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Abstract

Secure sharing of digital images is becoming an important issue. Consequently, many schemes for ensuring image
sharing security have been proposed. However, existing approaches focus on the sharing of a single image, rather
than multiple images. We propose three kinds of sharing methods that progressively reveal n given secret images
according to the sensitivity level of each image. Method 1 divides each secret image into n parts and then combines
and hides the parts of the images to get n steganographic (stego) JPEG codes of equal importance. Method 2 is similar;
however, it allocates different stego JPEG codes of different ‘weights’ to indicate their strength. Method 3 first applies
traditional threshold-sharing to the n secret images, then progressively shares k keys, and finally combines the
two sharing results to get n stego JPEG codes. In the recovery phase, various parameters are compared to a pre-specified
low/middle/high (L/M/H) threshold and, according to the respective method, determine whether or not secret images
are reconstructed and the quality of the images reconstructed. The results of experiments conducted verify the efficacy of
our methods.
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1 Introduction
The Internet has become an integral part of human life
and society. This public facility constantly transmitted
both public and private information. Consequently, the
protection of sensitive information transmitted through
this medium has become an important issue. Blakley
and Shamir [1,2] first conceptualized the idea of a (t, n)
threshold secret sharing scheme, in which at least a
minimum number t out of n participants are required
in order to recover the secret. This scheme has been
extended by various researchers [3-16] and successfully
applied to activities such as protection of PDF files [12],
visual cryptography [13,14], and network communica-
tion [15]. For digital media, many schemes for ensuring
image sharing security have been proposed. For ex-
ample, Thien and Lin [8] proposed using n shares, in
which each share is t times smaller than the given se-
cret image, to share a secret image. Wang and Shyu [4]
proposed a scalable secret image sharing scheme. Lin
and Tsai proposed image sharing schemes with authen-
tication capabilities [9], or with reduction of share size
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[10]. Further, some approaches are devoted to progres-
sively decoding secrets [3-7].
Besides sharing, the approaches using data hiding

[17-19] or watermarking [20-24] have also offered other
kinds of protection. In general, a hiding method can
embed a secret file in a host image. In data hiding, the
researchers usually consider the issues such as the size
ratio between the secret file and the host image; and
the impact on the host image due to embedding. As for
the use of watermark, people can embed a watermark
in a digital image in order to authenticate or claim the
ownership of the digital image. In the design of water-
marking methods, the researchers usually pay more at-
tention to the work of resisting attacks such as copy
attack, tampering, and cropping. Nowadays, the study
of watermarks has covered not only software [21,24]
but also hardware [22,23]. Notably, a sharing method
often has a post-processing which utilizes data hiding
or some kinds of authentication tool. This is because
each generated share looks like noise and may attract
the attention of hackers; whereas data hiding can hide
the generated shares in ordinary images. An authentica-
tion tool might also be needed in order to verify the
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Figure 1 Rearranging the values of the original sector. MSB and
LSB are the abbreviations for most and least significant
bit, respectively.
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integrity. For example, ref. [12] uses the SHA-256 hash
function to authenticate the file.
Our study here focuses on sharing. Among the exist-

ing image sharing approaches, the secret being shared
is often assumed to be a single image, rather than mul-
tiple images. Repeated use of single-image sharing
method often causes the user to neglect the cross rela-
tion between distinct images and makes the setting of
recovery thresholds not quite suitable. For example, in
the sharing process of the photos of criminals, if we
only have single-image sharing software, we might just
use one set of thresholds for all photos. However, if we
have multiple-image sharing software, which requires
us to input the security level of each photo being proc-
essed simultaneously, then we will be more likely to
take a closer look of the case of each criminal, then dis-
tinguish the photos, and finally give a stricter threshold
setting for the photos of the more serious crime
offenders.
When multiple images are being shared, the fact that

the security/sensitivity of some images might be higher
than that of the other images has to be considered. In
this paper, we consider how to share several secret im-
ages simultaneously. This paper proposes three progres-
sive sharing methods (methods 1, 2, and 3) that use
sensitivity-controlled decoding. The sensitive images, i.
e., the secret images, are divided into several image
groups according to security level, with the more sensi-
tive groups requiring more steganographic images (ste-
gos) to uncover the images they contain. Specifically,
after sharing and hiding, all stegos in method 1 are of
equal weight, whereas the stegos in method 2 are quite
different; some have more weight, and hence their
secret-hiding ability is more powerful than that of the
other stegos. Finally, in method 3, some stegos are so
powerful that they are called guardian stegos: in this
method, no information can be revealed without a mini-
mum number of guardian stegos. Thus, in our proposed
methods, secret images in each security group are re-
vealed progressively when a user receives enough stegos
(method 1), the sum of the received weights is sufficient
(method 2), or a sufficient number of guardian stegos is
present (method 3).

2 Background and related work
2.1 Secret sharing: (t, n) sharing
Thien and Lin [8] proposed the (t, n) threshold method,
which distributes a secret image among n shares. First,
the secret image is divided into non-overlapping sectors
of t pixels each. Then, the following polynomial is used
to encode every sector:

f xð Þ ¼ a0 þ a1xþ a2x
2 þ⋯þ at−1x

t−1 modpð Þ; ð1Þ
where a0,…., at−1 are the t pixel values in a sector and x
is a user-specified index. Here, p is a prime number (or
p is a whole power of 2, such as 128 or 256, if the arith-
metic +, −, ×, and ÷ are in terms of Galois field opera-
tions). Finally, a share, whose index is x, is generated
after every encoded result of f(x) is concatenated. Not-
ably, n unique indices {x1, x2, …, xn} are selected at the
beginning in order to create n shares, and each share
size is 1/t of the original secret image.
In the decoding phase, if at least a minimum number

t of the n shares is available, the original secret image
can be reconstructed using Lagrange interpolation. The
secret image is revealed if at least a minimum number t
of the n shares is gathered; otherwise, only noise is
obtained.

2.2 Progressive sharing: [r1&r2&…&rk; n] sharing
Chen and Lin [3] developed a progressive sharing method.
They used k thresholds - specifically, {r1 ≤ r2 ≤… ≤ rk} -
with each threshold less than or equal to n. For example,
for [(2&3&4); n], the three threshold values are r1 = 2, r2 =
3, and r3 = 4. Then, the image is partitioned into multiple
sectors comprising nine (= r1 + r2 + r3) pixels each. To
share a sector - for example, the nine values {146, 167,
255, 60, 124, 165, 211, 73, 25} - first, the rearranging
process illustrated in Figure 1 transforms the nine values
into nine new values {230, 21, 159, 23, 83, 155, 227, 136,
207}. In the above, note that the binary representation of
230 is 11100110, exactly the first eight digits read from
the first column in Figure 1. The first r1 = 2 transformed
set of values, {230, 21}, gives the first polynomial in Equa-
tion 2. The next r2 = 3 transformed set of values, {159, 23,
83}, creates the second polynomial in Equation 3. The
final r3 = 4 transformed set of values, {155, 227, 136, 207},
creates the third polynomial in Equation 4.

f 1ð Þ xð Þ ¼ 230þ 21x modpð Þ ð2Þ
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f 2ð Þ xð Þ ¼ 159þ 23xþ 83x2 modpð Þ ð3Þ

f 3ð Þ xð Þ ¼ 155þ 227xþ 136x2 þ 207x3 modpð Þ ð4Þ

Here, as stated in Section 2.1, either let p be a prime
number, or let p be a whole power of 2, such as 128 or
256 (if we do all arithmetic in the Galois field). Now, if
any two of the generated shares are available, Lagrange
interpolation can be used to reconstruct the two coeffi-
cients (230 and 21) in Equation 2. By reversing the re-
arranging process, we get the rough sector, {128, 128,
192, 0, 64, 128, 192, 64, 0}, of the original sector. If any
three of the generated shares are available, we can re-
construct the 2 + 3 = 5 coefficients of Equations 2 and 3
and get an approximate sector, {144, 160, 248, 56, 112,
160, 208, 64, 16}, for the original sector. Finally, if any
four of the generated shares are available, we can recon-
struct the coefficients of Equations 2 to 4 and get the
original sector, {146, 167, 255, 60, 124, 165, 211, 73, 25},
without errors.

3 Proposed methods
We propose three methods: method 1 is a basic progres-
sive sharing method that divides n secret images into t
groups according to sensitivity levels. In this method, for
each j, the sensitivity level of the jth group must be lower
than that of the j + 1th group. Further, the user provides
several thresholds for each secret image group. For in-
stance, if r1 ≤ r2 ≤… ≤ rk is given for a specified group, and
if less than r1 shadows are received, nothing can be dis-
played. However, if r1 shadows are available, then the user
can get a low-quality version of the images in that group.
The more shadows obtained, the better the quality of the
recovered images. Finally, if rk shadows are available, then
the user can recover the original images of that group
without any errors. This paragraph just mentioned
‘shadow’; and a shadow is formed of several ‘shares’. In
fact, in all three proposed methods, each shadow is
formed of t shares (because each of the t groups offers a
share to the mentioned shadow). The construction detail
of the shadows will be in step 4 of the three encoding al-
gorithms in Subsections 3.1.1, 3.2.1, and 3.3.1 below.
Method 2 assigns different weights to different ‘cover’

image groups. The smaller the weight value of a cover
group, the smaller the number of shadows hidden in
that cover group. The secret images are also partitioned
into groups. For each secret image group, for example,
secret group j, multiple threshold values (for instance
rj1 ≤ rj2 ≤… ≤ rjk) are specified by the user. Subse-
quently, during the decoding, if the sum of the weights
of the received cover groups is at least rj1, then the user
can recover a low-quality version of the images in se-
cret group j. The greater the sum of the received
weights, the better the quality of the recovered secret
images. Finally, if the sum of the weights equals rjk,
then we can recover all original images in secret group
j without errors.
Method 3 designates some of the stego images to be

guardian stegos. In this method, if a sufficient minimum
number of these guardian stegos are received, then low-
quality secret images can be reconstructed, as long as
the number of received stego images is also at or above
a minimum threshold value. The more guardian stegos
received, the better the quality of the recovered images,
as long as the number of received stego images is also at
certain corresponding threshold values. Finally, if all the
guardian stegos are received, then all the secret images
can be reconstructed without errors, as long as the num-
ber of stego images received is also at or above certain
threshold values.

3.1 Method 1: basic form (of sharing with sensitivity-
controlled decoding)
3.1.1 Encoding phase
Input: n secret images {S1, S2, …, Sn}, n cover images
(each is in JPEG form), and t sets of ‘type-r progressive-
ness thresholds’, {[r11 ≤ r12 ≤… ≤ r1k], [r21 ≤ r22 ≤… ≤ r2k],
…, [rt1 ≤ rt2 ≤… ≤ rtk]}.
Output: n JPEG stego codes.
Step 1: Divide {S1, …, Sn} into t groups according to

the sensitivity levels of {S1, …, Sn}. (For each j = 1, …, t −
1, the sensitivity level of group j must be lower than that
of group j + 1.)
Step 2: Rearrange the data sequence of each secret

image as follows:
Step 2.1: For each non-overlapping 8 × 8 block, per-

form discrete cosine transform (DCT). Then, according
to the zigzag order, only grab DCT values from the dir-
ect current (DC) term to the final non-zero value of the
alternating current (AC) terms. (Notably, if a quantization
of DCT coefficients has been used, then apply Hoffman
coding to the residual image which is the difference image
between the original image and the image decompressed
from the quantized DCT coefficients.)
Step 2.2: For each DCT block, fill in zeroes so that

the DCT value of the block is a multiple of RSUM, the
local sum of the type-r progressiveness thresholds; i.e.,
RSUM = RSUMj = rj1 + rj2 +… + rjk if the image is in the
jth group. Then, rearrange the data sequence of the
DCT block in accordance with Figure 2.
Step 3: For each secret group j = 1, 2, …, t, use

[(rj1&rj2&…&rjk); n] progressive sharing to get n shares,
which share the DCT data of each image in group j.
(Remark: if lossless reconstruction is also wanted, then
for each secret group j = 1, 2, …, t, use rjk as the thresh-
old value in traditional (non-progressive) sharing to
generate another n shares, which share the Huffman



Figure 2 DCT value sequence rearrangement order. In Figure 2,
the block is adjusted (by filling in zeroes) so that the number of DCT
elements (in the block) is a multiple of the integer constant ‘RSUM’.

Chang et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:11 Page 4 of 19
codes (see step 2.1) of the residual images in group j.
Now, for i = 1 to n, attach share i of Huffman code to
share i of DCT data. This pairwise binding will reduce
n + n shares to n shares.)
Step 4: In step 3, each secret group generated n

shares, namely, {ith share | i = 1, 2, …, n}. Now, for i = 1,
2, …, n, concatenate (i.e., physically link together) the ith
shares across all t secret groups to get the ith shadow.
Note that there are t secret groups, and each shadow re-
ceives one share from each secret group. Hence, each
shadow is formed of t shares. For example, shadow 1 is
in the form (share 1 of group 1, share 1 of group 2, …,
share 1 of group t).
Step 5: Use the JPEG data hiding method [17] to hide

the n shadows in the respective n JPEG codes of the n
cover images.

3.1.2 Decoding phase
If (any) r11 of the n stego images are available, then we
can extract the shadows from the r11 stego images: they
can then be used to reconstruct low-quality versions of
all the secret images in group 1. If (any) r12 of the n
stego images are available, the quality of the recovered
group 1 secret images will be better. Finally, if (any) r1k
of the n stego images are available, then the recovered
group 1 secret images will all be lossless. Similarly, for
each j = 2, …, t, if (any) rj1, rj2, … of the n stego images
are available, we get the progressive recovery effect men-
tioned above for group j.

3.2 Method 2: sensitivity-controlled decoding using
weights
3.2.1 Encoding phase
Input: n secret images {S1, S2, …, Sn}, n cover images
(each is in JPEG form), t sets of ‘type-r progressiveness
thresholds’, {[r11 ≤ r12 ≤… ≤ r1k], [r21 ≤ r22 ≤… ≤ r2k], …,
[rt1 ≤ rt2 ≤… ≤ rtk]}, and T positive integers {w1, w2, …,
wT} called ‘weights’. Note: w1 +w2 +… +wT = n.
Output: n JPEG stego codes.
Steps 1 to 4: Do steps 1 to 4 in Section 3.1.1.
Step 5: Assign the n cover images to T cover groups

so that each cover group has at least one cover image.
Then, for each j = 1, 2, …, T, assign weight wj to cover
group j.
Step 6: Use the JPEG data hiding method [17] to hide

the w1 shadows in the JPEGs of the first cover group,
the w2 shadows in the JPEGs of the second cover group,
and so on. Since w1 +w2 +… +wT = n, hiding of the n
generated shadows is complete when the final wT

shadows are hidden in the tth cover group.

3.2.2 Decoding phase
The decoding is carried out according to the total sum
of the weights of the received cover groups. If the total
sum of the received weights corresponds to r11, then we
can extract the r11 shadows from the received cover
groups and reconstruct a low-quality version of all the
images in secret group 1. If the total sum of the received
weights corresponds to r12, then the recovered images of
secret group 1 will be of a better quality. Finally, if the
total sum of the received weights corresponds to r1k,
then the recovered images of secret group 1 will be loss-
less. Analogously, for each j = 2, …, t, if the total sum of
the received weights correspond to rj1, rj2, …, or rjk, we
get the above progressive recovery effect for the jth se-
cret group.

3.3 Method 3: sensitivity-controlled decoding with guardian
stegos
Thus far, for each secret image group, both methods 1
and 2 used ‘multiple’ progressiveness thresholds to con-
trol the progressive effect of that secret image group (for
example, the parameters [r11 ≤ r12 ≤… ≤ r1k] are used for
secret image group 1, the parameters [r21 ≤ r22 ≤… ≤ r2k]
are used for secret image group 2, and so on). In con-
trast, method 3 uses only one rj as the ‘single’ threshold
for the jth secret image group (true for each j = 1, 2, …).
The progressive effect of method 3 is achieved by other
types of parameters (parameters of type q, rather than of
type r).

3.3.1 Encoding phase
Input: n secret images {S1, S2, …, Sn}, n cover images
(each is in JPEG form), t positive integer parameters,
{r1 ≤ r2 ≤… ≤ rt}, k keys, {Key1, Key2, …, Keyk}, and k
positive integers, [q1 ≤ q2 ≤… ≤ qk = k], called ‘type-q pro-
gressiveness parameters’. (Note: type-q parameters are
for the progressive sharing of keys, which is different



Figure 3 The six 512 × 512 cover images: {Barbara, Lake, Couple,
Baboon, Indian, Bridge}.
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from the t sets of type-r thresholds of methods 1 and 2;
methods 1 and 2 use no keys.)
Output: n JPEG stego codes.
Step 1: Do step 1 in Section 3.1.1.
Step 2: Rearrange the data sequence of each secret

image and encrypt each value as follows:
Step 2.1: Do step 2.1 in Section 3.1.1.
Step 2.2: Partition the DCT coefficients of each block

into k non-overlapping regions according to the zigzag
sequence. Region 1 is the most important because it cor-
responds to the lowest-frequency area, followed by re-
gion 2, and so on. Then, for each i = 1, 2, …, k, use Keyi
to encrypt the DCT values belonging to region i. Finally,
use Keyk again to encrypt the Huffman code generated
in step 2.1.
Step 3: For each j = 1, 2, …, t, use rj as the threshold

value in the threshold-sharing to create n shares that
share the encrypted data sequence of each image of the
jth secret group.
Step 4: For i = 1, 2, …, n, combine the ith shares of all

the secret images in the input to get the ith shadow.
Step 5: For each i = 1, 2, …, k, use qi as the threshold

value in the (qi, k) threshold-sharing to share Keyi
among k key-shares. (consequently, among these k key-
shares of Keyi, any qi key-shares can recover Keyi with-
out errors.)
Step 6: For i = 1, 2, …, k, combine the ith key-shares

of all keys in the database to get the ith key-shadow.
Step 7: Use the JPEG data hiding method [17] to hide

the n shadows in the respective n JPEG codes of the n
cover images.
Step 8: Choose k of the n cover images and use the

JPEG data hiding method [17] to hide their respective k
key-shadows in the k JPEG codes of the k cover images
chosen. Note: the k stego images generated in this way
are called ‘guardian stegos’.
Thus, for k keys, there are k guardian stegos. Fur-

ther, the actual number of progressive levels is less
than or equal to k (equal to k if all k progressiveness
parameters, [q1 ≤ q2 ≤… ≤ qk], are mutually distinct,
i.e., q1 < q2 <… < qk).

3.3.2 Decoding phase
If (any) r1 of the n stego images are available, we can ex-
tract the q1 key-shadows and the r1 shadows from the r1
stego images, as long as the r1 stego images include q1
guardian stegos. Subsequently, we can recover the
encrypted version of all the secret images in secret group
1, reconstruct the key Key1, and use Key1 to decrypt the
encrypted version of the images in secret group 1. This
process reveals the low-quality version of all the secret
images in secret group 1. If the r1 stego images include
q2 guardian stegos, we can reconstruct the key Key2,
resulting in the recovered version of the secret images in
group 1 having improved quality. Finally, if the r1 stego
images include k guardian stegos, the recovered secret
images in group 1 are all lossless. Similarly, for each j =
2, …, t, if (any) rj of the n stego images are available,
then, as long as the rj stego images include the q1, q2, …,
or qk guardian stegos, we get the above progressive re-
covery effect for the secret images in group j.

4 Experimental results
We conducted experiments 1, 2, and 3 for methods 1, 2,
and 3, respectively. We utilized the six 512 × 512 cover
images, {Barbara, Lake, Couple, Baboon, Indian, Bridge},
shown in Figure 3 in all the experiments. We also uti-
lized the six secret images, {House, Cameraman, Lena,
Pepper, Jet, Blonde}, shown in Figure 4 in each experi-
ment; however, because of the limitations imposed on
size by the different methods, the width and height of
each secret image were smaller in experiments 1 and 2,
and larger in experiment 3.
We measured the quality of each stego image and re-

covered image using PSNR, defined as

PSNR ¼ 10� log10
2552

MSE
ð5Þ

Here, the mean square error (MSE) is given by

MSE ¼ 1
height� width

Xheight

i¼1

Xwidth
j¼1

pixelij−pixel
0
ij

� �2

ð6Þ

for an image with height × width pixels, and pixelij and
pixel'ij are, respectively, the value of the pixel at position
(i, j) of the two compared images. For the readers' con-
venience, structural similarity [25] (SSIM) is also listed.
Notably, the better the image quality, the closer the dis-
tance between SSIM value and 1.



Figure 4 The six secret images: {House, Cameraman, Lena, Pepper,
Jet, Blonde}.
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4.1 Experimental results for method 1
In this experiment, the inputs comprised the six 128 ×
128 secret images and the six 512 × 512 cover images
(Figure 3). We divided the six images into three groups
according to the sensitivity levels of the six secret im-
ages, [House, Cameraman], [Lena, Pepper], and [Jet,
Blonde], and used [(r11&r12&r13); n] = [(2&3&4); 6] in
the progressive sharing to distribute the first group's im-
ages, [House, Cameraman], among {share1 … share6}.
Similarly, we used [(r21&r22&r23); n] = [(3&4&5); 6] in
the progressive sharing to distribute the second group's
images, [Lena, Pepper], among {share1 … share6}. Finally,
we used [(r31&r32&r33); n] = [(4&5&6); 6] in the progres-
sive sharing to distribute the third group's images, [Jet,
Blonde], among {share1 … share6}.
To complete the encoding, we constructed the first

shadow by integrating all share1s, the second shadow by
integrating all share2s, and so on. Finally, we used the
JPEG data hiding method [17] to hide the six shadows in
the respective six JPEG codes of the six cover images.
In the decoding phase, for the scenario where two of

the six stego images were available, we first extracted the
two shadows hidden in the two available stego images.
Then, by inverse-sharing and because r11 = 2, we were
able to recover the low-quality version of both secret
images, [House, Cameraman], in group 1. For the sce-
nario where three of the six stego images were avail-
able, we first extracted the three shadows hidden in the
three available stego images. Then, by inverse-sharing
and because r21 = 3 and r12 = 3, we were able to recover
the low-quality version of both secret images, [Lena,
Pepper], in group 2, and the medium-quality version of
both secret images, [House, Cameraman], in group 1,
respectively.
Similarly, for the scenario where any four of the six

stego images were available, because r31 = 4, r22 = 4, and
r13 = 4, we were able to recover the low-quality version
of both secret images, [Jet, Blonde], in group 3, the
medium-quality version of both secret images, [Lena,
Pepper], in group 2, and the lossless version of both se-
cret images, [House, Cameraman], in group 1, respect-
ively. For the scenario where any five of the six stego
images were available, because r32 = 5, r13 = 4 < 5, and
r23 = 5, we were able to recover the medium-quality ver-
sion of both secret images, [Jet, Blonde], in group 3, and
the lossless version of each secret image in the first
group, [Lena, Pepper], and the second group, [House,
Cameraman], respectively. Finally, for the scenario where
all six stego images were available, because rj3 ≤ 6 for
each j = 1, 2, 3, we were able to recover all six secret im-
ages without error, irrespective of the group to which
they belonged.
Table 1 shows the quality of the progressively recov-

ered secret images during the decoding phase. Note that,
after encoding, when we decompressed the six JPEG
stego codes, which contained the secrets hiding in them,
the PSNRs of the decompressed images were between
39.6 and 42 dB, as shown in Table 1. The quality of the
images revealed on level 1 (i.e., the low-quality version)
is between 24.95 and 27.33 dB, and the quality revealed
on level 2 (i.e., medium-quality version) is between 30.35
and 33.09 dB. The secret images were recovered without
errors on level 3 of the reconstruction.

4.2 Experimental results for method 2
In this experiment, the input comprised the six 128 × 128
secret images, the six 512 × 512 cover images (Figure 3),
and three weight values {1, 2, 3}. The six images were
again divided into three groups according to the sensitivity
levels of the secret images: [House, Cameraman], [Lena,
Pepper], and [Jet, Blonde]. Then, in the progressive shar-
ing, [(r11&r12); n] = [(3&4); 6] was used to distribute each
of the first group's secret images, [House, Cameraman],
among {share1 … share6} so that the ‘rough’ recovery of
any image (say, House) in this group would need r11 = 3
shares, whereas the lossless recovery of that image would
need r12 = 4 shares. Similarly, we used [(r21&r22); n] =
[(4&5); 6] in the progressive sharing to distribute each
of the second group's images, [Lena, Pepper], among
{share1 … share6}. Finally, we used [(r31&r32); n] =
[(5&6); 6] in the progressive sharing to distribute each
of the third group's images, [Jet, Blonde], among
{share1 … share6}.
The first shadow was generated by integrating the

share1s of all six secret images, the second by integrating
the share2s of all six secret images, and so on. Let |SS|
denote the size of a shadow. We also partitioned the six
cover images into three groups, [Barbara, Lake], [Couple,
Baboon], and [Indian, Bridge], and assigned them
weights 1, 2, and 3, respectively. Finally, we bound all
the JPEG codes of the cover images of the first cover
group together as a unit. Then, we treated this unit as a



Table 1 Image quality of method 1 (three-level progressive sharing)

Secret
images

Progressive
thresholds
(rj1, rj2, rj3)

Image quality of recovery on level 1 Image quality of recovery on level 2 Quality of stego images

PSNR SSIM MSE PSNR SSIM MSE Stego images PSNR SSIM MSE

House 2&3&4 26.29 0.795 152.8 33.06 0.905 32.1 Barbara 39.60 0.975 7.1

Cameraman 2&3&4 24.95 0.787 208.0 30.35 0.897 60.0 Lake 42.00 0.977 4.1

Lena 3&4&5 26.40 0.777 149.0 32.15 0.902 39.6 Couple 41.63 0.972 4.5

Pepper 3&4&5 26.05 0.804 161.5 33.09 0.924 31.9 Baboon 41.22 0.979 4.9

Jet 4&5&6 25.86 0.817 168.7 31.66 0.914 44.4 Indian 41.92 0.971 4.2

Blonde 4&5&6 27.33 0.797 120.2 32.83 0.905 33.9 Bridge 40.50 0.977 5.8

On level 3, the recovery is lossless.
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cover medium and used the JPEG data hiding method
[17] to hide only one shadow in this cover medium (we
hid only one shadow because w1 = 1). The shadow hid-
den here was shadow #1, with size being w1 × |SS| =
|SS|. Then, we bound all the JPEG codes of the cover
images of the second cover group together as a unit and
used the hiding method [17] to hide two (2 = w2)
shadows (i.e., shadows #2 and #3) in this unit; thus, the
secret data hidden in the second cover group had size
w2 × |SS| = 2 × |SS|. Finally, we bound all the JPEG codes
of the cover images of the third cover group together as
a unit and used the hiding method to hide in this unit
three (3 = w3) shadows (i.e., shadows #4, #5, and #6).
Hence, the data being hidden in the third cover group
had size w3 × |SS| = 3 × |SS|.
For the scenario where we received all stego JPEG

codes of the first cover group, [Barbara, Lake], we ex-
tracted the only shadow (i.e., shadow #1) hidden in the
first cover group. However, nothing could be displayed
because the weight, w1 = 1, was too small. When we did
not receive the first cover group, but instead, received all
the stego JPEG codes of the second cover group,
[Couple, Baboon], we were only able to extract the two
shadows (i.e., shadows #2 and #3) hidden in the second
cover group. Similarly, nothing could be displayed be-
cause the weights w2 = 2 were still not sufficiently large.
Finally, for a scenario where we received neither the first
cover group nor the second cover group but received all
the stego JPEG codes of the third cover group, [Indian,
Bridge], we first extracted the three shadows (i.e.,
shadows #4, #5, and #6) hidden in the third cover group.
Then, by inverse-sharing and because threshold r11 = 3,
we were able to recover the low-quality version of
each secret image in the first secret group, [House,
Cameraman].
For the scenario where we received all four stego JPEG

codes for both the first cover group, [Barbara, Lake], and
the second cover group, [Couple, Baboon], we first ex-
tracted the w1 = 1 shadow hidden in the first cover group
and then extracted the w2 = 2 shadows hidden in the sec-
ond cover group. Thus, we extracted w1 +w2 = 1 + 2 = 3
shadows, namely, {shadows #1, #2, and #3}. Then, by
inverse-sharing and because r11 = 3, we were able to re-
cover the low-quality version of each secret image in the
first secret group, [House, Cameraman].
Similarly, for the scenario where we received all four

stego JPEG codes of both the first cover group, [Barbara,
Lake], and the third cover group, [Indian, Bridge], we
were able to extract w1 + w3 = 1 + 3 = 4 shadows, namely,
{shadows #1, #4, #5, and #6}. Thus, because r21 = 4 and
r12 = 4, we were able to recover the low-quality version
of each secret image in the second secret group, [Lena,
Pepper], and the lossless version of each secret image in
the first secret group, [House, Cameraman], respectively.
For the scenario where we received all four stego JPEG

codes of both the second cover group, [Couple, Baboon],
and the third cover group, [Indian, Bridge], we were able
to extract w2 + w3 = 2 + 3 = 5 shadows, namely, {shadows
#2, #3, #4, #5, and #6}. Thus, because r31 = 5, r12 = 4 < 5,
and r22 = 5, we were able to recover the low-quality ver-
sion of each secret image in the third secret group, and
the lossless version of each secret image in the first and
second secret groups, respectively. Finally, for the sce-
nario where we received all six stego JPEG codes, be-
cause rj2 ≤ 6 for each j = 1, 2, 3, we were able to recover
all six secret images without errors, irrespective of the
secret group to which they belonged.
Table 2 shows the quality of the progressively recov-

ered secret images during the decoding phase. Note that,
in the encoding phase, when we decompressed the six
JPEG stego codes, which contained the secrets hiding in
them, the PSNRs of the decompressed images were be-
tween 39.26 and 44.17 dB. The revealed secret images'
quality on level 1 (i.e., low-quality version) of the recon-
struction was between 28.21 dB and 30.71 dB. All secret
images on level 2 of the reconstruction were recovered
without errors.

4.3 Experimental results for method 3
Here, the input comprised the six 232 × 232 secret im-
ages, the six 512 × 512 cover images (Figure 3), three
positive integer parameters {4 ≤ 5 ≤ 6} for secret image



Table 2 Image quality of method 2 (two-level progressive sharing)

Secret
images

Progressive
thresholds
(rj1&rj2)

Image quality of recovery on level 1 Image
quality of
recovery
on level 2

Quality of stego images

PSNR SSIM MSE Stego images PSNR SSIM MSE

House 3&4 30.71 0.883 55.17 Lossless Barbara 43.75 0.980 2.73

Cameraman 3&4 28.21 0.866 98.18 Lossless Lake 44.17 0.979 2.48

Lena 4&5 29.63 0.871 70.80 Lossless Couple 42.10 0.978 4.00

Pepper 4&5 29.97 0.891 65.43 Lossless Baboon 42.31 0.985 3.81

Jet 5&6 28.55 0.883 90.70 Lossless Indian 41.29 0.975 4.82

Blonde 5&6 30.33 0.870 60.18 Lossless Bridge 39.26 0.981 7.69
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sharing (the values 4, 5, and 6 are for image groups 1, 2,
and 3, respectively), three keys for encryption, and three
integers {q1 = 2, q2 = 2, and q3 = 3} called type-q progres-
siveness parameters for the sharing of ‘keys’.
We again divided the six images into three groups ac-

cording to the sensitivity levels of the six secret images:
secret group 1, lowest sensitivity, comprised [House];
secret group 2, moderate sensitivity, comprised [Cameraman,
Lena]; and secret group 3, highest sensitivity, comprised
[Pepper, Jet, Blonde]. Then, we encrypted each secret
image using all three keys.
We then used (r1, n) = (4, 6) in secret sharing to share

the first secret group, i.e., to share the encrypted House,
among {share1 … share6}. Similarly, we used (r2, n) = (5, 6)
in secret sharing to share the second secret group (i.e., the
encrypted Cameraman and the encrypted Lena) among
{share1 … share6}. Finally, we used (r3, n) = (6, 6) in secret
sharing to share the third group's encrypted secret images
[Pepper, Jet, Blonde] among {share1 … share6}. The first
shadow was generated by integrating the share1s of all six
secret images, the second by integrating the share2s of all
six secret images, and so on.
The thresholds to share the three keys {Key1, Key2,

Key3} were, respectively, q1 = 2, q2 = 2, and q3 = 3. Hence,
for i = 1, 2, 3, we used (qi, 3) sharing to share the numer-
ical value Keyi among k = 3 key-shares, so that any qi of
the k = 3 generated key-shares (of Keyi) could recover
Keyi. Then, for i = 1, 2, 3, we combined the ith key-
shares of all three keys to get the ith key-shadow.
Next, we used the JPEG data hiding method [17] to

hide the six image-shadows in the respective six JPEG
codes of the six cover images. Finally, we chose k = 3 of
the six cover images and hid the k = 3 key-shadows in
the k = 3 JPEG codes of the chosen k = 3 cover images;
for example, {Barbara, Lake, Couple}. These three stego
images were designated the ‘guardian stegos’.
With any two of the three guardian stegos, we were

able to first extract the two key-shadows hidden in the
two available guardian stegos. Then, by the inverse pro-
gressive sharing process, we were able to recover Key1 and
Key2 because their thresholds were q1 = 2, and q2 = 2,
respectively. Because two of the three guardian stegos
were already available, when any two of the three non-
guardian stegos were also available, we had 2 + 2 = 4
shares. We first extracted the four image-shadows hidden
in the four available stego images (i.e., two guardian stegos
and two non-guardian stegos). Then, by inverse-sharing
and decryption and because r1 = 4, we were able to re-
cover the low-quality version of the secret image in the
first group. Although we only had two keys (instead of
three keys), we were still able to decrypt the first several
(low-quality) DCT Coefficients (see step 2 in Section 3.3.1).
This is why we can decrypt low-quality versions of an
image even when not all three keys are available.
Let us now consider another scenario. We assumed

that two of the three guardian stegos were already avail-
able; hence, {Key1 and Key2} were known. Consequently,
because all 6 − 3 = 3 non-guardian stegos were available,
we first extracted the 2 + 3 = 5 image-shadows hidden in
the five available stego images. Then, by inverse-sharing
and decryption, the low-quality version of each secret
image in the second group were recovered because the
threshold for the second image group was assumed to
be r2 = 5. However, since the total number of stego im-
ages received was only five, the secret images in the
third group still could not be recovered because the
threshold for the third image group was assumed to be
r3 = 6.
For the scenario where all three guardian stegos were

available, we first extracted the three key-shadows hid-
den in the three guardian stegos. Then, by inverse-
sharing, we were able to recover all three keys because
the largest threshold for the keys was assumed to be q3 = 3
when we earlier distributed the three keys among the
three key-shadows. Since all three guardian stegos were
now available, if any one of the 6 − 3 = 3 non-guardian ste-
gos was also available, then, since all three keys were
already extracted, we were able to recover the lossless ver-
sion of the secret image in the first group because 3 + 1 =
4 and the threshold for image group 1 was assumed to be
r1 = 4. In the case where (any) two of the three non-guard-
ian stegos were available, we were able to recover the
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lossless version of each secret image in the second group
because 3 + 2 = 5 and the threshold for image group 2 was
assumed to be r2 = 5. Finally, for the scenario where all
three non-guardian stegos were available, we were able to
recover the lossless version of each secret image in the
third group because 3 + 3 = 6 and the threshold for image
in group 3 was assumed to be r3 = 6. The experimental re-
sults are listed in Table 3. Note that the thresholds for the
sharing of the three keys are {q1 = q2 = 2, and q3 = 3}; thus,
there are only two levels to control the recovery of the
keys; namely, the collection of two guardian stegos versus
the collection of three guardian stegos. Thus, to view se-
cret images, the effective number of progressive levels is
also only two.
Note also that, if only one of the three guardian stegos

is available, then no secret image can be recovered, even
if all three non-guardian stegos are available. This is be-
cause the three encryption keys are shared and hidden
in the guardian stegos, and the smallest threshold q1 =
min{q1, q2, q3} to recover at least one key was already set
to q1 = 2.

5 Discussion and comparison
5.1 Summary and discussion
Our proposed method 1 is a progressive sharing
sensitivity-controlled decoding method; i.e., the decoding
is conducted according to the sensitivity level of each
image. Images with the same sensitivity level constitute
a group. Each secret image in an image group is shared
among n shares, and the shares of all images are prop-
erly combined to get n shadows with equal significance;
consequently, there is no need to worry about which
shadow is lost or transmitted first. The n shadows are
hidden in the JPEG codes of n cover images to get n
stego JPEG codes. If the number of received stegos cor-
responds to the lowest threshold of an image group,
then the rough version of each secret image in that
group can be revealed. The higher the number of stegos
received, the better the quality of the recovered secret
images. In particular, when the number of stego images
Table 3 Image quality of method 3 (the secret images are rec

Secret
images

Threshold r
to recover the
secret image

Image quality on low-level recovery

PSNR SSIM MSE

House 4 31.53 0.858 45.7

Cameraman 5 27.11 0.853 126.5

Lena 5 29.38 0.869 75.0

Pepper 6* No such level*

Jet 6* No such level*

Blonde 6* No such level*

*Since we used (r, n) = (6, 6) in the secret sharing of the third group's secret images
stego images have been collected. Consequently, only high-level PSNR, i.e., only the
received corresponds to the highest threshold (consider-
ing all thresholds for all groups), then all secret images
in all groups can be recovered without errors.
Our proposed method 2 is also a progressive sharing

sensitivity-controlled decoding method; however, it dif-
fers from method 1 in that ‘weights’ are used in method
2. We divide the n ‘cover’ images into several groups
and equip each cover group with a weight specially
assigned to that group. Then, according to the weight of
each cover group, we hide some of the n secret shadows
in the cover group.
Subsequently, decoding is conducted according to the

total sum of the weights of the received cover groups. If
the sum of the received weights corresponds to the low-
est threshold of a secret group, then all secret images of
that secret group can be recovered with a low quality.
The larger the sum of the received weights, the better
the quality of the recovered secret images. Finally, if the
sum of the received weights corresponds to the highest
threshold of a secret group, then the recovered secret
images of that secret group are lossless.
Both progressive methods (methods 1 and 2) increase

the shadow size after using multiple thresholds. There-
fore, in our proposed method 3, we use a different tech-
nique to progressively share multiple secret images. In
method 3, if the number of received guardian stegos cor-
responds to the lowest threshold, as long as the number
of received stego images also corresponds to the thresh-
old value of a secret image group, then the rough ver-
sion of each secret image in that secret group can be
revealed. The more guardian images received, the better
the quality of the recovered secret images, as long as the
number of received stego images also corresponds to
certain threshold values. In particular, when the number
of received guardian stegos corresponds to the highest
threshold value, then all secret images can be recovered
without errors, as long as the number of received stego
images also corresponds to certain threshold values.
Compared with methods 1 and 2, method 3 has a tigh-

ter restriction in the recovery phase: nothing can be
overed in two levels)

Image
quality on
high-level
recovery

Image quality of stego

Stego images PSNR SSIM MSE

Lossless Barbara 40.07 0.979 6.40

Lossless Lake 41.57 0.978 4.53

Lossless Couple 41.04 0.978 5.12

Lossless Baboon 41.41 0.980 4.70

Lossless Indian 41.56 0.976 4.54

Lossless Bridge 40.08 0.978 6.38

, [Pepper, Jet, Blonde], these three images cannot be viewed unless all six
lossless version, exists.
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displayed without a sufficient number of guardian stegos.
Therefore, methods 1 and 2 are more suitable for a pub-
lic company whose owners are (public) stock holders.
The more shadows (stocks) or the more weights appear
in the meeting, the more secret details can be unveiled.
In contrast, method 3 is more suitable for a family-
owned private company in which all the decision-
making must first get the permission of the persons in
charge, or at least, get the majority agreement of the
committee board.
In Table 4, we list the advantages and disadvantages of

the three proposed methods. Notably, about the issue of
stability, method 1 is the most stable one, as explained
below. In method 2, the recovered versions of secret im-
ages are identical to that of method 1. However, stego
images' quality is less stable in method 2, for the stegos'
quality is influenced by the matching between the
Table 4 A comparison between the three proposed methods

Methods Characteristic Suitable environment Adv

Method 1 a) Basic form of our
progressive sharing/
viewing.

All participants, i.e., all holders
of stegos, must be of equal
importance.

a) Si

b) Every stego image
is of the same
significance.

b) Ev
amo
no n
imag

Method 2 a) The recovered
versions of the
secret images are
identical to that of
method 1.

The owners of some stegos are
more important than the owners
of other stegos.

a) M
meth

b) However, the
stego images have
different weights
in method 2.

b) H
meth
to co
imag

Method 3 a) Using the
so-called guardian
stegos.

a) Suitable for a company which
is controlled by a committee (the
committee cannot allow any
unveiling of secrets without the
approval of a certain percentage
of the committee members).

a) So
and
guar
unve
man

b) Keys are used
in method 3.

b) Also suitable for the protection
of images which are very sensitive.

b) Th
right
of a

c) Sm

d) Be
and
weights {wi} and the hiding capacity of the cover groups
{CGi}. When one of the weights is particularly large,
the instability becomes obvious. For example, if {w1 = 1,
w2 = 1, w3 = 4} and if the three cover groups have simi-
lar hiding capacity, then distinct stego groups might
have very distinct qualities. In Table 2, where {w1 = 1,
w2 = 2, w3 = 3}, the quality of the image Bridge, which is
in stego group 3, is also worse than the quality of the {Bar-
bara, Lake} in stego group 1. Finally, method 3 is also less
stable than method 1 because some assignment to the
values of the type-r parameter might cut the effective
number of progressive levels, as will be seen in Table 5
and a paragraph near the end of Section 5.5.
Now we analyze the precision of the recovered secret

images. Since all three methods can produce error-free
recovery as the highest-quality recovery, we focus our
comparison on the lowest-quality version, i.e., the
antage Disadvantage

mple and stable. Shadow size is larger than that
of method 3.

ery stego image hides the same
unt of secrets. Therefore, there is
eed to worry about which cover
e should hide more.

ethod 1 is just a special case of
od 2.

a) Shadow size is larger than that
of method 3.

ence, compared to method 1,
od 2 has more possible ways
ntrol the unveiling of secret
es.

b) The hiding capacity of some covers
might be insufficient (or a severe
impact on some cover images might
exist), if a weight value is much larger
than other weight values.

c) The stego images' quality is less
stable than that of methods 1 and 3.

d) Therefore, a careful matching
between weights and covers might
be needed. (In general, assign larger
weights to the cover groups of
larger size.)

me stegos are guardian stegos,
they form the committee to
d the disclosure of secrets (the
iling of secrets cannot happen if
y guardian stegos disapprove it).

a) The social rank of non-guardian
stegos is very low. If the number of
received guardian stegos is less than
the minimal threshold value, then the
secret images has no chance to be
unveiled (even if ‘every’ non-guardian
stego's holder wants to unveil the
secret images).

e committee has the absolute
s to turn down the disclosure
secret.

b) Some values of parameter r make
the number of progressive levels
reduced from the assigned value
to a smaller value.

aller shadow size.

tter security than methods 1
2.



Table 5 Image quality of method 3 (the secret images are recovered in three levels)

Secret
images

The (r, n)
in sharing

Low-level recovery Moderate-level recovery High-level
recovery

Stego
images

Quality of stegos

PSNR MSE PSNR MSE PSNR MSE

House (4, 6) 29.89 66.69 35.72 17.42 Lossless Barbara 40.14 6.30

Cameraman (5, 6) N/A N/A 29.19 78.36 Lossless Lake 41.56 4.54

Lena (5, 6) N/A N/A 31.22 49.10 Lossless Couple 41.16 4.98

Pepper (6, 6) N/A N/A N/A N/A Lossless Baboon 41.29 4.83

Jet (6, 6) N/A N/A N/A N/A Lossless Indian 41.47 4.64

Blonde (6, 6) N/A N/A N/A N/A Lossless Bridge 40.17 6.25

N/A, no such level exists.

Chang et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:11 Page 11 of 19
recovery on level 1. Methods 1 and 2 give identical re-
covered versions of secret images, so we only need to
compare method 1 to method 3. In method 1, as ana-
lyzed in Section 5.5, when (rj1 ≤ rj2 ≤… ≤ rjk) are utilized
as the k progressive thresholds to share an image in se-
cret group j, the lowest version's quality is determined
by the ratio rj1/(rj1 + rj2 +… + rjk). The larger the ratio
value, the better the precision. Therefore, The best level-
1 quality occurs when k = 2 and rj1/(rj1 + rj2 +… + rjk) =
rj1/(rj1 + rj2) is almost 1/2. In this case, as analyzed in
Section 5.5, about rj1/(rj1 + rj2) = 50% of the rearranged
DCT data are utilized to recover level 1 version. On the
other hand, for method 3, if q1 of the k guardian stegos
are available, then the lowest version's quality is deter-
mined by the ratio area(region 1) ÷ [area(region 1) +… +
area(region k)], where {region 1, … region k} are the k
non-overlapping regions that partitioned the DCT coeffi-
cients in step 2.2 of Section 3.3.1. Since we had the free-
dom to assign any percentage of the DCT data to region
1, this area-ratio can be as low as 1%, or as high as 99%.
Now, compared to the 50% of method 1, we can say that
the lowest-quality recovery of method 3 can be either
worse or better than the lowest-quality recovery of
method 1. The precision comparison between the
methods is thus case-by-case and inconclusive.

5.2 Comparison with reported methods
Our methods are progressive sharing methods. Func-
tionality comparisons between our methods and various
other progressive sharing schemes are shown in Table 6.
Our methods' decoding is according to the sensitivity
levels of different secret groups. In Table 6, all other
schemes consider one secret image instead of multiple
secret images. Furthermore, note that, in our method 2,
distinct groups of ‘cover’ images are also assigned dis-
tinct weights.
The shadow size of method 1 is equal to that of

method 2; method 3 has the smallest shadow size. As
shown in Table 7, the shadow size is small in each of our
three methods; thus, the shadow can be easily hidden in
the JPEG codes of cover images. The sizes associated with
the various methods are given below. In the traditional (t,
n) secret sharing method, the size of the shadow is only 1/
t of the original secret data. In our proposed methods 1
and 2, when we use [(r1&r2&…&rk); n] progressive sharing
method to share some secret data, the size of each shadow
is k/(r1 + r2 +… + rk) times smaller than that of the original
secret data, as explained below. We process r1 + r2 +… +
rk values together each time. The first r1 values are shared
by (r1, n) sharing; thus, each shadow receives one value
after sharing these r1 values. Similarly, the next r2 values
are shared by (r2, n) sharing; thus, each shadow receives
one value after sharing these r2 values, and so on.
Therefore, when we consider the sharing of these r1 +
r2 +… + rk values; it is obvious that each shadow re-
ceives 1 + 1 +… + 1 = k values generated from the shar-
ing of these r1 + r2 +… + rk values. As a result, the size
of each shadow is k/(r1 + r2 +… + rk) of the original size
of the secret. Note that k is the number of progressive-
ness thresholds, {r1…rk}, being used. Therefore, if the
maximal threshold rk of a progressive sharing,
[(r1&r2&…&rk); n], is equal to the single threshold t of
non-progressive sharing, then both progressive scheme
and non-progressive scheme can recover the original
data without errors if t shares are received. However,
the inequality

k= r1 þ r2 þ…þ rk−1 þ rkð Þ
¼ k= r1 þ r2 þ…þ rk−1 þ tð Þ
> k= t þ t þ…þ tð Þð Þ ¼ k=kt ¼ 1=t ð7Þ

tells us that the shadow size generated by progressive
sharing is larger than the shadow size generated by non-
progressive sharing. This is the price of being progres-
sive. For instance, comparing a (4, n) non-progressive
share and a [(3&4); n] progressive share, it can be seen
that both schemes can recover secrets without errors
when four shadows are received. However, if only three
shadows are received, then the progressive scheme can
still recover a ‘rough’ version, whereas the non-progressive
scheme cannot. The shadow size generated by (4, n) non-
progressive sharing is S/4 = 0.25S (assuming that S is the



Table 6 Functionality comparisons between various proposed progressive sharing schemes and our sharing scheme

Schemes Cover images
format

Multiple
secret
images

Different sensitivity
levels for different
secret image groups

Different weights
for different cover
image groups

Use of
guardian
stegos

Chen and Lin [3] Uncompressed
cover images

No No No No

Wang and Shyu [4] Uncompressed
cover images

No No* No No

Hung et al. [5] Uncompressed
cover images

No No No No

Chen and Lin [6] Compressed
cover images

No No No No

Our scheme Compressed
cover images

Yes Yes Method 2 Method 3

*Wang and Shyu [4] used different sensitivity levels for different areas of an image.
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size of the secret file); whereas the shadow size generated
by [(3&4); n] progressive sharing is 2S/(3 + 4) = 0.286S. If
the number of progressive levels increases, for example,
from a two-level scheme [(3&4); n] to a three-level scheme
[(2&3&4); n], then the shadow size also increases and be-
comes 3S/(2 + 3 + 4) = 0.333S.
Table 7 compares the shadow sizes of various progres-

sive sharing schemes. Assume that the given secret
image is the 512 × 512 grayscale image Lena, and the
progressiveness thresholds are [(3&4&5&6), 6] for ‘all’
schemes. In Table 7, since our proposed methods 1 and
2 are designed for multiple secrets, we let the first secret
group have only one secret image (Lena), and all other
secret groups be empty (have no secret image). Then, we
use [(r11&r12&r13&r14), n] = [(3&4&5&6), 6] as the (local)
progressiveness thresholds for the secret group contain-
ing Lena. In Table 7, it can be seen that among all loss-
less methods, our scheme has the smallest shadow size.
Our shadow size is even smaller than that of the lossy
method proposed by Hung et. al. [5]. Using a small
shadow size is important in every sharing method. If the
shadow is small, the n shadows can be transmitted
quickly, storage space can be saved, and shadows can be
hidden easily in other media.
Table 8 summarizes the PSNRs of the recovered im-

ages and stego images, when three progressive levels
were used in each reported progressive sharing scheme.
Our three methods consider multiple images, so we have
Table 7 Comparison of shadow sizes among various progress

Scheme Size of each shadow
(smaller is better) (bytes)

Q
re

Chen and Lin [3] 58,254 Lo

Wang and Shyu [4] 131,072 Lo

Hung et al. [5] 30,720 3

Chen and Lin [6] 33,802 Lo
*Our methods 1 and 2 28,023 Lo
*Our method 3 is even more economic (less than 28,023 byes).
a PSNR range, rather than a single PSNR value. Each re-
ported method has its own setting of parameters and is
too tedious to list, so almost all experimental values in
Table 8 were quoted directly from the cited papers.
From Table 8, we can see that, like most of other single-
secret progressive methods, all three multiple-secret
methods of ours can also achieve lossless recovery of se-
cret images; however, our impact to host images is smal-
lest because our stego images have highest PSNR values.

5.3 Parameters' values
5.3.1 Parameters of methods 1 and 2

� k (the number of progressive levels)

We suggest the use of k = 2 or k = 3. Use k = 2 if the
user wishes that the recovery of each secret image has
two levels (low-quality vs. lossless). Use k = 3 if the user
wishes that the recovery of each secret image has three
levels (low-quality, medium-quality, and lossless). The
value of k should not be large, because each 8-by-8
DCT block only have 64 coefficients, and many of them
are zeros. For example, using k = 8 is impractical, for
{rj1, rj2,…, rj8} = {2, 3, 4, 5, 6, 7, 8, 9} implies that every
RSUM = 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 44 DCT coeffi-
cients are bound together and processed as a unit in
the progressive sharing process, but the 64 DCT coeffi-
cients might not have so many non-zeros. As a result,
ive sharing schemes

uality of the best
constructed versions (dB)

Shadow size ÷ (512 × 512) (%)

ssless 22.22

ssless 50.00

7.04 11.72

ssless 12.89

ssless 10.69



Table 8 Comparison of PSNRs and MSEs among various progressive sharing schemes (three levels)

Scheme PSNR (MSE) of recovery
on level 1

PSNR (MSE) of recovery
on level 2

PSNR (MSE) of
recovery on level 3

PSNR (MSE) of stego

Chen and Lin [3] (three experiments
for ‘Lena’, with various parameter settings)

13.15 to 31.11 20.00 to 46.38 Lossless 34.62 to 36.43

(MSE = 50.4 to 3148.3) (MSE = 1.50 to 650.2) (MSE = 14.8 to 22.4)

Wang and Shyu [4] *N/A *N/A Lossless *N/A

Hung et al. [5] (Lena) 28.00 32.67 37.04 35.68 to 35.86

(MSE = 103.1) (MSE = 35.1) (MSE = 12.9) (MSE = 16.9 to 17.6)

Chen and Lin [6] (lossy version) 28.37 34.12 39.79 32.97 to 38.96

(MSE = 94.7) (MSE = 25.18) (MSE = 6.8) (MSE = 8.3 to 32.8)

Our method 1 24.50 to 28.23 30.26 to 34.85 Lossless 39.60 to 42.00

(MSE = 97.7 to 230.7) (MSE = 21.3 to 61.2) (MSE = 4.1 to 7.2)

Our method 2 24.50 to 28.23 30.26 to 34.85 Lossless 37.21 to 43.23

(MSE = 97.7 to 230.7) (MSE = 21.3 to 61.2) (MSE = 3.1 to 12.4)

Our method 3 26.92 to 30.53 29.19 to 35.72 Lossless 40.74 to 42.35

(MSE = 57.6 to 132.2) (MSE = 17.4 to 78.4) (MSE = 3.8 to 5.5)
*Wang and Shyu [4] purposely let some area of the image be blank in their low-level recovery. Thus, PSNR is not available.

Chang et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:11 Page 13 of 19
either the method cannot be implemented or a waste of
the shadow space is introduced in the sharing process.

� rj1

For each secret image group, for example, secret group
j, both methods 1 and 2 utilize k progressive threshold
values (2 ≤ rj1 ≤ rj2 ≤… ≤ rjk ≤ n). Here, rj1 means that,
people cannot recover any version of the images in se-
cret group j unless at least rj1 stegos (in method 1) are
received, or unless the sum of the weights of the re-
ceived cover groups is at least rj1 (in method 2). There-
fore, we suggest the use of a large value for rj1 (for
example, rj1 = ⌈n/2⌉ or ⌈2n/3⌉) if the images in secret
group j are very sensitive; otherwise, just use a small
value for rj1 (for example, rj1 = 2 or 3). Note that rj1 = ⌈n/2⌉
means at least one half of the shadows must be available
before the lowest-quality version of the sensitive images
can be reconstructed.

� rjk

Since rjk is related to the lossless recovery of the im-
ages in secret group j, let rjk be a very large value (for ex-
ample, n or n − 1) if secret group j is very sensitive.
Notably, using rjk = n means that all cover images must
be received before the lossless version of secret group j
can be recovered. Using large value for the parameter rjk
can avoid the stealing of the lossless version of the im-
ages in secret group j; however, it also weakens the
missing-allowable benefit of the sharing approach.
Therefore, do not let rjk be as large as n or n − 1, unless
the images in secret group j are very sensitive.
� The weights {w1, w2, …, wT} and the cover groups
(CG)

Method 2 uses T weights {w1, w2, …, wT} with w1 +
w2 +… + wT = n. The n given cover images are assigned
to T cover groups, and cover group j (CGj) hides wj

shadows, true for each j = 1, 2, …, T. Therefore, |CGj|,
which denotes the number of cover images in CGj, can-
not be small if wj is large. To explain this, without the
loss of generality, assume that there are, again, n = 6 se-
cret images and n = 6 cover images. If T = 3 and the
weights of the three cover groups are w1 = 1, w2 = 1,
and w3 = 4, respectively, then the number of cover im-
ages in the three cover groups can be {1, 1, 4} or {1, 2,
3} or {2, 2, 2}. Among them, the combination {2, 2, 2} is
the worst, as explained below. Since {|CGj|}j = 1, 2, 3 = {2, 2,
2}, one shadow (w1 = 1) is hidden in the two cover images
of CG1; one shadow (w2 = 1) is hidden in the two cover
images of CG2; but four shadows (w3 = 4) are hidden in
the two cover images of CG3. The impact on the two
cover images of CG3 will be too large due to the fact
that each cover image must hide (w3/|CG3|) = (4/2) = 2
shadows. Therefore, to avoid that the quality of some
stego images become too low, we suggest that the value
of |CGj| cannot be small if wj is large.
In the last paragraph, when {w1 = 1, w2 = 1, w3 = 4}, al-

though the partition {|CGj| = wj} = {1, 1, 4} of the six
cover images will not cause big impact on the cover im-
ages, the fact that |CG3| = 4 means that these four cover
images are bound together, and the stego file size of
cover group 3 is very large (four times larger than that
of cover group 1). This might give the manager of group
3 some inconvenience. As a compromise between the
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stego quality and convenience, {|CGj|} = {1, 2, 3} might
be the best tradeoff when {w1 = 1, w2 = 1, w3 = 4}.
The other reason why we do not use {|CGj| =wj}j=1, 2, …,

T = {|CGj| =wj}j=1,…,3 = {1, 1, 4} is as explained below.
Using |CGj| =wj for any j will make method 2 very similar
to method 1: each cover image hide exactly one secret
image. Hence, the quality of both the stegos (and the re-
covered secret images) is identical between methods 1 and
2. The only difference is that the stegos in method 1 is not
bound together to form stego groups. So, from the view-
point of recovery, if |CGj| =wj ∀j = 1, 2, …,T, then method
1 is more convenient than method 2. In method 1, the
possible number of shadows for decoding can be any
number from 1 through n, because the number of re-
ceived shadows equals to the number of received ste-
gos. In method 2, however, only w1 = 1, w2 = 1, w3 = 4,
w1 + w2 = 2, w1 + w3 = 5, w1 + w2 + w3 = 6 shadows are
possible combination for the number of received
shadows. In this case, the recovery using three shadows
will never happen. Therefore, if 3 is one of the progres-
sive threshold values (2 ≤ rji ≤ rj2 ≤… ≤ rjk ≤ 6) for some
cover group j, then each image in that group will not
have k-levels progressive decoding, provided that
method 2 is used and {|CG1| = 1 = w1; |CG2| = 1 = w2;
|CG3| = 4 = w3}.

5.3.2 Parameters of method 3

� The threshold rj for the sharing of secret group j
(j = 1, 2,…, t)

The basic requirement is rj ∈{2, …, n}. Assign a very
large value (for example, n or n − 1) to rj, if secret group
j is very sensitive. In general, using a larger rj value can
make it harder to steal the images in secret group j;
however, this also reduces the missing-allowable benefit
of the sharing approach: the corruption of two stegos
will make the recovery of secret group j become almost
impossible. Therefore, do not let rj be as large as n or
n − 1, unless secret group j is very sensitive. On the
other hand, use rj = 2 or rj = 3 if secret group j is of very
low sensitivity.

� The k progressiveness parameters [q1 ≤ q2 ≤… ≤ qk =
k] of type-q

For each j = 1, 2, …, t, if (any) rj of the n stego images
are available, then, since r1 ≤ r2 ≤… ≤ rj, we can recon-
struct the ‘encrypted’ version of each secret image in {se-
cret group 1, …, secret group j}. After that, there are k
possible levels of decryption. Assume that the rj received
stego images include qm guardian stegos. Then, we can
recover the m keys {Key1, …, Keym}; and hence, recon-
struct m of the k regions of the DCT coefficients.
Consequently, each image in secret groups {1, …, j} can
be revealed using the mth-level recovery quality.
As for the ith progressiveness parameter qi in the set

[q1 ≤ q2 ≤… ≤ qk = k], just assign a large value (such as k
or k − 1) to qi if we wish that the ith-level recovery
should not be done without the joint attendance of
many guardian stegos.
Below we give some examples to illustrate how the

values of the k progressiveness parameters [q1 ≤ q2 ≤… ≤
qk = k] affect the decoding results. Assume that we have
received rj stego images; so, the ‘encrypted’ version of
each secret image in secret groups 1, 2, …, j has been
known. Then, e.g., 1, let [q1 = q2 =… = qk-1 = 2, and qk =
k]. If the rj received stego images include two or more
guardian stegos, then we can recover almost every re-
gion of DCT coefficients. Consequently, each image in
secret groups {1, …, j} can be revealed with a very good
quality; e.g., 2, let [q1 = q2 =… = qk-1 = k − 1, and qk = k].
If the rj received stego images include k − 2 of all guard-
ian stegos, then we still cannot decrypt any region of
any secret image; e.g., 3, let [q1 = q2 = 2; and qi = i for i =
3, 4, …, k]. If the rj received stego images include two
guardian stegos, then we can recover each image in se-
cret groups {1, …, j} with level 1 quality. If three guard-
ian stegos are included, then the recovery quality is
better, i.e., of level 2. If four guardian stegos are in-
cluded, then the recovery quality is of level 3, and so on.
Therefore, this is a progressive effect with many levels.

� The sharing thresholds {rj} vs. the progressiveness
parameters [q1 ≤ q2 ≤… ≤ qk = k]

The influence by rj is local. For example, rj = 3 only
means that at least three out of n stegos are required in
order to get the encrypted version of secret group j. On
the contrary, the influence of qi is global (across all se-
cret groups), because qi = 3 means that at least three of
the k guardian stegos must be available in order to de-
crypt region i of the DCT coefficients of all secret im-
ages in all secret groups.

� k

Notably, in step 8 of the algorithm, we chose k of the
n cover images to hide the respective k key-shadows to
get the k guardian stegos. Hence, k < n is a natural re-
quirement (k = n makes every stego become a guardian
stego; but this is a system not quite meaningful, for it is
just like a company in which every employee is in the
supervisor committee of the company). On the other
hand, k = 1 makes no progressive effect (because the k-
level-decryption reduces to one-level-decryption). Thus,
k ∈ {2, …, n − 1}. For example, in our experiments, since
there were n = 6 images, so k is chosen from {2, 3, 4, 5}.
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Of course, the larger the value of k, the more the num-
ber of recovery levels. Notably, k also affects the image
quality recovered on the lowest level, as explained below.
In our algorithm, the DCT coefficients are partitioned
into k regions. If the partition is uniform among regions,
then smaller value of k means that each region has more
DCT coefficients; therefore, the level 1 reconstruction of
secret images will have better quality.

5.4 Steganography and security issues
The protection of images in our system is with several
check points: a) the stranger must extract the shadows
which we hid in the JPEG stegos; b) the stranger must
intercept enough number of shadows (if he knows which
stegos to intercept); c) we can send or store stegos using
distinct channels or computers, and our decoding allows
that some channels or computers are destroyed, for the
missing-allowable property of threshold-sharing; d) the
interceptors must intercept sufficient number of stegos
before they can try to obtain sensitive images, for the de-
coding using insufficient number of shadows are ex-
tremely difficult, as analyzed later in this subsection; e)
some of our methods are with multiple keys, and thus
increase the difficulty of hackers.
The reasons that we use the JPEG data hiding method

[17] to embed our n shadows in n JPEG codes are as fol-
lows: 1) Compared to spatial-domain stegos, JPEG code
can save storage space and maybe also reduce the
chance of attracting attackers; 2) JPEG compression dis-
turbs the correlation between adjacent pixels of an
image, so the permutation pre-processing employed in
certain image sharing schemes [4,8,10] before sharing
can be omitted. 3) As for the security of our JPEG codes,
the size of the JPEG code (without hiding any secret),
with the quality factors being in the range 10 to 95, is
between 8, 119, and 94,581 bytes for many gray-level im-
ages. The size of our JPEG stego-codes listed in Tables 1,
2, and 3 are all in this range. Therefore, the attackers
will not be suspicious about the size of our JPEG stego
codes. 4) Note that the JPEG hiding method [17] has
been shown to resist Chi-square [26] and StegDetect
[27] attacks, reducing the chance that the attackers no-
tice the existence of our shadows in the JPEG stego
codes. 5) To summarize, the hiding in the JPEG stego-
code is less notable.
Below we analyze the probability to get the sensitive

image through ‘guessing’ when the number of received
shadows is less than the minimal requirement. In methods
1 and 2, for each image in secret group j, let the
[(rj1&rj2&…&rjk); n] progressive sharing be utilized to
get n shares, which share the DCT data of the image.
Without the loss of generality, let the image be 128 ×
128, and [(rj1&rj2&…&rjk); n] = [(3&4); 6]. Therefore,
RSUM = 3 + 4 = 7, and the image has (128 × 128)/(8 ×
8) = 16 × 16 = 256 DCT blocks. In our experiments,
some images have about 21 of the 64 DCT coefficients
are non-zeros on the average. So, in the rearranged
DCT data, each block has about 21 numbers. The first
rj1/RSUM = 3/(3 + 4) = 3/7 of the 21 numbers are
shared using (3, n) sharing, and the next rj2/RSUM = 4/
(3 + 4) = 4/7 of the 21 numbers are shared using (4, n)
sharing. In the decoding, if a person does not receive at
least rj1 shadows; for example, assume that he only re-
ceives rj1 − 1 = 3 − 1 = 2 shadows; then for a three-
coefficient polynomial like f(x) = a0 + a1x + a2x

2 = 109 +
23x + 83x2, although he knows f(1) and f(2), he still can-
not know the three coefficients are (109, 23, 83). The
only thing he knows is a table, i.e., if a1 = 0, then (a1,
a2) =…; if a0 = 1, then (a1, a2) =…; if a0 = 2, then (a1,
a2) =…; and so on. Now, if each number is in the range
0 to 255, then the probability to get correct (a0, a1, a2) =
(109, 23, 83) is 1/256. Since the first 9 of the 21 numbers
use rj1 = 3 as the threshold value, the chance that the
stranger gets these 9 values from the two shadows that he
owns is (1/256)9/3 = (1/256)3. As for the next 21 − 9 = 12
numbers, since they are shared using rj2 = 4 as the
threshold value, the chance that the stranger gets these 12
values from rj2 − 1 = 4 − 1 = 3 shadows is (1/256)12/4 = (1/
256)3. However, for the 12 numbers, which are shared
using rj2 = 4 as the threshold value, the probability that
the stranger gets these 12 values from two shadows is
much less than (1/256)12/4 = (1/256)3. For example, for
a four-coefficient polynomial like g(x) = b0 + b1x + b2x

2 +
b3x

3 = 78 + 43x + 65x2 + 114x3, although the stranger
knows two values such as g(1) and g(2) from the two
shadows, he still cannot know the four coefficients are
(78, 43, 65, 114). The only thing he knows is a two-
dimensional table like ‘if (b0, b1) = (0, 0), then (b2, b3) =….;
if (b0, b1) = (0, 1), then (b2, b3) =…..;’ Consequently, if each
number is in the range 0 to 255, then the probability to
get correct (b0, b1, b2, b3) = (78, 43, 65, 114) is (1/256)2.
Hence, the change to get these 12 values from two
shadows is [(1/256)2]12/4 = (1/256)6. Together, the change to
get the 9 + 12 = 21 values of the block from two shadows is
(1/256)3 × (1/256)6 = (1/256)9. For an image of w-by-h
pixels, there are (w × h)/(8 × 8) blocks. So the chance to
get the rearranged DCT coefficients of the image is [(1/
256)9](w×h)/(8×8). If the sensitive image is 128 × 128, then
the chance is [(1/256)9]16×16 = (1/256)9×256 = (256)−2,304 =
10−5,548. If the sensitive image is 512 × 512, then the
chance is (1/256)9×4,096 = (256)−36,864 = 10−88,777.
As for method 3, for each image in secret group j,

method 3 uses (rj, n) sharing to create n shares which
share the ‘encrypted’ DCT data of the image. Without
the loss of generality, still let the image be 128 × 128 and
the sharing threshold be rj = 3. Therefore, the image has
(128 × 128)/(8 × 8) = 16 × 16 = 256 DCT blocks. Still as-
sume that the image has about 21 of the 64 DCT
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coefficients are non-zeros on the average. Then, from
the above analysis, in the decoding, if a person only re-
ceives rj1 − 1 = 3 − 1 = 2 shadows, then the chance that
the stranger gets these 21 encrypted values of the block
from the two shadows is (1/256)21/3 = (1/256)7. For an
image of w-by-h pixels, there are (w × h)/(8 × 8) blocks.
So the chance to get the encrypted DCT coefficients of
the image is [(1/256)7](wh/64). If the sensitive image is
128-by-128, then the chance is [(1/256)7]16×16 = (1/256)
7×256 = (256)−1,792 = 10−4,315. If the sensitive image is 512-
by-512, then the chance is (1/256)7×4,096 = (256)−28,672 =
10−69,049.
Notably, with this very small chance, what the stranger

gets using the two shadows is only the ‘encrypted’ DCT
coefficients. He still needs to guess a) the number of
keys, b) the value of each key (if the number of guardian
stegos that he owns is below a required threshold value),
c) the encryption method that we used (k distinct region
can use k distinct encryption methods), d) the way we
partitioned the non-zero into k regions, and so on.

5.5 Variation of parameters affects the recovery results of
secret images
In the experiment of Section 4.1, the image House was
progressively shared using (r11&r12&r13) = (2&3&4). The
current section discusses how the variation of parameters'
values affect the recovery results. Hence, let the new
Table 9 Quality of the recovery for methods 1 and 2 (three le

Secret
images

Progressive
thresholds
(rj1, rj2, rj3)

Image quality of the recovery on level 1

PSNR SSIM MSE

House 2&3&4 26.29 0.806 152.75

3&4&5 26.84 0.816 134.42

4&5&6 28.23 0.844 97.53

Cameraman 2&3&4 24.95 0.786 207.66

3&4&5 25.58 0.805 179.78

4&5&6 26.05 0.818 161.20

Lena 2&3&4 25.50 0.738 182.87

3&4&5 26.40 0.784 148.76

4&5&6 27.39 0.815 118.55

Pepper 2&3&4 25.14 0.764 199.03

3&4&5 26.05 0.800 161.45

4&5&6 27.04 0.824 128.52

Jet 2&3&4 24.50 0.772 230.19

3&4&5 25.29 0.794 191.95

4&5&6 25.86 0.819 168.33

Blonde 2&3&4 25.92 0.732 166.31

3&4&5 26.84 0.767 134.47

4&5&6 27.33 0.795 120.16
(r11&r12&r13) be (3&4&5) and (4&5&6), respectively. As
shown in Table 9, the reconstruction quality is improved,
i.e., MSE(4&5&6) <MSE(3&4&5) <MSE(2&3&4), no matter
in level 1's reconstruction or in level 2's. In fact, even if we
replace the image House by other secret images, we still
have MSE(4&5&6) <MSE(3&4&5) <MSE(2&3&4). Likewise,
as shown in Table 10, in the two-level experiments, we
also observe that MSE(5&6) <MSE(4&5) <MSE(3&4) <MSE

(2&3). This statement is still true when Lena or Pepper is
replaced by other images. The reason is explained below.
In our design for methods 1 and 2, the rearranged DCT
data are shared. In fact, these data are partitioned into
RSUMj = rj1 + rj2 +… + rjk parts. The first rj1 parts are
shared using (rj1; n) sharing, the next rj2 parts are
shared using (rj2; n) sharing, and so on. In the recovery
on level 1, i.e., when rj1 of the n shadows are available,
we can recover about rj1/(rj1 + rj2 +… + rjk) of the rear-
ranged DCT data. In the recovery on level 2, i.e., when
rj2 of the n shadows are available, we can recover about
(rj1 + rj2)/(rj1 + rj2 +… + rjk) of the rearranged DCT data.
And so on. For example, in Table 9, when (rj1, rj2, rj3) =
(2, 3, 4), the recovery on level 1 can recover about rj1/
(rj1 + rj2 +… + rjk) = 2/(2 + 3 + 4) = 2/9 of the rearranged
DCT data. The recovery on level 2 can recover about
(rj1 + rj2)/(rj1 + rj2 +… + rjk) = (2 + 3)/(2 + 3 + 4) = 5/9 of
the rearranged DCT data. Analogously, when (rj1, rj2,
rj3) = (3, 4, 5), the recovery on level 1 can recover about
vels)

Image quality of the recovery on level 2 Image
quality
of the
recovery
on level 3

PSNR SSIM MSE

33.06 0.909 32.07 Lossless

34.06 0.915 25.47 Lossless

34.85 0.917 21.27 Lossless

30.35 0.894 59.98 Lossless

31.00 0.901 51.65 Lossless

31.53 0.904 45.64 Lossless

31.25 0.895 48.72 Lossless

32.15 0.906 39.55 Lossless

32.95 0.911 32.96 Lossless

32.04 0.916 40.64 Lossless

33.09 0.923 31.85 Lossless

33.43 0.924 29.50 Lossless

30.26 0.905 61.16 Lossless

31.08 0.913 50.60 Lossless

31.66 0.914 44.26 Lossless

31.54 0.889 45.59 Lossless

32.50 0.899 36.50 Lossless

32.93 0.904 33.82 Lossless



Table 10 Quality of the recovery for methods 1 and 2 (two levels)

Image quality of secret image ‘Lena’ Image quality of secret image ‘Pepper’

Progressive
thresholds
(rj1&rj2)

Recovery on level 1 Recovery
on level 2

Progressive
thresholds
(rj1&rj2)

Recovery on level 1 Recovery
on level 2PSNR SSIM MSE PSNR SSIM MSE

2&3 28.53 0.843 91.12 Lossless 2&3 28.67 0.861 88.21 Lossless

3&4 29.08 0.859 80.26 Lossless 3&4 29.32 0.877 76.00 Lossless

4&5 29.63 0.871 70.80 Lossless 4&5 29.97 0.891 65.43 Lossless

5&6 29.85 0.874 67.30 Lossless 5&6 30.35 0.892 59.85 Lossless
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rj1/(rj1 + rj2 +… + rjk) = 3/(3 + 4 + 5) = 25% of the rear-
ranged DCT data. The recovery on level 2 can recover
about (rj1 + rj2)/(rj1 + rj2 +… + rjk) = (3 + 4)/(3 + 4 + 5) =
7/12 of the rearranged DCT data. Now, since

2= 2þ 3þ 4ð Þ < 3= 3þ 4þ 5ð Þ < 4= 4þ 5þ 6ð Þ
< 2= 2þ 3ð Þ < 3= 3þ 4ð Þ < 4= 4þ 5ð Þ < 5= 5þ 6ð Þ

< 2þ 3ð Þ= 2þ 3þ 4ð Þ½ � < 3þ 4ð Þ= 3þ 4þ 5ð Þ½ � < 4þ 5ð Þ= 4þ 5þ 6ð Þ½ �;

it is of no surprise that MSE(4&5&6) <MSE(3&4&5) <
MSE(2&3&4) in Table 9, no matter in level 1's reconstruc-
tion or in level 2's. The inequality also implies that MSE
(5&6) <MSE(4&5) <MSE(3&4) <MSE(2&3) in Table 10. The
same analysis also tells us that the second level recon-
struction in Table 9 should be better than the first level
reconstruction in Table 10, for 2/(2 + 3) < 3/(3 + 4) < 4/
(4 + 5) < 5/(5 + 6) < [(2 + 3)/(2 + 3 + 4)] < [(3 + 4)/(3 + 4 +
5)] < [(4 + 5)/(4 + 5 + 6)]. Likewise, the first level recon-
struction in Table 10 should be better than the first
level reconstruction in Table 9, for 2/(2 + 3 + 4) < 3/(3 +
4 + 5) < 4/(4 + 5 + 6) < 2/(2 + 3) < 3/(3 + 4) < 4/(4 + 5).
The phenomenon is depicted in Figure 5.
The above analysis is for methods 1 and 2 (these two

methods have identical shadows, and their recovered
versions of secrets are also identical). Below we analyze
method 3. We got Table 5 when we repeated the
Figure 5 Secret recovery in methods 1 to 2. We copied data of Table 1
experiment in Section 4.3, using k = 4 keys to replace
k = 3 keys (so the number of guardian stegos also in-
creases from 3 to 4), and using {q1 = 2, q2 = 2, q3 = 3,
and q4 = 4} to replace {q1 = 2, q2 = 2, q3 = 3}. Since we
used (r, n) = (5, 6) in the secret sharing of [Camera-
man, Lena], these two images cannot be viewed unless
at least five stego images have been collected. On the
other hand, k = 4 implies that the number of guardians
is 4, and the number of non-guardians is n − k = 6 − 4 = 2.
Hence, when five stegos are received, then either there are
three guardians (together with two non-guardians), or
there are four guardians (together with one non-
guardian). Since {q1 = 2, q2 = 2, q3 = 3, and q4 = 4}, the re-
covery is either of high level (because q4 = 4), or of moder-
ate level (because q3 = 3). There is no way to get five
stegos in which two are guardians and three are not; be-
cause the whole system only has two non-guardians. Con-
sequently, only moderate level and high level are possible.
Finally, if all six stegos are received, then only the lossless
version exists. From this example, we can see that, even
though the set {q1 = 2, q2 = 2, q3 = 3, and q4 = 4} has three
distinct values, using (r, n) = (n − 1, n) = (5, 6) makes the
number of progressive levels drop from three to two. On
the other hand, for the image House, because (r, n) = (4,
6), so when people receive four stegos, the image House
for three levels.
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can be fully recovered (if four stegos are all guardians) or
moderately recovered (if three of the stegos are guard-
ians), or recovered with the lowest quality (if two of the
four received stegos are guardians). Therefore, in
method 3, although k is the number of type-q progres-
sive parameters, the actual number of recovery levels
might be lower than k − 1, if the threshold value r of
the image is very close to n.
Next we discuss the quality caused by the type-q pa-

rameters. Assuming that at least r stegos have been re-
ceived, we can get the encrypted DCT of the image.
Then, for {q1 = 2, q2 = 2, q3 = 3, and q4 = 4}, it means that
regions {1, …, i} of the encrypted DCT can be decrypted
if i of the received stegos are guardians (i = 2, 3, 4).
Therefore, the recovery uses 2 (or 3, or 4) of the four re-
gions of the DCT. For simplicity, assume that uniform
partition was applied earlier to partition the DCT into
regions. Then, on levels 1, 2 and 3, respectively, about 2/
4, 3/4, 4/4 of the DCT information are utilized to re-
cover the image. On the other hand, for the experiment
done in Table 3 of Section 4.3, whose k = 3 parameters
of type-q are {q1 = 2, q2 = 2, and q3 = 3}, the information
used on each level of image reconstruction is, respect-
ively, about 2/3 and 3/3 of the DCT information. Since
2/4 < 2/3 < 3/4, the recovery related to 2/4 should be
worse than the recovery related to 2/3; whereas the re-
covery related to 2/3 should be worse than the recovery
related to 3/4. In other words, the low-level recovery of
Table 5 should be worse than the low-level recovery of
Table 3, whereas the low-level recovery of Table 3
should be worse than the moderate-level recovery of
Table 5. If we inspect Tables 3 and 5, we find that the re-
sult is really as expected.

6 Conclusions
In this paper, we proposed three kinds of progressive
sharing methods to deal with multiple images. Method 1
is a basic progressive sharing method that decodes ac-
cording to the sensitivity level of each secret image
group. Method 2 is similar to method 1; however, in
method 2, different weights are assigned to different cover
image groups. Consequently, in the unveiling of the secret
images, some groups of cover images are more useful than
others. Method 3 uses a single threshold for each secret
image with the same sensitivity level; however, the keys
are progressively shared, making method 3 progressive.
The increase in the shadow size caused by progressiveness
can be neglected in method 3 because the size of the keys
is much smaller than the size of the images.
We enhance conventional image sharing methods by

providing the following features:

A. Multiple secret images are divided into several
groups with distinct sensitivity levels, and each
secret group has its own decoding thresholds for
progressiveness. Note that each stego hides some
information from ‘all’ groups of secret images. In
other words, the information is integrated across the
groups. In method 1, all stego JPEG codes have the
same importance, as explained below: using ‘any’ rji
of the n stegos, we can recover every secret image of
secret group j; and the recovery quality is of the ith
progressive level.

B. The cover images can also be divided into several
groups, as introduced in method 2. Each cover
group in method 2 has its own weight, and cover
groups with more weight are more powerful (a
cover group with weight = 3 is as powerful as three
cover groups with weight = 1 each). Consequently,
some covers have more influence than others in the
revealing of secrets.

C. In method 3, in addition to using each secret group's
own threshold to control its revelations, guardian
stegos play an even more dominant role to control
the revealing of secrets. Method 3 is also
progressive.

D. We provide progressive decoding for multi-images,
and the stegos are in JPEG format. Progressive
decoding of multiple secret images is desirable in
certain applications such as image retrieval from
sensitive databases in crime investigation units,
military departments, and the design team of a
company.

By choosing a method that suits his/her purposes from
our three proposed methods, a user can distribute his/
her secret images among n stegos and obtain the
progressive recovery effect that s/he desires.
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