892 research outputs found

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies

    Analytical Evaluation of Coverage-Oriented Femtocell Network Deployment

    Full text link
    This paper proposes a coverage-oriented femtocell network deployment scheme, in which the femtocell base stations (BSs) can decide whether to be active or inactive depending on their distances from the macrocell BSs. Specifically, as the areas close to the macrocell BSs already have satisfactory cellular coverage, the femtocell BSs located inside such areas are kept to be inactive. Thus, all the active femtocells are located in the poor macrocell coverage areas. Based on a stochastic geometric framework, the coverage probability can be analyzed with tractable results. Surprisingly, the results show that the proposed scheme, although with a lower defacto femtocell density, can achieve better coverage performance than that keeping all femtocells in the entire network to be active. The analytical results further identify the achievable optimal performance of the new scheme, which provides mobile operators a guideline for femtocell deployment and operation.Comment: 6 pages, 7 figures, published in IEEE International Conference on Communications (ICC'13

    Spectral Efficiency Improvements in HetNets by Exploiting Device-to-Device Communications

    Get PDF
    Next generation cellular networks require huge capacity, ubiquitous coverage and maximum energy efficiency. In order to meet these targets, Device-to-device (D2D) communication is being considered for future heterogeneous networks (HetNets). In this paper, we consider a three tier hierarchical HetNet by exploiting D2D communication in traditional HetNet. D2D communication is deployed within the HetNet where closely located mobile users are engaged in direct communication without routing the traffic through cellular access network. The proposed configuration mandates to reduce the interference offered by the resultant HetNet by reducing the transmitter-receiver distance and ensuring that the mobile users are transmitting with adaptive power subject to maintaining their desired link quality. In this context, we analyzed and compared the spectral efficiency improvements in hierarchical HetNet against traditional HetNet. Simulation results show that D2D communication offers much higher spectral efficiency as compared to traditional HetNet

    Enhanced Inter-Cell Interference Coordination Challenges in Heterogeneous Networks

    Full text link
    3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.Comment: 12 pages, 4 figures, 2 table

    Heterogeneous network optimization using robust power-and-resource based algorithm

    Get PDF
    In order to meet the increasing mobile data-traffic, spatial densification of network with several low-power nodes, the high-power macro BS and HetNet are the major key enabling solution. However, the HetNet is unplanned in nature, causes irregularities and interferences that without any user association rules. The appropriate deployment of the femto-cell in HetNet can provide effective traffic offloading, where the alleviate mobbing in the macro-cells can decrease the power consumption therefore it optimizes the user experience. Moreover, the protection is also important for the macro and femto cell users in a network through maintaining the min-max level of interferences. In this paper, we proposed RPRA that comprises two robust approach such as robust power-controller and the robust channel-allocation approach, which can improve the spectral efficiency and user experiences at lower network coverage areas via eliminating the week coverage zones. Also provide high user rate connection by effective interference in an efficient spectrum, lowering in transmission power and cost-effectiveness via less time delay. To show the effectiveness of our proposed model we have compared with several existing techniques and we got significant improvement in throughput, also reduction in time delay and transmission power

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network
    • …
    corecore