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Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the
secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation
cost; (2) overflow issue existingwhenmodulus operation is used to restore the cover image and the secret image; (3) part of the cover
image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least
significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless
scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also
show that this scheme has the merit of big embedding capacity.

1. Introduction

Secret sharing scheme is devoted to protecting secret infor-
mation from being lost, destroyed by attackers, stolen by
illegal users, and so on. It was independently proposed by
Shamir [1] and Blakley [2] in 1979.The former one is based on
the polynomial interpolation, and the latter one is based on
the intersections of some high dimensional planes in a high
dimensional space.

In the early research period of secret sharing scheme,
researchers focused on designing different types of secret
sharing schemes for small secret data. Later, secret image
sharing, which combines cryptography and image processing
techniques, becomes an active research area. Suppose that
a secret image sharing scheme has (𝑘, 𝑛)-threshold, where
𝑘 ≤ 𝑛, in which a secret image is divided into 𝑛 shadows
distributed to 𝑛 participants. The secret image can only be
restored by 𝑘 or more shadows; but no one can reveal any
information about the secret image with any 𝑘 − 1 or fewer
shadows.

Visual cryptography scheme (VCS) is an important cate-
gory of secret image sharing scheme, which was introduced
by Naor and Shamir [3] in 1995. VCS has the merit of

stacking-to-see property but with the disadvantages of the
large pixel expansion and low visual quality of the restored
image. In VCS, any 𝑘 participants could photocopy their
shadows on transparencies and stack them on an overhead
projector to decode the secret visually through human visual
system without the aid of any hardware or computation.
However, no one can reveal any information about the
original secret with any 𝑘 − 1 or fewer shadows. Based on
Droste [4] work, many researchers have made lots of efforts
to do further research on VCS from multiple aspects. Some
schemes focused on reducing the pixel expansion [4–7], some
on improving the visual quality of the restored image [8–11],
some on sharing gray and chromatic secret images [12–14],
and so on. VCS’s merit is apparent from some aspects or in
some application areas. But it still has the inherent defects
such as pixel expansion, poor visual quality of the restored
image, and meaningless shadows.

The secret image sharing schemewith Lagrange’s interpo-
lation and steganography can solve the above three inherent
defects of VCS, which is an important category of secret
image sharing scheme. Until now, twomost popular stegano-
graphicmethods are least significant bits replacement (LSBR)
and modulus operation. The shared noise-like secret data
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is concealed into the cover image with meaningful content.
Thesemodified cover images are called stego images. In 2004,
Lin and Tsai [15] proposed a polynomial-based secret image
sharing scheme with steganography and authentication. This
scheme is lossy because it uses LSBRmethod to embed secret
data into the cover image. Hence, the cover image cannot be
recovered losslessly. And the restored secret image by this
scheme may be distorted slightly. The reason for the lossy
restoration of the secret image is that such kind of schemes
truncate the pixel values of the secret images into the interval
[0, 250]. In addition, quantization-based schemes, such as [16,
17], just gain the lossy secret image due to the quantization
errors.

To restore the secret image losslessly, the schemes of
[18–20] used two pixels to replace any pixel whose value is
greater than or equal to 250. Obviously, this will lead to pixel
expansion and increase the amount of secret data which will
be embedded into the cover image. In 2007, Yang et al. [21] uti-
lized Galois Field GF(28) instead of using modulo 251 opera-
tion to avoid the way of dividing a pixel whose value is greater
than or equal to 250 into two pixels. Hence, the secret image
could still be restored losslessly without pixel expansion. Hu
et al. [22] and Li et al. [23] also used Galois Field GF(28) to
guarantee the secret image to be restored completely.

Lossless recovery of the secret image is an importantmea-
sure in secret image sharing field. Although many schemes
in this field have achieved the lossless recovery of the secret
image, there are just a few schemes to restore both the secret
image and the cover image losslessly, such as [22, 24–27].
The schemes of [24, 26, 27] use modulus operation to embed
secret data into the cover image, and the scheme of [25]
utilizes extra Sudoku table to conceal secret data into the
cover image. However, the scheme of [22] uses the new LSBC
method to do the embedding work. Modulus operation often
leads to overflow or underflow issues.The schemes of [24, 26,
27] need to do extra work to avoid the situation that the secret
image and the cover image cannot be recovered completely
under some circumstances; the scheme of [26] converts all
secret pixels into the values in 𝑚-ary notational system and
requires that any pixel whose value is within [⌊255/𝑚⌋ ×

𝑚, 255]must be skipped in order to recover the secret image
and the cover image completely, where 3 ≤ 𝑚 < 255

and 𝑚 is a prime number. Therefore, modulus operation has
such kind of limitations. Additional storage is needed by the
method of using Sudoku table. Another defect in the scheme
of [25] is that it uses the two fixed least significant bits in
each pixel from the cover image to embed secret data. It does
not have the flexibility like modulus operation by which one
or more least significant bits could be used to embed secret
data with different modulus values. The scheme of [22] does
not require extra work to adapt to some pixels with special
values and needs no additional storage for Sudoku table or
others. Meanwhile, it also possesses the flexibility as modulus
operation. All the schemes of [22, 24–26] use polynomial
evaluation and interpolation algorithm with computation
complexity as high as 𝑂(𝑛log2𝑛) [28]. However, only the
scheme of [27] and our scheme utilize cellular automata
whose computation complexity is only 𝑂(𝑛).

Additionally, in secret image sharing field, the visual
quality of stego images is also an important measure. The
schemes of [24–27] embed secret data into the cover image
sequentially and sometimes partial areas of the cover image
are modified severely while the other areas of it are
untouched. Thus the visual quality of these generated stego
images will be poor with the above traditional embedding
method. The scheme of [22] and our scheme use the method
of dynamic embedding.This method will calculate the size of
the cover image and the amount of the secret data to adjust
the way of LSBC and embed secret data smoothly. Then the
visual quality of the stego images can be improved.

The remaining part of this paper is organized as follows.
Section 2 reviews the basic definitions of one-dimensional
cellular automata. The proposed scheme is introduced in
Section 3, and experimental results and comparisons are
given in Section 4. Section 5 concludes this paper.

2. One-Dimensional Memory
Cellular Automata

One-dimensional finite boolean cellular automata (CA for
short) are discrete dynamical systems constructed by a finite
array of𝑁 identical objects called cells [29]. The state value 𝑠
of each cell is 0 or 1.The evolution of CA is that the states of all
cells are updated synchronously in discrete time steps accord-
ing to a local transition function. The update of each cell’s
state relies on variables of this function. These variables are
the previous states of the cell itself and its neighbor cells. Let
⟨𝑖⟩ denote the 𝑖th cell and 𝑎(𝑇)

𝑖
the state of ⟨𝑖⟩ at time step 𝑇.

Symmetric neighborhood of radius 𝑟 is defined as𝑁
𝑖
= {⟨𝑖 −

𝑟⟩, . . . , ⟨𝑖⟩, . . . , ⟨𝑖 + 𝑟⟩}. Thus, the local transition function of
the cellular automata with radius 𝑟 is represented as follows:

𝑎
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(1)

where 𝑁(𝑇)
𝑖

⊂ (𝑍
2
)2𝑟+1 stands for the states of the neighbor

cells of ⟨𝑖⟩ at time 𝑇. Additionally, periodic boundary con-
dition is used in this paper; namely, if 𝑖 ≡ 𝑗(mod𝑁), then
𝑎
(𝑇)

𝑖
= 𝑎
(𝑇)

𝑗
.

The configuration of one-dimensional CA at time step 𝑇
is defined as the vector 𝐶(𝑇) = (𝑎

(𝑇)

0
, . . . , 𝑎

(𝑇)

𝑁−1
), while 𝐶(0)

denotes the initial configuration. Furthermore, the sequence
{𝐶(𝑇)}

0≤𝑇≤𝑘
is called the evolution of the 𝑘th CA, and let Γ

represent the set of all possible configurations of the CA.
The global function of the CA is a linear transformation;

namely,Φ : Γ → Γ, which generates the configuration at the
next time step in the evolution of the CA; that is, 𝐶(𝑇+1) =
Φ(𝐶(𝑇)). IfΦ is bijective, there exists the current CA’s inverse
whose global function is Φ−1, and the current CA is called
reversible. In such CAs, the reverse evolution is possible [30].

The local transition function of linear cellular automata
(LCA) with radius 𝑟 is defined as follows:

𝑎
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𝑖
=

𝑟

∑
𝑗=−𝑟

𝜆
𝑗
𝑎
(𝑇)
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(mod 2) , 0 ≤ 𝑖 ≤ 𝑁 − 1, (2)
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where 𝜆
𝑗
∈ 𝑍
2
for each 𝑗. Since ⟨𝑖⟩ has 2𝑟 + 1 neighbor

cells, there exist 22𝑟+1 LCAs. Each LCA can be specified by
an integer 𝜔 called rule number which is defined as follows:

𝜔 =

𝑟

∑
𝑗=−𝑟

𝜆
𝑗
2
𝑟+𝑗
, (3)

where 𝜔 is in the interval [0, 22𝑟+1 − 1]. Then 𝑓
𝜔
is defined

to represent the local transition function of the CA with rule
number 𝜔.

The CA considered above is memoryless. For example,
the updated state of a cell at time step 𝑇 + 1 only depends
on its neighbor configuration at time step 𝑇. However, one
can consider cellular automata for which the state of each cell
at time𝑇+1 depends on the states of its neighbor cells at time
𝑇 as well as 𝑇−1, 𝑇−2, . . .. This kind of CA is called memory
cellular automata (MCA). In fact, there also exists a special
type ofMCA called the 𝑘th order linearMCA (LMCA)whose
local transition function is expressed as follows:
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where 0 ≤ 𝑖 ≤ 𝑁 − 1. Since the arithmetic operation is
performed in 𝑍

2
, (4) takes the way of modulo 2. 𝑘 initial

configurations 𝐶(0), . . . , 𝐶(𝑘−1) are needed to evolve the 𝑘th
order LMCA.

If𝑓
𝜔
𝑘

(𝑁
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𝑖
) equals 𝑎𝑇−𝑘+1

𝑖
in (4), then it is easy to con-

struct a reversible LMCA. Here, the local transition function
of the 𝑘th order reversible LMCA is defined as follows:
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And its inverse CA is another 𝑘th order LMCA with the
following local transition function:
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For the proof of this kind of reversible LMCA, please refer to
[31].

3. The Proposed Scheme

In this part, we will elaborate this new reversible steganog-
raphy scheme of secret image sharing, which is based on
cellular automata and LSBC. LSBC is a method to construct a
new digit number by a few bits from different pixels, which
will be used to join polynomial computations, evolutions
of cellular automata, or other computations. Figure 1 shows
an example of the way to construct a new digital number.
This scheme includes three phases: (1) setup phase: the
dealer determines the initial configurations, constructs the
reversible LMCA, and determines the related parameters
about dynamic embedding; (2) sharing and embedding

1 1111111

1 1011101

1 0110101

1 0111011

Pixel one
(decimal value: 255)

Pixel two
(decimal value: 221)

Pixel three
(decimal value: 214)

A new digital number 238 

Figure 1: Example of the way to construct a new digital number by
LSBC.

phase: the dealer evolves the LMCA to generate shared bits
and embeds them into the cover image to form the stego
images; (3) recovering phase: shared bits are retrieved from
the stego images and used as the initial configurations of the
reverse LMCA. Then the secret image and the cover image
are restored by evolving the reverse LMCA. Moreover, it is
supposed that the bit depth of the involved cover images and
secret image is 8 in this paper.

3.1. Setup Phase. In this phase, the dealer constructs the 𝑘th
order reversible LMCA according to the following steps.

(1) Since the bit depth of each secret pixel is 8, the
dealer determines that the radius 𝑟 of the symmetric
neighborhood of the LMCA is in the interval [1, 3],
and the cell sum𝑁 in each configuration is 8.

(2) Select and publish random numbers 𝜔
1
, . . . , 𝜔

𝑘−1
,

where 1 ≤ 𝜔
𝑗
≤ 2
2𝑟+1

− 1 for 1 ≤ 𝑗 ≤ 𝑘 − 1.
These numbers are produced by secure cryptographic
pseudorandom number generators. For details about
it, please refer to [32].

(3) The constructed reversible LMCA is as follows:

𝑎
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where 0 ≤ 𝑖 ≤ 𝑁 − 1, and 𝑓
𝜔
𝑗

is the local transition function
of the LMCA with rule number 𝜔

𝑗
, 1 ≤ 𝑗 ≤ 𝑘 − 1.

Additionally, the dealer will determine the values of
CIPNL and CIPNH according to the size values of the cover
image and the secret image, and the threshold value 𝑘. For
details about the calculation of CIPNL and CIPNH, please
refer to [22]. We define the total times of using CIPNL
pixels and that of CIPNH pixels to construct 𝑠

0
as 𝑥 and

𝑦, respectively. If 𝑦 is bigger, more pixels will be used to
construct 𝑠

0
each time and every pixel of this block will

suffer from less modification.Then the visual quality of stego
images can improve. For details about the calculation of𝑥 and
𝑦, please refer to [22].
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Treat s
0
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n

Divide SH
i
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bits and put them back to B

m

image STI
i

m = m + 1

m ⩽ PBN

Figure 2: Flow chart of the sharing and embedding phase.

3.2. Sharing and Embedding Phase. Firstly, the dealer calcu-
lates the number of the secret pixel blocks. Let us define it as
PBN, which has the following form:

PBN = ⌈
SIW × SIH
(𝑘 − 1)

⌉ . (8)

Each block contains 𝑘 − 1 secret pixels. If the last block
does not have 𝑘 − 1 pixels, it will be padded with 0. Secret
data derived from a secret pixel block will be embedded
into a pixel block from the cover image. Hence, the dealer
needs to retrieve PBN pixel blocks from the cover image, with
each block containing CIPNL or CIPNH pixels. The pixel
blocks from the cover image could be defined as 𝐵

1
, . . . , 𝐵

𝑚
,

1 ≤ 𝑚 ≤ PBN. For each 𝐵
𝑚
, LSBC method will be used to

extract least significant bits from pixels of it to construct 𝑠
0
.

This 𝑠
0
will be used as the initial configuration 𝐶(0). Other

𝑘 − 1 configurations of the LMCA are filled by the 𝑘 − 1

secret pixels. Then the evolutions of the LMCA will generate
𝑛 shares SH

1
, . . . , SH

𝑛
corresponding to 𝑛 participants. Each

share has the same size as 𝑠
0
. Finally, the dealer will embed

the secret shares back to the pixel blocks of the cover image.
After processing all the pixels of the secret image, 𝑛 stego
images will be generated and the dealer will distribute one
stego image to each participant. Figure 2 shows the flow chart
of the sharing and embedding phase. Detailed description of
this process is formulated as follows.

(1) Divide the secret image into PBN blocks with each
block containing 𝑘 − 1 pixels.

(2) Repeat Step (2.1) to Step (2.4) for𝑚 = 1, . . . ,PBN.

(2.1) Use LSBC to retrieve least significant bits from
𝐵
𝑚

to construct 𝑠
0
, and use 𝑠

0
as the initial

configuration 𝐶(0) of the LMCA.
(2.2) Take the 𝑘−1 pixels of the𝑚th secret pixel block

as the initial configurations 𝐶(1), . . . , 𝐶(𝑘−1) of
the LMCA.

(2.3) With the initial configurations 𝐶(0), . . . , 𝐶(𝑘−1),
the evolutions of the (𝑛 + 𝑘 − 1)th LMCA are
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C
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C
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C
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C
󳰀(𝛼) , . . . , C󳰀(𝛼+k−2)

Put them back to B󳰀
m
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m = m + 1

m ⩽ PBN

C
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Figure 3: Flow chart of the recovering phase.

calculated to generate 𝐶(𝑘), . . . , 𝐶(𝑛+𝑘−1), which
correspond to 𝑛 secret shares SH

1
, . . . , SH

𝑛
.

(2.4) Divide SH
𝑖
into multiple parts of bits and put

them back to 𝐵
𝑚
. In other words, all the bit

positions in 𝐵
𝑚
, where the bits to construct 𝑠

0

come from, are filled with new bits in this step.
This modified block will be used to construct
STI
𝑖
.

(3) If some pixels in CI are not modified, namely, that the
embedding capacity of CI has not been fully utilized,
then assign them to 𝑛 stego images STI

𝑖
s directly.

(4) The dealer distributes the meaningful stego image
STI
𝑖
to the participant 𝑃

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

In Step (2.3), for simplicity, this scheme evolves 𝑛 times
on the basis of 𝑘 initial configurations. Obviously, more
evolution steps can be added into the evolution of the LMCA.

3.3. Recovering Phase. Cellular automata scheme requires
that at least 𝑘 stego images are sequential when recovering
the secret image and the cover image. Figure 3 shows the flow
chart of the recovering phase. Suppose that 𝑘 stego images
STI
𝛼
, STI
𝛼+1

, . . . , STI
𝛼+𝑘−1

are collected (1 ≤ 𝛼 ≤ 𝑛 − 𝑘 + 1);
the steps to recover the secret image and the cover image are
as follows.

(1) Get PBN pixel blocks from every stego image with
each block containing CIPNL or CIPNH pixels.
Define these blocks as 𝐵󸀠

1
, . . . , 𝐵󸀠

𝑚
, 1 ≤ 𝑚 ≤ PBN.

(2) Repeat Step (2.1) to Step (2.3) for𝑚 = 1, . . . ,PBN.



6 Mathematical Problems in Engineering

Table 1: The image quality of the stego images for various cover images with 𝑘 = 3.

Cover images Stego image 1 Stego image 2 Stego image 3
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

Airplane 51.138 0.9955 51.144 0.9955 51.138 0.9955
Boat 51.135 0.9963 51.125 0.9962 51.141 0.9963
Couple 51.142 0.9964 51.148 0.9964 51.135 0.9964
Elaine 51.138 0.9970 51.144 0.9970 51.131 0.9969
Grape 51.151 0.9965 51.147 0.9965 51.136 0.9965
Mandrill 51.133 0.9987 51.140 0.9987 51.133 0.9987
Peppers 51.155 0.9962 51.145 0.9962 51.149 0.9962
Splash 51.152 0.9950 51.148 0.9950 51.143 0.9950
Zelda 51.162 0.9958 51.145 0.9958 51.133 0.9957
Average 51.145 0.9964 51.143 0.9964 51.138 0.9964

(2.1) Use LSBC method to extract shared bits from
𝐵󸀠
𝑚
of each stego image to form a configuration

of the reverse LMCA, and then 𝑘 initial config-
urations 𝐶󸀠(0), . . . , 𝐶󸀠(𝑘−1) can be retrieved.

(2.2) Calculate 𝛼 evolutions of the reverse LMCA
by (6) and gain 𝐶󸀠(𝛼), . . . , 𝐶󸀠(𝛼+𝑘−1), namely, the
𝐶(𝑘−1), . . . , 𝐶(0) of the original LMCA.

(2.3) Divide 𝐶󸀠(𝛼+𝑘−1) into multiple parts of bits and
put them back to 𝐵󸀠

𝑚
of the stego image. Use

𝐶󸀠(𝛼), . . . , 𝐶󸀠(𝛼+𝑘−2) to construct the 𝑚th pixel
block of the secret image.

(3) After Step (2), the secret image can be recovered
losslessly. If there are idle pixels in the stego images,
then assign the idle pixels of one stego image to the
cover image CI, which happens when not all the
capacity of CI is used for secret data embedding.Then
CI can also be restored losslessly.

4. Experimental Results and Comparisons

We will evaluate this scheme from different aspects such
as the visual quality of stego images, embedding capacity,
embedding ways, and other features. Comparisons will be
made with the previous schemes that can restore both the
cover image and the secret image losslessly. These compar-
isons will show that our scheme has many better features
among the previous schemes. Two popular ways to evaluate
the quality of stego images are peak-signal to noise rate
(PSNR) and structural similarity (SSIM) [33]. PSNR is rep-
resented as follows:

PSNR = 10 log
10
(
255
2

MSE
) dB. (9)

The mean square error (MSE) of an image with𝐻×𝑊 pixels
is defined as

MSE = 1

𝐻 ×𝑊

𝐻

∑
𝑢=1

𝑊

∑
V=1

(𝑥
𝑢V − 𝑦𝑢V)

2
, (10)

where 𝑥
𝑢V is the original pixel value from the cover image and

𝑦
𝑢V is the processed pixel value of a stego image.

Figure 4: Secret image.

SSIM evaluates the quality of stego images in terms of
human visual system and structural similarity.The big values
of SSIM indicate that the fidelity of stego images is approxi-
mate to the original cover images [22]. For details about the
way to get SSIM values, please refer to [33].

4.1. Evaluation on the Quality of Stego Images. The visual
quality of stego images is related with the security of this
scheme in some extent. When this quality is too low, stego
images are easy to be suspected by vicious attackers.

Table 1 shows the quality values of the stego images
generated from various cover images of Figure 5 and the
secret image of Figure 4 with 𝑘 = 3, SIW = SIH = 256,
and CIW = CIH = 512. It is easy to know that CIPNL =

CIPNH = 8.Therefore, eight pixels ofCI are used to construct
𝑠
0
every time in sharing and embedding phase. Obviously, no

more than one least significant bit of each pixel of CI will
be changed. Hence, CI is modified slightly in sharing and
embedding phase. The average PSNR values of stego image 1,
stego image 2, and stego image 3 are 51.145, 51.143, and 51.138,
respectively.

To describe the visual quality of stego images more
precisely, Figure 6 contains enlarged partial areas of two cover
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(a) Airplane (b) Boat (c) Couple

(d) Elaine (e) Grape (f) Mandrill

(g) Peppers (h) Splash (i) Zelda

Figure 5: Cover images.

images, and enlarged partial areas of their first stego images
respectively. From visual perception, the difference between
the enlarged part of one cover image and the corresponding
part of its stego image is indistinguishable. Therefore, this
scheme can embed a secret image into a cover image effec-
tively and generate stego images with relatively high quality.

4.2. Analysis of the Embeddable Capacity, Embedding Ways,
and Other Features. In this paper, one-dimensional memory
cellular automata is used and each group of (𝑘 − 1) secret
pixels could be seen as being embedded into each eight-bit
number 𝑠

0
. If 𝑘 increases (resp., decreases), more (resp., less)

pixels will be embedded into 𝑠
0
each time. Hence, factor

𝑘 affects the embeddable secret capacity. Suppose that the
number of pixels to construct 𝑠

0
is ℎ; if ℎ becomes smaller,

then 𝑠
0
will be constructed from fewer pixels and the value

of each affected pixel of stego images will change more.
Hence, the visual quality of stego images will become worse.
Meanwhile, a smaller value of ℎ brings larger embeddable
secret capacity. On the contrary, a bigger value of ℎ brings the
better visual quality of stego images and smaller embeddable
secret capacity. One can find that there is a tradeoff between
the embeddable secret capacity and the visual quality of stego
images. Therefore, factors 𝑘 and ℎ affect the embeddable
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(a) Boat (original) (b) A stego image from (a), PSNR = 51.135 dB

(c) Splash (original) (d) A stego image from (c), PSNR = 51.152 dB

Figure 6: Comparison of enlarged partial areas of the cover images and the corresponding stego images.

capacity whose value is (𝑘 − 1) × ⌊(CIH × CIW)/ℎ⌋, ℎ ∈

[2, 8]. Let us define a secret image sharing scheme with
steganography which can restore both the secret image and
the cover image losslessly as a perfect reversible scheme.
From Table 2, one can find that this scheme and [22] have
the biggest value of maximum capacity among the perfect
reversible schemes. The schemes of [26, 27] will have the
same maximum capacity as this scheme and [22] only when
𝑚 ≥ 16. However, modulus operation often leads to overflow
or other issues. Therefore, the schemes using LSBC can have
the full maximum capacity..

To describe an embedding way, there are two factors,
which are the method to conceal secret data into a cover
image, namely, steganography method, and the method to
spread secret data over a cover image, namely, embedding
method. Table 2 shows the steganography methods used by
different perfect reversible schemes. The threshold value 𝑘
is 4 for [24] and 3 for other schemes in Table 2. Modulus
operation is more popular while LSBC can make a scheme
have a bigger value ofmaximumcapacity and other better fea-
tures. For embedding methods, we can have two definitions
which are static embedding and dynamic embedding. Static
embedding is the method to modify part of a cover image
severely to embed secret data. However, dynamic embedding
will consider the whole capacity and try to disperse secret

data over all the cover image to make the whole extent of
modifications to the cover image as low as possible. Besides,
if part of a stego image is modified severely, it may attract
attackers’ attention. Hence, dynamic embedding can help
improve the visual quality and security of stego images. Both
this scheme and [22] use dynamic embedding. Besides, if
all the schemes embed the same amount of secret data, the
schemes with larger embedding capacity will generate stego
images with better visual quality relatively. Therefore, these
two schemes can generate stego images with better visual
quality and security.

Furthermore, some other defects in the schemes using
modulus operation need to be discussed here. Firstly, Wu
et al. [27] pointed out that their scheme and the scheme of
[26] cannot implement the (6,6)-threshold case directly. This
is caused by the characteristics of modulus operation and
the design of their schemes. If these two schemes want to
implement the (6,6)-threshold case, they need extra storage
space and special work. Secondly, the modulus value 𝑚 is
not independent in the schemes of [24, 27] but is affected by
the threshold value 𝑘. For example, the schemes of [26, 27]
have the same capacity with the same 𝑚, but they generate
stego images with different visual quality while 𝑘 equals 3.
The reason is that 𝑚 can be 3 in [26] and the optimal value
of 𝑚 is 16 in [27]. It is impossible for [27] to have 𝑚 as 3 or
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Table 2: Comparisons with previous perfect reversible schemes.

Schemes
Functionality

Computation
complexity

Steganographic
method

Without extra
expansion/storage

Dynamic
embedding PSNR (dB) Maximum capacity (pixels)

Lin et al. [24] 𝑂(𝑛log2𝑛) Modulus
operation Yes No 43.38

CIH × CIW × (𝑘 − 3)

3

Chang et al. [25] 𝑂(𝑛log2𝑛) Sudoku table No No 47.13
CIH × CIW × (𝑘 − 1)

4

Lin and Chan [26] 𝑂(𝑛log2𝑛) Modulus
operation Yes No 47.81

CIH × CIW × (𝑘 − 1)

⌈log
𝑚
255⌉

Wu et al. [27] 𝑂 (𝑛)
Modulus
operation Yes No 37.99

CIH × CIW × (𝑘 − 1)

⌈log
𝑚
255⌉

Hu et al. [22] 𝑂(𝑛log2𝑛) LSBC Yes Yes 51.86
CIH × CIW × (𝑘 − 1)

2

Ours 𝑂 (𝑛) LSBC Yes Yes 51.15
CIH × CIW × (𝑘 − 1)

2

Table 3: Comparisons of LSBC and modulus operation.

Methods

Features

Operation
type

Computation
cost

Without
overflow issue

Utilize all pixels
from a cover image

Affecting the
selection of

threshold values

Affected by the
selection of

threshold values

LSBC Logical shift
operation Relatively low Yes Yes No No

Modulus
operation

Modulus
operation

Relatively
high No No Yes Yes

any value less than 16 when 𝑘 equals 3 and no extra special
work is added. However, [26] can generate the stego images
with the best visual quality when𝑚 equals 3. The smaller the
value of𝑚, the less themodification on each pixel of the cover
image. If the capacity of one scheme is enough to embed a
secret image, then it is best to let the value of 𝑚 be as small
as possible. Therefore, the visual quality of the stego images
generated by [26] is much better than that by [27] even if
they appear to have the same capacity. Moreover, 𝑚 is not
independent and its optimal value is 7 when 𝑘 equals 4 in
[24]. The capacity of [24] is enough to embed a secret image
with the size 256 × 256 into a cover image with the size
512 × 512 when 𝑘 equals 4, no matter what the value of𝑚 is.
However,𝑚 cannot be 3 or 5 due to the design of the scheme
and the characteristics of modulus operation. Hence, the
visual quality of the stego images generated by the schemes of
[22, 25, 26] and our scheme is much better than that by [24]
even with a smaller value of 𝑘. Our scheme does not have the
two defects above. From Table 2, we can see that our scheme
can generate stego images with better visual quality than all
the previous schemes of [24, 26, 27] usingmodulus operation.
In order to know the differences between LSBC andmodulus
operation better, Table 3 shows the features of them. One can
find that LSBC has better characteristics in many aspects.

Lastly, other interesting features of this scheme have also
been studied. The first one is that this scheme is one of the
fastest schemes that can restore both the secret image and the
cover image losslessly in the world by far. Cellular automata
have very low computation complexity and support parallel

computing. This scheme can run faster when using parallel
computing. In other words, this scheme can make better use
of multicore computer after a slight modification. Besides,
LSBC mainly uses logical shift operations and has lower
computation complexity than that of modulus operation.
The second one is that this scheme can resist differential
attack. Cellular automata has the characteristic of resisting
differential attack. Generally, if one small change in the
original secret image causes a significant change in each
generated share with respect to diffusion and confusion, then
any differential attack is useless. Our scheme is sensitive with
respect to minor changes in the original secret image. The
third one is that this scheme can protect the secret image
effectively if 𝑘 − 1 stego images are obtained by a hacker, or
even ifmore than 𝑘−1 stego images are gained by him/her. For
the latter case, if there are no 𝑘 continuous stego images, this
will notmeet the requirement of cellular automata to conduct
the reverse evolutions, which requires that at least 𝑘 stego
images for restoring the secret image should be continuous.
Then, this hacker cannot get any information about the secret
image. Generally, in recovering phase, any 𝑘 − 1 or fewer
shadows cannot provide sufficient information to restore the
original secret image. For the proof of this feature, please refer
to Section 3.2 in the scheme of [31].

5. Conclusions

It is important to restore both the secret image and the cover
image losslessly in some situations, such as the artistic,
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medical, and legal domains.There are already some excellent
schemes that can achieve this purpose. The new scheme
proposed in this paper avoids the defects existing in somepre-
vious perfect reversible schemes and has the better features of
low computation complexity, resisting differential attack, par-
allel computing, relatively larger value of maximum capacity,
better visual quality of stego images, dynamic embedding,
and so on.

Notations

𝑘: The threshold of this scheme
𝑛: The number of the participants
𝑟: Radius of neighborhood for the LMCA
𝑁: Number of cells in a configuration of the

LMCA
CI: The cover image
SI: The secret image
𝑃
1
, . . . , 𝑃

𝑛
: The participants

SH
𝑖
: The shares to be distributed to the

participant 𝑃
𝑖

STI
𝑖
: The stego image corresponding to 𝑃

𝑖

CIW,CIH: The width and height of CI, respectively
SIW, SIH: The width and height of SI, respectively
𝑠
0
: The number generated by LSBC and its

length is 8 bits
CIPNL: The size of a smaller pixel block of CI, and

the block is used to construct 𝑠
0

CIPNH: The size of a bigger pixel block of CI, and
the block is used to construct 𝑠

0
, CIPNL ≤

CIPNH.
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