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Abstract

To evaluate the visual quality in visual secret sharing schemes, most of the existing metrics fail to generate fair and
uniform quality scores for tested reconstructed images. We propose a new approach to measure the visual quality of
the reconstructed image for visual secret sharing schemes. We developed an object detection method in the context
of secret sharing, detecting outstanding local features and global object contour. The quality metric is constructed
based on the object detection-weight map. The effectiveness of the proposed quality metric is demonstrated by a
series of experiments. The experimental results show that our quality metric based on secret object detection
outperforms existing metrics. Furthermore, it is straightforward to implement and can be applied to various
applications such as performing the security test of the visual secret sharing process.
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1 Introduction
Visual secret sharing, also named visual cryptography,
encrypts the secret image by generating random-looking
shares. The secret can be retrieved by stacking the shares
together. Thus, the decryption does not need a computer.
The quality of the reconstructed image is one of the
most important issues of visual secret sharing. Different
from classical image encryption, the secret “decrypted”
in visual secret sharing is not exactly the same as when
it was encrypted but it is reconstructed with a certain
quality level such that the secret object can be perceived
by human eyes. That is, the decrypted secret image does
not possess perfect quality when rendered within noisy
shares. So the degree that the reconstructed image differs
from the original image becomes very important. Visual
quality (or display quality) is used to represent the quality
of the reconstructed secret image. A perfect reconstruc-
tion should maintain all the secret information of the
original secret. To determine the secret object within a
noisy background, the secret object needs to be integrated
and clear. We define the integrity of the secret object
as In(Z) and the clarity of the secret object as Cl(I) for
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image I. A reconstructed secret object which is clear and
highly integrated represents a better visual quality and
implies that a larger amount of secret information can be
perceived.

E(RD)is proportional to In (RI) - CI(RI) (1)

Q(RI)is proportional toE(RI). (2)

Here, the secret information maintained in the recon-
structed image RI is denoted by E(RI). The visual quality
of the reconstructed image is represented by Q(RI). In
the real world, the reconstructed image can be damaged
or faded. An acceptable quality metric should be able to
differentiate the reconstructed images, from bad to good
quality.

The most popular criterion in visual quality measure-
ment is contrast, which was first proposed by Naor and
Shamir [1]. Contrast based on area representation [2—4]
was proposed to measure the visual quality of recon-
structed images based on the traditional concept of con-
trast. Higher contrast was often viewed as higher visual
quality. Blackness [5, 6] of the reconstruction image was
discussed in a few later studies. Other scholars [7, 8]
have used some well-known image quality metrics such
as peak signal-to-noise ratio (PSNR) and mean squared
error (MSE) to test the difference between the reconstruc-
tion image and secret image. None of these metrics work
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properly in visual quality measurement for visual secret
sharing.

In this paper, we proposed a novel metric to mea-
sure the visual quality of the reconstructed image for
visual secret sharing. An object detection method in the
context of secret sharing is developed. A quality met-
ric is constructed based on the weight map generated
by the secret object detection. Theoretical analysis and
simulation results are provided as well, demonstrating the
effectiveness and possible applications of our novel visual
quality assessment method. The remaining part of this
paper is organized as follows. Section 2 reviews related
work about visual quality assessment of visual secret
sharing schemes. The proposed secret object detection
method is introduced in Section 3. Experimental results
of the quality assessment and possible applications are
provided in Section 4. Section 5 gives the conclusions.

2 Visual secret sharing schemes and existing
quality metrics

Naor and Shamir [1] proposed a model representation
for visual secret sharing schemes in 1994, which is also
referred to as the deterministic visual secret sharing
model [9]. Multiple pixels are used to reconstruct one
pixel of the original secret image. Thus, recent stud-
ies focus on size invariant visual secret sharing schemes
[2, 10-14] to avoid the storage overload and dimension
distortion caused by such pixel expansion [15] in the
deterministic models. The earliest size invariant visual
secret sharing scheme was proposed by Kafri and Keren
[16] in 1987, named as “encryption of pictures by ran-
dom grids” at that time. Several approaches have been
proposed recently to perform size invariant visual secret
sharing, such as the random grid-based visual secret shar-
ing (RG-based VSS) [2, 10-14], the probabilistic visual
cryptography (ProbVC) [17-19], and the multiple pixel
sharing scheme [20-22]. This paper uses the RG-based
VSS as our main testing model. The experiment using
Naor and Shamir’s deterministic model is also provided at
the end part of this paper to demonstrate that our met-
ric could also be applied to general visual secret sharing
schemes with pixel expansion.

We explored existing quality metrics for the visual qual-
ity assessment. All of them are shown to be improper or
not correct.

2.1 Contrast based on area representation

“Contrast” was first described by Naor and Shamir in their
deterministic model representing the difference between
black and white pixels in the reconstructed image. The
Hamming weight of the stacked result V is represented
by H(V). The minimum Hamming weight of a stacking
result for the reconstructed black pixels is denoted by d.
The value m is the pixel expansion rate. « is defined as

Page 2 of 15

contrast. The recovered pixel is treated as black if Eq. (3)
is satisfied and white if Eq. (4) is satisfied.

H(V)=d (3)

HV)<d—oa-m (4)

Other contrast definitions such as contrast = (h —
0)/(m + 1) [23] and contrast = (4 — ) /(h + 1) [24] focus
on the relative difference between white and black pixels
in the reconstructed secret image which are similar with
Naor and Shamir’s definition, where 7 is the lower bound
of the darkness levels to encrypt a black pixel and [/ is the
upper bound of the darkness levels to encrypt a white pixel
in the reconstructed secret image.

Based on these definitions, the contrast based on area
representation [2-4] was proposed for size invariant
visual secret sharing schemes. For a given pixel r, in a
black/white image with size a4 x b, the light transmission
of a white pixel is defined as T'(r) = 1; otherwise, when
r is a black pixel, we have T'(r) = 0. We define the stack-
ing result of the shares to be R £ R ® ... ® R, where R;
represents a share. The average light transmission of R is
denoted as

a b
> > T(riy)

i=1j=1

TR = =" —. 5)

Let S(0) or S(1) denote the area of all the white or
black pixels in the secret image S, where S = S(0) | S(1)
and S(0) () S(1) = @. Therefore, R[S(0)] or R[S(1)] is
the corresponding area of all the white or black pixels in
the image R. The contrast of the reconstructed image is
expressed as

o= TR[S(0)]) — TRISMD)])

1+ TRISMD) ©

This contrast based on area representation calculates
the transmission difference between the black and the
white area in the reconstruction image.

Our experience tells us that it is not proper to evaluate
the visual quality of the reconstructed secret image simply
by the contrast value. As shown in Eq. (6), the value of o
only depends on the light transmissions of the white and
the black area in the reconstructed image. The visual qual-
ity of the reconstructed image cannot be predicted given
only the light transmission values. Two sample images
with the same contrast values were constructed in Fig. 1.
Both the symbol “T” and the “baboon” have the same
contrast value 0.54. However, it is easier to recognize the
symbol “T” than the “baboon”. Reconstructed images with
the same contrast value may differ significantly in visual
quality.
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Fig. 1 Two reconstructed images with the same value of contrast
based on area representation: a reconstruction of a “baboon”; b
reconstruction of a symbol “T"

2.2 Blackness

Blackness is another important factor that has aroused
researchers’ attention in recent years. Chiu [5, 6] argued
that the visual quality of a recovered image is affected not
only by its contrast value but also by its blackness. Quality
assessment and optimization method were further devel-
oped concerning only these two factors, contrast and
blackness in [5].

The degree of blackness represents the percentage of
black pixels in the secret image recovered to be black.
However, we cannot rely on the accuracy of quality mea-
surement only based on contrast and blackness. The
reconstruction quality of two testing images with the same
blackness are demonstrated in Fig. 2. The contrast value
(0.62) of the reconstructed “zebra” is higher than the con-
trast (0.52) of the reconstructed “square” symbol; both the
“zebra” and the “square” symbol are reconstructed with
the blackness value 0.99. However, important features of
the “zebra” secret image are destroyed severely, and it is
hard to differentiate it as a zebra or a horse in the recon-
struction. It is much harder to recognize the “zebra” than
the “square” symbol from the reconstructed images.

Not only does the global contrast and blackness value
impact visual quality, but also the feature of the original
image will affect the visual quality. So it is unreliable to
judge the visual quality of reconstructed image only by
contrast and blackness.

Original
images

Reconstructed
images

Fig. 2 Two reconstruction images with the same blackness value

2.3 Objective image quality metrics
Peak signal-to-noise ratio (PSNR) is one of the most
common measurements for the quality loss in image pro-
cessing. It is based on mean squared error (MSE). It is
commonly used as a quantitative metric in general image
quality assessment and in visual secret sharing [7, 8].
However, as Wang et al. [25] stated in their research,
the pixel-to-pixel error measurement cannot accurately
represent the image quality loss. Wang first proposed
structure similarity (SSIM). The changes in structural
information and variations illustrate the degradations of
the image quality better than error based on pixels.

(2Mxﬂy + Cl)(zoxy +Co)
(,u,% +u3+ C1) (oxz +o7 + C2>

SSIM(x, y) = (7)

where 11, is the average of x, 1, is the average of y, oxz is
the variance of x, O’yz is the variance of y, and oy, is the
covariance of x and y. Parameters C; and C; are used to
stabilize the division. Compared with PSNR and MSE, the
advantage of SSIM, as shown in Eq. (7), is that the relation-
ship among pixel neighbors are taken into consideration.
SSIM is treated as another commonly applied tool of qual-
ity evaluation in image processing and image encryption
[26-28].

We further tested PSNR and SSIM with some sample
images in Fig. 3. The PSNR and SSIM values of the tested
images are shown in Table 1.

The higher PSNR and higher structural similarity are
always viewed as higher visual quality, i.e., less error. The
symbol “T” has lower PSNR and SSIM values than the
“baboon,” though it is clearer. Both PSNR and SSIM failed
to represent the quality loss of tested images. The global
difference between reconstructed and original images are
tested pixel by pixel or patch by patch, and errors occur-
ring in the background part of the images are counted
equivalently as errors on the secret object. The image
quality metrics are not robust on image context; thus, the
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Original
images

Reconstructed
images

Fig. 3 Sample images for PSNR and SSIM testing

quality scores based on PSNR and SSIM are not suitable
for reconstructed visual secret images.

From the above experiments and observation, we found
that reconstruction with a good quality should be able to
maintain the most outstanding object features of the orig-
inal secret. As shown in the figures, the reconstructed
“baboon” can be understood if both the overall secret
object contour, such as the outline of the face and eye-
brow, and the outstanding local features, such as the
eyes and nose, are maintained in the reconstruction. The
total degradation of the secret information is formed by
errors at all pixel locations. But pixels at different loca-
tions should have a different effect on the total degra-
dation. Such as, one pixel error located on the eyes of
the “baboon” and another pixel error located on the “fur
area” will definitely have a different impact on the final
visual quality. A smart visual quality metric should be
able to differentiate errors at different locations and quan-
titatively represent how much the global object contour
and the outstanding local features are maintained in the
reconstructed image.

3 Object detection in the context of secret sharing
To detect the secret object within a noisy reconstructed
image, common object detection methods [29-34] were
studied first. In the common image object detection, a
variety of image features are usually extracted first to gen-
erate the initial object representation, classification meth-
ods are applied to known features, and training process
or learning process is the essential part of the detection.
The detection methods usually rely on large databases

Table 1 PSNR and SSIM values of tested images

Images Symbol “T" “baboon”
PSNR 3.51 441
SSIM 0.11 0.19
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and prior knowledge. However, common object detection
methods cannot work properly in visual secret sharing.
There are mainly two reasons. First, prior knowledge can-
not be relied on in a secret object detection as the secret
object can be formed in any possible pattern. Further, it is
not practical to perform a training process in secret object
detection as the secret objects are expected to be random
and independent of each other. The secret object with
complete contour and clear local features should con-
tain high secret information as we stated in Egs. (1) and
(2). An objective and intuitive representation method is
needed to measure the quality of the reconstructed secret
object.

The main strategy we applied is to detect the global
contour structure based on low-level image features (dis-
cussed in Section 3.3). The integrity of the reconstructed
object is represented by the global contour detection
result. At the same time, outstanding local features are
detected to evaluate the clarity of the secret object.

To detect the outstanding local features, image regions
different from their neighborhoods should be considered
to be more important, such as the eyes of the baboon. As
the secret object can be rendered in any pattern, a detec-
tion method can only rely on the objective image features
and does not involve any strategies of scene understand-
ing or human visual systems. The problem is how to detect
the outstanding local features objectively when there is
no objective detection technique available. Inspired by the
multiple scale feature extraction and weighted dissimi-
larity calculation methods of models for “visual saliency”
[35, 36], we designed our local feature detection method
for visual secret sharing schemes specifically.

3.1 Outstanding local feature detection model: visual
saliency

Saliency models [37] are well studied and commonly
applied to accomplish a fast object detection within a
noisy background. “Saliency,” which simulates human
visual system models, is trying to predict the most con-
spicuous locations within one image. Itti and Koch [35]
proposed the most classic saliency detection model in
1998. The “graph-based visual saliency” (GBVS) model
[36], an improved version of Itti and Koch’s model,
demonstrates better performance. We performed a series
of experiments to test the characteristics of the conspic-
uous feature detection process using the “graph-based
visual saliency” model.

As shown in Fig. 4, different saliency weights of tested
symbols are marked by different colors. Warm colors such
as red and yellow represent high saliency weight values
and low saliency weights are marked by gray and dark
blue. It is shown that the outstanding features were high-
lighted only if they are located at the center part of the
image.
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Fig. 4 Local feature detection of graph-based visual saliency model

The reason why the classic saliency model “ignores”
the important local features at the boundary part is ana-
lyzed. The graph-based visual saliency model generates
the feature map by the intensity variation and edge orien-
tations of the secret image. There are six types of features
selected; four of them are edge orientation features and
the other two types are intensity variations. To select
the outstanding local locations, the graph-based visual
saliency model calculated a “weighted dissimilarity” for
the feature data on each map location/node pair. Pixels
with a high weighted dissimilarity from surrounding pix-
els are detected to be more salient. The surrounding pixels
are given higher weight than further pixels. The bound-
ary parts in the image have less neighbors/surroundings
than the center part of the image as shown in Fig. 5. That
is why more features in the center part of the image are
detected than the boundary part of the image as shown
in Fig. 4. A Markov chain’s steady state was calculated
to form the final most conspicuous locations. To sim-
ulate the human visual system selecting processes, the
final weight map is found to be an equilibrium distribu-
tion of all weighted location maps calculated by weighted
dissimilarity. Thus, the final weight map becomes more
concentrated as shown in Fig. 6.

In the context of visual secret sharing, the entire secret
can be located anywhere in the image, which is very dif-
ferent from the center-biased natural settings. All types of
raw image features should be equally weighted, and all the
pixel locations should be equally important. Furthermore,
no human visual system modeling should be applied.
Because the detection result should be totally objective,
we only rely on the inherent secret image features.

3.2 Local feature detection for visual secret sharing

The main purpose of the local feature extraction is to
find the pixels which are very different from their neigh-
borhood. Such pixels are considered as “unusual” and

thus more significant. To guarantee each pixel has the
same number of neighbors/surrounding pixels, the image
is first symmetrically extended before feature extraction
as shown in Fig. 7. Pixel intensity variation was extracted
vertically and horizontally, equally weighted at every loca-
tion. Each of the pixel location should have a x b — 1
surrounding pixel locations if the secret image has the size
a x b.

Fig. 5 Dissimilarity weights at different locations
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b

Fig. 6 Process of concentrating the weight distribution of the secret
images: a symbol “T"; b bar-shape symbol

To quantitatively represent the outstanding features at
every pixel location, we calculate the dissimilarity of each
two pixel locations

where the value of the raw feature (intensity variance) is
denoted by V. The dissimilarity between two specific pixel
locations is then assigned a weight

w(@), )] =d[G), @] -FlG—pj—q)
x2+y?
202
tion. Thus, the weighted dissimilarity between two pixel
locations is proportional to their difference and their
closeness. Pixels differing from close neighbors will have
higher weight because d [(i, N, q)] and F(i—p,j—q) are
relatively large. The parameter o decides the shape of the

Gaussian-like function.

Our experiment results show that a smaller sigma leads
to sharp detection capability and provides greater sensitiv-
ity to the changes in smaller local areas. In our situation, a
smooth outstanding local area is a better fit. We illustrate
two examples in Fig. 8, and the larger o in (a) is preferred
as it provides greater detail than smaller o in (b). Assum-
ing that people try to understand the basic information
from the reconstruction image without any hint from the
secret, losing any part of the information may cause the
recognition failure. Experiments show that outstanding
local features can represent the basic information very

where F(x,y) = exp (— ) is a “Gaussian-like” func-

Fig. 7 Symmetrical extension (a) and weighted dissimilarity (b) of the
secret image

well when o is assigned to one eighth of the testing image
width.

3.3 Object contour detection for visual secret sharing

One may argue that abundant outstanding local features
will make the global contour useless, because local fea-
tures of an object could leak the global structure of the
object. For example, one may be able to guess the secret
object is a person if there are two eyes in the image.
Such an inference is based on the experience or prior
knowledge which is again not reliable for secret detec-
tion. Furthermore, local features of a secret object could
be intentionally misleading or abnormal. This is very dif-
ferent from natural image settings. Integration of all the
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Fig. 8 Local outstanding information detection generated by differento:aoc = 4;bo = 0.32

AT

local features (the global contour) is necessary for secret
object detection in visual secret sharing.

The contour feature of the secret image should be
formed by the raw feature (intensity variance) which is
strongly connected and insensitive such as “the face con-
tour and the head contour of the baboon?” Trivial intensity
variance such as the “hair of the baboon” should not be
taken as a contour feature. We adopted feature extraction
in multiple scales to detect the broad contour regions. The
testing image is symmetrically extended before perform-
ing the feature extraction. First, the raw feature map of the
largest scale is extracted by averaging the vertical and hor-
izontal intensity variances by performing “Sobel” filter to
the entire secret image. To detect the feature maps in mul-
tiple scales, each lower scale feature map is generated by
downsampling the upper scale by 2:1 both vertically and
horizontally. To eliminate the features which are not con-
nected or tiny in size, a 3 x 3 Gaussian filter with standard
deviation 0.5 is convoluted to each scale map. The Gaus-
sian low-pass filter weakened the high-frequency noise
in each scale. After the smoothed feature map is down-
sampled repeatedly, coarser features are maintained and
finer features become weaker and weaker. The basic struc-
ture of the image will be detected after a few iterations.
Three iterations are proved to be good enough in our
experiments. Experimental results (Fig. 9) show that this
simple contour extraction method is competitive com-
pared with more complex contour extraction methods like
the Gabor energy filter [38] and the Gabor energy filtering
augmented with surround inhibition [39].

3.4 Basic flow of the object detection for visual secret
sharing

Secret images may form any pattern. Some secret images

have white backgrounds and some may have black back-

grounds. We need a fair metric, which treats the black

and white backgrounds such as Fig. 10 equally. To avoid
the influence of background color in our error calcu-
lation, we adopted a preprocessing step to unify the
background property of the secret. Graph-based visual
saliency is adopted to perform an initial prediction of the
foreground. The accumulated saliency of the black and
white pixels in the secret image are statistically compared.
Whichever color (black or white) with a higher accu-
mulated saliency weight will be taken as the “temperate
foreground color” The other color is taken as the “tem-
perate background color” For secret images in which the
“temperate background color” is black, we use its reversed
image in the following detection processes. And for the
secret images with a white “temperate background,” we
leave it unchanged. Thus, the same secret objects with dif-
ferent background colors are treated equally in the secret
object detection. As long as the secret object is rendered
to a same structure, the detection result will be the same.
Other background/foreground detections can be used as
well. The “temperate background” selection will not affect
the object detection result. Only the uniformity of the
selection matters.

The flowchart of our object detection in the context of
secret sharing is shown in Fig. 11. The image after prepro-
cessing is extended to generate the raw features by linear
filtering. The raw features are used to generate both the
global contour feature map and the outstanding local fea-
ture map. Both the global contour information and the
outstanding local information are generated in multiple
scales. The contour feature in each scale is the output
of the Gaussian smoothing filter. The multiple scale con-
tour feature maps are then normalized to a single con-
tour feature map by the across-scale linear combination.
The multiple scale local feature maps are generated by
downsampling the raw feature map repeatedly. The final
local outstanding feature maps are generated by weighted
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Cc

Fig. 9 Contour extraction result: a original image, b our contour extraction, € Gabor energy filter extraction, and d Gabor energy filtering

augmented with surround inhibition extraction

dissimilarity calculation using downsampled local feature
map. Finally, a single local feature map is generated by
the across-scale linear combination of all the local fea-
ture maps in multiple scales. An adaptive fusion method is
implemented by assigning different weights between the
normalized contour and local feature maps. The weights

Original
images

AT S

Reconstructed
images

Fig. 10 Reconstructed images for black and white backgrounds

could be adjusted by applications and users’ requirements.
Here, we use equal weights for the local feature and the
contour feature as an example. The final detection-weight
map for visual secret sharing is shown by a test set in
Fig. 12.

3.5 Performance analysis of object detection in the
context of secret sharing
From Fig. 12, we found that most of the structures of
the secrets were retained in our detection-weight maps.
If we mark the original secret with only “hot” and “cold”
representing the secret content and the other content,
respectively, how much the “hot” information is shown
as “hot” and how much the “cold” information is kept as
“cold” in the secret object detection-weight map illustrate
the secret detection ability. To illustrate the detection abil-
ity of our method, the symbol “T” was tested at different
“hot” thresholds as shown in Fig 13. Our detection method
achieved more than 90% in the secret coverage when the
threshold of “hot” is set to 0.4.
According to previous analysis, the secret object of
the reconstructed image should be similar to the secret
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Fig. 11 Flow chart of secret object detection-weight map generation

object in the original images if the reconstruction qual-
ity is good. The detection-weight map of the original
image should be consistent with the weight map of the
reconstructed image. The consistency of the weight maps
between the secret and the reconstructed secret is another
important factor to judge the performance of the secret
detection method. We partitioned the weight values into
three groups [0,0.45),[0.45,0.7), and [0.7,1] as “cold’
“warm,” and “hot;” respectively. The weight distribution
for the square symbol and the “T” symbol were tested
in Fig. 14. The difference between the original secret
detection-weight map and the reconstructed detection-
weight map is very small. Our secret object detection-
weight maps demonstrated good consistency between the
original secret image and the reconstructed secret image.

4 Quality assessment based on secret object
detection

Our quality assessment is constructed based on the secret

object detection. The overall visual quality score of the

Fig. 12 Weight maps of the final secret object detection
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Fig. 13 Secret coverage of our secret object detection
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reconstructed image can be calculated by the detection-
weight control. The pixels in the detection-weight map
with high detection weights are considered more impor-
tant than the pixels with lower detection weights.
Errors at highly weighted locations cause severe quality
degradation.

The detection-weight map, which is normalized from
zero to one, marks the secret object with higher weight
values and the non-secret parts with lower weight val-
ues. To quantitatively represent the overall quality, the
final detection-weight map is divided into L weight levels.
A larger L represents a more detailed and smooth divi-
sion and a smaller L leads to clear and obvious division
as shown in Fig. 15. The level index is denoted as “/” The

upper bound and the lower bound of level [ are defined as
Bupper (/) and Bjgwer (D)

1

Bupper(l) = Z -1

1
Blower(l) = Z . (l -1

Pixels with floating detection weights between the
upper and lower bounds of level / are categorized into the
same weight level. The total level number L can be quite
large. We performed experiments for L, ranging from 3
to 15. The final quality rank of tested images remains sta-
ble. The level number L = 5 shows a clear division and
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a

Fig. 14 Consistency test of the secret object detection method for a
original images and b reconstructed images

was efficient in computation; thus, it was selected in our
experiments.

To generate the weight factor for each level, we first use
B1, B2 - - - B as a set of generators and assign §; = 0.1. We
then assign B2 = B1 and for the weight level that L > [ >
2, we selected

-1
Bi=Y B
i=1

The weight factor for level / is defined as

Fig. 15 Detection-weight map division:alL =5andb L =15
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Table 2 OBSD quality assessment compared with other quality
metrics for 2 out of 2 visual secret sharing

Metric Symbol Square

name T Letters  Baboon  sign Portrait ~ Zebra

Quality Very Very

rank good Good  Fair good Good Poor

QBSD 0.80 0.78 0.73 0.83 0.77 0.70

Blackness  0.98 0.99 0.91 0.99 0.98 0.99

SSIM 0.11 0.93 0.19 017 0.24 0.89

MSE 2.9e4 1.8e3 2.3e4 2.7e4 2.4e4 2.8e3

PSNR 3.51 15.59 441 3.79 4.31 13.67

Contrast 0.502 0.52 0.540 0.502 0.506 0.620
-1

Observe that W; = >~ W; and the weight factors for all

i=1

levels sum up to one.

The overall quality based on the secret object detection
(QBSD) of the reconstructed image is defined by a linear
combination of the accuracy rates of all the weight levels,
as shown in Eq. (8).

QBSD = ) W} - R;, where (8)
I
N,
Rl — 1 _ error . (9)
thixel

The accuracy rate R; is related to the error rate
Nerror/Nipixel of level I. The number of the pixel errors in
the current level is Nepror, and the total pixel number in
the current level is Nypixel. If each level achieves 100%
in reconstruction accuracy, the overall quality will be “1”

To evaluate the reconstruction quality, we need to
measure how similar the reconstructed secret and the

Table 3 QBSD quality assessment compared with other quality
metrics for 3 out of 3 visual secret sharing

Metric Symbol Square

name T Letters  Baboon  sign Portrait ~ Zebra
Quality Very Very

rank good Good Fair good Good Poor
QBSD 0.72 0.71 0.66 0.76 0.69 0.62
Blackness  0.99 0.99 0.95 0.99 0.99 0.99
SSIM 0.09 0.92 0.09 0.14 0.20 0.875
MSE 4.3e4 0.2e4 3.3e4 4.1e4 3.6e4 3.5e3
PSNR 1.76 14.01 2.99 2.04 261 12.62
Contrast  0.251 0.262 0.270 0.251 0.251 0.31
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Table 4 OBSD quality assessment compared with other quality
metrics for 2 out of 4 visual secret sharing
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original secret are. One type of method could be mea-
suring the distance between the reconstruction and the

Metric Symbol Square original secret. The other type is measuring the accu-
name T Letters  Baboon  sign Portrait  Zebra  racy rate between the reconstructed and the original
Quality Very Very secret. We tested several commonly used quality metrics,
rank good Good  Fair good  Good Poor shown in Table 2. MSE and PSNR are metrics mea-
0BSD 0.74 071 068 073 072 068 suring distance, using Euclidean distance between the
Blackness 073 075 066 074 073 074 reconstructed image and the original image. PSNR is
SSiM 002 002 014 003 005 0,04 in logarithmic scale of MSE’s reciprocal. So lower MSE
MSE . T 6ot 1704 | 704 and h.1gher PSNR re‘p.resent less ‘dlstance. of the recon-
struction and the original secret information. Blackness,
PSNR 599 5.86 535 6.00 5.89 5.86 . . .
SSIM, and our metric are metrics measuring the accu-
Contrast 0.182 0.193 0.265 0.174 0.184 0.29 . .
racy rate. A higher quality rate value represents a better
Original Reconstructed Reconstructed Reconstructed
images images (2,2) VSS  images (3,3) VSS  images (2,4) VSS

T

Fig. 16 Original and reconstructed images for different (2 out of 2, 3 out of 3, and 2 out of 4) visual secret sharing schemes
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reconstruction quality. The contrast method is neither a
metric of distance nor a metric of accuracy rate; it mainly
depends on the unique characteristic of the secret sharing
scheme and the secret image.

Several experiments were performed to test the pro-
posed QBSD quality metric. We tested the quality of the
reconstructed images for two out of two, three out of three
(Table 3), and two out of four (Table 4) RG-based VSS
schemes using our quality metric. As shown in Fig. 16, the
quality of the reconstructed images has great variations.

First of all, we found that secret objects with simple
structures, such as the symbol “T” and the square, have
much better reconstructed quality than the other objects
and the secret objects “baboon” and the “zebra” have
worse quality than other images in the reconstruction.
It is not very easy to find a clear face contour of the
“baboon” in the three visual secret sharing schemes. The
quality scores show the fact that losing important contour
features results in degradation in quality.

Secondly, outstanding local features such as the eyes and
the mouth of the “portrait” are not well maintained in the
reconstructed images of the three out of three visual secret
sharing scheme. The stripes of the “zebra” are not well
maintained in all the reconstructions of the three different
schemes. Errors of the important local features generate
severe degradation in quality. Our quality metric performs
just as we expected.

Thirdly, the two out of two visual secret sharing scheme
gives a better reconstruction quality than the other two
schemes according to the QBSD scores. Our proposed
metric gives us a sense of the quality variance for sharing
the same secret by different secret sharing schemes.

Overall, our quality metric is consistent with the qual-
ity degradations. The “very good reconstruction,” “good
reconstruction,” “fair reconstruction,” and “poor recon-
struction” are differentiated very well. None of the other
metrics could offer proper and consistent quality scores
for these reconstructed images of the three schemes.

To demonstrate our metric could be also applied to
the deterministic visual secret sharing schemes, Naor and
Shamir’s two out of two deterministic sharing scheme is
also tested. For a fair measurement without any size dif-
ference, the reconstructed image with the pixel expansion
is compared with an expanded ground-truth secret image.
The pixel expansion rate m is 4 (Fig. 17). The ground-truth
secret image is generated by expanding each pixel of the
original secret image by the rate m. The object detection-
weight map is generated directly from the ground-truth
secret image.

The quality testing result is shown in Table 5. The recon-
structed image quality using the deterministic model with
pixel expansion is slightly higher compared with the size
invariant mode. The quality rank for each tested image
remains consistent. This proves that the proposed quality
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-

original secret image

ground-truth secret image
with pixel expansion

object detection weight map

reconstructed secret image

Fig. 17 Quality measurement of 2 out of 2 visual secret sharing with
pixel expansion m = 4

metric could also be applied to general visual secret shar-
ing schemes with pixel expansion as well as the size
invariant sharing schemes.

There are several practical applications for the proposed
visual quality metric. For example, our quality metric
could be applied to security measurement in the visual
secret sharing process. Assume one share within the two
out two secret sharing process is leaking secret informa-
tion; the party holding one share (which is an insufficient
share number to reconstruct the secret if there is no secret
leaking) will be able to review the secret. A pilot exper-
iment is performed to demonstrate that QBSD scores
could be also used to measure the security level of a “leak-
ing share” The visual quality of the leaking shares for
different images are tested using our QBSD metric. The
measured quality scores of the leaking shares are repre-
sented in the Fig. 18. Measured QBSD scores are different
for different secret leaking situations. The term “leakage”
here means how large is the leaking area of the entire
share. A 30% leakage at the top part of the share generates
a higher quality score than the same amount of leakage at

Table 5 QBSD measurement of the same images reconstructed
with and without pixel expansion, m = 4

QBSD Symbol Square

values T Letters Baboon sign Portrait  Zebra
Quiality Very Very

rank good Good  Fair good  Good  Poor

Size invariant
Reconstruction  0.80 0.78 0.73 0.83 0.77 0.70
Reconstruction

With expansion  0.82 0.81 0.79 0.84 0.80 0.76
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R
G s WO
QBSD=0.59
Leakage=30%

QBSD=0.73
Leakage=30%

QBSD=0.81 QBSD=0.57
Leakage=26% Leakage=54%

Fig. 18 QBSD measurement of the shares leaking secret

the bottom part. A share leaking a small significant secret
area has a much higher quality score than a share leaking
a larger insignificant secret area. This confirms our secret
object detection result. As shown in Fig. 12, a significant
part of the secret object with a higher detection weight
holds more secret information and causes a severe safety
issue if leaked out. A higher QBSD score indicates a higher
secret information leakage, in other words, a lower secu-
rity level. A series of leaking shares for different images
were measured, and we found that the main secret con-
tent starts to leak out when the QBSD score is above 0.58.
Intuitive values indicating different security levels can be
provided using QBSD measurement.

The proposed QBSD metric could also be used by
the dealer, in the secret sharing process, to ensure the
reconstruction quality of different images. Besides, it can
be used to analyze the quality performance of different
sharing schemes or assign a quality threshold in the
decryption process. More practical applications could be
explored in a further study.

5 Conclusions

In this paper, we have investigated the existing approaches
to quality assessment of the reconstructed image for visual
secret sharing schemes and enumerated their limitations.
We have proposed a novel quality assessment based on
secret object detection in the context of visual secret
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sharing. To check the clarity and integrity of the secret
object, both local outstanding features and global contour
are detected. Experimental results show that the proposed
quality metric outperforms the other common quality
metrics. The difference between our quality assessment
and other tested metrics is that we are the first to adopt an
image-adaptive quality measurement. Our proposed qual-
ity metric can be applied to different visual secret sharing
processes and provide practical benefits.
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