9 research outputs found

    Secure (n, n + 1)-Multi Secret Image Sharing Scheme Using Additive Modulo

    Get PDF
    AbstractMulti Secret Image Sharing (MSIS) scheme is a protected method to transmit more than one secret images over a communication channel. Conventionally, only single secret image is shared over a channel at a time. But as technology grew up, there arises a need for sharing more than one secret image. An (n, n)-MSIS scheme is used to encrypt n secret images into n meaningless noisy images that are stored over different servers. To recover n secret images all n noise images are required. At earlier time, the main problem with secret sharing schemes was that one can partially figure out secret images by getting access of n – 1 or fewer noisy images. Due to this, there arises a need of secure MSIS scheme so that by using less than n noisy images no information can be retrieved. In this paper, we propose secure (n, n + 1)-MSIS scheme using additive modulo operation for grayscale and colored images. The experimental results show that the proposed scheme is highly secured and altering of noisy images will not reveal any partial information about secret images. The proposed (n, n + 1)-MSIS scheme outperforms the existing MSIS schemes in terms of security

    A secret image sharing scheme for light images

    Get PDF

    A Reversible Steganography Scheme of Secret Image Sharing Based on Cellular Automata and Least Significant Bits Construction

    Get PDF
    Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation cost; (2) overflow issue existing when modulus operation is used to restore the cover image and the secret image; (3) part of the cover image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also show that this scheme has the merit of big embedding capacity

    A novel quality assessment for visual secret sharing schemes

    Get PDF
    To evaluate the visual quality in visual secret sharing schemes, most of the existing metrics fail to generate fair and uniform quality scores for tested reconstructed images. We propose a new approach to measure the visual quality of the reconstructed image for visual secret sharing schemes. We developed an object detection method in the context of secret sharing, detecting outstanding local features and global object contour. The quality metric is constructed based on the object detection-weight map. The effectiveness of the proposed quality metric is demonstrated by a series of experiments. The experimental results show that our quality metric based on secret object detection outperforms existing metrics. Furthermore, it is straightforward to implement and can be applied to various applications such as performing the security test of the visual secret sharing process

    Information-Theoretic Secure Outsourced Computation in Distributed Systems

    Get PDF
    Secure multi-party computation (secure MPC) has been established as the de facto paradigm for protecting privacy in distributed computation. One of the earliest secure MPC primitives is the Shamir\u27s secret sharing (SSS) scheme. SSS has many advantages over other popular secure MPC primitives like garbled circuits (GC) -- it provides information-theoretic security guarantee, requires no complex long-integer operations, and often leads to more efficient protocols. Nonetheless, SSS receives less attention in the signal processing community because SSS requires a larger number of honest participants, making it prone to collusion attacks. In this dissertation, I propose an agent-based computing framework using SSS to protect privacy in distributed signal processing. There are three main contributions to this dissertation. First, the proposed computing framework is shown to be significantly more efficient than GC. Second, a novel game-theoretical framework is proposed to analyze different types of collusion attacks. Third, using the proposed game-theoretical framework, specific mechanism designs are developed to deter collusion attacks in a fully distributed manner. Specifically, for a collusion attack with known detectors, I analyze it as games between secret owners and show that the attack can be effectively deterred by an explicit retaliation mechanism. For a general attack without detectors, I expand the scope of the game to include the computing agents and provide deterrence through deceptive collusion requests. The correctness and privacy of the protocols are proved under a covert adversarial model. Our experimental results demonstrate the efficiency of SSS-based protocols and the validity of our mechanism design
    corecore