67 research outputs found

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels

    Full text link
    We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.Comment: 18 pages, 9 figures, accepted for publication in the IEEE Transactions on Information Theor

    New Protograph-Based Construction of GLDPC Codes for Binary Erasure Channel and LDPC Codes for Block Fading Channel

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๋…ธ์ข…์„  ๊ต์ˆ˜๋‹˜.์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์Œ ๋‘ ๊ฐ€์ง€์˜ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค: i) ์ด์ง„ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ƒˆ๋กœ์šด ๊ตฌ์กฐ์˜ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ generalized low-density parity-check (GLDPC) ๋ถ€ํ˜ธ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ• ii) ๋ธ”๋ก ํŽ˜์ด๋”ฉ ์ฑ„๋„์„ ์œ„ํ•œ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜์˜ LDPC ๋ถ€ํ˜ธ ์„ค๊ณ„. ์ฒซ ๋ฒˆ์งธ๋กœ, ์ด์ง„ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ ๋ถ€๋ถ„์  ๋„ํ•‘ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜์˜ GLDPC ๋ถ€ํ˜ธ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๊ธฐ์กด์˜ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜์˜ GLDPC ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ ์˜์—ญ์—์„œ single parity-check (SPC) ๋…ธ๋“œ๋ฅผ generalized constraint (GC) ๋…ธ๋“œ๋กœ ์น˜ํ™˜(๋„ํ•‘)ํ•˜๋Š” ํ˜•ํƒœ๋กœ ๋ถ€ํ˜ธ๊ฐ€ ์„ค๊ณ„๋˜์–ด ์—ฌ๋Ÿฌ ๋ณ€์ˆ˜ ๋…ธ๋“œ ๊ฑธ์ณ GC ๋…ธ๋“œ๊ฐ€ ์—ฐ๊ฒฐ๋˜๋Š” ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด, ์ œ์•ˆ๋œ ๋ถ€๋ถ„์  ๋„ํ•‘ ๊ธฐ๋ฒ•์€ ํ•œ ๊ฐœ์˜ ๋ณ€์ˆ˜ ๋…ธ๋“œ์— GC ๋…ธ๋“œ๋ฅผ ์—ฐ๊ฒฐํ•˜๋„๋ก ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๋ฐ”๊ฟ” ๋งํ•˜๋ฉด, ์ œ์•ˆ๋œ ๋ถ€๋ถ„์  ๋„ํ•‘ ๊ธฐ๋ฒ•์€ ๋” ์„ธ๋ฐ€ํ•œ ๋„ํ•‘์ด ๊ฐ€๋Šฅํ•ด์„œ ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ถ€ํ˜ธ ์„ค๊ณ„์— ์žˆ์–ด ๋†’์€ ์ž์œ ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ๋” ์„ธ๋ จ๋œ ๋ถ€ํ˜ธ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ถ€๋ถ„์  ๋„ํ•‘๊ณผ PEXIT ๋ถ„์„์„ ์ด์šฉํ•˜์—ฌ partially doped GLDPC (PD-GLDPC) ๋ถ€ํ˜ธ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ์ตœ์ ํ™” ํ•˜์˜€๋‹ค. ๋”๋ถˆ์–ด, PD-GLDPC ๋ถ€ํ˜ธ์˜ ์ผ๋ฐ˜์  ์ตœ์†Œ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๋Š” ์กฐ๊ฑด์„ ์ œ์‹œํ•˜์˜€๊ณ  ์ด๋ฅผ ์ด ๋ก ์ ์œผ๋กœ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ œ์•ˆ๋œ PD-GLDPC ๋ถ€ํ˜ธ๋Š” ํ˜„์กดํ•˜๋Š” GLDPC ๋ถ€ํ˜ธ์˜ ์„ฑ๋Šฅ๋ณด๋‹ค ์œ ์˜๋ฏธํ•˜๊ฒŒ ์›Œํ„ฐํ”Œ ์„ฑ๋Šฅ์ด ์ข‹์•˜๊ณ  ๋™์‹œ์— ์˜ค๋ฅ˜ ๋งˆ๋ฃจ๊ฐ€ ์—†์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ตœ์ ํ™”๋œ PD-GLDPC ๋ถ€ํ˜ธ๋Š” ํ˜„์กดํ•˜๋Š” ์ตœ์‹  ๋ธ”๋ก LDPC ๋ถ€ํ˜ธ๋“ค์— ๊ทผ์ ‘ํ•œ ์„ฑ๋Šฅ์„ ๊ฐ€์ง์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ธ”๋ก ํŽ˜์ด๋”ฉ (BF) ์ฑ„๋„์—์„œ resolvable block design (RBD)๋ฅผ ์ด์šฉํ•œ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ LDPC ๋ถ€ํ˜ธ ์„ค๊ณ„๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค. ์ œ์•ˆ๋œ ๋ถ€ํ˜ธ์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ๋น„ํŠธ ์˜ค๋ฅ˜์œจ์˜ ์ƒํ•œ์„ ๊ฐ๋งˆ ์ง„ํ™”๋ผ๋Š” ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ์œ ๋„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์œ ๋„๋œ ์˜ค๋ฅ˜์œจ ์ƒํ•œ๊ณผ ๋ถ€ํ˜ธ์˜ ํ”„๋ ˆ์ž„ ์˜ค๋ฅ˜์œจ์ด ๋†’์€ SNR ์˜์—ญ์—์„œ ์ฑ„๋„ outage ํ™•๋ฅ ์— ๊ทผ์ ‘ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.In this dissertation, two main contributions are given as: i) new construction methods for protograph-based generalized low-density parity-check (GLDPC) codes for the binary erasure channel using partial doping technique and ii) new design of protograph-based low-density parity-check (LDPC) codes for the block fading channel using resolvable block design. First, a new code design technique, called partial doping, for protograph-based GLDPC codes is proposed. While the conventional construction method of protograph-based GLDPC codes is to replace some single parity-check (SPC) nodes with generalized constraint (GC) nodes applying to multiple connected variable nodes (VNs) in the protograph, the proposed technique of partial doping can select any number of partial VNs in the protograph to be protected by GC nodes. In other words, the partial doping technique enables finer tuning of doping, which gives higher degrees of freedom in the code design and enables a sophisticated code optimization. The proposed partially doped GLDPC (PD-GLDPC) codes are constructed using the partial doping technique and optimized by the protograph extrinsic information transfer (PEXIT) analysis. In addition, the condition guaranteeing the linear minimum distance growth of the PD-GLDPC codes is proposed and analytically proven so that the PD-GLDPC code ensembles satisfying this condition have the typical minimum distance. Consequently, the proposed PD-GLDPC codes outperform the conventional GLDPC codes with a notable improvement in the waterfall performance and without the error floor phenomenon. Finally, the PD-GLDPC codes are shown to achieve a competitive performance compared to the existing state-of-the-art block LDPC codes. Second, the protograph-based LDPC codes constructed from resolvable balanced incomplete block design (RBIBD) are designed and proposed for block fading (BF) channel. In order to analyze the performance of the proposed LDPC codes, the upper bounds on bit error rate (BER) using the novel method called gamma evolution are derived. In addition, the numerical analysis shows that the upper bound and the frame error rate (FER) of the proposed LDPC codes approach the channel outage probability in a finite signal-to-noise ratio (SNR) region.1 INTRODUCTION 1 1.1 Background 1 1.2 Overview of Dissertation 3 2 Overview of LDPC Codes 5 2.1 LDPC Codes 5 2.2 Decoding of LDPC Codes in the BEC 7 2.3 Analysis tool for LDPC Codes 8 2.3.1 Density Evolution 8 2.4 Protograph-Based LDPC Codes 9 3 Construction of Protograph-Based Partially Doped Generalized LDPC Codes 11 3.1 Code Structure of Protograph-Based GLDPC Ensembles 14 3.1.1 Construction of Protograph Doped GLDPC Codes 14 3.1.2 PEXIT Analysis and Decoding Process of Protograph Doped GLDPC Codes 15 3.2 The Proposed PD-GLDPC Codes 18 3.2.1 Construction Method of PD-GLDPC Codes 18 3.2.2 PEXIT Analysis of PD-GLDPC Codes 22 3.2.3 Condition for the Existence of the Typical Minimum Distance of the PD-GLDPC Code Ensemble 23 3.2.4 Comparison between Proposed PD-GLDPC Codes and Protograph Doped GLDPC Codes 25 3.3 Optimization of PD-GLDPC Codes 26 3.3.1 Construction of PD-GLDPC Codes from Regular Protographs 26 3.3.2 Differential Evolution-Based Code Construction from the Degree Distribution of Random LDPC Code Ensembles 28 3.3.3 Optimization of PD-GLDPC Codes Using Protograph Differential Evolution 32 3.4 Numerical Results and Analysis 36 3.4.1 Simulation Result for Optimized PD-GLDPC Code from Regular and Irregular Random LDPC Code Ensembles 36 3.4.2 Simulation Result for PD-GLDPC Code from Optimized Protograph 43 3.5 Proof of Theorem 1: The Constraint for the Existence of the Typical Minimum Distance of the Proposed Protograph-Based PD-GLDPC Codes 45 4 Design of Protograph-Based LDPC Code Using Resolvable Block Design for Block Fading Channel 52 4.1 Problem Formulation 53 4.1.1 BF Channel Model 53 4.1.2 Performance Metrics of BF Channel 54 4.1.3 Protograph-Based LDPC Codes and QC LDPC Codes 57 4.2 New Construction of Protograph-Based LDPC Codes from Resolvable Block Designs 57 4.2.1 Resolvable Block Designs 57 4.2.2 Construction of the Proposed Protograph-Based LDPC Codes 59 4.2.3 Theoretical Analysis of the Proposed Protograph-Based LDPC Code from RBD 61 4.2.4 Numerical Analysis of the Proposed Protograph-Based LDPC Code Codes for BF Channel 65 4.2.5 BER Comparison with Analytical Results from Gamma Evolution 65 4.2.6 FER Comparison with Channel Outage Probability 67 5 Conclusions 69 Abstract (In Korean) 78๋ฐ•

    On generalized LDPC codes for ultra reliable communication

    Get PDF
    Ultra reliable low latency communication (URLLC) is an important feature in future mobile communication systems, as they will require high data rates, large system capacity and massive device connectivity [11]. To meet such stringent requirements, many error-correction codes (ECC)s are being investigated; turbo codes, low density parity check (LDPC) codes, polar codes and convolutional codes [70, 92, 38], among many others. In this work, we present generalized low density parity check (GLDPC) codes as a promising candidate for URLLC. Our proposal is based on a novel class of GLDPC code ensembles, for which new analysis tools are proposed. We analyze the trade-o_ between coding rate and asymptotic performance of a class of GLDPC codes constructed by including a certain fraction of generalized constraint (GC) nodes in the graph. To incorporate both bounded distance (BD) and maximum likelihood (ML) decoding at GC nodes into our analysis without resorting to multi-edge type of degree distribution (DD)s, we propose the probabilistic peeling decoding (P-PD) algorithm, which models the decoding step at every GC node as an instance of a Bernoulli random variable with a successful decoding probability that depends on both the GC block code as well as its decoding algorithm. The P-PD asymptotic performance over the BEC can be efficiently predicted using standard techniques for LDPC codes such as Density evolution (DE) or the differential equation method. We demonstrate that the simulated P-PD performance accurately predicts the actual performance of the GLPDC code under ML decoding at GC nodes. We illustrate our analysis for GLDPC code ensembles with regular and irregular DDs. This design methodology is applied to construct practical codes for URLLC. To this end, we incorporate to our analysis the use of quasi-cyclic (QC) structures, to mitigate the code error floor and facilitate the code very large scale integration (VLSI) implementation. Furthermore, for the additive white Gaussian noise (AWGN) channel, we analyze the complexity and performance of the message passing decoder with various update rules (including standard full-precision sum product and min-sum algorithms) and quantization schemes. The block error rate (BLER) performance of the proposed GLDPC codes, combined with a complementary outer code, is shown to outperform a variety of state-of-the-art codes, for URLLC, including LDPC codes, polar codes, turbo codes and convolutional codes, at similar complexity rates.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Juan Josรฉ Murillo Fuentes.- Secretario: Matilde Pilar Sรกnchez Fernรกndez.- Vocal: Javier Valls Coquilla

    ์ƒˆ๋กœ์šด ์†Œ์‹ค ์ฑ„๋„์„ ์œ„ํ•œ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ ๋ฐ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ๋ฐ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ LDPC ๋ถ€ํ˜ธ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๋…ธ์ข…์„ .In this dissertation, three main contributions are given asi) new two-stage automorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes and existing LRCs, and iii) new constructions of high-rate generalized root protograph (GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered. First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure channel. Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes in the erasure channel was introduced, which has good erasure decoding performance with low decoding complexity. In this research, I propose new TS-AGDs for cyclic codes in the erasure channel by modifying the parity check matrix and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect decoding in the erasure channel, that is, the same decoding performance as the maximum likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check matrix and the submatrix inversion are also proposed and analyzed. Second, I propose new constructions of binary and ternary LRCs using cyclic codes and existing two LRCs for distributed storage system. For a primitive work, new constructions of binary and ternary LRCs using cyclic codes and their concatenation are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and 6 are optimal in terms of the upper bounds. In addition, the similar method of the binary case is applied to construct the ternary LRCs with good parameters. Also, new constructions of binary LRCs with large Hamming distance and disjoint repair groups are proposed. The proposed binary linear LRCs constructed by using existing binary LRCs are optimal or near-optimal in terms of the bound with disjoint repair group. Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic block interference and anti-jamming PR LDPC codes for follower jamming. The proposed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric channel with block interference and Nakagami-mm block fading. In these channel environments, GRP LDPC codes have good performance approaching to the theoretical limit in the channel with one block interference, where their performance is shown by the channel threshold or the channel outage probability. In the proposed design, I find base matrices using the protograph extrinsic information transfer (PEXIT) algorithm. Also, the proposed new constructions of anti-jamming partially regular LDPC codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS). For a channel environment, I suppose follower jamming with random dwell time and Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) modulation. For a coding perspective, an anti-jamming LDPC codes against follower jamming are introduced. In order to optimize the jamming environment, the partially regular structure and corresponding density evolution schemes are used. A series of simulations show that the proposed codes outperforms the 802.16e standard in the presence of follower noise jamming.์ด ๋…ผ๋ฌธ์—์„œ๋Š”, i) ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ , ii) ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ(LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•, ๋ฐ iii) ๋ธ”๋ก ๊ฐ„์„ญ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ๊ณ ๋ถ€ํšจ์œจ์˜ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„(generalized root protograph, GRP) LDPC ๋ถ€ํ˜ธ ๋ฐ ์ถ”์  ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ํ•ญ์žฌ๋ฐ ๋ถ€๋ถ„ ๊ท ์ผ (anti-jamming paritally regular, AJ-PR) LDPC ๋ถ€ํ˜ธ๊ฐ€ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ ํ˜น์€ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๋“ฑ์˜ ์‘์šฉ์œผ๋กœ ์ธํ•ด ์†Œ์‹ค ์ฑ„๋„์—์„œ์˜ ์˜ค๋ฅ˜ ์ •์ • ๋ถ€ํ˜ธ ๊ธฐ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๋ณตํ˜ธ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋†’์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๊ธด ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์‹ค์šฉ์ ์ด์ง€ ๋ชปํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‚ฎ์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋Š” ์ˆœํ™˜ ๋ถ€ํ˜ธ์—์„œ ์ด๋‹จ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒจ๋ฆฌํ‹ฐ ๊ฒ€์‚ฌ ํ–‰๋ ฌ์„ ๋ณ€ํ˜•ํ•˜๊ณ , ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ณตํ˜ธ๊ธฐ๋Š” perfect ๋ถ€ํ˜ธ, BCH ๋ถ€ํ˜ธ ๋ฐ ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ ๋ถ„๋ฆฌ (maximum distance separable, MDS) ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด์„œ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ˆ˜์น˜ ๋ถ„์„์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ๋ณตํ˜ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ณด๋‹ค ๋‚ฎ์€ ๋ณต์žก๋„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ช‡๋ช‡์˜ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ตœ๋Œ€ ์šฐ๋„ (maximal likelihood, ML)๊ณผ ๊ฐ™์€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์ž„์„ ๋ณด์ธ๋‹ค. MDS ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ, ํ™•์žฅ๋œ ํŒจ๋ฆฌํ‹ฐ๊ฒ€์‚ฌ ํ–‰๋ ฌ ๋ฐ ์ž‘์€ ํฌ๊ธฐ์˜ ํ–‰๋ ฌ์˜ ์—ญ์—ฐ์‚ฐ์„ ํ™œ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ (LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋กœ์„œ, ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์—ฐ์ ‘์„ ํ™œ์šฉํ•œ ์ด์ง„ ๋ฐ ์‚ผ์ง„ LRC ์„ค๊ณ„ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ตœ์†Œ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ๊ฐ€ 4,5, ํ˜น์€ 6์ธ ์ œ์•ˆ๋œ ์ด์ง„ LRC ์ค‘ ์ผ๋ถ€๋Š” ์ƒํ•œ๊ณผ ๋น„๊ตํ•ด ๋ณด์•˜์„ ๋•Œ ์ตœ์  ์„ค๊ณ„์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋น„์Šทํ•œ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ข‹์€ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์‚ผ์ง„ LRC๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ์™ธ์— ๊ธฐ์กด์˜ LRC๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํฐ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด LRC๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ LRC๋Š” ๋ถ„๋ฆฌ๋œ ๋ณต๊ตฌ ๊ตฐ ์กฐ๊ฑด์—์„œ ์ตœ์ ์ด๊ฑฐ๋‚˜ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, GRP LDPC ๋ถ€ํ˜ธ๋Š” Nakagami-mm ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ธ”๋ก ๊ฐ„์„ญ์ด ์žˆ๋Š” ๋‘ ์ƒํƒœ์˜ ์ด์ง„ ๋Œ€์นญ ์ฑ„๋„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œ GRP LDPC ๋ถ€ํ˜ธ๋Š” ํ•˜๋‚˜์˜ ๋ธ”๋ก ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ, ์ด๋ก ์  ์„ฑ๋Šฅ์— ๊ฐ€๊นŒ์šด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก  ๊ฐ’์€ ์ฑ„๋„ ๋ฌธํ„ฑ๊ฐ’์ด๋‚˜ ์ฑ„๋„ outage ํ™•๋ฅ ์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„์—์„œ๋Š”, ๋ณ€ํ˜•๋œ PEXIT ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์ดˆ ํ–‰๋ ฌ์„ ์„ค๊ณ„ํ•œ๋‹ค. ๋˜ํ•œ AJ-PR LDPC ๋ถ€ํ˜ธ๋Š” ์ฃผํŒŒ์ˆ˜ ๋„์•ฝ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ฑ„๋„ ํ™˜๊ฒฝ์œผ๋กœ MFSK ๋ณ€๋ณต์กฐ ๋ฐฉ์‹์˜ ๋ ˆ์ผ๋ฆฌ ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ฌด์ž‘์œ„ํ•œ ์ง€์† ์‹œ๊ฐ„์ด ์žˆ๋Š” ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์žฌ๋ฐ ํ™˜๊ฒฝ์œผ๋กœ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ๋ถ€๋ถ„ ๊ท ์ผ ๊ตฌ์กฐ ๋ฐ ํ•ด๋‹น๋˜๋Š” ๋ฐ€๋„ ์ง„ํ™” (density evolution, DE) ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋œ๋‹ค. ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ ๋ถ€ํ˜ธ๊ฐ€ 802.16e์— ์‚ฌ์šฉ๋˜์—ˆ๋˜ LDPC ๋ถ€ํ˜ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 1.1 Background 1.2 Overview of Dissertation 1.3 Notations 2 Preliminaries 2.1 IED and AGD for Erasure Channel 2.1.1 Iterative Erasure Decoder 2.1.1 Automorphism Group Decoder 2.2. Binary Locally Repairable Codes for Distributed Storage System 2.2.1 Bounds and Optimalities of Binary LRCs 2.2.2 Existing Optimal Constructions of Binary LRCs 2.3 Channels with Block Interference and Jamming 2.3.1 Channels with Block Interference 2.3.2 Channels with Jamming with MFSK and FHSS Environment. 3 New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel 3.1 Some Definitions 3.2 Modification of Parity Check Matrix and Two-Stage AGD 3.2.1 Modification of the Parity Check Matrix 3.2.2 A New Two-Stage AGD 3.2.3 Analysis of Modification Criteria for the Parity Check Matrix 3.2.4 Analysis of Decoding Complexity of TS-AGD 3.2.5 Numerical Analysis for Some Cyclic Codes 3.3 Construction of Parity Check Matrix and TS-AGD for Cyclic MDS Codes 3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes . 3.3.2 Proposed TS-AGD for Cyclic MDS Codes 3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix for Cyclic MDS Codes 3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes . . 4 New Constructions of Binary and Ternary LRCs Using Cyclic Codes and Existing LRCs 4.1 Constructions of Binary LRCs Using Cyclic Codes 4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes 4.3 Constructions of Binary LRCs with Disjoint Repair Groups Using Existing LRCs 4.4 New Constructions of Binary Linear LRCs with d โ‰ฅ 8 Using Existing LRCs 5 New Constructions of Generalized RP LDPC Codes for Block Interference and Partially Regular LDPC Codes for Follower Jamming 5.1 Generalized RP LDPC Codes for a Nonergodic BI 5.1.1 Minimum Blockwise Hamming Weight 5.1.2 Construction of GRP LDPC Codes 5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes 5.2.1 Asymptotic Analysis of LDPC Codes 5.2.2 Numerical Analysis of Finite-Length LDPC Codes 5.3 Follower Noise Jamming with Fixed Scan Speed 5.4 Anti-Jamming Partially Regular LDPC Codes for Follower Noise Jamming 5.4.1 Simplified Channel Model and Corresponding Density Evolution 5.4.2 Construction of AJ-PR-LDPC Codes Based on DE 5.5 Numerical Analysis of AJ-PR LDPC Codes 6 Conclusion Abstract (In Korean)Docto

    Spatially Coupled Turbo-Like Codes

    Get PDF
    The focus of this thesis is on proposing and analyzing a powerful class of codes on graphs---with trellis constraints---that can simultaneously approach capacity and achieve very low error floor. In particular, we propose the concept of spatial coupling for turbo-like code (SC-TC) ensembles and investigate the impact of coupling on the performance of these codes. The main elements of this study can be summarized by the following four major topics. First, we considered the spatial coupling of parallel concatenated codes (PCCs), serially concatenated codes (SCCs), and hybrid concatenated codes (HCCs).We also proposed two extensions of braided convolutional codes (BCCs) to higher coupling memories. Second, we investigated the impact of coupling on the asymptotic behavior of the proposed ensembles in term of the decoding thresholds. For that, we derived the exact density evolution (DE) equations of the proposed SC-TC ensembles over the binary erasure channel. Using the DE equations, we found the thresholds of the coupled and uncoupled ensembles under belief propagation (BP) decoding for a wide range of rates. We also computed the maximum a-posteriori (MAP) thresholds of the underlying uncoupled ensembles. Our numerical results confirm that TCs have excellent MAP thresholds, and for a large enough coupling memory, the BP threshold of an SC-TC ensemble improves to the MAP threshold of the underlying TC ensemble. This phenomenon is called threshold saturation and we proved its occurrence for SC-TCs by use of a proof technique based on the potential function of the ensembles.Third, we investigated and discussed the performance of SC-TCs in the finite length regime. We proved that under certain conditions the minimum distance of an SC-TCs is either larger or equal to that of its underlying uncoupled ensemble. Based on this fact, we performed a weight enumerator (WE) analysis for the underlying uncoupled ensembles to investigate the error floor performance of the SC-TC ensembles. We computed bounds on the error rate performance and minimum distance of the TC ensembles. These bounds indicate very low error floor for SCC, HCC, and BCC ensembles, and show that for HCC, and BCC ensembles, the minimum distance grows linearly with the input block length.The results from the DE and WE analysis demonstrate that the performance of TCs benefits from spatial coupling in both waterfall and error floor regions. While uncoupled TC ensembles with close-to-capacity performance exhibit a high error floor, our results show that SC-TCs can simultaneously approach capacity and achieve very low error floor.Fourth, we proposed a unified ensemble of TCs that includes all the considered TC classes. We showed that for each of the original classes of TCs, it is possible to find an equivalent ensemble by proper selection of the design parameters in the unified ensemble. This unified ensemble not only helps us to understand the connections and trade-offs between the TC ensembles but also can be considered as a bridge between TCs and generalized low-density parity check codes

    Multiplicatively Repeated Non-Binary LDPC Codes

    Full text link
    We propose non-binary LDPC codes concatenated with multiplicative repetition codes. By multiplicatively repeating the (2,3)-regular non-binary LDPC mother code of rate 1/3, we construct rate-compatible codes of lower rates 1/6, 1/9, 1/12,... Surprisingly, such simple low-rate non-binary LDPC codes outperform the best low-rate binary LDPC codes so far. Moreover, we propose the decoding algorithm for the proposed codes, which can be decoded with almost the same computational complexity as that of the mother code.Comment: To appear in IEEE Transactions on Information Theor
    • โ€ฆ
    corecore