominent algorithm which was proposed in [83].

5.2 System Model

We consider a multiuser downlink network with N users and a single base station (BS),

where users wish to receive data from the BS via the downlink channel as shown in

Figure 5.1. We consider a time-slotted system where the time slot is the resource to be

shared among different nodes. We adopt a non-interference model where only one node

is transmitting at any given time. Random channel gains between base station and

other nodes in the network are assumed to be independent and identically distributed

(iid) across time according to a general distribution and independent across nodes with

values taken from a finite set. Moreover, we assume that channel gains are time-

varying, but fixed over the time slot duration. Practical systems, such as CDMA/HDR
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system [4], implement adaptive modulation schemes which adjust signal constellation,

coding rate/scheme, etc., relative to the channel fading. When the instantaneous Signal-

to-Noise-Ratio (SNR) falls within a given range, the associated signal constellation is

transmitted. Since only a discrete finite set of L constellations is available, only a fixed

set of data rates R = {r1, r2, . . . , rL} can be supported. Assume that without loss of

generality, rk > rl if l > k. Let Rn(t) ∈ R be the supported data rate on the downlink

channel to node n at time slot t. The steady state distribution of supported channel

rates for node n is given as Pr[Rn(t) = rl] = pln, for all l = 1, . . . , L, where all rates are

observed with non-zero probability, i.e., pln > pmin, and pmin > 0, for all l and n.

The base station does not have the knowledge of channel states of the receivers

at the beginning of the slot, but it has to acquire this information. At the beginning of

each time slot, t, base station broadcasts a pilot signal with a fixed and known power.

Each node n determines its supportable data rate Rn(t) by measuring the received

SNR. Acquiring the supportable data rates from the receivers consumes resources. In

this work, we adopt the same model as in [83] and assume that acquiring channel state

information from a receiver consumes a fraction β of a slot. Let S(t) be the set of users
from which channel state information is acquired, where S(t) is the cardinality of set

S(t). Note that 0 < S(t) ≤ N . Hence, if base station decides to transmit to node n,

then it can transmit only (1 − βS(t))Rn(t) bits. Clearly, we assume that the number

of users is upper bounded by N < 1
β
. Since the transmitter can transmit to a receiver

only after knowing its channel state, there is a trade off between the number of nodes

from which channel state information is acquired and the fraction of time left for actual

data transmission.

We use indicator variable In(t) to represent the scheduler decision, where In(t) = 1

if node n ∈ S(t) is scheduled for transmission in slot t, and In(t) = 0 otherwise. By

definition, at most one user can be served at a time slot, i.e.,
∑N

n=1 In(t) = 1, ∀t.
Assuming unit slot length, the amount of data that can be transmitted to user n when

channel states of S(t) users are acquired at slot t is,

Dn(t) = (1− βS(t))Rn(t)In(t). (5.1)
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Base station maintains a separate queue for each node n. Packets arrive according a

stationary arrival process that is independent across users and time slots. Let An(t)

be the amount of data arriving into the queue of user n at time slot t. Let Q(t) =

(Q1(t), Q2(t), . . . , QN(t)) denote the queue length vector. The dynamics of queue length

for node n is given as

Qn(t+ 1) = [Qn(t) + An(t)−Dn(t)]
+, (5.2)

where [x]+ = max(x, 0). We say that the system is stable if the mean queue length for

all the receiver nodes is finite. In their seminal paper, Tassiulas and Ephremides [6] have

shown that Max-Weight algorithm could ensure stability of the user buffers whenever

this is at all possible. Max-Weight scheduling policy schedules the user n∗ for which

the transmission rate weighted by the queue length is the maximum, i.e.,

n∗ = argmax
n

Wn(t) = argmax
n

Qn(t)Rn(t), (5.3)

However, Max-Weight policy neglects the cost of channel state acquisition and thus,

assumes perfect knowledge of channel states at the beginning of time slot. In this

Chapter, we develop an algorithm that can find the user with maximum weighted

rate, i.e., n∗ = argmaxnWn(t) without acquiring the channel states from all users.

Consequently, in the following section, we characterize the stability region of the system

defined by the set of arrival rates λ = (λ1, λ2, . . . , λN), where λn = E[An(t)] such that

our proposed selective channel state acquisition and scheduling policy can stabilize.

Discussion: The convex hull of the set of all arrival rate vectors λ for which there

exists an appropriate scheduling policy that stabilizes the network is called achievable

rate region. When the cost of acquiring channel state information is neglected, i.e.,

β = 0, the achievable rate region is the largest, since the resources are used completely

for only actual data transmission. Let Λh denote this hypothetical rate region, the

boundary of which can never be achieved in real systems [84]. On the other extreme,

let Λf denote the achievable rate region achieved when channel state information is

acquired from all users with non-zero acquisition cost, i.e., β > 0. Clearly, Λf ⊂ Λh.
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Finally, let Λ denote the achievable rate region of any other scheduling algorithm that

selectively acquires channel state information from only a portion of users. In the next

section, we propose a scheduling and selective feedback algorithm, and show that its

achievable rate region satisfies Λf ⊂ Λ ⊆ Λh. Hence, our proposed algorithm is more

efficient than Max-Weight algorithm acquiring channel state information from all users.

5.3 Scheduling and Selective Feedback (SSF) Algo-

rithm

In this section, we propose a joint scheduling and selective feedback algorithm that de-

termines at each time slot the user with the maximum weighted rate without acquiring

channel states from every user. The key idea is to identify and eliminate those users

which has no possibility of having the maximum weighted rate, and acquire channel

states from the rest of the users. For this purpose, algorithm follows a two step proce-

dure. In the first step, base station identifies the user with the largest downlink queue

length, say user n, and acquires its channel state, i.e., Rn(t). Base station broadcasts

Rn(t) to all users, and asks them to forward their channel state only if their rates are

larger than Rn(t). The procedure is explained in detail in Algorithm 1. The follow-

ing Theorem shows that SSF and Max-Weight algorithms make the same scheduling

decision at every time slot.

Theorem 5.1. SSF algorithm schedules the user with the maximum weighted rate at

every time slot.

Proof. Let Wi∗(t) be the weighted rate of the user with the maximum queue size at

time slot t, i.e., i∗ = argmax1≤n≤N Qn(t). Also let W ∗(t) be the maximum weighted

rate among all users, i.e., W ∗(t) = max1≤n≤N Wn(t). SSF algorithm schedules the user

with the maximum weighted rate from set of users S(t) = {j : Rj(t) ≥ Ri∗(t)}. For any
user k /∈ S(t), Rk(t) < Ri∗(t), and since Qi∗(t) > Qk(t), then Wk(t) < Wi∗(t). Hence,

maxn∈S(t)Wn(t) = W ∗(t).
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Algorithm 1: SSF Algorithm

At every time slot, do:
(1) Selective Feedback :

Step 1: Determine the user which has the maximum queue length,

i∗ , argmax
1≤i≤N

{Qi(t)}

Step 2: Acquire the channel state of user i∗, i.e., Ri∗(t).

Step 3: Broadcast the value of Ri∗(t).

Step 4: The users with rates higher than Ri∗(t) report their channel states to base
station.

S(t) , {1 ≤ j ≤ N : Rj(t) > Ri∗(t)}.

(2) scheduling decision:
Base station schedules the user n∗ with the maximum weighted rate:

n∗ = argmax
n∈S(t)∪{i∗}

Wn(t), (5.4)

i.e., In∗(t) = 1, and updates queue lengths according to (5.2).
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5.3.1 Achievable Rate Region of SSF Algorithm

Let M(t) denote the number of users which do not send their channel state information

at time t. The total fraction of time slot consumed for acquisition of channel state

information is calculated as follows: A fraction β of time slot is used to acquire channel

state information of user i∗, and another fraction β of time slot is used to broadcast

Ri∗(t). Then, those users with rates higher than Ri∗(t) forward their channel state

information, where each such feedback also consumes a fraction β of time slot. Hence,

in total a fraction (N −M(t)+1)β of a time slot is consumed for acquisition of channel

state information. The following theorem characterizes the achievable rate region of

SSF algorithm, Λ, as compared to that of Max-Weight algorithm, i.e., Λf .

Theorem 5.2. SSF algorithm can support a fraction (1+ ε) of the rate region Λf , i.e.,

Λ ⊆ (1 + ε)Λf , where

ε =
β (E[M(t)]− 1])

1− βN
. (5.5)

Proof. We first define the following two functions:

fs(Q(t)) = E


 ∑

n∈S(t)
(1− βS(t))Wn(t)In(t)|Q(t)


 ,

fm(Q(t)) = E

[∑
n∈N

(1− βN)Wn(t)In(t)|Q(t)

]
,

where the expectation is taken with respect to the randomness of channel variations and

scheduling decisions. Given Q(t), both Max-Weight algorithm with full CSI and SSF

schedules the same user with the maximum weighted rate at every time slot. Hence,

the value of Wn(t)In(t) is the same for both functions, and the only difference between

fs(Q(t)) and fm(Q(t)) appears in the number of reported CSI. The performance of SSF

algorithm is determined by using the following theorem proven in [40].
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Theorem 5.3. [40] If for some ε > 0 SSF algorithm guarantees

fs(Q(t)) ≥ (1 + ε)fm(Q(t))

for all Q(t), then SSF can achieve 1+ε fraction of the rate region Λf , i.e., Λ ⊆ (1+ε)Λf .

Note that fs(Q(t)) can be rewritten as follows:

fs(Q(t)) = E

[∑
n

(1− β(N + 1−M(t)))Wn(t)In(t)|Q(t)

]

= fm(Q(t)) + E

[∑
n

(βM(t)− β)Wn(t)In(t)|Q(t)

]
(5.6)

Now, we consider the value of fs(Q(t))/fm(Q(t)) such that

fs(Q(t))/fm(Q(t)) =
fm(Q(t)) + E

[∑
n∈S(t)(βM(t)− β)Wn(t)In(t)|Q(t)

]

fm(Q(t))

= 1 +
E [

∑
n(βM(t)− β)Wn(t)In(t)|Q(t)]

fm(Q(t))
, (5.7)

where

E


 ∑

n∈S(t)
(βM(t)− β)Wn(t)In(t)|Q(t)


 =

N−1∑
m=0

(βm− β)E


 ∑

n∈S(t)
Wn(t)In(t)|Q(t),M(t) = m


× Pr[M(t) = m] (5.8)

Note that

E


 ∑

n∈S(t)
Wn(t)In(t)|Q(t),M(t) = m


 =

fm(Q(t))

1− βN
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Hence, (5.8) can be rewritten as follows:

(5.8) =
fm(Q(t))

1− βN

N−1∑
m=0

[(βm− β)] Pr[M(t) = m]

=
βfm(Q(t)) (E[M(t)]− 1])

1− βN

Thus we have,

fs(Q(t))/fm(Q(t)) ≥ 1 +
β (E[M(t)]− 1)

1− βN
(5.9)

Hence, the proposed algorithm can support (1+ ε) fraction of the rate region Λf where

ε =
β(E[M(t)]−1)

1−βN
. This completes the proof.

Corollary 5.1. The upper bound on ε is given by,

εup =
βN

1− βN
(5.10)

According to Theorem 5.2, the performance of SSF algorithm depends on the

expected number of users from which channel state information is not acquired, i.e.,

E[M(t)]. Clearly, if E[M(t)] > 1, then ε > 0. Next, we calculate E[M(t)] under

homogeneous and heterogeneous channel models.

5.3.2 Performance of SSF with Homogenous Channels

We first calculate the performance of SSF algorithm by considering a homogenous

channel model, where the channel state probability distributions are the same for all

users, i.e.,

pkn = pk, 1 ≤ n ≤ N.
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Lemma 5.1. When channels are homogenous, E[M(t)] is given as follows:

E[M(t)] =

[
p1 + p2

L∑

k=2

pk + p3

L∑

k=3

pk + · · ·+ p2L

]
(N − 1). (5.11)

Proof. Let E[M(t)|Ri∗(t) = rk, n = i∗] be the conditional expectation of number of users

from which channel state information is not acquired when the user with the maximum

queue length and its channel state are given. Note that for homogenous channels, the

following equality holds,

E[M(t)|Ri∗(t) = rk, n = i∗] = E[M(t)|Ri∗(t) = rk]. (5.12)

The value of E[M(t)] is simply the expectation of (5.12) over the channel state distri-

bution:

E[M(t)] =
L∑

k=1

E[M(t)|Ri∗(t) = rk] Pr[Ri∗(t) = rk].

Note that if Ri∗(t) = r1, then SSF does not acquire channel state information from

other users in the network, since user i∗ is the user with the maximum weight. Hence

with probability, Pr[Ri∗(t) = rk] = p1, the remaining N − 1 users do not report their

channel states, i.e., E[M(t)|Ri∗(t) = r1] = (N − 1). Meanwhile, if Ri∗(t) = r2, user

j 6= i∗ does not report its channel state if Rj(t) ≤ r2, which occurs with probability

Pr[Rj(t) ≤ r2] =
∑L

k=2 pk. Thus, E[M(t)|Ri∗(t) = r2] = (
∑L

k=2 pk)(N − 1). Thus,

in general, for homogeneous channels, the conditional distribution of random variable

M(t) given that the channel state of the user with the maximum queue length is rl, is

a binomial distribution with probability
∑L

k=l pk. Then, E[M(t)] is as follows,

E[M(t)] =

[
p1 + p2

L∑

k=2

pk + p3

L∑

k=3

pk + . . .+ p2L

]
(N − 1)

Next, we consider the special case when the channels are homogenous and channel
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state probabilities are uniformly distributed, i.e., pk =
1
L
for all k.

Lemma 5.2. When channels are homogenous and uniformly distributed, E[M(t)] is

given as follows:

E[M(t)] =

[
1

2
+

1

2L

]
(N − 1). (5.13)

Proof. If all channels are uniformly distributed, then pk =
1
L
. Hence, by (5.11) E[M(t)]

is obtained as

E[M(t)] =

[
1

L
+

1

L

L∑

k=2

1

L
+

1

L

L∑

k=3

1

L
+ . . .+

1

L2

]
(N − 1)

=

[
1

L
+

1

L2
(L− 1) +

1

L2
(L− 2) + . . .+

1

L2

]
(N − 1) (5.14)

Re-arranging (5.14), we obtain

E[M(t)] =

[
1

L
+

L(L− 1)

2L2

]
(N − 1) =

[
1

2
+

1

2L

]
(N − 1) (5.15)

Corollary 5.2. For homogenous channels with uniform channel state distribution, ε is

given as:

ε =
β
([

1
2
+ 1

2L

]
(N − 1)− 1

)

1− βN
. (5.16)

To give an idea of the description of the value of ε, let us consider a typical HDR

system where there are 11 SNR levels (i.e., L = 11), and we assume N = 15 and

β = 0.02. Then by using (5.16), ε = 0.19. That means we can support an arrival rate

which is 19% higher than that of Max-Weight algorithm with full CSI. Note that the

minimum value of ε is zero which occurs at β = 0. Intuitively, if there is no probing

cost then there will be no advantage of employing SSF algorithm since Max-Weight

algorithm with complete CSI results in also zero cost. As β increases, ε increases as

well. Thus, higher probing cost (i.e., higher β) more advantages using SSF algorithm.
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We now give our main result for homogenous channels.

Theorem 5.4. For homogeneous channels, SSF algorithm guarantees to achieve a

larger rate region than Λf , i.e., ε > 0, if the number of users is greater that 3, i.e.,

N > 3.

Proof. We prove the theorem by showing that E[M(t)] is a jointly convex function of

(p1, p2, . . . , pL), and the minimum of this convex function is achieved when channels are

uniformly distributed.

Lemma 5.3. E[M(t)] is a jointly convex function of (p1, p2, . . . , pL).

Proof. By noting p1 = 1 − ∑L
k=2 pk, the Hessian of E[M(t)] in (5.11) can be given as

follows,

H =




0 0 0 0 0 0 · · · 0

0 2 1 1 1 1 · · · 1

0 1 2 1 1 1 · · · 1

0 1 1 2 1 1 · · · 1

0 1 1 1 2 1 · · · 1

0 1 1 1 1 2 · · · 1

0
...

...
...

...
...

. . .
...

0 1 1 1 1 1 · · · 2




(N − 1)

Now, we show that H is positive definite matrix. Let x = [x1 x2 x3 . . . xL] be any

vector and x ∈ RL−1. If xHxT > 0 then, H is positive definite matrix and E[M(t)] is

convex function of p1, p2, . . . , pL [70]. By simple manipulations, we obtain

xTHx =


∑

l=1

x2
l +

(∑

l=1

xl

)2

 (N − 1) > 0. (5.17)

Lemma 5.4. E[M(t)] has the minimum value when channels are uniformly distributed.
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Proof. We already showed that E[M(t)] is jointly convex function of (p1, p2, . . . , pL).

Hence, the first order conditions can be obtained as follows by noting that p1 = 1 −
∑L

k=2 pk

∂E[M(t)]

∂p2
= −1 + 2p2 + (p3 + p4 + . . .+ pL) = 0

∂E[M(t)]

∂p3
= −1 + 2p3 + (p2 + p4 + . . .+ pL) = 0

∂E[M(t)]

∂p4
= −1 + 2p4 + (p2 + p3 + p5 + . . .+ pL) = 0

...

∂E[M(t)]

∂pL
= −1 + 2pL + (p2 + p3 + p5 + . . .+ pL−1) = 0

In matrix notation, these equations can be represented as




2 1 1 1 1 · · · 1

1 2 1 1 1 · · · 1

1 1 2 1 1 · · · 1

1 1 1 2 1 · · · 1

1 1 1 1 2 · · · 1
...

...
...

...
...

. . .
...

1 1 1 1 1 · · · 2







p2

p3

p4

p5
...

pL




=




1

1

1

1
...

1




(5.18)

Solving this linear system, we have,

pk − pl = 0,∀k, l k 6= l (5.19)

Thus,

pk =
1

L
,∀k. (5.20)

Thus, when the channel distributions are uniform, E[M(t)] has the minimum value.

We now prove the second part of the theorem. We show that when channels are
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uniform, E[M(t)] is a decreasing function of L.

Lemma 5.5. E[M(t)] is a decreasing function of L.

Proof. From (5.15),

E[M(t)] =

[
1

2
+

1

2L

]
(N − 1) (5.21)

Taking the derivative of E[M(t)] with respect to L yields that,

dE[M(t)]

dL
=

[ −1

2L2

]
(N − 1) < 0. (5.22)

Thus, E[M(t)] is a decreasing function of L.

Now, it is easy to see that in (5.15), taking L → ∞ yields

lim
L→∞

E[M(t)] = lim
L→∞

[
1

2
+

1

2L

]
(N − 1) =

N − 1

2
. (5.23)

In the limiting case, when N > 3, E[M(t)] > 1. In addition, according to Lemma 5.5 if

L is finite, E[M(t)] is still greater than 1 whenever N > 3 since E[M(t)] decreases as L

increases. We can conclude that when all channels are uniformly distributed, and when

N > 3, then E[M(t)] > 1. As a result, we guarantee to expand the rate region, i.e.,

ε > 0. In addition, according to Lemma 5.3 and Lemma 5.4, E[M(t)] has its minimum

value when channels are uniform. Therefore, for homogenous channels, when N > 3,

then ε > 0 and rate region is expanded. This completes the proof.

Note that the exact value of ε for homogeneous channels can be calculated by

Theorem 5.2 and Lemma 5.1. Also note that Theorem 5.4 holds if 1
β
> 3.

5.3.3 Performance of SSF with Heterogenous channel

Next, we consider the case when user channels are not identical, i.e., pkn 6= pkm, for all

n 6= m. First, in the following Lemma, we give a lower bound for E[M(t)].
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Lemma 5.6. When channels are heterogenous, E[M(t)] is lower bounded as follows:

E[M(t)] ≥ (N − 1)

(
pmin + (pmin)2

[
L(L− 1)

2

])
(5.24)

Proof. Now, we consider the case that the channels are not identical, i.e., pkn 6= pkm,

where n 6= m and ∀k. The main difference between homogenous and heterogenous

cases is that (5.12) does not hold for heterogenous channels. Let χn(t) be the event

that user n is the user with maximum queue size at time t. Also, let ϕk(t) be the event

that the user with maximum queue size has channel state k at time t, i.e., Ri∗(t) = rk.

The probabilities of these events are denoted by Pr[χn(t)] and Pr[ϕk(t)], respectively.

Then E[M(t)] can be found as follows:

E[M(t)] =
N∑

n=1

L∑

k=1

E[M(t)|χn(t), ϕk(t)] Pr[χn(t), ϕk(t)]

= Pr[χ1(t)]

(
p11(N − 1) + p21

N∑
n=2

L∑

k=2

pkn + . . .+ pL1

N∑
n=2

pLn

)

+Pr[χ2(t)]


p12(N − 1) + p22

N∑
n=1
n 6=2

L∑

k=2

pkn + . . .+ pL2

N∑
n=1
n 6=2

pnL




...

+Pr[χN(t)]


p1N(N − 1) + p2N

N∑
n=1
n6=N

L∑

k=2

pkn + . . .+ pLN

N∑
n=1
n6=N

pLn


 .

Note that pkn ≥ pmin for all n, k. Hence, a lower bound on E[M(t)] can be given

as follow,

E[M(t)] ≥ [pmin(N − 1) + pmin(pmin(L− 1)(N − 1)

+ pmin(pmin(L− 2)(N − 1) + . . .

+ pmin(pmin(N − 1)]
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By rearranging, we have,

E[M(t)] ≥ (N − 1)

(
pmin + (pmin)2

[
L(L− 1)

2

])

This completes the proof.

The following theorem gives our main result for heterogeneous channels.

Theorem 5.5. For heterogeneous channels SSF algorithm guarantees to achieve a

larger rate region than Λf , i.e., ε > 0, if the number of users satisfies

N >
1(

pmin + (pmin)2
[
L(L−1)

2

]) + 1, (5.25)

Proof. Recall that in order to achieve larger rate region, E[M(t)] should be larger than 1.

Lemma 5.6 gives a lower bound for E[M(t)]. Hence, if the right hand side of inequality

(5.24) is greater than 1, then E[M(t)] > 1 and SSF guarantees to achieve larger rate

region.

In an HDR system, there are 11 SNR levels which correspond to 11 different

transmission rates, i.e., L = 11 [4]. In addition, as given in [4], almost all data rates

occur with a probability higher than pmin = 0.05 in a typical embedded sector. Hence,

for a typical HDR system, the number of users in the system should be at least 7, in

order to reap the benefits of SSF algorithm. If the number of users in the system is

lower than 7, then it is optimal to acquire channel state information from all users in

the system.

Corollary 5.3. For heterogenous channels, ε is given by,

ε ≥
β
(
(N − 1)

(
pmin + (pmin)2

[
L(L−1)

2

])
− 1

)

1− βN
(5.26)

5.3.4 Implementation Issues

Here, we mention some implementation issues arising when SSF algorithm is applied.

In practice, CSI is sent back to the base station at a basic rate specified by the system
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so that this information can be decoded at the base station without any error. In HDR

system, the minimum supportable rate is 38.4kb/s, and a single CSI is coded by using

4 bits. Hence, the required time for the transmission of a single CSI is equal to 0.1

millisecond (ms). In HDR system the duration of time slot is 1.67 ms, so 6.25% fraction

of the time slot is consumed for each CSI acquisition. Hence, for a typical HDR system

β = 0.0625.

Note that when all users send feedback, the base station can inform each user

about its specific time slot to send feedback in the beginning and it does not change

after that. For instance, at every time slot the base station first acquires CSI from

user 1, then from user 2 and so on. However, with SSF a user will not know the other

users who will report their channel information, and hence it cannot predict its order

in sending feedback. In dynamic CSI feedback, there should be a mechanism to control

the users’ feedback order which resolves possible collisions during CSI transmissions on

the uplink channel. Developing a mechanism to acquire CSI from a limited number

of users remains as a research challenge. Note that any mechanism that is proposed

to solve this problem brings some additional timing cost. Here, we propose a simple

heuristic to prevent collision during the transmission of CSI: the base station always

starts collecting CSI with a specific user as in the static case. If a user has a data

rate greater than that of user i∗, it first announces it to the base station by sending

1 bit signal. Then, the base station waits until the user transmits its CSI, and then

switches to the next user. Otherwise, it sends 0 bit signal, and the base station switches

to the next user. This mechanism effectively controls the feedback order and prevents

collisions but it brings some additional timing cost due to transmission of additional

one bit length signals. Let us denote κ as the fraction of time slot consumed for all

probing processes within SSF algorithm including acquisition of CSI, broadcasting ID,

switching, etc. We next determine the effect of timing cost on the rate region of SSF

algorithm.

Corollary 5.4. When in total a fraction (N −M(t) + κ)β of a time slot is consumed

where κ ≥ 1 then SSF algorithm guarantees to achieve a larger rate region than Λf ,
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i.e., ε > 0, if the number of users satisfies

N >
κ

1
2
+ 1

2L

+ 1, (5.27)

Proof. Note that E[M(t)] depends only on the channel statistics and hence additional

probing cost does not effect E[M(t)]. Thus, Lemma 5.2 is still valid and, E[M(t)] =

[1
2
+ 1

2L
](N − 1). By following the same lines of the proof of Theorem 5.2, one can

determine that

ε =
β (E[M(t)]− κ)

1− βN
. (5.28)

Clearly, when E[M(t)] > κ then, ε > 0. Thus,

E[M(t)] = [
1

2
+

1

2L
](N − 1) > κ,

and N > κ
1
2
+ 1

2L

+ 1.

Hence, there must exist at least
⌈

κ
1
2
+ 1

2L

+ 1
⌉
users to achieve a larger rate region

compared to Max-Weight algorithm with complete CSI, where dxe is the smallest integer

that is greater than x. In other words, when additional probing cost is considered in

terms of β the minimum number of users that is required to achieve larger rate region

increases.

5.4 Numerical Results

In our simulations, we model a single cell CDMA downlink transmission utilizing high

data rate (HDR) [4]. The base station serves 15 users and keeps a separate queue for

each user. Time is slotted with length T = 2 ms. Packets arrive at each slot according

to Poisson distribution for each users with mean λn. The size of a packet is set to 128

bytes which corresponds to the size of an HDR packet. Each channel has 11 possible

states with rates as given in [4].
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Figure 5.2: Performance of SSF algorithm with Homogenous and Uniform channels.

We compare SSF algorithm with the algorithm in [83], which we call Cha. Specif-

ically, for homogenous channels, an optimal acquisition strategy is to receive CSI from

users in the decreasing order of their queue lengths as shown in Corollary 1 in [83].

However, for heterogenous channels, an optimal strategy is not characterized. Hence,

we compare Cha and SSF only when channels are homogenous.

5.4.1 Homogenous Channels

First, we evaluate the performance of SSF algorithm when channels are homogenous

and uniformly distributed.

Uniform Channels

In uniform case, pn = 1/11 for all users since there are 11 channel states and the

channel state distributions are identical. Note that β < 1
N

= 0.067, and we choose

different values of β that are close and far away from this value. Figure 5.2 depicts
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Figure 5.3: Performance of SSF and Cha vs. N.

the average total queue sizes in terms of packets vs. the overall arrival rate when

β = 0.02, β = 0.04, β = 0.06 and β = 0.08. The maximum supportable arrival rate

is achieved by a hypothetical Max-Weight algorithm where the feedback cost is zero,

i.e., β = 0. Note that for β = 0.02 the lowest supportable rate is achieved with Cha,

and it is achieved by Max-Weight acquiring channel states from all users for β = 0.08.

The reason that Max-Weight is worse for larger values of β is that the decrease in

throughput due to feedback costs becomes more prominent. SSF algorithm achieves a

very similar performance as compared to the hypothetical Max-Weight algorithm for

β = 0.02, and it outperforms both of the other algorithms for all values of β. The

main reason that SSF outperforms Cha is not because it acquires feedback from fewer

average number of users. On the contrary, in our numerical simulations, we observe

that SSF has E[M(t)] = 7.63, whereas Cha has a larger value of E[M(t)]. It is because

SSF always schedules the user with maximum weighted rate at every slot, while Cha

does not. Note that the performance of Cha becomes similar to that of SSF as the

condition on β violates, and it may be better than SSF for large values of β. However,

Figure 5.2 shows that for consistence values of β SSF outperforms Cha.

98



10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

Number of users

M
ax

. s
up

po
rt

ab
le

 r
at

e 
(p

ac
ke

ts
/s

lo
t)

 

 

SSF
Cha

Figure 5.4: Maximum supportable rate vs. number of users.

By using (5.16) and setting N = 15, L = 11 and β = 0.02, one can find that

ε = 0.19. That result states that we can support an arrival rate which is 19% higher

than that of Max-Weight algorithm with full CSI. From Figure 5.2, the maximum

supportable rate by Max-Weight with full CSI is around 3 packets/slot whereas SSF

can support up to 3.57 packets/slot, which is 19% higher than that of Max-Weight

algorithm with full CSI, which confirms our theoretical result.

We have also evaluated the performance of SSF algorithm with respect to the

number of users in the network. We set β = 0.03 so that the condition on β is satisfied

for all values of N . Figure 5.3 depicts total average queue sizes in terms of packets

vs. the overall arrival rate when N = 15, N = 20, N = 25 and N = 30. For all values

of N , SSF can support arrival rates higher than that can be supported by Cha scheme.

We have performed additional numerical studies to understand the performances of

Cha and SSF as the number of users in the network increases. We choose β = 0.03,
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Figure 5.5: Performance of SSF algorithm with Non-Uniform channels.

and vary N between 10 and 50 users. Note that for large values of N , there may not

be sufficient time for data transmission since the entire slot is used for probing. In

such a case, data transmission rate equals to zero. Figure 5.4 depicts the maximum

supportable arrival rate vs. the number of users in the network. As N increases, the

maximum supportable rate of both SSF and Cha decreases since the remaining time

for data transmission decreases as well. However, SSF outperforms Cha for all values

of N .

Non-Uniform Channels

Here, we investigate the performance of SSF algorithm when channels are identical

but the channel state distributions are not uniform. In this case, the channel state

distribution pl, l = 1, . . . , 11 is given as {0.01, 0.01, 0.03, 0.08, 0.15, 0.24, 0.18, 0.09, 0.12,
0.05, 0.04}.
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Figure 5.6: Performance of SSF algorithm with Heterogenous channels.

Figure 5.5 depicts the average total queue sizes in terms of packets vs. the overall

arrival rate when β = 0.02 and β = 0.05. The maximum supportable arrival rate is

achieved with hypothetical algorithm, and the lowest supportable rate is achieved by

Max-Weight algorithm acquiring channel states from all users. We can again observe

that SSF outperforms Cha when the channels have non-uniform distribution.

5.4.2 Heterogenous Channels

For the case of heterogeneous channels, we divide the users into three groups where

there are five users in each group. The channel state distributions of each group are

given as follows: for the first group, n = {1, 2, . . . , 5}, pnl , l = {1, . . . , 11} is given as

{0.01, 0.01, 0.03, 0.08, 0.15, 0.24, 0.18, 0.09, 0.12, 0.05, 0.04}, for the second group, n =

{6, 7, . . . , 10}, pnl = {0.01, 0.02, 0.02, 0.07, 0.2, 0.24, 0.15, 0.05, 0.12, 0.08, 0.04} and for
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the last group, n = {11, 12, . . . , 15}, pnl = {0.02, 0.01, 0.02, 0.06, 0.21, 0.25, 0.18, 0.05, 0.11,
0.06, 0.03}.

Figure 5.6 depicts the average total queue sizes in terms of packets vs. the overall

arrival rate for β = 0.02 and β = 0.05. The maximum supportable arrival rate is

still achieved by hypothetical algorithm and the lowest supportable rate is achieved

by Max-Weight algorithm acquiring channel states from all users. when β = 0.05

the supportable rate achieved by SSF algorithm is 2.25 packets/second whereas it is

approximately 1.12 packets/second with full CSI. Hence, SSF achieves larger rate region

than Max-Weight with full CSI has.

5.5 Chapter Summary

We have developed joint scheduling channel feedback algorithm in a single channel

wireless downlink network. We have assumed that acquiring CSI of a user consumes

a certain fraction of data slot, hence, decreases the achievable throughput. The set

of channels is determined by considering the channel gain of the user with maximum

queue size. We have shown that the proposed joint algorithm can support 1+ ε fraction

of full rate region achieved when all CSIs are available at the scheduler. Then, we

have proved the sufficient condition for ε > 0 for both homogenous and heterogenous

channels by determining the expected number of reported CSI within our algorithm.

In simulation results, we show that by applying our algorithm the base station can

stabilize the network and achieves larger rate region with collecting CSI from less than

the half of users instead of full CSI.
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Chapter 6

Entropy-based Active Learning for

Scheduling

In Chapter 5, we have investigated Max-Weight algorithm without complete CSI at the

base station. Our main assumptions in that Chapter are i) channels vary independently

over time slots; ii) the base station can obtain the complete CSI by sacrificing through-

put. In this Chapter, we go further and remove these assumptions by considering more

practical channel and probing models. Specifically, in this Chapter, we address the

joint design of scheduling and channel probing under general channel processes. Our

method predicts the instantaneous channel rates, and calculates the uncertainty in the

prediction to make a scheduling and probing decision. To explicitly quantify the un-

certainty in the channel prediction that will be removed by channel probing we adopt

entropy measure from information theory. In order to accurately predict instantaneous

user channel states we employ a Bayesian approach and use Gaussian processes as a

state-of-the-art regression technique. We analytically prove that our algorithm achieves

a fraction ε of the full rate region when complete CSI is available. We demonstrate nu-

merically under realistic assumptions that this rate region can be achieved by probing

only less than 50% of all channels in a CDMA based cellular network utilizing high

data rate protocol under practical channel conditions.
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6.1 Overview

Due to their flexible and low-cost infrastructure, wireless networks have the potential

to provide high-speed, ubiquitous communication to mobile users. One of the most

challenging problems that remains to be solved is to allocate limited and time-varying

resources among multiple users meeting their Quality-of-Service (QoS) requirements.

The problem is exacerbated by the highly dynamic nature of wireless communications

due to multiple superimposed random effects such as mobility and multi-path fading.

In some cases, acquiring extensive information on wireless system characteristics may

be simply infeasible due to prohibitive costs or hard constraints. In others, the wireless

channel may be so non-stationary that by the time the information is obtained, it is

already outdated due to channels fast-changing nature. Hence, in general, resource

allocation decision should be made based on limited and outdated information.

In this Chapter, we develop a joint partial CSI acquisition and scheduling algo-

rithm without requiring any a priori assumption on their channel state distributions.

Our algorithm tracks the channel states according to a learning algorithm and by judi-

ciously probing only those user channels for which there is a high level of uncertainity

about their states. At each slot, a user among the set of probed users is scheduled

which has the maximum queue length and rate product. Our algorithm is based on

a recent machine learning and optimization framework developed in [85], wherein the

exploration and exploitation trade-off is explicitly quantified as a multi-objective meta

optimization problem. In our setting, trade-off is between scheduling of the user with

the highest weighted rate (exploitation) and probing of the channels with outdated

channel observations (exploration). The solution of this optimization problem requires

the prediction of the instantaneous channel states, and the measurement of the level of

uncertainty in this prediction. Instantaneous channel states are predicted by adopting

a Bayesian approach, and using Gaussian processes as the state-of-the-art regression

method. Gaussian process regression is a powerful nonlinear interpolation tool, where

the inference of continuous values are made with respect to a Gaussian process prior [86].

We note that although the inference of instantaneous channel gains is with a Gaussian
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process prior, this does not assume that underlying channel model is Gaussian. In fact,

as demonstrated by our numerical experiments, our approach is applicable to a wide

range of channel models including time-correlated and even non-stationary channels.

Another unique feature of our algorithm is that the uncertainty in the predicted chan-

nel state is quantified explicitly by the entropy measure from the information theory

thanks to the Gaussian process regression method used in the prediction. Hence, our

algorithm weighs the level of uncertainty eliminated by probing a channel against the

aspiration to schedule the user with the maximum weight to determine a set of users

probed at every slot.

Our contributions are summarized as follows:

• We define a class of Max-Weight-like policies which make scheduling decisions

based on the estimated values of instantaneous channel rates rather than their

exact values, and characterize the achievable rate region of these policies as com-

pared to Max-Weight policy with exact channel state information.

• We quantify the information obtained at every probing of a channel with Shan-

non’s entropy formula based on the past observations of the channel.

• We develop a Gaussian Process Regression based channel rate prediction algo-

rithm, which does not require any a priori assumption on the channel distribu-

tions. The algorithm essentially learns the channel characteristics in an active

learning framework, where the channel observations arrive sporadically over time.

• We develop a joint probing and scheduling algorithm, which selects the set of

users to be probed, and a user in the same set scheduled for transmission. The

selection is based on the solution of a multi-objective optimization problem aiming

to balance the information obtained by each channel probe with the selection of

the user with the maximum weight at each slot.

• We evaluate our algorithm in a realistic network setting, where users communicate

with the base station using High Data Rate (HDR) protocol [4]. We compare the

105



performance of our algorithm with that of the state-of-the-art channel prediction

method based on Autoregression (AR) [87].

The inter-play between the channel probing/estimation with the achievable net-

work throughput has been recognized early in the research community, and a plethora

of work has appeared investigating the underlying trade-off.

Saturated Systems: The authors in [48], [49], [50], [51] have studied the problem

of joint scheduling and feedback by assuming infinitely backlogged user queues. In

[48] users contend for the feedback channel if the channel state exceeds a pre-defined

threshold. Similarly, in [50], multiple threshold levels are used to reduce the cost for

obtaining the CSI. For uplink scheduling, the authors in [49] propose an optimization

framework in OFDM systems. A random access based feedback protocol for achieving

multiuser diversity with limited feedback was proposed in [51]. We refer the readers

to [53] for a summary of different techniques used to reduce the overhead of obtaining

CSI such as quantization of CSI, beamforming or precoding.

Unsaturated Systems: Recent body of work has investigated the problem of sta-

bilizing the network of queues, when these queues have arbitrary arrival rates. In [73],

the authors use the expected transmission rates weighed by the queue lengths to select

a fixed number of users to be probed in each slot. After probing, a user within this

subset of probed users is selected according to Max-Weight rule. In case of a multi-

channel downlink system, the limited feedback resource is allocated at the beginning of

each time slot according to the queue-lengths and the channel statistics in [75]. In [83],

the problem of finding optimal joint scheduling and probing is transformed into an

optimal stopping time problem. The resulting algorithm is found as the solution to

a dynamic program defined over the underlying Markov Decision Process (MDP). All

three aforementioned algorithms achieve throughput-optimality under the assumption

that channel distributions are independent and identically distributed (iid), and they

are known a priori.

In contrast, [77], [78], [79], and [88] presented joint scheduling and probing al-

gorithms without requiring a priori channel statistics. In [77] and [78], the authors

propose algorithms that estimate the channel statistics under the assumption that user
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channels have iid probability distribution. The problem of joint prediction of channel

states and scheduling to optimize a long term metric under stability and other resource

constraints was studied in [77]. Similarly, the authors in [78] probabilistically determine

at every slot whether to explore a user channel state or exploit the time to transmit

data. Based on the past observations, the user channel statistics is estimated, and it is

shown that the resulting random scheduling algorithm is throughput optimal. In [79],

the authors propose a joint scheduling and channel estimation algorithm for correlated

ON/OFF Markovian channels.

Unlike these works, our algorithm does not aim to estimate the channel statistics,

and thus, it is more suitable for realistic non-stationary channel models [81]. In [88],

we develop an algorithm which probes only those users with sufficiently good channel

quality and schedules the user with the maximum weight at each transmission oppor-

tunity. The underlying system model considered in [88] is completely different than the

one used in this work, since in [88] feedback from as many users as needed can be ob-

tained by tolerating a reduction in data transmission rates. Unlike all aforementioned

approaches, our proposed approach assumes neither stationarity nor a particular dis-

tribution for channels, and hence, it has more general applicability. In our preliminary

work [89], we apply a similar algorithm assuming the same model in [88] without giving

any analytical performance guarantees in terms of rate region.

Learning: The advantages of using learning algorithms in wireless communication

systems where the complete channel/network state information is not available has long

been recognized. For example, learning algorithms are used in adaptive transmission

techniques, such as adaptive modulation and channel coding to predict future channel

states. Studies have shown that such learning based adaptive transmission techniques

provide more efficient spectrum utilization [90]. Learning algorithms have also been

applied to various problems in communication networks where there is limited infor-

mation on network states such as routing [91], spectrum allocation [92], interference

mitigation [93], multi-channel cognitive networks [94], combinatorial network optimiza-

tion [95], multi-channel access [96] and localization [97]. These problems are solved via

reinforcement learning [91], [92], Q-learning [93], multi-armed bandit [94], [96], [95] and
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Gaussian Process Regression [97] techniques.

Note that by assuming the stationarity of the underlying stochastic processes

(i.e., iid or Markovian channels), the focus in [91]- [96] is on finding a single, stationary

solution which is once found, no longer need to be changed. However, the problems

in stationary domains may be too large to be solved exactly. For instance, extending

the analysis of the aforementioned works to correlated Rayleigh fading is in general

difficult. Moreover, focusing only on the stationary solution is not adequate when

dealing with a non-stationary channel process. If the underlying process changes, then

all prior predictions become outdated. Thus, in this case the only option is to track

the process. The need for tracking nonstationary environments via learning, although

widely acknowledged, has not been extensively pursued in research community. In this

work we focus on continuous tracking of the channel process rather than finding a single

stationary solution which may not be sufficiently good even for stationary problems [98].

6.2 System Model

We consider a multiuser downlink network with N users and a single base station (BS).

We assume that time is slotted, and we adopt a non-interference model, where only one

user is transmitting at any given time slot. Each user channel experiences independent

block fading, in which the channel gain is constant over the duration of a time slot,

and it is varying continuously from slot to slot. The gain of the channel between

the BS and node n, n ∈ {1, 2, . . . ,N} at time t is denoted by cn(t), and its value is

determined according to an arbitrary probability distribution1. Similarly, we denote

the instantaneous channel rate between the BS and node n by Rn(t), which is defined

as the mutual information between the output symbols of base station and the input

symbols at node n over slot t. The maximum value of Rn(t), is obtained when the input

1As described in the subsequent section, our algorithm which relies on Gaussian Process Regression
(GPR), does not make any assumption on the channel distribution. GPR is a generic function estima-
tion method that performs well in approximating any smooth and continuous nonlinear function [86].
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symbols are chosen from a Gaussian-distributed input alphabet,

Rn(t) ≤ BW log2
(
1 + P |cn(t)|2

)
bits, (6.1)

where BW is the bandwidth of the channel, and P is the noise normalized transmit

power. Note that we assume that both BW and P are exogenous processes over which

we have no control, i.e., we do not consider bandwidth or power control.

The base station does not have the knowledge of the channel states of the receivers

at the beginning of the slot, but it has to acquire this information. At the beginning

of each time slot, t, base station broadcasts a pilot signal with a fixed and known

power. Each node n determines its CSI cn(t) by measuring the received SNR. In this

model, we assume that the base station receives feedback from at most L < N users

over a dedicated and fixed bandwidth uplink channel. We assume that L is fixed and

remains constant throughout the system operation. Such a feedback channel model

closely represents practical systems such as HDR and LTE [4]. Let S(t) be the set of

users for which the channel state information is acquired at time slot t. Note that the

cardinality of set S(t), is L, i.e., |S(t)| = L, for all t.

The base station maintains a separate queue for each node n. Packets arrive

according to a stationary arrival process that is independent across nodes and time

slots. Let An(t) be the amount of data arriving into the queue of node n at time slot t.

Also let λn = E[An(t)] be the average arrival rate into the queue of node n. There is a

departure from the queue of node n, whenever that node is selected for transmission.

Let Jn(t) represent the scheduler decision, where Jn(t) = 1 if user n ∈ S(t) is scheduled
for transmission in slot t, and Jn(t) = 0 otherwise. By definition, at most one user can

be served at a time slot, i.e.,
∑N

n=1 Jn(t) = 1, for all t. The dynamics of queue length

process of node n is given as follows:

Qn(t+ 1) = [Qn(t) + An(t)−Rn(t)Jn(t)]
+, (6.2)

where [x]+ = max(x, 0). Let Q(t) = [Q1(t), Q2(t), . . . , QN(t)] denote the vector of user

queue lengths. We say that the network is stable if the mean length of user queues are
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all finite.

6.3 Scheduling Under Limited Channel State Infor-

mation

We denote as π the joint scheduling and channel probing policy which selects the pair

(n,S(t)) at every slot t, where n ∈ S(t) is the scheduled user, and S(t) is the set of

probed users. Given π = (n,S(t)), n is determined according to Max-Weight rule, i.e.,

n = argmax
i∈S(t)

Qi(t)Ri(t). (6.3)

Let F be the set of all feasible policies and π ∈ F .

The convex hull of the set of arrival rate vectors Λ = (λ1, . . . , λN) for which there

exists an appropriate scheduling policy that stabilizes the network is called achievable

rate region. When the exact channel information for all users is known, i.e., L = N ,

the achievable rate region is the largest. Let Λh denote this hypothetical rate region,

the boundary of which can never be achieved in real systems [84]. It was shown that

Max-Weight algorithm with full CSI stabilizes the network and achieves Λh [6]. In

practice, the channel state information from only a subset of users can be obtained,

i.e., L < N . Under limited channel state information, there is a possibility that the

user with the maximum weighted rate cannot be selected, which in turn may reduce the

achievable rate region. Our aim is to find a joint scheduling and channel probing policy

that stabilizes the network for a given set of arrival rates by judiciously determining

a subset of channels probed, S(t), and by scheduling a user from this subset at every

time slot. Given the queue state Q(t), we consider the following optimization problem

at each slot:

argmax
(n,S(t))∈F :|S(t)|=L

E


 ∑

n∈S(t)
Qn(t)Rn(t)Jn(t) | Q(t)


 (6.4)

In [73] and [83], the authors proposed throughput-optimal algorithms solving (6.4) when
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channel distribution is known. In this work, we extend these works to address the case

when the channel distributions are unavailable and/or time-varying.

In practice, it is not possible to accurately determine the exact channel distri-

butions a priori to system operation. Hence, we consider a joint policy π(η) which

employs an arbitrary channel tracking algorithm η to predict channel states at each

slot. We consider a class of policies where S(t) and n are determined as follows: Based

on the predicted channel states by tracking algorithm η, L users with the highest esti-

mated transmission rate and queue length product are added to S(t). After acquiring

CSI from users in S(t), a user in S(t) is scheduled according to (6.3). Let ĉ
π(η)
n (t) de-

note the estimated CSI of user n at the beginning of time t under policy π(η). Also

let R̂
π(η)
n (t) denote the estimated transmission rate of user n at time t which is de-

fined according to (6.1) by replacing the cn(t) by ĉ
π(η)
n (t). The estimation error is

defined as e
π(η)
n (t) =

∣∣∣R̂π(η)
n (t)−Rn(t)

∣∣∣. We assume that Rmin < R̂
π(η)
n (t) < Rmax, and

e
π(η)
n (t) < emax for all n, t.

We first analyze the performance of a general joint scheduling and probing policy

π(η) ∈ F . Note that depending on the quality of employed estimation method, and the

choice of users probed at each slot, policy π(η) may or may not schedule the user with

the actual highest weight at each slot. Given the backlog process, Q(t), we need to

determine how often a policy π(η) chooses the user with the actual maximum weighted

rate. Let ρπ(η)(Q(t)) be this probability which is defined as:

ρπ(η)(Q(t)) =Pr

[
argmax

n
Qn(t)Rn(t) = k

∣∣∣∣

argmax
n

Qn(t)R̂
π(η)
n (t) = k,Q(t)

]
.

The following theorem characterizes the achievable rate region of policy π(η) ∈ F , i.e.,

Λπ(η), as compared to that of Max-Weight algorithm, Λh.

Theorem 6.1. For some given 0 < ε < 1, a fraction ε of the rate region, Λπ(η) ⊆ ε ·Λh

111



can be achieved if

ρπ(η)(Q(t)) ≥ ε

for all Q(t).

Proof. We consider the worst case in which at most one user is probed at every slot,

i.e., L = 1. In this case, the probed user is always the scheduled user. Note that when

L > 1, we may achieve a larger rate region. We also drop η in π(η) for notational

simplicity. Let J f (t) = 1 if user n is scheduled when full CSI available, otherwise

J f (t) = 0. Similarly, J π
n (t) = 1 if user n is scheduled with policy π. Otherwise,

J π
n (t) = 0.

Consider also the following functions :

gf (Q(t)) = E

[
N∑

n=1

Qn(t)Rn(t)J f
n (t)|Q(t)

]
, (6.5)

gπ(Q(t)) = E

[
N∑

n=1

Qn(t)Rn(t)J π
n (t)|Q(t)

]
. (6.6)

The function (6.5) gives the expected weighted-sum rate according to Max-Weight

algorithm with full CSI, whereas (6.6) is the expected-sum rate when at most L = 1

channel is probed with policy π. Our aim is to determine J π
n (t) at every time slot so

that gf (Q(t)) is close to gπ(Q(t)). We define the event χ such that χ occurs if policy

π and full CSI Max-Weight algorithm schedule the same user at a time slot, i.e.,

argmax
n

Qn(t)Rn(t) = argmax
n

Qn(t)R̂
π
n(t).

We denote the probability of event χ as ρπ(Q(t)). We use the following theorem given

in [40] to prove our main result Theorem 6.1.

Theorem 6.2. [40] If for some ε > 0 policy π guarantees

gπ(Q(t)) ≥ εgf (Q(t)) (6.7)
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for all Q(t), then policy π can achieve a fraction ε of hypothetical rate region, Λh.

Note that gπ(Q(t)) can be rewritten as follows,

gπ(Q(t)) = E

[
N∑

n=1

Qn(t)Rn(t)J π
n (t)|Q(t), χ

]
ρπ(Q(t))

+ E

[
N∑

n=1

Qn(t)Rn(t)J π
n (t)|Q(t), χ′

]
(1− ρπ(Q(t))).

Note that when event χ occurs, the following equality is true,

gf (Q(t)) = E

[
N∑

n=1

Qn(t)Rn(t)J π
n (t)|Q(t), χ

]
.

Thus, we have

gπ(Q(t)) = gf (Q(t))ρπ(Q(t))

+ E

[
N∑

n=1

Qn(t)Rn(t)J π
n (t)|Q(t), χ′

]
(1− ρπ(Q(t))).

Note that,

E

[
N∑

n=1

Qn(t)Rn(t)J π
n (t)|Q(t), χ′

]
(1− ρπ(Q(t))) ≥ 0

Hence,

gπ(Q(t)) ≥ gf (Q(t))ρπ(Q(t)) (6.8)

By dividing both sides of (6.8) by gf (Q(t)), we obtain,

gπ(Q(t))

gf (Q(t))
≥ ρπ(Q(t)) (6.9)

Thus, if ρπ(Q(t)) ≥ ε, then gπ(Q(t))/gf (Q(t)) ≥ ε. Hence, according to theorem [40],

the scheduling policy with estimated channel rates can achieve as least ε fraction of
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Λh.

We note that the largest value of ε that can be supported by an estimation pol-

icy depends on the channel statistics, and it cannot be obtained for the general case.

However, to demonstrate the typical structure of ε, we consider a simple example where

there are two users with identical channel distributions receiving service from a BS.

Example: The channel gain between the BS and each user is assumed to be iid

Rayleigh fading channel with parameter µ. We assume that at most one user can be

probed at each slot, i.e., L = 1.

Lemma 6.1. Under high SNR assumption, ε is given by,

ε = exp

(
− µ

P

[
1− e

−emax

(
1+Rmax

Rmin

)]
e

(Rmax)2

Rmin

)

Proof. Let transmission rates of users be defined as R1(t) and R2(t), and their queue

sizes be defined as Q1(t), Q2(t), respectively. For analytical simplicity, we assume high

SNR approximation, i.e., Rn(t) ≈ ln
(
P |cn(t)|2

)
and we drop η in π(η) and time index

for notational simplicity. Then, we determine the probability that the same user is

scheduled by policy π and full CSI Max-Weight algorithm. Formulary:

pπ = Pr
(
Q1R1 ≥ Q2R2|Q1R̂

π
1 ≥ Q2R̂

π
2 , Q1, Q2

)

We assume the worst case scenario in which the estimation error is emax and R1 is

overestimated whereas R2 is underestimated. In this scenario we have,

Q1R̂
π
1 ≥ Q2R̂

π
2

Q1(R1 + emax) ≥ Q2(R2 − emax)

Q1R1 −Q2R2 ≥ −emax(Q1 +Q2)
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Let us define K , emax(Q1 +Q2). Now, p
π can be rewritten as follows:

pπ =Pr (Q1R1 ≥ Q2R2|Q1R1 −Q2R2 ≥ −K,Q1, Q2)

=
Pr (Q1R1 ≥ Q2R2 and Q1R1 −Q2R2 ≥ −K|Q1, Q2)

Pr (Q1R1 −Q2R2 ≥ −K|Q1, Q2)

=
Pr (Q1R1 −Q2R2 ≥ 0|Q1, Q2)

Pr (Q1R1 −Q2R2 ≥ −K|Q1, Q2)

We first calculate the following probability,

pπnum = Pr (Q1R1 −Q2R2 ≥ 0|Q1, Q2) .

Since |c1(t)|2 and |c2(t)|2 are identically distributed exponential random variables with

parameter µ, pπnum is determined as follows:

pπnum = Pr

(
R1 ≥ Q2R2

Q1

| Q1, Q2

)

= Pr

(
P |c1|2 ≥ eaR2

P
| Q1, Q2

)

=

∫ ∞

0

Pr

(
|c1|2 ≥ ear2

P
| Q1, Q2, R2 = r2

)
fR2(r2)dr2

where a = Q2

Q1
and fR2(r2) is the pdf of R2 which is given by,

fR2(r2) =
µ

P
er2e−

µ
P
er2 , for r2 ≥ 0.

Hence,

Pr

(
|c1|2 ≥ ear2

P
| Q1, Q2, R2 = r2

)

=

∫ ∞

eaR2
P

µe−µc1dc1

= e−
µ
P
ear2
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Then, pπnum is given by,

pπnum =

∫ ∞

0

e−µe
ar2
P fR2(r2)dr2

=

∫ ∞

0

µ

P
er2e−

µ
P
er2e−

µ
P
ear2dr2

Let b = K
Q1

. Next, we determine the following probability,

pπdenum = Pr (Q1R1 −Q2R2 ≥ −K|Q1, Q2) .

By following the same way, pπdenum is given as,

pπdenum =

∫ ∞

0

µ

P
er2e−

µ
P
er2e−

µ
P
ear2−b

dr2

Hence, we have,

pπ =
pπnum
pπdenum

=

∫∞
0

µ
P
er2e−

µ
P
er2e−

µ
P
ear2dr2∫∞

0
µ
P
er2e−

µ
P
er2e−

µ
P
ear2−b

dr2
(6.10)

Since Rmin < r2 < Rmax, p
π can be approximated as follows,

pπ ≈
∫ Rmax

Rmin
er2e−

µ
P
er2e−

µ
P
ear2dr2∫ Rmax

Rmin
er2e−

µ
P
er2e−

µ
P
e−bear2dr2

(6.11)

Note that the following inequality holds,

e−
µ
P
e−bear2 ≤ e−

µ
P
ear2+µB

where B = eaRmax(1− e−b). Hence,

∫ ∞

0

er2e−
µ
P
er2e−

µ
P
e−bear2dr2 ≤

eµB
∫ ∞

0

er2e−
µ
P
er2e−

µ
P
ear2dr2
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By applying this result to (6.11), we have

pπ ≥ e−µB (6.12)

We know also that

Q2 ≤ Q1
R̂π

1

R̂π
2

Since Rmin ≤ R̂π
i ≤ Rmax, i = 1, 2 we have,

Q2 ≤ Q1
Rmax

Rmin

By applying this result to (6.12), we have,

pπ ≥ exp

(
− µ

P

[
1− e

−emax

(
1+Rmax

Rmin

)]
e

(Rmax)2

Rmin

)
∀t.

Hence, ε = exp

(
− µ

P

[
1− e

−emax

(
1+Rmax

Rmin

)]
e

(Rmax)2

Rmin

)
. Policy π can achieve ε fraction of

rate region of Max-Weight algorithm with full CSI.

Remark: Note that ε increases, (which in turn increases achievable rate region

according to Theorem 6.1), as the maximum estimation error emax decreases. Since

the prediction is based on past channel observations, the quality of prediction not only

depends on the method used in prediction but also the set of channel observations,

i.e., S(t). Note that the joint policy π(η) takes into account only the queue sizes

with estimated transmission rates. Hence, it is possible that under policy π(η) some

channels may not be probed for a long time (i.e., the users with small queue sizes),

as a result, the prediction accuracy on those channels will be poor especially with

fast fading. To prevent this problem, a scheduling policy must efficiently balance the

“exploitation-exploration tradeoff”, i.e., acquiring channel states of users with high

expected weights to achieve higher throughput (exploitation) vs. learning channel states

of users which have not been probed for a long time (exploration). Therefore, the
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problem here is not just tracking the channels accurately (see [87]) but also optimizing

channel probing process. The framework in this work is related to active learning

schemes in the literature [99], where the decision maker is allowed to choose the data

from which it learns, and the optimization of the observation of the process is coupled

with learning.

6.4 Gaussian Process Regression for Channel Prob-

ing and Scheduling

6.4.1 Problem Formulation

Note that channel prediction is inherently error-prone. The degree of uncertainty in the

estimate of the current channel state depends on the previous channel observations, and

the dynamics of the channel. In this context, we define information of an unexplored

channel as the uncertainty in the channel state given its past observations. Obtain-

ing this information accurately is important since making any scheduling and probing

decision in a principled manner on a given time slot necessitates first measuring this

information. For instance, if the channels are probed uniformly randomly at each time

slot each remaining unexplored channel provides equivalent amount of information.

However, not all channels vary in the same fashion, and depending on the prediction

method used and previous information collected different unexplored channels provide

different amount of information. Thanks to Shannon’s entropy formulation [5], uncer-

tainty in channel states can be exactly quantified. Let I
π(η)
n (t) denote the information

of channel state of user n under policy π(η) at the beginning of time slot t given past

observations of the channel. For instance, the information obtained by probing a chan-

nel whose state was observed recently and many times before is less than the channel

which has not been probed for a long time, since the uncertainty in the state of the

latter is higher.

Hence, we have two closely related objectives: (1) To make a scheduling decision

that stabilizes a network with the largest possible achievable region; (2) To probe a set
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of users that minimizes the channel prediction error.

• objective 1: max
∑N

n=1Qn(t)R̂
π(η)
n (t)

• objective 2: max
∑N

n=1 I
π(η)
n (t)

We seek a joint feasible policy π(η), which determines a subset of users probed by

considering both objectives, and schedules a user out of this subset according to Max-

Weight algorithm. The most common approach to find the solution of multi-objective

optimization problems is the weighted sum method [100]. The problem is stated as

follows:

max
π(η)∈F

N∑
n=1

α1Qn(t)R̂
π(η)
n (t) + α2I

π(η)
n (t), (6.13)

where α1 and α2 are the weights assigned to each objective according to their relative

importance. Note that the first term in the summation refers to the first objective

that aims to schedule the user with maximum weighted throughput for the stability

of the network. The second term in (6.13) refers to the second objective that aims

to probe those users with maximum information to decrease the uncertainty about the

channels. We also note that the scheduling and probing decision depends not only on the

queue sizes and the estimated channel rates as in the original Max-Weight algorithm,

but also on the uncertainty in each channel state given its past observations. The

problem (6.13) also exhibits the well-known “Exploration vs. Exploitation” trade-off

by exploiting the users with high weighted rate and exploring the current state of the

channels with outdated CSI. In the following sections, we deal with a modified version

of this problem, where we divide the objective function in (6.13) by α1, and define a

single weight ξ = α2

α1
. Note that when ξ is tuned to higher (lower) values, we track the

channels more (less) closely.

The problem given in (6.13) involves estimating Rn(t) by employing a particular

estimator η. This is known as the regression problem in machine learning which is also

a supervised learning method since the observed data constitutes at the same time the
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learning data set. There is a plethora of work for carrying out regression analysis. In

this work, we employ Gaussian Process Regression (GPR) to predict channel states.

Before explaining how a channel state is predicted with GPR in detail, we first give the

main reasons behind our choice.

Although prediction of fading channels is a well studied topic [87], the implemen-

tation of these prediction methods is difficult. This is mainly because linear regression,

or autoregressive techniques used by these prediction methods involves parameters that

should be chosen judiciously based on the channel statistics in order for these methods

to perform well. GPR does not have such an issue, and past analysis showed that it

performs very well in comparison to other techniques [101]. In addition to its good per-

formance, GPR has the advantage that it is - its mathematical background left aside

- easy to handle. Also, unlike conventional statistical methods, GPR is a model-based

machine learning approach which adapts Bayesian model on channel process and learns

while obtaining an on-line experience. Such methods are known as active learning in

the literature [99].

In contrast to other regression models, GPR also provides a simple way to measure

the expected uncertainty in the prediction for any given set of CSI observations, which

is particularly important for our joint probing and scheduling policy. The prediction

methods for fading channels mentioned in [87] can only predict the future channel state

without giving any information on the expected uncertainty in the prediction.

Finally, GPR gives decisions based only on the most recent channel observations.

This is especially important for non-stationary channels, since past channel observations

may become outdated. In the following, we use the terms ĉn(t), R̂n(t) and In(t) to

denote that these values are obtained by employing GPR.

6.4.2 Prediction of Channel States with GPR

Let Dn(t) = (cn, τ n) denote the set of observations for channel n at the beginning of

time slot t, where cn = {c1n, c2n, . . . , cwn} denotes the set of the latest w CSI values taken

at times, τ n = {τ 1n, τ 2n, . . . , τwn }, and τ in < t, for all τ in ∈ τ n, i ∈ {1, 2, . . . , w}. We use

GPR to predict the value of CSI, i.e., ĉn(t) at the beginning of time slot t, given Dn(t).
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Let p(cn(t)|t,Dn(t)) be a posterior distribution of channel n. Note that the foun-

dation of the approach adopted GPR is Bayesian inference, where the main idea is

to choose an a priori model and update it with actual experimental data observed.

According to GPR, a posterior distribution is Gaussian with mean ĉn(t) and variance

vn(t). Specifically, Gaussian process is specified by the kernel function, kn(τ
i
n, τ

j
n), that

describes the correlation of channel n between two of its measurements taken at times

τ in and τ jn. It is possible to choose any positive definite kernel function. However, the

most widely used is the squared exponential, i.e., Gaussian, kernel:

kn(τ
i
n, τ

j
n) = exp

[
−1

2
(τ in − τ jn)

2

]
. (6.14)

Given Dn(t), ĉn(t) and variance vn(t) are determined as follows:

ĉn(t) = kT
n (t)K

−1
n cn, (6.15)

vn(t) = kn(t, t)− kT
n (t)K

−1
n kn(t), (6.16)

where Kn is a w×w matrix composed of elements kn(τ
i
n, τ

j
n) for 1 ≤ i, j ≤ w and kn(t)

is a vector with elements kn(τ
i
n, t) for ∀τ in ∈ τ n. Hence, the network scheduler can easily

predict the CSI of users at time t by using (6.15). Furthermore, the variance vn(t) is

used to measure the level of uncertainty in the predictions, i.e., In(t) as discussed next.

6.4.3 Quantifying Information in GPR

The mean square error (MSE) has been a popular criterion in training of adaptive

systems [102]. MSE is based on second order statistics, i.e., it is able to extract in-

formation successfully for linear systems whose statistics can be defined by their mean

and variance. For nonlinear systems, entropy is the ideal measure for uncertainty and

it extends MSE.

Recall that Shannon’s entropy of a random variable A is defined as H(A) =
∑

s ps logs(
1
ps
), where p(.) is the probability distribution function of A [5]. In our con-

text, the current realization of CSI, i.e., cn(t), is a random variable. Accordingly, let
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H0
n(cn(t)|t,Dn(t)) andH1

n(cn(t)|t,Dn(t)) denote the entropy of the random variable cn(t)

before and after time slot t, respectively when Dn(t) is given. If channel n is probed at

time t, thenH1
n(cn(t)|t,Dn(t)) will be zero since the channel state is known exactly. Oth-

erwise, the uncertainty increases, i.e., H1
n(cn(t)|t,Dn(t)) > H0

n(cn(t)|t,Dn(t)). Hence,

the information acquired by probing channel of user n is the reduction in its uncertainty,

which is simply the difference between its entropies before and after the probing:

In(t) = H0
n(cn(t)|t,Dn(t))−H1

n(cn(t)|t,Dn(t)).

The following Proposition is similar to the one given in [85], and establishes that infor-

mation obtained by probing a channel is equal to the variance of the estimate of the

state of that channel.

Lemma 6.2. Given Dn(t), ∀n = 1, . . . , N , finding the channel that has the highest

information at time slot t is equal to finding the channel which has the highest variance

at that time slot, i.e.,

i∗ = argmax
1≤n≤N

In(t) = argmax
1≤n≤N

vn(t). (6.17)

Proof. Since H1
n(cn(t)|t,Dn(t)) = 0 after probing, In(t) is simply

In(t) = H0
n(cn(t)|t,Dn(t)). (6.18)

Note that according to GPR a posterior distribution of state of channel given Dn is

p(cn(t)|t,Dn) ∼ N (ĉn(t); vn(t)). (6.19)

Then, the entropy of this Gaussian distribution is given by,

H0
n(cn(t)|t,Dn) =

1

2
log(2πevn(t)). (6.20)

Hence, i∗ = argmax1≤n≤N In(t) = argmaxn∈N vn(t).
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6.4.4 Joint Scheduling and Probing Algorithm

Algorithm 2: MOSF Algorithm

(1) probing decision:

• Step 1: Sort

Wn , Qn(t)R̂n(t) + ξIn(t),

in a descending order. Tie is broken randomly.

• Step 2: Construct S(t) by selecting the first L users in this order.

(2) scheduling decision:
The base station acquires CSI of each user in S(t) and user n∗ ∈ S(t) is
scheduled to transmit,

n∗ = argmax
n∈S(t)

Qn(t)Rn(t). (6.21)

i.e., Jn∗(t) = 1, and updates queue lengths according to (6.2).

In this section, we give our Multi-Objective Scheduling and Feedback (MOSF)

algorithm. MOSF takes into account both the estimated transmission rates of users

and the information acquired from each user.

Lemma 6.3. Given L, ξ, Q(t), R̂n(t) and In(t) determined according to GPR for each

user at time slot t, MOSF algorithm solves (6.13).

Proof. Note that the solution of problem (6.13) requires Qn(t), R̂n(t) and In(t), which

are available at the beginning of every time slot at the BS. Let U be the subset that

contains arbitrary L users, i.e., U ∈ G, where G is the union of all possible subsets. The

solution of (6.13) is found by determining the optimal probing set which is the solution

of the following optimization problem;

max
U∈G

max
n∈U

Qn(t)Rn(t)

Since MOSF algorithm acquires CSI from the top L users with the maximum Wn(t),
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then S(t) is given by,

S(t) = max
U∈OL

max
n∈U

Qn(t)Rn(t)

Hence, MOSF solves (6.13).

Next, we analyze the performance of MOSF algorithm by comparing it with Max-

Weight algorithm. Let n∗ be the user scheduled by Max-Weight algorithm with com-

plete CSI at time t. Under the worst case scenario, i.e., L = 1, MOSF algorithm

schedules user n∗ if the maximum prediction error is below a certain threshold as given

by the following Lemma. Note that when L > 1 the quality of the prediction improves.

Lemma 6.4. For L = 1, MOSF algorithm schedules user n∗ at time t, if the maximum

prediction error emax satisfies the following inequality for all n 6= n∗,

emax ≤
Qn∗(t)Rn∗(t)−Qn(t)Rn(t) + ξ(In∗(t)− In(t))

Qn∗(t) +Qn(t)
, (6.22)

Proof. Since n∗ is the scheduled user with Max-Weight algorithm with full CSI, the

following inequality is true,

Qn∗(t)Rn∗(t) ≥ Qn(t)Rn(t) ∀n 6= n∗

When MOSF algorithm decides to schedule user n∗ then the following inequality must

be satisfied,

Qn∗(t)R̂n∗(t) + ξIn∗(t) ≥ Qn(t)R̂n(t) + ξIn(t), ∀n 6= n∗

We consider the worst case scenario in which en(t) = emax, for all n and GPR underes-
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timates for channel n∗ whereas it overestimates for all other channels, i.e.,

R̂n∗(t) = Rn∗(t)− emax

R̂n(t) = Rn(t) + emax, ∀n 6= n∗

Hence, the following inequality must be true so that MOSF algorithm schedules user

n∗ in the worst case,

Qn∗(t)(Rn∗(t)− emax)+ξIn∗(t) ≥
Qn(t)(Rn(t) + emax) + ξIn(t),∀n 6= n∗

Thus, emax should satisfy the following condition,

emax ≤
Qn∗(t)Rn∗(t)−Qn(t)Rn(t) + ξ(In∗(t)− In(t))

Qn∗(t) +Qn(t)
(6.23)

Remark: Lemma 6.4 gives the sufficient condition for the same user to be sched-

uled by MOSF and Max-Weight algorithms. Note that this condition always holds

when In∗(t) ≥ In(t) for all n 6= n∗, and ξ → ∞ since in this case the user which has the

maximum weight and the maximum information is scheduled. On the other hand, the

condition does not hold if there is at least one user such that In∗(t) ≤ In(t) and as ξ

increases. This is because, as ξ increases MOSF algorithm emphasizes the information

rather than the weighted rate.

Note that as long as MOSF schedules the user with the actual maximum weight

correctly at each slot (i.e., the condition in (6.22) is satisfied), then the rate region

achieved by MOSF approaches that of the maximum achievable rate region, Λh. The

achievable rate region of MOSF can be obtained based on Theorem 6.1, and Lemma

6.4. Let pmin be the probability that (6.22) holds for all t. Then, we have the following

theorem.
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Theorem 6.3. Given queue sizes at each time slot, MOSF algorithm can achieve a

fraction ε of the rate region, Λh, where ε = pmin.

Proof. Let Jm
n (t) represent the scheduling decision with MOSF algorithm. Jm

n (t) = 1

if user n is scheduled with MOSF. Otherwise, Jm
n (t) = 0. Let the condition in Lemma

6.4 hold with probability ρm(Q(t)) at time slot t. We consider the following function:

gm(Q(t)) = E

[∑
n

Qn(t)Rn(t)Jm
n (t)|Q(t)

]

Using arguments similar to those in Theorem 6.1, we have

gm(Q(t))

gf (Q(t))
≥ ρm(Q(t))

If ρm(Q(t)) ≥ pmin for all t, then MOSF can achieve a fraction ε = pmin of rate region

Λh.

Note that the exact value of pmin depends on the channel characteristics, and can

be calculated sin a similar fashion as we did in Lemma 6.1. As the number of probed

users increases, i.e., as L increases, the prediction error decreases. This is due to the fact

that channels are more frequently probed, which in turn helps track the channel states

more closely. On the other hand, since the channel states are tracked more closely, the

uncertainty in the states of the channels decrease. As a result, the information acquired

from an unexplored channel decreases as well, i.e., In(t) decreases.

6.5 Numerical Analysis

In our simulations, we model a single cell CDMA downlink transmission utilizing high

data rate (HDR) [4]. The base station serves 16 users and keeps a separate queue for

each user. Time is slotted with length Ts = 1.67 ms as defined in HDR specifications.

Packets arrive at each slot according to Bernoulli distribution: The size of a packet is

128 bytes which corresponds to the size of an HDR packet. The wireless channel is
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Figure 6.1: A typical Rayleigh fading channel.

modeled as correlated Rayleigh fading channel according to Jakes’s model [103]. The

bandwidth of the system is BW = 1.25 MHz and transmission power of the base station

is P = 10 dB. The transmission rate of the user channel is taken as the maximum value

given in (1). The channel sampling rate is 600 Hz (i.e., the sampling time T is 1.67

ms.), which also matches the Data Rate Request Channel (DRC) update rate used in

HDR. Doppler frequency of each channel is randomly chosen in the range fd = [5, 20]

Hz. We divide the users into two groups with eight users in each. The users in the

first group experience slow fading, i.e., fd/fs ≤ 0.02, and the users in the second group

experience fast fading, i.e., fd/fs ≥ 0.02, where fs = 600Hz is the sampling rate of

the channel. We compare MOSF algorithm with the algorithm, named LAR in [87]

that estimates future values of the fading coefficient of a time-correlated channel by

employing the well-known autoregressive (AR) model. According to AR model, the

current CSI of a user can be predicted when p previous CSIs of that user are given,
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Figure 6.2: Average total queue backlogs and absolute channel estimation error.

where p is the order of AR model. After predicting the current channel states of all

users, LAR algorithm probes L users with the highest estimated weighted rates and

schedules the user with the maximum weight in the set of probed users at every slot.

Recall that MOSF algorithm employs GPR for channel state prediction based on w

most recent observations. We empirically observe that the minimum prediction error is

achieved when p = 2 with AR and w = 3 with GPR, and thus, these values are taken

throughout all experiments. The performance of the algorithms are measured in terms

of the average queue sizes and average estimation error. Note that the average queue

size is an indicator to the average delay experienced by the users. Also note that by

inspecting the average rate of change of queue sizes, we can approximately determine

the maximum arrival rates that can be supported by different algorithms. The lower

bound for average queue sizes is given by Max-Weight algorithm which has full CSI

at every time slot. The estimation error in LAR and MOSF is measured as average
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Figure 6.3: Average Total Queue Backlogs with MOSF and LAR.

absolute error (AAE):

AAE = lim
t→∞

1

T

T∑
t=0

N∑
n=1

|cn(t)− ĉπn(t)| .

We first conduct an experiment to show the effect of taking into account the uncertainty

in channel states while making probing decisions. Hence, we compare MOSF algorithm

for varying values of ξ. In order to keep the plots simple we only depict results for L = 4.

Figure 6.2a shows the average total queue sizes with respect to arrival rates. When the

information is not taken into account, i.e., when ξ = 0, the network can be stabilized for

small arrival rates. For instance, for ξ = 0 the stabilizable arrival rate is approximately

5 packets/slot, whereas for ξ = 103, the network can be stabilized for arrival rates up to

7.5 packets/slot. Figure 6.2b depicts the average error in channel estimation. Clearly, as

ξ increases, the estimation error decreases since the channels are tracked more accurately
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Figure 6.4: Average absolute channel estimation error with respect to arrival rates

for higher values of ξ. This experiment indicates that the information acquired from

the channels must be taken into account for scheduling and probing decision to achieve

larger rate region and smaller channel estimation error. Figure 6.3 depicts the average

total queue sizes in terms of packets with respect to arrival rates for MOSF and LAR.

The exploitation factor is set to be ξ = 105. As shown in Figure 6.3, for L = 1 MOSF

algorithm is not throughput-optimal since it cannot to stabilize the network for all

arrival rates. For instance, when the arrival rate is around 3 packets/slot, the average

total queue size suddenly increases, which shows the instability of the network. This

is because the learning algorithm does not have sufficiently frequent observations to

accurately predict the channel state. However, as L is increased to L = 3 the network

is stabilized for higher arrival rates (i.e., it stabilizes the network for 6.5 packets/slot),

but MOSF still does not stabilize the network for all arrival rates. When we further

increase the feedback to L = 5, then MOSF algorithm has a comparable performance
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Figure 6.5: The required size of the feedback channel for MOSF to achieve Λh.

as that of Max-Weight algorithm with full CSI. On the other hand, LAR algorithm

also achieves its best performance when L = 5, however, even in that case it cannot

stabilize the network for all arrival rates. Hence, we conjecture that LAR achieves

approximately smaller rate region as compared to MOSF algorithm.

Next, we investigate the performance of MOSF and LAR algorithms in terms of

average absolute error in channel estimation (AAE). As depicted in Figure 6.4, as the

queue sizes increase, the estimation error increases with LAR. The increase in the error

with MOSF algorithm is small and it is more robust to queue sizes than LAR. Moreover,

the best error performance for both prediction algorithms is achieved with L = 5 and

when the arrival rate is at its lowest value. In that case, the average absolute error with

MOSF is 0.03 whereas it is equal to 0.23 with LAR.

Finally, we determine the minimum number of channels, Lmin, required to stabilize

the network for a given arrival rate and to achieve the similar delay performance as with
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Figure 6.6: Performances of MOSF and LAR over non-stationary channels.

Max-Weight algorithm with full CSI. We set the average total arrival to the network

5 packets/slot. As depicted in Figure 6.5, when fd = 10 Hz for all channels, the base

station has to probe at least Lmin = 5 channels to achieve the same rate region and

the average delay performance. As fd increases Lmin increases as well. This is due to

the fact that at a higher Doppler frequency the channel states vary faster, which in

turn necessitates more observations for the learning algorithm to accurately predict the

current channel state. Hence, the base station should collect CSI more frequently as fd

increases.

Performance over Non-stationary channels: In non-stationary environments,

we assume that velocity of users (i.e., doppler frequencies) change after certain time

slots and users do not have any knowledge about these changes. To simulate a non-

stationary environment, up to t = 5×104 we increase the normalized Doppler frequency

fd/fs at a constant rate from 0.003 to 0.03. After time 5 × 104, we decrease fd/fs at
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a constant rate. This model approximately represents the movement of a mobile user

such that the user velocity is increasing from t = 0 to t = 5× 104 and it is slowing from

t = 5 × 104 to t = 105. Figure 6.6 depicts that MOSF algorithm outperforms LAR in

terms of rate region even in the dynamically changing channels. This is due to the fact

that the quality of prediction of GPR depends on the most recent channel observations

and how fast channels change rather than the distribution of channels. Thus, as long

as channels are tracked closely, predicting future CSI will be more accurate.

6.6 Chapter Summary

We have developed a joint scheduling channel probing algorithm for general wireless

channel models. In our model, the base station can only probe limited number of

channels due to the bandwidth constraint on the feedback channel. The proposed

algorithms first decide the set of channels that must be probed at the beginning of

each time slot. The set of channels is determined by considering not only the queue

sizes and estimated transmission rates but also by the information obtained by probing

a channel. We apply Gaussian Process Regression technique to predict CSI at each

time slot based on the previous actual CSI observed. In numerical results, we show

that the base station using MOSF can stabilize the network and achieve a similar delay

performance as compared to full CSI Max-Weight algorithm by probing less than half

of the users at every slot.

Our work deviates from the current line of literature using machine learning for

solving networking problems in the way that it addresses learning in a more general

network setting. For this purpose, we develop an active learning framework that quan-

tifies the reward of learning the current state of the system using the entropy measure.

Based on this measure, we were able to make an intelligent trade off between having a

more up-to-date picture of the system and maximizing the overall system throughput.

Review of Gaussian Process Regression

We provide here a brief introduction to Gaussian Process Regression for the sake

of completeness. We refer the interested readers to [86] for further details. In GPR,
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the aim is to infer or learn f(x) using the set of previously observed data points. Given

a set of data D = {(x1, y1), (x2, y2), · · · , (xw, yw) which is also called training data or

set, GPR attempts to find a function f̂(x) that provides a good approximation to

f(x). GPR approaches this problem by defining a probability distribution over a set

of admissible functions and performing Bayesian inference over this set. A GPR is

formally defined as a collection of random variables, any finite number of which have a

joint Gaussian distribution. It is completely specified by its mean function m(x) and

covariance function C(x, x̄), where,

m(x) = E[f̂(x)]

C(x, x̄) =E[f̂(x)−m(x)(f̂(x̄)−m(x̄))],∀x, x̄ ∈ D

Let us choose m(x) = 0 as a simplifying assumption. Then, GPR can be defined solely

by its covariance function C(x, x̄). This covariance matrix is also know as the kernel.

Hence, The Gaussian process is denoted by,

f̂(x) ∼ GP(m(x), C(x, x̄)).

The covariance function can be also defined as sum of kernel function and the diagonal

noise variance such that,

C(x, x̄) = K(x, x̄) + σI, ∀x, x̄ ∈ D, (6.24)

where I is the identity matrix. It is possible to choose any positive definite kernel

function. In this work, we choose the following function:

K(x, x̄) = exp

[
−1

2
(x− x̄)2

]
. (6.25)

Let x∗ be the new test point outside the training set and f(x∗) = y∗. The conditional

Gaussian distribution of y∗ given the previous data set D can be computed as follows:
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First, define the vector

k(x∗) = [K(x1, x
∗), K(x2, x

∗), ..., K(xM , x∗)]. (6.26)

and the scalar

κ(x∗) = K(x∗, x∗) + σ. (6.27)

Then, p(y∗|D) that characterizes the GP(0, C) is a Gaussian N (f̂ , v) with mean f̂ and

variance v,

f̂(x∗) = kT (x∗)C−1(x∗)y, (6.28)

v(x∗) = κ(x∗)− kT (x∗)C−1(x∗)k(x∗). (6.29)

This is a key result that defines GPR as the mean function f̂(x) of the Gaussian

distribution provides a prediction of the objective function f(x). Furthermore, the

variance function v(x) can be used to measure the uncertainty level of the predictions

provided by f̂ .
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Chapter 7

Throughput-Optimal Distributed

Algorithm

In Chapter 5 and Chapter 6, we have considered downlink communication where users

receive data from the base station. In this Chapter, we consider uplink communication

where users are willing to transmit to the base station. For uplink communication

the scheduler has to know not only CSI of users but also queue length information to

make the best decision, which brings much more cost than that of downlink system.

Hence, recently, research comminty have focused on CSMA-type random access proto-

cols for uplink communication, and it has been shown that CSMA-type random access

algorithms are throughput optimal since they achieve the maximum throughput while

maintaining the network stability. However, the optimality is established with the fol-

lowing unrealistic assumptions; i) the underlaying Markov chain reaches a stationary

distribution immediately, which causes large delay in practice; ii) the channel is static

and does not change over time. In this Chapter, we design fully distributed scheduling

algorithms which are provably throughput optimal for general fading channels. When

arbitrary backoff time is allowed, the proposed distributed algorithm achieves the same

performance in terms of rate region and delay as that of a centralized system with-

out requiring any message passing. For the case where backoff time is discrete, we

show that our algorithm still maintains throughput-optimality and achieves good delay

performance at the expense of low overhead for collision resolution.
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7.1 Overview

Recall that the optimality of Max-Weight algorithm requires full global knowledge of

network states (i.e., complete channel states and queue sizes information from all users)

at every time slot. The availability of complete network information depends on the

type of communication. Septically, for downlink network the base station is already

aware of queue size information of users, and the main difficulty in implementing Max-

Weight type scheduling policies is having access to channel condition of users. On the

other hand, for uplink communication the base station must acquire not only complete

CSI but also queue length information to employ Max-Weight scheduling ,which brings

much more overhead than that of a downlink system. Hence, the overhead of Max-

Weight policy has motivated many researchers to develop distributed algorithms for

the practical implementation of Max-Weight policy.

One of most popular random access protocols in practice is Carrier Sense Multiple

Access (CSMA) in which each user senses the medium and transmits a packet only if

the medium is sensed idle. Hence, this simple nature makes it suitable for distributed

implementations, and as a result it has been regarded as one of the most attractive MAC

protocols in practical wireless systems such as for IEEE 802.11 wireless networks. Thus,

a large body of work in the literature has been devoted to the development of CSMA

based distributed algorithms under different performance criteria and constraints.

In this work we study distributed scheduling algorithms based on CSMA with the

aim of achieving the largest set of arrival rates under which the algorithms can keep the

queues in the network stable. Since many wireless network applications have stringent

delay requirements, designing distributed scheduling algorithms is important not only

to achieve the maximum throughout but also to provide low delay, which is the another

objective of this work. Also, designing distributed algorithms with low overhead is

crucial since many wireless systems have limited resources.

Our contributions are summarized as follows:

• When continuous time backoff is allowed, we propose a distributed algorithm

which is provably throughput-optimal. For this distributed algorithm:
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– Each user only uses its local information (e.g., its queue backlog and channel

condition). No explicit control messages are required among the users.

– It is based on CSMA random access which similar to IEEE 802.11 and easy

to implement.

– We show that the proposed distributed algorithm can achieve the same per-

formance as the centralized Max-Weight in terms of both throughput and

delay.

• Then, we develop distributed algorithm for practical system where collision is

possible. We show that the practical algorithm maintains throughput-optimality.

– We analytically determine the overhead incurred under the practical algo-

rithm by using the underlying Markov chain property.

7.2 Related Works

There has been a lot of interests in developing distributed scheduling algorithms. How-

ever, many aforementioned algorithms still require heavy message passing or computa-

tions. Therefore, it has been a research challenge to find simple random access achieving

full optimality without any message passing. Besides the optimality, other important

research challenges can be summarized as follows:

1. implementable, low-complex and requires only local information (no message pass-

ing).

2. good delay performance.

3. perform well over general channel conditions.

In the following, we classify the works along this direction. In [58], it was first shown

that CSMA-based distributed algorithm which uses only local information, i.e., no

message passing is provably optimal in terms of throughput and utility. However, the

results in [58] assumed that the convergence time of the underlying Markov Chain to its
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steady-state is done at every time slot, which is called time-scale separation assumption.

In practice, this is not a realistic assumption since the convergence of Markov chain

requires some time depending on the network topology. In fact, CSMA algorithms

with time scale separation assumption have been observed to have large delay that may

grow with the network size, which cheapens the throughput-optimality because most

applications in practice require some level of low delay. An idea to mitigate the effect

of time-scale assumption was presented in [104] where the link weights are chosen to

be a specific function of the queue lengths. However, the result in [104] requires the

maximum queue length to be known by each user in the network, which is estimated

via a distributed message-passing procedure. In [57] a queue length based distributed

algorithm which can perform without message passing was proposed by assuming time

scale separation.

The queue-based approaches without time-scale separation were presented in [105],

[106], where the main idea is to choose specific functions which are slowly increasing

function of queue lengths. However, the algorithm in [105] requires a slight message

passing to broadcast the maximum queue-size over the network. In [106] using a cer-

tain distributed algorithm in which users estimate the maximum queue-size information

without explicit message passing. The authors in [107] an algorithm without time scale

separation assumption. This work updates CSMA parameters by dividing the time axis

into frames. However, delay performance under the above throughput-optimal scheme

can be very poor.

Regarding channel models, all aforementioned works assume that channel capac-

ity is fixed. Wireless channels, however, are time-varying in practice, where the results

on optimal CSMA may significantly change, since the time-varying fading creates sig-

nificant variations on the CSMA parameters. In other words, these algorithms may

not converge over fading channels. The first attempt to this problems was proposed

in [108] where the authors proposed a distributed algorithm for fading channel. It was

assumed that there are flows with short-term deadline constraints and long-term drop

rate requirements. The authors did not investigate the network stability problem and

throughput-optimal algorithm was not proposed. Further, the work in [108] assumes
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continuous backoff time which is not practical. In practice, the systems are actually

discrete, where the systems evolve over discretized time slots (e.g., 20 µ sec in IEEE

802.11b) and collisions will inevitably occur, when two users contend at a same time

slot. In [109] the authors consider a specific channel model where the channel capacity

randomly varies between 0 and 1.

Unlike these works, we develop a provably throughput-optimal distributed al-

gorithm which requires only local information (no message passing) and can perform

over general fading channels for complete interference graphs where each link interferes

with every other link. Remarkably, the performance of our algorithm in terms of both

throughput and delay is the same as that of a centralized system when the arbitrary

backoff time is allowed. Our algorithm is also optimal with discrete back time at the

expense of low number of mini-slots for collision resolution.

7.3 System Model

We consider a typical IEEE 802.11x network where N users are transmitting to a

single access point (AP) (or base station) over a single channel. Time is slotted, t ∈
{0, 1, 2, . . .}, and wireless channel between the AP and each user is assumed to be

independent across users and slots. The gain of the channel is constant over the duration

of a time slot but varies between slots. We assume that if two or more users transmit

at the same time, there will be a collision. A schedule is represented by a vector x in

which the ith element of x denoted by xi is equal to 1 (i.e., xi = 1) if user i is scheduled,

otherwise xi = 0. Let S be the set of all feasible schedules of the network.

Let An(t) be the amount of data arriving into the queue of user n at time slot t.

Let Qn(t) and Rn(t) denote the queue length and transmission rate of user n at time

t, respectively, and Q(t) = (Q1(t), Q2(t), . . . , QN(t)) be the queue length vector. The

dynamics of queue length for node n is given as

Qn(t+ 1) = [Qn(t) + An(t)−Rn(t)xn(t)]
+, (7.1)
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where [y]+ = max(y, 0). We say that the system is stable if the mean queue length for

all transmitting users is finite.

A scheduling algorithm is a procedure to decide which schedule to be used in

every time slot for data transmission. In this work we focus on the MAC layer, and

thus we only consider single-hop traffic. The rate region of the network is the set of

all arrival rates λ for which there exists a scheduling algorithm that can stabilize the

queues. Let Λ be the rate region of the network. We say that a scheduling algorithm is

throughput-optimal or achieves the maximum throughput, if it can keep the network

stable for all arrival rates in Λ.

We define weighted-throughput (or shortly weight) of each user as wn(t) = Qn(t)Rn(t),

and let wmax(t) denote the maximum weighted-throughput at time slot t i.e., wmax(t) =

maxn{wn(t)}. It is well know that the centralized Max-Weight (C-MW) algorithm is

throughput-optimal and achieves largest rate region by always scheduling the user with

maximum weighted-throughput at every time slot. However, C-MW requires queue

size and channel state information from all users at every scheduling time. Our aim is

to design a fully distributed algorithm whose performance in terms of rate region and

delay is close to that of C-MW.

7.4 Idealized Distributed Algorithm, I-DALG

Here, we present our CSMA based randomized algorithm in which transmission proba-

bilities of users are determined both considering their queue sizes and channel conditions

at each time slot. The key idea is as follows: each user determines a randomized backoff

time based on their weighted-throughput. Then, the user whose backoff time expires

first is allowed to access to the channel. First, we consider an idealized CSMA algo-

rithm (I-DALG) where the backoff time of users is continuous. Under I-DALG , at

the beginning of each time slot, each user generates an exponentially distributed ran-

dom variable denoted by Xn, which represents the randomized backoff time of user n,

with rate rn(t) = f(wn(t)), where f(v) is an increasing function of v. A user starts

transmitting after this random duration unless it senses another transmission before.
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Algorithm 3: Idealized CSMA based Distributed Algorithm, I-DALG

1: User n generates exponentially distributed random variable Xn(t) with rate
f(wn(t)) and waits for Xn(t) seconds.

2: If user n hears a INTENT message before its timer expires, sets xn(t) = 0.
Otherwise, xn(t) = 1.

3: If xn(t) = 1, user n transmits its data at time slot t.

Next, we prove that I-DALG is throughput-optimal under certain conditions.

Note that since Xn’s are exponential random variables, the following equation is true:

P (Xn(t) ≤ Xk(t)) =
f(wn(t))

f(wn(t)) + f(wk(t))

for all k 6= n. Then, the successful transmission of user n at time slot t denoted as πn(t)

can be given as follows:

πn(t) =
f(wn(t))∑N
i=1 f(wi(t))

The following theorem is useful to prove the throughput-optimality of I-DALG:

Theorem 7.1. [40] (Theorem 1 (see Proposition 1 and Claim 1.)) For a scheduling

algorithm, any given ε and δ satisfying 0 < ε, δ < 1, we can find a constant B(ε, δ) > 0

such that: at any time slot t, with probability greater than 1−δ, the scheduling algorithm

chooses a user n that satisfies

Pr [wn(t) ≥ (1− ε)wmax(t)] ≥ 1− δ, whenever ‖ Q(t) ‖> B

Then the scheduling algorithm is throughput-optimal.

The scheduler that obtains wmax(t) in each time slot t is usually centralized and

computation-prohibitive but can lead to optimal throughput/delay. Theorem 7.1 states

that the proposed scheduler can find a schedule using weight ε-close to wmax(t) with

high probability 1 − δ when weights wn(t) are large enough. Note that when ε and δ

tend to 0, then the scheduling algorithm achieves the maximum throughout i.e., it is

throughput-optimal.
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Theorem 7.2. I-DALG is throughput-optimal if f(x) = bx and Rn(t) > Rmin where

Rmin > 0 for all n, t and b > 1.

Proof. We prove Theorem 7.2 by using Theorem 7.1. Let wmax(t) = maxx∈S
∑

n∈x wn(t)

at time slot t. Given any 0 < ε, δ < 1, we define

χ = {x ∈ S :
∑

k∈x
wk(t) < (1− ε)wmax(t)}

The probability of event χ is given by,

π(χ) =
∑

k∈χ
πk(t)

Now, in order to show that π(χ′) ≥ 1 − δ which implies Theorem 1, we need to show

that π(χ) < δ. Hence,

π(χ) =
∑

k∈χ
πk(t) =

∑

k∈χ

bwk(t)

∑N
i=1 b

wi(t)

≤ Nb(1−ε)w∗(t)

∑N
i=1 b

wi(t)

Note that

N∑
i=1

bwi(t) ≥ bwmax(t)

Therefore, we have

π(χ) ≤ Nb(1−ε)wmax(t)

∑N
i=1 b

wi(t)

≤ Nb(1−ε)wmax(t)

bwmax(t)

Therefore if

wmax(t) >
logb(N) + logb(

1
δ
)

(ε)
(7.2)
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then π(χ) < δ. Since wmax(t) is a continuous nondecreasing function of Qn(t)’s and

Rn(t) is arbitrarily large, with limQ(t)→∞ wmax(t) = ∞, there exists B > 0 such that

wmax(t) > max
n

Qn(t)Rmin >
logb(N) + logb(

1
δ
)

(ε)
(7.3)

Hence, If queue sizes are large enough we can find a constant B.

max
n

Qn(t) >
logb(N) + logb(

1
δ
)

(Rmin)ε
, B (7.4)

Hence, Theorem 7.1 holds and π(χ) < δ. Thus, I-DALG is throughput-optimal.

Remark: Theorem 7.2 establishes the fact that I-DALG selects the user with

the weight-throughput close to maximum weighted-throughput with high probability

when the maximum weighted-throughput wmax(t) is large enough. In other words,

the weight of users should be sufficiently high (i.e., ε and δ are sufficiently small) to

achieve the throughput optimality. In fact, this requirement leads to large delays, and

it is expected that the delay performance of I-DALG is poor. This fact also can be

seen from the condition on wmax(t) in (7.4), where wmax(t) should be higher than a

constant B which can be very large since ε and δ are sufficiently small. Note that under

I-DALG B depends on the value of b which is the design parameter that enable us

to reduce the delay. Specifically, if we choose b large, then B becomes small due to

the term logb(.). Hence, the condition in (7.4) can be satisfied with small queue sizes

by I-DALG, which yields better delay performance. Moreover, we show next that by

increasing b the delay performance of I-DALG can be pushed to the delay performance

of C-MW. Before proving this result we explain it in an example: consider that there

are two users with weights w1(t) and w2(t) at time slot t. Without loss of generality,

assume that w1(t) > w2(t) (i.e., user 1 has the maximum weight at time slot t), and

user 1 must be scheduled according to C-MW. Let π1(t) and π2(t) be transmission

probabilities of user 1 and user 2, respectively. With I-DALG, these probabilities are
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given by as follows:

π1(t) =
bw1(t)

bw1(t) + bw2(t)
,

π2(t) =
bw2(t)

bw1(t) + bw2(t)

Note that when the centralized Max-Weight algorithm is employed π1(t) = 1 and

π2(t) = 0. Now, we allow that b becomes large, i.e., b → ∞. Then, one can show

that π1(t) → 1 and π2(t) → 0. Therefore, under I-DALG with large values of b, the

user with maximum weighted throughput is scheduled with probability one, and I-

DALG and C-MW becomes the same algorithm. Therefore, the delay performance of

the network approaches to that of C-MW and throughput-optimality is still maintained.

Lemma 7.1. As b → ∞, I-DALG schedules the user with the maximum weighted

throughout at every time slot with probability 1.

Proof. First, without loss of generality, let n∗ be the user which obtains wmax(t) at time

slot t. Then, user n∗ transmits with the following probability at time slot t;

πn∗(t) =
bwn∗ (t)

∑N
i=1 b

wi(t)

By diving both nominator and dominator by bwn∗ (t), we have,

πn∗(t) =
1

1 +
∑N

i=1 b
wi(t)−wn∗ (t)

,∀i 6= n∗

We know that wn∗(t) > wi(t) ∀i 6= n∗. Hence, taking b → ∞ yields that

lim
b→∞

πn∗ =
1

1 + 0
= 1

One can also show that the success probability of user k, where k 6= n∗ goes to zero as

b → ∞. Then, user k 6= n∗ for all k transmits with the following probability;

πk(t) =
bwk(t)

∑N
i=1 b

wi(t)
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By diving both nominator and dominator bwn∗ (t), we have,

πk =
bwk(t)−wn∗ (t)

1 +
∑N

i=1 b
wi(t)−wn∗ (t)

, k 6= n∗

Hence, taking b → ∞ yields that

lim
b→∞

πk =
0

1 + 0
= 0

Hence, I-DALG guarantees to schedule the user with maximum weighted throughput

at every time slot. This completes the proof.

Note that Lemma 7.1 states that I-DALG can achieve the performance of the

centralized Max-Weight algorithm in terms of both rate region and delay by scheduling

the user with the maximum weighted throughput at every time slot. In other words,

with large value of b, I-DALG and the centralized MW are the same algorithms. Note

that this is possible only when continuous backoff time is allowed. Specifically, I-DALG

assumes that the sensing time is negligible, then with the continuous distributions of

the backoff time, the probability for two conflicting users to start transmission at the

same time is zero. So, collisions are ignored. In practice, backoff time is discrete and

only takes a finite values. Hence, there is always a positive collision probability. Next,

we turn our attention to the design of practical distributed algorithm which can perform

well with discrete backoff time.

7.5 Practical and Throughput-Optimal Distributed

Algorithm, P-DALG

Here, our aim is to develop a throughput-optimal algorithm that can be easily imple-

mented in practical systems. In this regard, we divide each time slot into a control

slot and a data slot. The control slot consists of mini-slots that enable to generate a

collision-free data transmission as shown in Figure 7.1. Let M(t) be the number of

mini-slots used at time slot t. M(t) is a random variable depending on the weighted
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Figure 7.1: Mini-slots and data slot.

throughput of users and changes from time slot to time slot. We assume that all users

are synchronized and start a data slot at the same time. A user can contend during a

data slot if it has non-empty queue. If Qn(t) = 0, then user n remains idle, skipping to

the next slot. We define τ as the length of virtual time. Also, we define an(m, t) is the

attempt decision of user n at mini-slot m and time t. Then, P-DALG is implemented

as follow: at each mini-slot, user n, n ∈ {1, 2, · · · , N}, generates an exponential dis-

tributed random variable Xn(t), with rate rn(t) = bwn(t). If Xn(t) is less than τ , then

user n attempts to transmit at time slot t, i.e., an(m, t) = 1, otherwise that user re-

mains idle and waits for the next mini slot, i.e., an(m, t) = 0. If there are more than one

users attempting at mini slot m, i.e.,
∑N

n=1 an(m, t) > 1, then there will be a collision

at that mini slot and users content in the next mini-slot. Similarly, if there is no user

transmitting at a mini-slot, i.e.,
∑N

n=1 an(m, t) = 0, then there will be an idle slot and

users content in the next mini-slot. This process continuous until there is only one user

attempting to transmit at a mini slot, i.e.,
∑N

n=1 an(m, t) = 1.

Theorem 7.3. P-DALG is throughput-optimal.

Proof. Recall that I-DALG selects the user whose backoff time expires first. This is

basically the main reason behind the throughput optimality of I-DALG. P-DALG waits

until only a single user attempting to transmit. Hence, clearly, that user is the user

whose backoff time expires first. Thus, like I-DALG, P-DALG schedules the user whose

backoff time expires first and is throughput-optimal.
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Algorithm 4: Practical CSMA based Distributed Algorithm with fixed τ , P-DALG

• Step 1: At the beginning of each time slot, every user sets its virtual time to τ .

• Step 2: Then, each user generates exponential random variable Xn(t) with rate,
rn(t) = bwn(t), where b > 1.

• Step 3: If Xn(t) < τ , the attempt decision xn(t) = 1. Otherwise, xn(t) = 0.

– If there are more than one user attempting, i.e.,
∑N

n=1 an(m, t) > 1, then
there will be a collision at that mini slot. Then, go Step 2.

– If
∑N

n=1 an(m, t) = 0, then that slot is an idle slot. Go Step 2.

• Step 4: If there is only one user attempting i.e.,
∑N

n=1 an(m, t) = 1, then that
user transmits at the data slot. Let user k is only user attempting at a given
mini slot. Then, xk(t) = 1 and xn(t) = 0, for all n 6= k.

Note that unlike I-DALG, P-DALG requires some number of mini-slots for colli-

sion free transmission. Next, we determine the expected number of mini-slots required

under P-DALG.

7.5.1 Expected number of mini-slot under P-DALG

The successful transmission during any mini-slot is given by,

Psucc(t) =
N∑

n=1

(
1− e−τrn(t)

)∏

k 6=n

e−τrk(t)

Let Pcoll(t) and Pidle(t) be the collision and idle probabilities at time slot t, respectively.

Note that under P-DALG , Psucc(t), Pcoll(t) and Pidle(t) do not depend on m since τ

and b do not change over mini-slots.

Lemma 7.2. Under P-DALG, the expected number of mini slot, E[M(t)], is given by,

E[M(t)] =
1

Psucc(t)
.

Proof. Note that the probability that M(t) = 1 is equal to the probability of successful
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transmission at the first mini-slot,

Pr[M(t) = 1] = Psucc(t)

If M(t) = 2, collision free transmission occurs at the second mini slot. That means the

first mini slot is either a collision or idle slot. Thus,

Pr[M(t) = 2] = (Pcoll(t) + Pidle(t))Psucc(t)

By iterating, we have,

Pr[M(t) = m] = (Pcoll(t) + Pidle(t))
m−1Psucc(t)

and E[M(t)] is given as,

E[M(t)] =
∞∑

m=1

m(Pcoll(t) + Pidle(t))
m−1Psucc(t)

Clearly,M(t) has geometric distributed random variable with parameter Psucc(t). Hence,

E[M(t)] is given by,

E[M(t)] =
1

Psucc(t)
(7.5)

Next, we turn our attention to the practical solutions to reduce E[M(t)] as low as

possible. Note that when ~w(t) = (w1(t, w2(t), · · · , wN(t)) is given Psucc(t) is a function

of only b and τ . Hence, we consider the following optimization problem:

max
b,τ

N∑
n=1

(
1− e−τrn(t)

)∏

k 6=n

e−τrk(t)

The following Lemmas state that in order to maximize Psucc(t), b and τ must be opti-

mized.
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Lemma 7.3. For given τ , as Q(t) increases (or ~w(t) increases), the optimal value of

b maximizing Psucc(t) goes 1, i.e., b
∗ → 1.

Proof. One can show that Psucc(t) is a concave function of b by employing the second

derivative test. Then the optimal value of b denoted by b∗ can be determined by solving

the following equation;

(
N∑

n=1

eτrn(t)

)(
N∑

n=1

wn(t)rn(t)

)
−

N∑
n=1

eτrn(t)wn(t)rn(t)

= N

N∑
n=1

wn(t)rn(t)

Let us consider the worst case where wn(t) = wmax(t) for all n at time slot t, and

wmax(t) = maxn{wn(t)}. Then, b∗ can be given by,

b∗ =
[
1

τ
ln

(
N

N − 1

)]1/wmax(t)

Clearly, as wmax(t) → ∞ b∗ goes 1.

This result can be also observed intuitively as follows. As the queue sizes increase,

the backoff time of users decreases, and the number of users attempting in a mini slot

increases as well. As a result, collision probability increases. When τ is fixed and queue

sizes are large, to mitigate the effect of large queue sizes, b∗ must become small, i.e.,

b∗ → 1.

Lemma 7.4. For given b, as Q(t) increases the optimal value of τ maximizing Psucc(t)

goes 0, i.e., τ ∗ → 0.

Proof. One can show that Psucc(t) is a concave function of τ by employing the second

derivative test. Then, when wn(t) = wmax(t) for all n at time slot t the optimal value

of τ denoted by τ ∗ can be given by,

τ ∗ =
[

1

bwmax(t)
ln

(
N

N − 1

)]

Clearly, as wmax(t) → ∞ τ ∗ goes to zero, i.e., τ ∗ → 0.
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Lemma 7.3 points that when queue sizes are large b must be small to decrease

E[M(t)]. However, we know from Theorem 7.2 and Lemma 7.1 that as b increases the

delay performance of the system improves. Hence, one can conclude that there is trade-

off between E[M(t)] and the delay. On the other hand, Lemma 7.4 points that τ must

be adjusted properly to decrease E[M(t)]. However, in order to find the optimal τ ,

the global knowledge of the network is required, i.e., wn(t) for all n. Next, we propose

a modified version of P-DALG which determines τ dynamically by changing its value

according to collision or idle slot. To do that, unlike P-DALG we allow that the length

of virtual time can depend on m. Hence, we use the notation of τ(m) to denote the

length of virtual time at the beginning of mini-slot m. Specifically, at each mini-slot,

user sends a short message to announce its intention for data transmission. If an idle

slot occurs, users increase virtual time by a factor of g(α), where g(.) is a increasing

function of α and α > 1. If there is a collision (i.e., if there is another user transmitting

an INTENT message at the same mini-slot), then users decrease virtual time by a factor

of g(α). This process continues until only one user attempts.

7.5.2 Modified P-DALG, MP-DALG

Algorithm 5: Modified P-DALG, MP-DALG

• Step 1: At the beginning of each time slot t, every user sets it virtual time to τ ,
i.e, τ(1) = τ for all t.

• Step 2: Then, at each mini slot m, every user generates exponential random
variable Xn(t) with rate, rn(t) = bwn(t).

• Step 3: If Xn(t) < τ(m), an(m, t) = 1. Otherwise an(m, t) = 0.

– If
∑N

n=1 an(m, t) > 1, there will be a collision at that mini slot. Then,

update τ(m) → τ(m)
g(α)

where g(α) > 1. Go Step 2.

– If
∑N

n=1 an(m, t) = 0, update τ(m) → g(α)τ(m). Go Step 2.

• Step 4: If
∑N

n=1 an(m, t) = 1, then that user transmits at time slot t.

Next, we investigate the overhead introduced in terms of expected mini slot when
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Figure 7.2: Markov Process.

MP-DALG is applied. Recall that virtual time τ(m) is decreased when a collision

occurs at mini-slot m and is increased if no user transmits. Hence, this process can be

explicitly given as follow:

τ(m+ 1) =





τ(m)/g(α) ; if collision at τ(m)

τ(m)g(α) ; if idle at τ(m)
(7.6)

We will show that {τ(m)} ∈ R+ is a Markov chain.

Corollary 7.1. For every slot t, τ(m) ∈ R+ is a Markov process with a countably

infinite state space.

Proof. Let Ym be the random variable representing the length of virtual time at mini-

slot m. Then,

P (Ym+1 = y|Y1 = y1, Y2 = y2, · · · , Ym = ym)

= P (Ym+1 = y|Ym = ym) (7.7)

Hence, {Ym} is a Markov process.
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Figure 7.3: Markov Process for high loaded system.

We describe the Markov chain as follows. We have a set of states as follows,

S = {· · · , s−m, s−1, s−2, s0, s1, s2, · · · , sm, · · · }, (7.8)

in which each state represents the length of virtual time. Specifically, at state sm, the

length of virtual time is equal to τ(m) = τ
g(α)m

whereas at state s−m, it is equal to

τg(α)m. We assume that at the beginning of each time slot t, the chain starts with

s0 = τ(0) = τ for all t, and then moves from this state to other states, depending on

collision or idle event. When only a single user attempts, the process reaches an end

state which refers the absorption state denoted by A. This Markov Chain is shown in

Figure 7.2.

For high loaded system and sufficiently large value of τ , the idle probability at

the states (· · · , s−m, · · · , s0) can be ignored. Then, for this system, the Markov chain

is slightly changed as shown in Figure 7.3. Next, we determine the expected number

of mini-slots used under MP-DALG for high loaded system, and we only consider the

Markov chain in Figure 7.3. Let λm(t) be the transition probability, which also repre-

sents the collision probability at state m, from state sm to state sm+1. Let µm(t) be the

transition probability, which also refers the idle probability at state sm, from state sm
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to sm−1. Note that under this setup, the expected number of mini-slots is equal to the

expected number of steps to the absorbtion state A, starting from state s0. Let ψ(m)

be the expected number of steps from an arbitrary state m until absorbtion occurs.

Then, by using first-step analysis we have a set of equations:

ψ(0) = 1 + λ0ψ(1),

ψ(1) = 1 + λ1ψ(2) + µ1ψ(0),

...

ψ(m) = 1 + λmψ(m+ 1) + µmψ(m− 1)

...

We define T∞ as expected number of steps for absorbtion within this infinite model.

Let us consider a finite version of this Markov chain where the last state is denoted as

sm. Then, we have the following set of equations:

ψ(0) = 1 + λ0ψ(1),

ψ(1) = 1 + λ1ψ(2) + µ1ψ(0),

...

ψ(m) = 1 + λmψ(m) + µmψ(m− 1)

Let the solution of this finite system be Tm. By using monotone convergence theorem,

one can show that limm→∞ Tm = T∞. Hence, we next determine the expected number

of mini-slot for finite linear system.

Lemma 7.5. For high load and the number of user is large then E[M(t)] is upper

bounded as:

E[M(t)] ≤ 1

1− λ0(t)
(7.9)

Proof. Under high traffic load and the number of user is large, the idle probability can
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be ignored, i.e., µm = 0 for all m. By using first-step analysis we have the following set

of equations:

ψ(0) = 1 + λ0ψ(1),

ψ(1) = 1 + λ1ψ(2),

...

ψ(m) = 1 + λmψ(m)

After rearranging the terms yields that,

ψ(0) = 1 +
m−1∑
s=1

s−1∏

k=0

λk + ψ(m)

(
m∏
i=1

λi

)

Then, as m → ∞,

ψ(0) = 1 + lim
m→∞

m−1∑
s=1

s−1∏

k=0

λk + lim
m→∞

ψ(m)

(
m∏
i=1

λi

)

Since limm→∞ λm = 0, the second limit goes to zero. Then, the expected number of

step starting from state s0 is given by

E[M(t)] = 1 +
∞∑
s=1

s−1∏

k=0

λk(t). (7.10)

Next, we show that the Markov chain is stable, and under MP-DALG the absorption

eventually occurs by finding an finite upper bound on E[M(t)]. Note that the maximum

value of λm occurs at state 0, i.e., maxk∈(0,1,··· ,m){λm} = λ0. Hence,

E[M(t)] ≤ 1 +
∞∑
s=1

s−1∏

k=0

λ0(t)

=
1

1− λ0(t)
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7.5.3 Improved MP-DALG

Note that MP-DALG algorithm sets the value of τ at the beginning of each time slot,

i.e., τ(1) = τ for all t. Depending on collision and idle event, τ decreases or increases,

and eventually only a single user attempts at a mini slot (e.g., absorption occurs).

Unlike MP-DALG, we now allow that τ depends on time t, hence, we use the notation

τ(m, t) to denote that the value of virtual time at mini slot m and time slot t. This

motivation is explained as follows: Let m∗(t) be the state at which absorption occurs

at time slot t with MP-DALG. Then, the corresponding virtual time is equal to τ(m∗).

Let us assume that in the next slot t+1, the network dynamics changes slowly or never

changes (e.g., channel states and queue process change slowly from time slot t to time

slot t+ 1). Then, the state at which absorption occurs at time t+ 1, m∗(t+ 1), will be

at the vicinity of the state m∗(t). In other words, τ(m∗, t+ 1) will be close to τ(m∗, t)

with high probability. With this observation, we now present a modified version of

MP-DALG namely MP-DALG2 as follows:

Algorithm 6: Improved MP-DALG

• Step 0: At time slot t = 1 and m = 1, every user sets it virtual time to τ .

• Step 1: At time slot t user n does:

– Step 2: At mini-slot m, generate exponential random variable Xn(t) with
rate rn(t) = bwn(t).

– Step 3: If Xn(t) < τ(m, t), an(m, t) = 1. Otherwise an(m, t) = 0.

∗ If
∑N

n=1 an(m, t) > 1, there will be a collision at that mini slot. Then,

∗ m ← m+ 1,

∗ τ(m, t) ← τ(m,t)
g(α)

. Go Step 2.

∗ If
∑N

n=1 an(m, t) = 0, update

∗ m ← m+ 1, and τ(m, t) ← g(α)τ(m, t). Go Step 2.

– Step 3: If
∑N

n=1 an(m, t) = 1, then that user transmits at time slot t. Let
m∗(t) be the state at which absorbtion occurs at time t.

• Step 4: t ← t+ 1 and τ(1, t+ 1) = τ(m∗, t). Go Step 1.

Note that like MP-DALG, MP-DALG2 is also throughput optimal. The expected
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Figure 7.4: Average total queue sizes vs. overall mean arrival rate.

number of mini-slots used under MP-DALG2 can be determined by modeling the prob-

lem as an embedded Markov chain with absorption. However, the analysis is difficult

and hence, we present the performance of MP-DALG2 in terms of expected mini-slot

in our simulations.

7.6 Numerical Results

In our simulations, we model a single cell CDMA downlink transmission utilizing high

data rate (HDR). The base station serves 10 users and keeps a separate queue for each

user. Time is slotted with length Ts = 1.67 ms. Packets arrive at each slot according

to Poisson distribution for each users with mean λn. The size of a packet is set to 128

bytes which corresponds to the size of an HDR packet. Each channel has 5 possible

states with rates as given in Table 7.1. We compare I-DALG algorithm with the
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Figure 7.5: Performance of MP-DALG2

Table 7.1: Possible Physical Rates

Rates r1 r2 r3 r4 r5

kb/s 1843.2 1228.8 614.4 307.2 76.8

centralized Max-Weight algorithm in terms of rate region and delay. Figure 7.4 depicts

the average total queue sizes in terms of packets vs. the overall arrival rate when

b = 1.5 and b = 3. Note that the average queue size is an indicator to the average delay

experienced by the users. Also note that by inspecting the average rate of change of

queue sizes, we can approximately determine the maximum arrival rates that can be

supported by different algorithms. Clearly, from Figure 7.4, the maximum supportable

arrival rate is around the point where total arrival rate is 2.85 packets/slot. For all

values of b, I-DALG can stabilize the network since the queue sizes increase suddenly,

which indicates the instability, at the same point for all values of b, which shows that
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Figure 7.6: Average number of mini-slots vs. overall mean arrival rate.

I-DALG is throughput-optimal. Although the optimality of I-DALG is maintained for

all b, the delay performance is different. Clearly, as b increases the delay performance

of I-DALG is getting close to that of C-MW which has the optimal delay performance.

This is because the probability that the user with the maximum weighted throughput

is scheduled increases, and goes to one as b goes to infinity. Next, we investigate the

performance of MP-DALG2 in terms of rate region and average delay. In Figure 7.5 we

plot the mean total queue backlog summed over all users of the network, as the offered

load λ increases when b = 3, b = 1.5 and α = 2. When λ approaches a certain limit,

the average total backlog will increase to infinity. This limit can then be viewed as

the boundary of the rate region. Clearly this limit is same for centralized Max-Weight

and MP-DALG2 with b = 3 and b = 1.5. Hence, for both values of b MP-DALG2 is

throughput-optimal. However, the average delay performance of MP-DALG2 with b = 3

is better than that of MP-DALG2 with b = 1.5, which confirms our theoretical results
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Figure 7.7: Average number of mini-slots vs. b.

in Theorem 3. On the other hand, from Figure 7.6 we can see that the expected number

of mini-slots required by MP-DALG2 with b = 1.5 is less than that of one when b = 3.

b actually controls the tradeoff between the average delay and the expected number of

mini-slots. The penalty is decreasing with b and the queuing backlog is increasing with

b. If more emphasis is placed for minimizing E[M(t)], we should choose a smaller b. If

more strict delay is required, we should chose a larger b.

Lastly, we investigate the performance of MP-DALG2 in terms of required mini

slot vs. number of users for different values of b. We set the overall mean arrival rate to

2.55 packets/slot, which is close to the boundary of rate region. In Figure 7.7 we plot

the average number of mini-slots under MP-DALG2 vs. number of users in the system.

When b = 1.5, as N increases, E[M(t)] stays almost constant around 2.7. When we

increase b to 3, E[M(t)] increases as well. However, the overall required mini-slot is less

than 5 in both cases.
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7.7 Chapter Summary

In this Chapter, we have proposed two new distributed scheduling policies for a fully-

connected wireless network over fading channels. For the first algorithm by allowing

arbitrary backoff time we have developed fully distributed algorithm which achieves

the same performance as that of centralized Max-Weight algorithm in terms of rate

region and delay. We then have developed more practical distributed algorithm that

can performs with discrete backoff time. For this algorithm we have quantified the

expected number of mini-slots required for collision resolution. We also showed that we

were able to make an intelligent trade off between having a low number of mini-slots

and minimizing average delay by tuning system parameter b.
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Chapter 8

Conclusions and Future Works

This thesis has studied several important scheduling problems in wireless networks with

time-varying channel conditions, random packets arrivals, and different user constraints.

Specifically, scheduling algorithms developed in the first part of this thesis including

Chapter 3 and Chapter 4 contribute to the possibility of further improvement of wireless

network performance. The algorithms in Chapter 5, Chapter 6 and Chapter 7 serve to

highlight the value of network state information for scheduling in wireless systems.

In this thesis, we have studied opportunistic scheduling for time-slotted systems.

When complete network state information including channel condition and queue length

information of all users are available at the scheduler the performance of a network can

be further increased with efficient communication techniques. In that sense, we first

investigated a cognitive radio network with primary and secondary users where the

primary users are licensed owners of spectrum while the secondary users do no have

any such licensed spectrum. We further incorporated a cooperation between primary

and secondary users by using a time-sharing policy. Through Lyapunov optimization

technique, we developed optimal scheduling policies that achieve maximum utility and

provide fairness among primary and secondary users. By considering a cognitive radio

network with a possible cooperation between primary and secondary users, unused

portion of spectrum can be utilized more efficiently, and hence we can improve spectrum

efficiency. Another solution to improve spectrum efficiency of a wireless system with

complete network state information is to allow more than one packets transmission in
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a given time slot instead of single packet transmission. We then developed throughput-

optimal scheduling algorithm which provides multi-packet transmission by employing

a specific modulation at the physical layer. By using Lyapunov analysis, we showed

that the resulting rate region of developed policy is larger than that of single user

scheduling. The results in Chapter 3 and Chapter 4 suggest that when complete network

information is available at the scheduler, simple opportunistic scheduling algorithms

with key communication techniques can provide better spectrum efficiency.

In the second part of this thesis including Chapter 5, Chapter 6 and Chapter 7

the first thing that we leant is that the network state information for opportunistic

scheduling is a key component for developing optimal policies. However, obtaining it is

very costly. By being motivated this fact, we studied this problem for both downlink

and uplink network where channel state information is not immediately available at the

base station but it has to be acquired from users. For the downlink system, we devel-

oped different scheduling algorithm that can perform without complete channel state

information at the base station over different channel conditions. Specifically, we first

considered a channel model where channel gains vary independently over time slots.

Under this model, we developed a scheduling policy that can be easily implemented in

practical systems. Then, we considered a more general channel model where channels

gains continuously vary over slot and the channel process can be non-stationary. Within

this channel model, we showed that a learning based scheduling algorithm can efficiently

perform with limited channel state information. The results in Chapter 5 and Chapter

6 show that efficient scheduling algorithm can be designed with careful consideration

of channel characteristics together with users traffic loads. For uplink network, we ob-

served that the cost associated for acquiring channel state and queue length information

of users is much higher than that of a downlink system. Hence, we designed a fully

distributed algorithm that does not require any message passing between users. We

showed that the proposed distributed algorithm is throughput-optimal and it achieves

the same rate region and delay performance as that of centralized scheduling algo-

rithm when continuous backoff is available. When discrete backoff time is available, the

proposed policy can be implemented in a distributed manner with low overhead.
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Before concluding this thesis, we will briefly present some ideas which will motivate

future studies on this topic. In almost all the analysis in Chapter 3, we assumed that the

feasibility region is known in advance. In other words, the supportable minimum rate

requirements are known. However, in practice, the scheduler cannot determine whether

a rate requirement can be supportable by the network or not beforehand and hence

it has to be determined or estimated at least. It would be interesting to characterize

the feasibility region. Also, we note that the complexity of the scheduling algorithms

increases as the number of primary and secondary users increases. Hence, designing

distributed algorithms will be another research direction along this topic.

In the second part of this thesis we have focused on the design of scheduling

algorithms without complete network information. In Chapter 5 and Chapter 6, we

have studied such scheduling problems with different assumptions on channel model.

Specifically, In Chapter 5, the analytical and simulation results are given by assum-

ing channels are i.i.d. However, the analytical result may not be directly applied for

correlated channel. As a future work, we will provide the result by considering more

general channel models, i.e., correlated or Markovian channels. Similarly, in Chapter

6 the performance gain is analyzed for a special case where there are two users. For a

general case, the problem is not easy to solve since we need to know estimation statis-

tics. Hence, the general case will be very challenging, and we believe it is an interesting

problem to be addressed in the future. Also, we want to extend our works for the mul-

tichannel wireless system, i.e., OFDM networks with considering fairness among users.

Lastly, we have shown that the proposed distributed algorithms in Chapter 7 operate

under full connected network topologies where users can hear each other. As a future

work, we will explore scheduling algorithms for more general network topologies. Also,

we assumed that the network operator can allocate as many as mini-slots, which is not

always the case in practical wireless networks. We will relax this assumption in our

future work.
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