5,313 research outputs found

    Adaptive buffer power save mechanism for mobile multimedia streaming

    Get PDF
    With the proliferation of wireless networks, the use of mobile devices to stream multimedia is growing in popularity. Although the devices are improving in that they are becoming smaller, more complex and capable of running more applications than ever before, there is one aspect of them that is lagging behind. Batteries have seen little development, even though they are one of the most important parts of the devices. Multimedia streaming puts extra pressure on batteries, causing them to discharge faster. This often means that streaming tasks can not be completed, resulting in significant user dissatisfaction. Consequently, effort is required to devise mechanisms to enable and increase in battery life while streaming multimedia. In this context, this thesis presents a novel algorithm to save power in mobile devices during the streaming of multimedia content. The proposed Adaptive-Buffer Power Save Mechanism (AB-PSM) controls how the data is sent over wireless networks, achieving significant power savings. There is little or no effect on the user and the algorithm is very simple to implement. The thesis describes tests which show the effectiveness of AB-PSM in comparison with the legacy power save mechanism present in IEEE 802.11. The thesis also presents a detailed overview of the IEEE 802.11 protocols and an in-depth literature review in the area of power saving during multimedia streaming. A novel analysis of how the battery of a mobile device is affected by multimedia streaming in its different stages is given. A total-power-save algorithm is then described as a possible extension to the Adaptive-Buffer Power Save Mechanism

    Control-theoretic dynamic frequency and voltage scaling for multimedia workloads

    Get PDF

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Adaptive-Buffer Power Save Mechanism for Mobile Multimedia Streaming

    Full text link

    An energy efficient http adaptive streaming protocol design for mobile hand-held devices

    Get PDF
    Internet traffic generated from mobile devices has experienced a huge growth in the last few years. With the increasing popularity of streaming applications in mobile devices, video traffic generated from mobile devices is also increasing. One of the big challenges of streaming applications on mobile devices is the energy intensive behaviour of such applications. Energy management has always been a critical issue for mobile devices. A wireless network interface consumes a significant portion of the total system energy while active. During video streaming, the network interface is kept awake for a long period of time. This causes a large energy drain. There are several research works focused on reducing energy consumption during video streaming on mobile devices. HTTP adaptive streaming is gaining popularity as a method of video delivery because of its significant advantages in terms of both user-perceived quality and resource utilization. By using rate adaptation via changes in the requested video version, it adapts to varying network available capacity. There are several research work that aim to increase the performance of rate adaptation. None of the previous works have focused on reducing energy consumption during HTTP adaptive streaming. In this thesis, an energy efficient HTTP adaptive streaming protocol is designed. The new protocol uses an efficient buffer management approach and a three step bitrate selection mechanism. The proposed protocol is implemented by modifying the Adobe OSMF player version 1.6. Performance evaluation of the new protocol is carried out by running a number of experiments in both a lab environment and three real world environments. The experimental results show that the proposed protocol is able to achieve high amounts of sleep time (by more than an estimated 70% for WiFi and more than 35% for 3G/EDGE) and reduce energy consumption during data transfer. It can also reduce data wastage by 80% in case of playback interruption in the video playback

    ëŹŽì„ ëžœ ëč„디였 멀티ìșìŠ€íŠžì˜ ëŹžì œ 발êČŹ 및 성늄 햄상 êž°ëȕ

    Get PDF
    í•™ìœ„ë…ŒëŹž (ë°•ì‚Ź)-- 서욞대학ꔐ 대학원 êł”êłŒëŒ€í•™ ì „êž°Â·ì»Ží“ší„°êł”í•™ë¶€, 2017. 8. 씜성현.Video multicast, streaming real-time videos via multicast, over wireless local area network (WLAN) has been considered a promising solution to share common venue-specific videos. By virtue of the nature of the wireless broadcast medium, video multicast basically enables scale-free video delivery, i.e., it can deliver a common video with the fixed amount of wireless resource regardless of the number of receivers. However, video multicast has not been widely enjoyed in our lives due to three major challenges: (1) power saving-related problem, (2) low reliability and efficiency, and (3) limited coverage. In this dissertation, we consider three research topics, i.e., (1) identification of practical issues with multicast power saving, (2) physical (PHY) rate and forward erasure correction code (FEC) rate adaptation over a single-hop network, and (3) multi-hop multicast, which deal with the three major challenges, respectively. Firstly, video multicast needs to be reliably delivered to power-saving stations, given that many portable devices are battery-powered. Accordingly, we investigate the impact of multicast power saving, and address two practical issues related with the multicast power saving. From the measurement with several commercial WLAN devices, we observe that many devices are not standard compliant, thus making video multicast performance severely degraded. We categorize such standard incompliant malfunctions that can result in significant packet losses. We also figure out a coexistence problem between video multicast and voice over Internet protocol (VoIP) when video receivers runs in power saving mode (PSM). The standard-compliant power save delivery of multicast deteriorates the VoIP performance in the same WLAN. We analyze the VoIP packet losses due to the coexistence problem, and propose a new power save delivery scheme to resolve the problem. We further implement the proposed scheme with an open source device driver, and our measurement results demonstrate that the proposed scheme significantly enhances the VoIP performance without sacrificing the video multicast performance. Second, multi-PHY rate FEC-applied wireless multicast enables reliable and efficient video multicast with intelligent selection of PHY rate and FEC rate. The optimal PHY/FEC rates depend on the cause of the packet losses. However, previous approaches select the PHY/FEC rates by considering only channel errors even when interference is also a major source of packet losses.We propose InFRA, an interference-aware PHY/FEC rate adaptation framework that (1) infers the cause of the packet losses based on received signal strength indicator (RSSI) and cyclic redundancy check (CRC) error notifications, and (2) determines the PHY/FEC rates based on the cause of packet losses. Our prototype implementation with off-the-shelf chipsets demonstrates that InFRA enhances the multicast delivery under various network scenarios. InFRA enables 2.3x and 1.8x more nodes to achieve a target video packet loss rate with a contention interferer and a hidden interferer, respectively, compared with the state-of-theart PHY/FEC rate adaptation scheme. To the best of our knowledge, InFRA is the first work to take the impact of interference into account for the PHY/FEC rate adaptation. Finally, collaborative relaying that enables selected receiver nodes to relay the received packets from source node to other nodes enhances service coverage, reliability, and efficiency of video multicast. The intelligent selection of sender nodes (source and relays) and their transmission parameters (PHY rate and the number of packets to send) is the key to optimize the performance. We propose EV-CAST, an interference and energy-aware video multicast system using collaborative relays, which entails online network management based on interference-aware link characterization, an algorithm for joint determination of sender nodes and transmission parameters, and polling-based relay protocol. In order to select most appropriate set of the relay nodes, EV-CAST considers interference, battery status, and spatial reuse, as well as other factors accumulated over last decades. Our prototype-based measurement results demonstrate that EV-CAST outperforms the state-of-the-art video multicast schemes. In summary, from Chapter 2 to Chapter 4, the aforementioned three pieces of the research work, i.e., identification of power saving-related practical issues, InFRA for interference-resilient single-hop multicast, and EV-CAST for efficient multi-hop multicast, will be presented, respectively.1 Introduction 1 1.1 Video Multicast over WLAN 1 1.2 Overview of Existing Approaches 4 1.2.1 Multicast Power Saving 4 1.2.2 Reliability and Efficiency Enhancement 4 1.2.3 Coverage Extension 5 1.3 Main Contributions 7 1.3.1 Practical Issues with Multicast Power Saving 7 1.3.2 Interference-aware PHY/FEC Rate Adaptation 8 1.3.3 Energy-aware Multi-hop Multicast 9 1.4 Organization of the Dissertation 10 2 Practical Issues with Multicast Power Saving 12 2.1 Introduction 12 2.2 Multicast & Power Management Operation in IEEE 802.11 14 2.3 Inter-operability Issue 15 2.3.1 Malfunctions of Commercial WLAN Devices 17 2.3.2 Performance Evaluation 20 2.4 Coexistence Problem of Video Multicast and VoIP 21 2.4.1 Problem Statement 21 2.4.2 Problem Identification: A Measurement Study 23 2.4.3 Packet Loss Analysis 27 2.4.4 Proposed Scheme 32 2.4.5 Performance Evaluation 33 2.5 Summary 37 3 InFRA: Interference-Aware PHY/FEC Rate Adaptation for Video Multicast over WLAN 39 3.1 Introduction 39 3.2 Related Work 42 3.2.1 Reliable Multicast Protocol 42 3.2.2 PHY/FEC rate adaptation for multicast service 44 3.2.3 Wireless Video Transmission 45 3.2.4 Wireless Loss Differentiation 46 3.3 Impact of Interference on Multi-rate FEC-applied Multicast 46 3.3.1 Measurement Setup 47 3.3.2 Measurement Results 47 3.4 InFRA: Interference-aware PHY/FEC Rate Adaptation Framework 49 3.4.1 Network Model and Objective 49 3.4.2 Overall Architecture 50 3.4.3 FEC Scheme 52 3.4.4 STA-side Operation 53 3.4.5 AP-side Operation 61 3.4.6 Practical Issues 62 3.5 Performance Evaluation 65 3.5.1 Measurement Setup 66 3.5.2 Small Scale Evaluation 67 3.5.3 Large Scale Evaluation 70 3.6 Summary 74 4 EV-CAST: Interference and Energy-aware Video Multicast Exploiting Collaborative Relays 75 4.1 Introduction 75 4.2 Factors for Sender Node and Transmission Parameter Selection 78 4.3 EV-CAST: Interference and Energy-aware Multicast Exploiting Collaborative Relays 80 4.3.1 Network Model and Objective 80 4.3.2 Overview 81 4.3.3 Network Management 81 4.3.4 Interference and Energy-aware Sender Nodes and Transmission Parameter Selection (INFER) Algorithm 87 4.3.5 Assignment, Polling, and Re-selection of Relays 93 4.3.6 Discussion 95 4.4 Evaluation 96 4.4.1 Measurement Setup 96 4.4.2 Micro-benchmark 98 4.4.3 Macro-benchmark 103 4.5 Related Work 105 4.5.1 Multicast Opportunistic Routing 105 4.5.2 Multicast over WLAN 106 4.6 Summary 106 5 Conclusion 108 5.1 Research Contributions 108 5.2 Future Research Directions 109 Abstract (In Korean) 121Docto

    Management energiĂ­ v Smart Home

    Get PDF
    Import 03/11/2016This thesis aims to illuminate possibilities of increasing efficient energy use by creating visualization of measured energy consumption for end-user with respect to KNX technology. The motivation of creating system of KNX devices for monitoring and controlling energy consumption was reasons of increased demand of usage mobile devices and promotion of energy saving by visualization and using renewable energy. In this thesis are described and considered several ways for energy management, first and the most important is visualization, as consumer is able to monitor and manage energy and electricity consumption via mobile device and PC that makes possible to motivate user for smart use of energy and set alarms of over limit energy consumption. By the other hand remote control is flexible, comfortable and the idea that they can manage lighting and heating via mobiles attracts people. Mobile control is best solution to avoid paying extra money for buying touch panels.Tato diplomovĂĄ prĂĄce si klade za cĂ­l osvětlit moĆŸnosti zvĂœĆĄenĂ­ efektivnĂ­ho vyuĆŸitĂ­ energie vytvoƙenĂ­m vizualizace měƙenĂ­ spotƙeby energie pro koncovĂ©ho uĆŸivatele prostƙednictvĂ­m KNX technologie. MotivacĂ­ k vytvoƙenĂ­ systĂ©mu ze zaƙízenĂ­ KNX pro monitorovĂĄnĂ­ a ovlĂĄdĂĄnĂ­ spotƙeby energie bylo zvĂœĆĄenĂ­ poptĂĄvky pouĆŸitĂ­ mobilnĂ­ch zaƙízenĂ­ a podpora Ășspory energie pomocĂ­ vizualizace a vyuĆŸitĂ­ obnovitelnĂœch zdrojĆŻ energie. V tĂ©to diplomovĂ© prĂĄci je popsĂĄno několik zpĆŻsobĆŻ pro hospodaƙenĂ­ s energiĂ­. PrvnĂ­ a nejvĂ­ce dĆŻleĆŸitĂĄ je vizualizace, takĆŸe je uĆŸivatel schopnĂœ monitorovat a ƙídit energii a spotƙebu elektƙiny prostƙednictvĂ­m mobilnĂ­ho zaƙízenĂ­ a počítače, coĆŸ umoĆŸĆˆuje jednak uĆŸivatele motivovat k inteligentnĂ­mu vyuĆŸitĂ­ energie a takĂ© nastavit upozorněnĂ­ pƙi nadměrnĂ© energetickĂ© spotƙebě. DĂĄlkovĂ© ovlĂĄdĂĄnĂ­ je flexibilnĂ­, pohodlnĂ©, a dĂ­ky moĆŸnostĂ­ nastavenĂ­ osvětlenĂ­ a topenĂ­ prostƙednictvĂ­m mobilu, takĂ© pro uĆŸivatele velmi atraktivnĂ­. MobilnĂ­ kontrola je nejlepĆĄĂ­m ƙeĆĄenĂ­m pro vyhnutĂ­ se zbytečnĂ©mu placenĂ­ za nĂĄkup dotykovĂœch panelĆŻ.450 - Katedra kybernetiky a biomedicĂ­nskĂ©ho inĆŸenĂœrstvĂ­velmi dobƙ

    CGAMES'2009

    Get PDF

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF
    • 

    corecore