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Popular Science

Electronic devices have become indispensable parts of our lives. Every day, we
send and receive lots of information, using these devices. Step by step, our
societies are getting closer to what some theorists call a network society. In
such a society, almost all humans and machines are connected to each other
through extensive communication networks. Failure in these networks can lead
to severe consequences in almost all societal functions. Reliable communication
is one of the key characteristics of a well-functioning network. Therefore, it is
important to ensure the reliability of the received data. In any communication
system, there are at least three main elements: the sender, the receiver, and a
physical medium (channel) that connects the sender to the receiver. Often, the
data is corrupted or distorted along the channel. Sometimes, the distortion is
so big that the receiver may not be able to recover the original correct data. In
the late 1940s, an American mathematician, Claude Shannon, showed that the
reliability could be enhanced by a technique called channel coding. To describe
this technique in a simple way, let us use an example.

Consider a typical conversation between two persons. The person who is
talking is the sender, the one who is listening is the receiver, and the air is the
medium. Now imagine that this conversation is happening in a crowded and
noisy room where it is hard for the listener to follow the conversation. She may
easily miss some parts of the conversation or mishear them. In technical words,
the channel of this communication system is noisy and the communication is
not reliable. Let’s assume that the speaker wants to tell three numbers to his
listener: 6, 9, and 10. The room is crowded; therefore, the listener may miss
one of the numbers. A simple solution to this problem is to send one extra
number, which is the summation of the original three numbers. In this case,
the transmitted numbers become 6, 9, 10, and 25. Now, if the listener misses
a number, she can calculate it by using the other three numbers. A similar
technique is used in digital communication systems.

In digital communications, any data is usually represented by a sequence
of zeros and ones. Each of these zeros and ones is called a bit, and the whole
sequence is referred to as the information sequence. To help mitigating the
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noise effect that can alter some of the bits, some redundant bits are added to
the information sequence. This redundancy is added in a controlled way and
is introduced to provide reliable transmission of data over the channel. This
process of protecting the message bits from errors is called error control coding.

There are many different classes of codes that can be used. The strength
of a codes is measured by its capability in detecting and correcting the errors.
This depends on the number of redundant bits, the algorithm that generates
these bits and the recovering method that is used at the receiver side. Selection
of a suitable code depends on the application and practical trade-offs. However,
low latency, low error rate at the output of the decoder, low complexity, and
high energy efficiency are generally considered as characteristics of a good code.

It is possible to concatenate two or more codes, to make a stronger code.
A very famous class of concatenated codes are the so-called turbo-like codes
(TCs). The studies on turbo-like codes demonstrate that these codes per-
form close to the theoretical limits. Therefore, these codes have been used in
many communication standards. Low-density parity-check (LDPC) codes are
another powerful class of codes. In the late 90s, it was shown that the perform-
ance of these codes could improve by introducing the concept of memory in
their encoding procedure. Later, this technique was called spatial coupling and
attracted the attention of many experts in the field of coding theory. However,
spatial coupling is a general technique and is not limited to LDPC codes. In
this thesis, we have proposed spatially coupled TCs and investigated the im-
pact of spatial coupling on this class of codes. Our results confirm considerable
improvements in the performance of TCs by spatial coupling.

The proposed codes in this thesis can contribute to finding new trade-offs
between latency and error rate in many communication applications.



Abstract

The focus of this thesis is on proposing and analyzing a powerful class of codes
on graphs—with trellis constraints—that can simultaneously approach capacity
and achieve very low error floor. In particular, we propose the concept of spatial
coupling for turbo-like code (SC-TC) ensembles and investigate the impact of
coupling on the performance of these codes. The main elements of this study
can be summarized by the following four major topics.

First, we considered the spatial coupling of parallel concatenated codes
(PCCs), serially concatenated codes (SCCs), and hybrid concatenated codes
(HCCs). We also proposed two extensions of braided convolutional codes
(BCCs) to higher coupling memories.

Second, we investigated the impact of coupling on the asymptotic behavior
of the proposed ensembles in term of the decoding thresholds. For that, we
derived the exact density evolution (DE) equations of the proposed SC-TC en-
sembles over the binary erasure channel. Using the DE equations, we found
the thresholds of the coupled and uncoupled ensembles under belief propaga-
tion (BP) decoding for a wide range of rates. We also computed the maximum
a-posteriori (MAP) thresholds of the underlying uncoupled ensembles. Our nu-
merical results confirm that TCs have excellent MAP thresholds, and for a large
enough coupling memory, the BP threshold of an SC-TC ensemble improves
to the MAP threshold of the underlying TC ensemble. This phenomenon is
called threshold saturation and we proved its occurrence for SC-TCs by use of
a proof technique based on the potential function of the ensembles.

Third, we investigated and discussed the performance of SC-TCs in the
finite length regime. We proved that under certain conditions the minimum
distance of an SC-TCs is either larger or equal to that of its underlying un-
coupled ensemble. Based on this fact, we performed a weight enumerator (WE)
analysis for the underlying uncoupled ensembles to investigate the error floor
performance of the SC-TC ensembles. We computed bounds on the error rate
performance and minimum distance of the TC ensembles. These bounds in-
dicate very low error floor for SCC, HCC, and BCC ensembles, and show that
for HCC, and BCC ensembles, the minimum distance grows linearly with the
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input block length. The results from the DE and WE analysis demonstrate
that the performance of TCs benefits from spatial coupling in both waterfall
and error floor regions. While uncoupled TC ensembles with close-to-capacity
performance exhibit a high error floor, our results show that SC-TCs can sim-
ultaneously approach capacity and achieve very low error floor.

Fourth, we proposed a unified ensemble of TCs that includes all the con-
sidered TC classes. We showed that for each of the original classes of TCs,
it is possible to find an equivalent ensemble by proper selection of the design
parameters in the unified ensemble. This unified ensemble not only helps us to
understand the connections and trade-offs between the TC ensembles but also
can be considered as a bridge between TCs and generalized low-density parity
check codes.
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Chapter 1

Introduction

Communication is an integral part of all human societies. The history is full
of innovations related to how we communicate with each other, ranging from
natural languages, to the invention of writing and more recent developments
such as the printing press, the radio, the Internet and several other simple tools
or sophisticated communication systems. Nowadays, the demand for commu-
nication is more than any other time in history. We not only communicate
with each other on a global scale, but also increasingly communicate with our
devices. In particular, data communication has become an inseparable part of
our lives, witnessed by its outstanding expansion in the last decades. In all data
communications, guaranteeing the reliability of the received data is among the
most important concerns.

Any communication system consists of three main elements: a sender, a
receiver, and a physical medium (channel) through which the sender transmits
the data to the receiver. A typical channel is not ideal and its impairments,
usually due to noise, cause uncertainty at the receiver side on the transmitted
data. In digital data communication systems, a technique called channel coding
is developed to increase the reliability of the received data.

To explain channel coding [1], [2], we consider a communication system in
which the sender sends the information sequence u with K bits through a noisy
channel (see Figure 1.1). At the transmitter side, the sequence u is mapped
to a sequence, v, with N bits, N > K, through the encoding procedure. The
corresponding code C is the set of all possible sequences v. Encoding u to a
more extended length sequence v can be seen as adding redundancy to the
information sequence in a controlled way. The amount of added redundancy
can be represented by the ratio R = K/N , called code rate. As it is shown
in Figure 1.1, the encoded sequence v is transmitted over the noisy channel,
and the sequence r is received. At the receiver side, the sequence r is used

3



4 Overview of Research Field

to recover the original information sequence, through the decoding procedure.
The transmitted redundant bits help to recover the K original bits with higher
certainty.

u vEncoder Channel r ûDecoder

Figure 1.1: A communication system.

The idea of channel coding was first introduced by Shannon in his landmark
paper [3] published in 1948. In this article, Shannon showed that, by proper
encoding and decoding procedures, the transmission can be error-free over a
noisy channel as long as K and N are large numbers, and the transmission
rate is less than a fundamental limit called channel capacity. Since then, there
has been a lot of research on finding code schemes that approach the Shannon
limit [4]. In practice, the limitations on latency and computational complex-
ity of the encoding and decoding procedures are also crucial criteria for many
applications. Therefore, it may be more correct to say that, finding the right
trade-offs between close-to-capacity performance, low latency and low com-
plexity has been the primary goal of many of these studies. The invention of
turbo codes —parallel concatenated codes (PCCs)— [5], [6] and rebirth of low-
density parity-check (LDPC) codes [7], [8] have eventually been an important
step toward this goal.

The conventional turbo codes or PCCs are built by concatenating two con-
volutional codes (CCs)[9] which are interconnected with permutations. The
very good performance of PCCs has been the motivation for proposing a more
general class of concatenated CCs called turbo-like codes (TCs) [10].

Nowadays, both TCs and LDPC codes are adopted in many communication
standards. It has been shown that these classes of codes can perform close to
the Shannon limit, for large block lengths. However, finding code schemes for
short and moderate block lengths that can perform close to capacity is still a
challenge due to the following issues.

First, even by using the optimal decoder, after a certain signal-to-noise
ratio (SNR) the so-called bit error rate (BER) performance of these codes does
not improve significantly by increasing SNR, and the error rate curve gets flat.
This phenomenon—called error floor—is getting more pronounced for short
and moderate block lengths.

Second, the efficient iterative decoders proposed for TCs and LDPCs are
suboptimal, and there is a gap between their performance and theoretical limits.
Although this gap may look acceptably small for large N , it increases as N
decreases.

In [11], [12], [13], the authors have shown that by introducing memory in
the encoding of LDPC codes and interconnecting the graphs of LDPC codes in
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different time slots, the asymptotic performance of the resulting codes—called
LDPC convolutional codes (LDPC-CCs)—improves under iterative decoding.
Later, in [14], [15], [16], [17], it was proved that LDPC-CCs—known also as
spatially coupled LDPC (SC-LDPC) codes—can asymptotically achieve the
performance of the optimal maximum a-priori (MAP) decoder of the underlying
LDPC codes with efficient iterative decoders. Since then, SC-LDPC codes
have received a great deal of attention in the coding and information theory
community. Although SC-LDPC codes show outstanding performance for very
long block lengths, their performance for short to moderate block lengths is
rather poor.

Spatial coupling is a general concept that can be applied to other codes
such as TCs. TCs and LDPC codes share a lot of properties; both are classes
of codes on graphs and can be constructed or analyzed by similar methods.
However, considering the graph representations of these codes, it can be seen
that LDPC codes have a lot of very simple components, connected by many
edges; on the contrary, TCs have a small number of strong components, CCs,
connected by a small number of edges. Having simple component codes can
limit the error correction capability of LDPC codes in the short-to-moderate
block length regime, despite their excellent performance for very long block
lengths. However, the strong component codes of TCs makes them more robust
for short-to-moderate block lengths. All these together make TCs an excellent
potential candidate for applying spatial coupling. However, before this thesis,
the spatial coupling of TCs had not been studied systematically.

The purpose of this thesis is to propose, design, and investigate the spatially
coupled counterparts for different classes of TCs (SC-TCs), and to understand
trade-offs of SC-TCs and their connection to SC-LDPC codes and SC general-
ized LDPC (SC-GLDPC) codes. This thesis includes six papers. In Paper I,
the asymptotic limits on the performance of a class of SC-TCs—braided con-
volutional codes (BCCs) [18]—is investigated based on the density evolution
(DE) technique. In Paper II and IV, some coupled ensembles are proposed for
different classes of TCs and their asymptotic behavior is investigated by DE. In
Paper III, two extensions of BCC are proposed and it is proved that different
classes of SC-TCs can achieve the asymptotic performance of the underlying
TCs by iterative decoding. In Paper V, the performance of SC-TCs for finite
block lengths is investigated. Finally, a unified ensemble for different TCs is
proposed. This ensemble can be used to find connections between different
classes of SC-TCs and SC-LDPC codes.

1.1 Thesis Outline

This thesis is written in the paper collection format and consists of two main
parts. The first part provides an introduction of the research field, while the
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second part contains the research contributions in form of a selection of papers.
The structure of the first part of this thesis is as follows. In Chapter 2, a few
fundamental concepts that are relevant to this thesis, are presented. In Chapter
3, I discuss different classes of codes on graphs including LDPC codes, TCs,
product codes (PCs) [9], and the corresponding iterative decoding algorithms.
In Chapter 4, I explain a few tools for analyzing the performance of the codes
on graphs. These tools are used in the included articles. This chapter includes
threshold analysis methods and weight enumerator analysis. Chapter 5 is fo-
cusing on spatially coupled codes by describing SC-LDPC codes and braided
codes. Finally, in Chapter 6, I provide a summary of the included papers, dis-
cuss the main conclusions of this thesis, and also suggest a few related areas
for future research.



Chapter 2

Basic Concepts

In this chapter, two mathematical models for communication channels, and
two main categories of codes are discussed.

2.1 Channels

The channel is the medium that connects the sender to the receiver. Depending
on the characteristics of this medium and its effect on the transmitted bits, it
can be mathematically modeled.

2.1.1 Binary Erasure Channel

The binary erasure channel (BEC) is one of the simplest mathematical models
for a communication channel. Figure 2.1 shows the model for this channel.
The input to this channel is a binary and random variable x ∈ X = {−1,+1}.
This channel does either transmit x perfectly with probability 1− ε or erases x
with probability ε. Therefore, the output of this channel is a random variable
y ∈ Y = {−1,+1, e}, where e denotes the erased symbol. The parameter ε is
called channel erasure probability, and the capacity of the channel is directly
related to it by C = 1− ε.

The simplicity and mathematical appealing nature of the BEC makes it
attractive for studying and investigating theories and statements in the coding
theory field, where many of these theories and statements can be generalize to
the other channels.

7
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−1 −1

e
ε

ε

1− ε

1− ε
+1 +1

Figure 2.1: BEC with erasure probability ε.

2.1.2 Additive White Gaussian Noise Channel

The additive white Gaussian noise (AWGN) channel is widely used to model
many communication mediums. The relation between input and output of this
channel can simply described as

y = x+ n,

where x and y are input and output of the channel, respectively. The para-
meter n denotes the additive noise and it is a random variable with Gaussian
distribution N (0, σ2) where its probability density distribution is

p(n) =
1√

2πσ2
e−n

2/2σ2

. (2.1)

2.2 Block Codes

The term block code refers to any coding scheme that maps a block of input
bits, u = (u1, u2, . . . , uK), into a block of codeword bits, v = (v1, v2, . . . , vN ),
where ui, vj ∈ F, i = 1, . . . ,K, j = 1, . . . , N , and F is an arbitrary field. In the
case of binary codes, the field is F2, i.e., ui, vj ∈ {0, 1}.

A very important class of block codes is the class of linear block codes, and
many well known codes such as Hamming codes[19], Reed-Solomon codes[20],
LDPC codes and TCs belong to this class. A linear block code C(N,K) is
a linear subspace of FN , i.e., any superposition of codewords is also a code-
word. The encoding of linear block codes can be described by means of matrix
multiplication as

v = uG, G ∈ FK×N ,

where G is the code’s generator matrix. A linear code can also be described by
its parity-check matrix. This matrix shows the constraints on the code symbols
as

vHT = 0, H ∈ F(N−K)×N .
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2.3 Convolutional Codes

Unlike block codes, for CCs [21], the information and codeword sequences are
considered to be infinite,

u = u0,u1, . . . ,ut, . . .

v = v0,v1, . . . ,vt, . . . .

At time t, a block of k bits of information, ut = (u
(1)
t , . . . , u

(k)
t ), is encoded to

produce a block of n code symbols, vt = (v
(1)
t , . . . , v

(n)
t ). However, vt does not

only depend on ut, but also on information blocks, ut′ , t
′ = t − m, . . . , t, at

previous m time slots, where m is the memory of encoding. The ratio R = k/n
defines the code rate.

This class of codes are called CCs as the relation between the codeword bits
and the input bits can be expressed by

v
(j)
t =

k∑
i=1

m∑
l=0

u
(i)
t−lg

(j)
i,l , (2.2)

where g
(j)
i,l is 1 if v

(j)
t depends on u

(i)
t−l, otherwise it is 0. The vector g

(j)
i =(

g
(j)
i,0 , . . . , g

(j)
i,m

)
is called generator vector.

By introducing delay elements, the encoder block diagram of a CC can be
depicted. Figure 2.2 shows the encoder of CC with R = 1/2 and m = 2. This
encoder has one input, two outputs, and two delay blocks.

ut D D

v
(2)
t

v
(1)
t

Figure 2.2: An encoder of a CC.

For this encoder

v
(1)
t = ut , v

(2)
t = ut + ut−1 + ut−2 .

Therefore, the generator vectors can be written as

g
(1)
1 = (1, 0, 0) , g

(2)
1 = (1, 1, 1) .
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It is more convenient to describe the encoding procedure of CCs in transform
domain by means of delay operator D. In D-domain, the information and
codeword sequences can be written as

u(D) = u0 + u1D + u2D
2 + . . .

v(D) = v0 + v1D + v2D
2 + . . . .

Then,
v(D) = u(D)G,

where G is the corresponding generator matrix in form of

G =


g
(1)
1 (D) g

(2)
1 (D) . . . g

(n)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) . . . g

(n)
2 (D)

. . . . . . . . .

g
(1)
k (D) g

(2)
k (D) . . . g

(n)
k (D)


k×n

. (2.3)

For example, the generator matrix corresponding to the CC encoder in Figure
2.2 is G = (1, 1 +D +D2).

The encoder state of a CCs can be defined by the outputs of the delay
elements. It is usually considered that the encoding of CCs starts from the
zero state, i.e., all memory blocks contain zero. The encoder is terminated if
it is forced to drive back to the zero state by adding proper bits at the end of
the input sequence.

It can be seen that the output of the encoder vt depends on the state of the
encoder and the input ut. Therefore, it is possible to assign a state diagram to
a CC encoders. Expanding the state diagram along the time instants t results
in a trellis representation of the encoder. Efficient decoding algorithms for
CCs—such as Viterbi [22] and BCJR [23] algorithm—are developed based on
the trellis representation of these codes.
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Codes on Graphs

In [24], Michael Tanner showed that codes such as LDPC codes and PCs can be
represented by graphs and be decoded by efficient iterative decoding algorithms
in which the component decoders exchanging messages within the iterations
[25]. The graph representation of these codes also simplifies their construction
and analysis. In this chapter, a few classes of codes on graphs are explained by
use of their graph representations.

3.1 Low-Density Parity-Check Codes

An LDPC code can be described either by a parity-check matrix H or by a
bipartite graph. For a binary LDPC code, the parity-check matrix, H, is a
matrix with binary elements and has a low density of 1s. The set of codewords
corresponding to an LDPC code defined by a matrix H is the set of all possible
N -tuples v that satisfy

vHT = 0.

As an example, consider the parity-check matrix,

H =


0 1 0 1 1 0 0 1
1 1 1 0 0 0 1 0
0 0 1 0 0 1 1 1
1 0 0 1 1 1 0 0

 . (3.1)

11
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v1

v2

v3

v4

v5

v6

v7

v8

c1

c2

c3

c4

Figure 3.1: Tanner graph of an LDPC code corresponding to the parity-check matrix
in (3.1).

The constraint vHT = 0 can be written as a set of parity-check equations,

c1 : v2 + v4 + v5 + v8 = 0

c2 : v1 + v2 + v3 + v7 = 0

c3 : v3 + v6 + v7 + v8 = 0

c4 : v1 + v4 + v5 + v6 = 0,

where vi shows the ith element of codeword v.
The Tanner graph corresponding to theH matrix in (3.1) is shown in Figure

3.1. This graph is a bipartite graph and consists of: 1) a set of variable nodes
(VNs) corresponding to code symbols vi, shown by filled circles 2) a set of check
nodes (CNs) corresponding to the parity-check equations, shown by squares,
and 3) a set of edges which connect the VNs to the CNs. Each edge connects
a VN to CNs corresponding to equations in which the variable is involved.

A Tanner graph is based on the parity-check equations. Therefore, there
is a one-to-one connection between an H matrix of an LDPC code and its
Tanner graph. The columns and rows in the parity-check matrix correspond
to the VNs and the CNs, respectively. If the element of H in the ith row and
jth column is one, there is an edge in the corresponding Tanner graph which
connects the ith CN to the jth VN.

The number of edges connected to a node defines the degree of that node.
Based on the degree distribution, LDPC codes can be classified into two groups:
regular and irregular codes. A regular (dv, dc) LDPC code is a code for which
the degree of all VNs is dv, and the degree of all CNs is dc. The performance
of the iterative decoder strongly depends on the degree distribution of the VNs
and CNs.
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3.1.1 Protograph-Based LDPC Codes

LDPC codes can be constructed based on protographs [26]. A protograph is a
small Tanner graph, in which parallel edges are also allowed. This means there
may be several edges that connect a VN to a CN. For a given protograph, the
Tanner graph of a corresponding LDPC code can be obtained by the so-called
copy and permutation—or lifting—operation. The resulting Tanner graph is
called derived graph. The example in Figure 3.2 is provided to explain the steps
from a given protograph to a derived graph, in a simple way. In part (a) of
this figure, a protograph of an LDPC ensemble is shown. The term ensemble is
used to emphasize that this protograph represents a family of LDPC codes. To
obtain the derived graph for an LDPC code with N = 12, first this protograph
is copied three times, b = 3 (see Figure 3.2 (b)). The parameter b is called
lifting factor. These three graphs are still disconnected. Then, as shown in
Figure 3.2 (c), the endpoints of the three copies of each edge in the protograph
are permuted among the three copies of the corresponding VNs and CNs.

A similar matrix to H can be used to describe the protograph. For the
protograph in Figure 3.2 (a) the base matrix is,

B =

 1 1 0 0
0 1 1 0
1 1 1 1


bc×bv

. (3.2)

TheH matrix corresponding to the derived graph can be obtained by replacing
each element of B in the rth row and cth column, [B]r,c, by a sum of [B]r,c
distinct and non-overlapping randomly selected permutation matrices with size
b× b.

3.2 Generalized LDPC Codes

As mentioned, each of the CNs in a Tanner graph of an LDPC codes represents
a single parity-check equation. A generalized LDPC (GLDPC) code [24] can
be obtained by replacing the CNs of an LDPC code by more complex linear
constraints referred to as component codes; The HG matrix of the GLDPC
code is both related to the parity-check matrices of the mother LDPC code H
and the component code Hc. More precisely, HG can be obtained by replacing
each of nonzero elements of H with a column of Hc that is uniformly random
selected.
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(a)

(b)

(c)

Figure 3.2: (a) A simple protograph (b) 3 copies of the protograph (c) A derived
Tanner graph.

3.3 Turbo-Like Codes

The conventional way of describing concatenated CCs—TCs—is based on the
block diagram of their encoders and decoders. However, these codes are also a
class of codes on graphs and their graph representations help to simplify their
analysis. In this section, first, the graph representation of CCs is discussed;
then, some classes of TCs are introduced by their graph representations.
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3.3.1 Convolutional Codes

In [27], [28], Wiberg showed that it is possible to illustrate trellis-based codes
by introducing some hidden VNs. These hidden VNs are not corresponding to
code bits, and they are used to give a suitable local structure. For the case of
CC, the hidden VNs represent the states of the encoder—therefore called state
node—, and are shown by double circles in the graph.

Consider a systematic CC with arbitrary rate R = k/n and N trellis sec-
tions. Let u = (u1,u2, . . . ,uN ) and v = (vp,1,vp,2, . . . ,vp,N ) denote the
input and parity sequences, respectively. More precisely, at each time instant

τ = 1, . . . , N , uτ = (u
(1)
τ , . . . , u

(k)
τ ) and vp,τ = (v

(1)
p,τ , . . . , v

(n−k)
p,τ ) are the in-

put and parity sequences, respectively. The corresponding factor graph [29] is
shown in Figure 3.3. In this graph, the code bits are illustrated by filled circles
and the code constraints by filled squares, and as mentioned, the double circles
represent the state nodes.

v
(1)
p,1 v

(n−k)
p,1

u
(1)
1 u

(k)
1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

v
(1)
p,N v

(1)
p,N

u
(1)
N u

(k)
N

Figure 3.3: Factor graph representation of systematic rate-k/n convolutional codes.

3.3.2 Parallel Concatenated Codes

Turbo codes or PCCs are a class of TCs proposed in [5], [6]. The main idea
of turbo codes is to encode the information sequence u with two or more
component CC encoders. The encoder block diagram corresponding to a family
of PCCs —an ensemble—, with two component encoders, is shown in Figure
3.4 (a). The information u is encoded by the upper encoder CU to produce
the sequence vU. Then, u is reordered by the permutation Π and the resulting
sequence is encoded by the lower encoder to produce the sequence vL. The
output of this encoder is v = (u,vU,vL). Note that the overall rate of a PCC
ensemble depends on the number of its component encoders and their rates.
Different permutations result in different PCCs with different performances.
Therefore, finding the characteristics of a permutation which results in a PCC
with better performance has been the topic of many studies.

Using the graph representation of CCs, it is possible to represent PCC
ensembles by factor graphs. For rate R = 1/2 component encoders, the corres-
ponding graph representation is shown in Figure 3.4 (b).
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u

u

CU vU

Π CL vL

(a)

Π

u

vU

vL

. . .

. . .

(b)

Figure 3.4: PCCs (a) encoder block diagram (b) factor graph representation.

3.3.3 Serially Concatenated Codes

Similar to PCCs, the idea of serially concatenated codes (SCCs) [30], [31] is
to encode the information sequence with two or more component encoders.
However, for SCCs the component encoders are serially interconnected by per-
mutations, i.e., the output of one encoder is reordered and used as input to
the next encoder. The encoder block diagram of an SCC ensemble with two
component encoders is shown in Figure 2 (a).

u

CO
vO

Π CI vI

(a)

Π

vI

u

vO

. . .

. . .

(b)

Figure 3.5: SCCs (a) encoder block diagram (b) factor graph representation.

The information sequence is encoded by the outer encoder CO to produce
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the parity sequence vO. Then, u and vO are multiplexed and reordered by
permutation Π. Then, the resulting sequence is fed to the inner encoder to
produce the parity sequence vI. Finally, the output of the encoder is v =
(u,vO,vI). Considering rate R = 1/2 component encoders the corresponding
factor graph is shown in Figure 3.5 (b).

3.3.4 Hybrid Concatenated Codes

Hybrid concatenated codes (HCCs) [32], [33], [34] are a mixture of PCCs and
SCCs, and consequently are built from three or more component encoders. An
example of an HCC ensemble is shown in Figure 3.6 (a).

u

ΠL CL

CU
ΠI CI vI

(a)

ΠL

ΠI

u

vU

vL

vI

. . .

. . .

. . .

(b)

Figure 3.6: HCCs (a) encoder block diagram (b) factor graph representation.

This ensemble consists of a PCC ensemble serially connected to an inner
encoder, and is very closed to so-called 3D-turbo codes introduced in [33], [35].
As it can be seen from the figure, the information sequence u and a reordered
copy of it are encoded by upper CU and lower CL encoders, respectively. The
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corresponding parities are denoted by vU and vL. Then, these parity sequences
are multiplexed and reordered by permutation ΠI. The resulting sequence is
fed to the inner encoder to produce the parity sequence vI. Considering rate
R = 1/2 component encoders, the corresponding graph representation is shown
in 3.6 (b).

3.4 Repeat-Accumulate Codes

Repeat-accumulate (RA) codes, proposed by Divsalar et al. [10], interestingly,
can be interpreted as a subclass of either LDPC codes or TCs. Being a subclass
of TCs gives the RA-based LDPC codes the advantage of easy and efficient
encoding. This fact has made RA-codes an attractive candidate to be used in
communication standards. The encoder block diagram of a regular RA code
ensemble is shown in Figure 3.7 (a).

This ensemble is a serial concatenation of a repetition block encoder R
and a CC encoder. The information sequence u is first encoded by R to
make q copies of u. Then, the resulting sequence is permuted by Π—to create
the sequence z—and fed to a simple two-state CC—called accumulator—with
generator matrix G = (1, 1/(1 + D)). An irregular RA code can be obtained
by puncturing the sequence z.

u
ΠR z

D

v

(a)

Π

u

v

z

. . .

. . .

(b)

Figure 3.7: RA codes: (a) encoder block diagram (b) factor graph.

Figure 3.7 (b) shows the Tanner graph representation of an RA code en-
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semble with q = 3. It is worthy to mention that RA codes are closely related to
PCCs. For q = 2, RA codes can be seen as the self-concatenated counterpart
of PCCs with two identical component encoders.

3.5 Product Codes

The idea of PCs [9] is to build powerful codes from smaller component codes.
To obtain a PC, C(N,K), consider two linear block codes C1(N1,K1) and
C2(N2,K2), where N = N1N2 and K = K1K2. The encoding procedure of
PCs can be described by use of the array represented in Figure 3.8. The K
information bits are written in the K1 ×K2 block A at the upper right side of
the array. Then, each row of A is encoded by C2, and the parity bits are written
at the corresponding row of block B. Then, columns of A and B are encoded
by C1, and the parity bits are written at corresponding columns of block C and
D, respectively.

Information
bits

Checks
on columns

Checks
on rows

Checks
on checks

A B

C D

Figure 3.8: Product code array.

3.6 Iterative Decoders

The excellent performance of codes on graphs, and their efficiency in terms
of computational complexity are rooted in the message passing decoding al-
gorithms such as belief propagation (BP). In these iterative algorithms, the
extrinsic informations are exchanged within the graph. The iterative decoders
are more efficient if their component decoders can exchange soft messages, i.e.,
the component decoders can receive soft input and deliver soft output (SISO).

In this section, before describing the iterative decoders, some basic concepts
are discussed.
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3.6.1 Maximum A-Posteriori Decoding

A bit-wise maximum a-posteriori decoder is a decoder that delivers the estim-
ated bit ûi by

ûi = arg max
ui∈{0,1}

P (ui|r)

where r is the received vector and p(ui|r) is the a-posteriori probability
(APP) for the ith bit of the input sequence, ui, i = 1, . . . ,K.

Instead of a hard decision of each bit, a decoder can provide the APP for the
bit. The corresponding decoder is called APP decoder. Having soft outputs, the
APP decoders are widely used as component decoders in the iterative decoding
procedure in which the soft output of one decoder is passed to the input of the
other decoders.

3.6.2 Likelihood Ratio

For the binary cases, the bit ui can take the two values 0 or 1 with an a-priori
probability P (ui). However, instead of working with probabilities, from an
implementation perspective, it is better to work with log-likelihood ratio (LLR)
defined as

L(ui) = log
P (ui = 0)

P (ui = 1)
.

Likewise, LLRs can be used instead of the APPs, p(ui|r),

L(ui|r) = log
P (ui = 0|r)

P (ui = 1|r)
.

Also, the channel output can be presented in LLR format; as an example, for
the BEC the LLRs at the output of the channel can have one of the following
values,

Lch(ui|r) = log
P (ui = 0|r)

P (ui = 1|r)
=

 +∞ ri = +1
−∞ ri = −1

0 ri = e
,

and Lch(vi|ri) = 2
σ2 ri for the case of the AWGN channel.

3.6.3 Belief Propagation Decoding

For the ith bit of the codeword v, the soft output L(vi) can be written as the
summation of three LLRs; a-priori L-value La(vi), channel L-value Lch(vi), and
extrinsic L-value Le(vi) that is corresponding to the estimation of vi based on
other bits vj , j 6= i,

L(vi) = La(vi) + Lch(vi) + Le(vi).
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Note that in the iterative decoders only the extrinsic informations are ex-
changed, i.e., the extrinsic output of one component is passed as a-priori mes-
sage to the other decoder.

LDPC Codes

For LDPC codes, the decoding process is based on the Tanner graph represent-
ation of the code; through that, the extrinsic L-values are exchanged between

VNs and CNs. Let L
(i)
v (ej) denote the extrinsic L-value from the jth edge of

the VN v—with degree dv—in ith iteration. Likewise, let L
(i)
c (ej) denote the

extrinsic L-value from the jth edge of the CN c—with degree dc—in the ith

iteration. The decoding process can be initiated by considering L
(0)
c (ej) = 0,

j = 1, . . . , dc, for all CNs.

Lch

Lv Lc. . . . . .

(a) (b)

Figure 3.9: Iterative decoder of LDPC codes.

At the VN side (Figure 3.9 (a)), the extrinsic L-value from VN v through
its jth edge can be updated by

L(i)
v (ej) = Lch(v) +

∑
j′ 6=j

L(i−1)
c (ej′).

At the CN side (Figure 3.9 (b)), the extrinsic L-value from CN c through its
jth edge can be updated by

L(i)
c (ej) = �

j′ 6=j
L(i)
v (e′j),

where the operation � is called box-plus, and defined as

L(v1)� L(v2) , L(v1 + v2) = log
1 + eL(v1)eL(v2)

eL(v1) + eL(v2)
.

Box-plus can be approximated by

L(v1)� L(v2) ≈ sign(L(v1) · L(v2)) ·min(|L(v1)|, |L(v2)|).
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Turbo-Like Codes

Iterative decoders of TCs use SISO component decoders based on the BCJR
algorithm. As an example, the block diagram of an iterative decoder with
two component BCJR decoders, A and B, is shown in Figure 3.10. At the
beginning of the decoding procedure, decoder A receives the channel L-values
and no a-priori L-values (La(vA) = 0). Then, the BCJR algorithm is run to
find the corresponding extrinsic L-values Le(vA). This extrinsic message is
properly permuted and used as a-priori message to decoder B. A very similar
procedure is running in decoder B. After a certain number of the iteration the
final output of the decoder is,

L(vi) = La(vi) + Lch(vi) + Le(vi,A) + Le(vi,B)

Lch(v)

La(vA)
Decoder

A

Le(vA)
Π

Π−1

La(vB)
Decoder

B Le(vB)

Figure 3.10: Iterative decoder for TCs with two component decoders.
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Tools for Performance
Analysis

The performance of codes can be evaluated by their error rate performance
curves. For that, one can use Monte Carlo simulations to obtain the corres-
ponding error rate curve as a function of SNR. The error rate curve of graph-
based codes consists of two regions; 1) waterfall at low SNRs where this curve
has a steep slope, 2) error floor at higher SNRs where the error rate curve
has flatter slope, and by increasing the SNR, the error rate does not improve
significantly.

Since the invention of TCs, considerable effort has been devoted to the study
of the error rate performance of these codes. In this chapter, the tools for in-
vestigating the performance of TCs in both waterfall and error floor regions are
discussed. To study the waterfall region performance, in the first section, the
provided tools can be used to find a parameter called decoding threshold of the
considered code ensembles. The decoding threshold is the channel parameter
that divides the channel parameter spectrum into two regions regarding reliable
decoding, as the block length tends to infinity. For the AWGN channel, the
threshold is the smallest SNR, and for BEC, it is the largest channel erasure
probability, for which reliable decoding is possible.

Then, in the next section, to investigate the performance of a decoder in
the error floor region, the so-called weight enumerator (WE) analysis of TCs
is discussed. The WE analysis can be used to find bounds on the error rate
performance and the minimum distance of the TC ensembles.

The results from the threshold and WE analysis together can be used to
design code ensembles that can be simultaneously powerful in both waterfall
and error floor regions.

23
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4.1 Threshold Analysis

4.1.1 Density Evolution

It is possible to investigate the performance of iterative decoders by density
evolution (DE). For the BEC, DE can be formalized as a set of equations that
tracks how the erasure probability of the message evolves during the iterations.
The simplicity of the BEC allows us to derive the exact DE equations.

As an example, consider a regular (dv, dc) LDPC ensemble and transmission
over the BEC with erasure probability ε. Considering the BP decoder, the exact
DE equation, corresponding to this ensemble, can be easily derived as follows.
The symmetric structure of the regular LDPC ensemble, allows us to consider
that in each iteration the erasure probabilities of the exchanged messages to
all CNs are equal. The same assumption can be considered for VNs.

An outgoing message from a VN through a specific edge is erased if all
incoming messages to that VN, through other edges—including the message
from the channel— are erased (see Figure 4.1 (a)). Therefore, for incoming
erasure probability x to the VN, the outgoing erasure probability is

y = ε · xdv−1 .
At the CN side, the outgoing message through a specific edge is erased if at
least one of the incoming messages to the corresponding CN is erased. For
incoming erasure probability y to the CN, the outgoing erasure probability is

x = 1− (1− y)dc−1 .

Considering the exchange of messages between VNs and CNs through iter-
ations, the DE equation of the considered LDPC ensemble in the ith iteration
is

x(i) = ε ·
(
1− (1− x(i−1))dc−1

)dv−1
. (4.1)

For the BEC, the BP threshold εBP is the largest channel erasure probability
for which the only fixed point of the DE recursion is x = 0.

ε

x x

. . . y = ε · x(dv−1)
y y

. . . x = 1− (1− y)dc−1

(a) (b)

Figure 4.1: Iterative decoder of LDPC codes.
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For TCs, the component decoders use a more complex decoding algorithm
than that of LDPC codes. Considering the BCJR decoding algorithm, for the
transmission over the BEC, it is possible to compute the exact transfer function
between the input erasure probabilities—including channel erasure probability
and a-priori erasure probability—and extrinsic output erasure probabilities of
the decoder by the methods described in [36], [37].

Consider the iterative decoder of the TC ensemble in Figure 4.2 and trans-
mission over the BEC with erasure probability ε. The extrinsic erasure prob-
ability at the output of Decoder A, x can be computed as a function of the
a-priori erasure probability y and channel parameter,

x = fA(y; ε),

where fA is the transfer function of Decoder A.

ε

y
x

BCJR Decoder A

Figure 4.2: Input-output erasure probabilities of BCJR Decoder A.

A similar equation can be written for Decoder B. As the extrinsic output of
Decoder A is passed to the input of Decoder B, the corresponding DE equation
can be written as

y = fB(x; ε).

where fB is the transfer function of Decoder B, and y and x are the extrinsic and
a-priori erasure probability of Decoder B, respectively. Finally, by considering
the exchanging of the extrinsic messages the DE of the PCC ensemble at ith
iteration can be written as

x(i) = fA(fB(x(i−1); ε); ε).

4.1.2 EXIT Chart

An extrinsic information transfer (EXIT) chart [38] is a graphical tool which
visualizes the convergence behavior of iterative decoding algorithms. To un-
derstand the EXIT chart properly, we need to know the definition of mutual
information. For two random variables X and Y , the mutual information is
defined as

I(X;Y ) = H(Y )−H(Y |X),
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where H(Y ) is the entropy of the variable y, and

H(Y |X) =

∫ ∫
f(x, y) log

1

f(y|x)
dxdy .

The EXIT chart tracks the evolution of mutual information between the code-
word bits and the messages that are exchanged.

Consider the iterative decoder of the TC ensemble in Figure 3.10. We
denote the mutual information between the a-priori message at the input of
Decoder A and the transmitted codeword by IAa , and the mutual information
between the extrinsic message at the output of Decoder A and the transmitted
codeword by IAe . Likewise, we define the mutual information IBa and IBe at the
input and output of Decoder B. The EXIT functions for Decoder A can be
defined as

IAe = fA(IAa ) .

During the iterative decoding procedure the extrinsic output values of one
decoder become the a-priori values of the other decoder. Therefore, in the
EXIT chart, the EXIT function for Decoder A and the inverse of the EXIT
function for Decoder B are depicted to follow the decoding trajectory. Starting
from IAa = 0, finding the IAe on the corresponding function, then, by considering
IBa = IAe and finding IBe , and continuing so on, the decoding trajectory can
be depicted on the EXIT chart. Note that the decoding is successful if the
trajectory can achieve 1 in one of the axis.

For the transmission over the BEC, the mutual information is closely related
to the erasure permeability by Ie = 1 − pe and Ia = 1 − pa. Therefore, it
is possible to compute the exact EXIT functions. As an example, consider
the PCC ensemble in Figure 3.4, with identical component encoders and G =
(1, 5/7) in octal notation. The corresponding functions to Decoder A and B are
computed and for the channel erasure probability ε = 0.6, the corresponding
EXIT chart is shown in Figure 4.3.

As it can be seen in the figure, starting from IAa = 0, the decoding trajectory
can achieve 1 after a few iterations. In this case, the tunnel between two EXIT
functions is open, and the decoding is successful. However, by increasing ε, the
two EXIT functions change their shapes and get close in some parts. Finally,
the tunnel gets close for any ε > εBP. Thus, in terms of EXIT charts, εBP is
the largest channel erasure probability for that the tunnel is still open. For
the considered PCC ensemble the BP threshold is equal to εBP = 0.642, and
for this channel erasure probability the corresponding EXIT chart is shown in
Figure 4.4.
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Figure 4.3: EXIT chart of a PCC
ensemble at ε = 0.6.
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Figure 4.4: EXIT chart of a PCC
ensemble at εBP = 0.642.

4.1.3 Area Theorem

For sparse-graph codes, it is possible to connect their performance under BP
decoding to that of the MAP decoding by the area theorem [38], [39], [40], [41].
According to this theorem, for transmission over the BEC, an upper bound on
the MAP threshold, εMAP, can be computed by∫ 1

εMAP

p̄e(ε)dε = R, (4.2)

where R is the code rate, and p̄e(ε) is the average extrinsic erasure probability
at the output of the iterative decoder.

A modified version of EXIT chart—called BP-EXIT chart—can also be
used to visualize the asymptotic behavior of the decoding algorithm, and ob-
tain the BP and MAP decoding thresholds. For the BEC, p̄e(ε) is considered
as the BP-EXIT function and is used to obtain the corresponding BP-EXIT
chart. Consider the PCC and SCC ensembles in Chapter 3, with identical
component encoders, and G = (1, 5/7) in octal notation. The BP-EXIT charts
corresponding to these ensembles are shown in Figure 4.5 and 4.6, respectively.
Based on this chart, the BP threshold is the largest channel erasure probabil-
ity for which p̄e(ε) = 0. The upper bound on the MAP threshold εMAP is the
channel erasure probability from which, the area under the BP-EXIT chart is
equal to the code rate R.
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Figure 4.5: BP-EXIT chart of a rate
1/3 PCC ensemble.
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Figure 4.6: BP-EXIT chart of a rate
1/4 SCC ensemble.

4.2 Weight Enumerator Analysis

The weight enumerator function (WEF) of a linear (N,K) block encoder is a
polynomial that represents the number of codewords of each possible Hamming
weight. The input-output WEF (IO-WEF) of the encoder can be written as

A(I,W ) =

N∑
w=1

K∑
i=1

Ai,wI
iWw,

where Ai,w denotes the number of codewords with input Hamming weight i and
output Hamming weight w. Given the IO-WEF of the encoder, it is possible
to find an upper bound on the error probability for the ML decoder. Based on
the pairwise error probability pw, the frame error probability is upper bounded
by,

PF ≤
N∑
w=1

K∑
i=1

Ai,w pw. (4.3)

For the AWGN channel pw is equal to

Q

(√
2wR

Eb

N0

)
,

where Q(.) is the Q-function and Eb/N0 is the signal-to-noise ratio.
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Figure 4.7: State diagram corresponding to CC encoder in Figure 2.2.

The upper bound on bit error probability can be obtained by,

Pb ≤
N∑
w=1

K∑
i=1

i

K
Ai,w pw. (4.4)

Equations (4.3) and (4.4) show that the IO-WEF plays a key role in computing
bounds on error performance of codes. To find the IO-WEF of TCs, the first
step is to compute the IO-WEF of the corresponding CC component encoders.
In the following subsection, a method for computing the IO-WEF of CCs is
provided.

4.2.1 Weight Enumerator Function of Convolutional
Codes

The input-parity WEF (IP-WEF) of a CC, A(I, P )1,can be obtained by use
of its state diagram and its corresponding transition matrix. As an example
consider the state diagram corresponding to the CC encoder in Figure 2.2.
This state diagram is shown in Figure 4.7. However, in this state diagram,
the edge labels are replaced with monomials IiP p, where i and p are either
0 or 1 depending on the weight of the corresponding input and parity bits,
respectively.

The state transition diagram with s states, can be summarized in an s× s
matrix M , called state transition matrix. The element of M in the rth row
and cth column, [M ]r,c, is the label on the edge that connects the rth state

1The coefficient of IP-WEF, Ai,p, specifies the number of codewords in C with input
Hamming weight i and parity Hamming weight p
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to the cth state. As an example, for the state diagram in Figure 4.7, the state
transition matrix can be written as

M =


1 0 IP 0
P 0 I 0
0 P 0 I
0 1 0 IP


s×s

.

For a trellis with N sections, the overall transition matrix can be obtained
by MN . Then, by considering that the trellis is initialized and terminated to
s0, the IO-WEF is equal to [MN ]1,1.

4.2.2 Average Weight Enumerator of the Concatenated
Convolutional Codes

The average IO-WEF of a TC ensemble can be obtained from the IO-WEF of its
component encoders, by considering uniformly random permutations (URPs)
[42]. A URP with size N ′ can be seen as a probabilistic device that gets a
vector with size N ′ and Hamming weight w as input and generates one of
all the possible permutations of this vector at the output with probability

1/
(
N ′

w

)
. Using the URP for analysis is equivalent to averaging over all possible

permutations.
As an example, consider the PCC ensemble in Figure 3.4. The IP-WEFs

corresponding to component encoders can be obtained by the method ex-
plained. Let ATU

i,p and ATL
i,p denote the IP-WEF of the upper and lower encoder,

respectively. For a given input with weight i, the coefficients of the average
IP-WEF of the ensemble ĀPCC

i,p , can be obtained as [42]

ĀPCC
i,p =

∑
p1
ATU
i,p1
·ATL

i,p−p1(
N
i

) . (4.5)

Similar to the PCC ensemble, by considering URP, the WEFs of other TC
ensembles can be obtained [31].

Using the obtained average IP-WEF of the TC ensembles in equations (4.3)
and (4.4), it is possible to compute bounds on the average error rate perform-
ance of the ensembles. These bounds diverge for small SNRs. Therefore, they
are usually used to estimate the error floor of an ML decoder. Also, it is worthy
to mention that to obtain bounds on the performance of the BP decoder, more
investigations on the corresponding absorbing sets [43] and pseudo-codewords
[44] have to be done.



Chapter 5

Spatially Coupled Codes

Spatial coupling [45] is a technique that can be applied to codes on graphs,
and leads to an improvement in the performance of the codes under iterative
decoding. In this chapter, two classes of spatially coupled codes are discussed.

5.1 SC-LDPC Codes

LDPC convolutional codes (LDPC-CCs) were proposed in [11] by introducing
memory into the encoding procedure of LDPC codes. These codes —also known
as SC-LDPC codes [14]— can be constructed from LDPC codes by use of edge
spreading over their graph representation. Consider a graph representation of
an LDPC code, either Tanner graph or protograph [46]. Then, make L copies
of this graph, where L is called coupling length, and assign a time index t,
t = 1, . . . , L, to each of these copies. To obtain a SC-LDPC ensemble with
coupling memory m, connect the graph at time t to its neighboring copies at
time slots t + 1 to t + m. For that, we can randomly select one edge of the
graph, keep the VN end but connect the other end randomly to one of the
corresponding CN of the next m copies. The graphs at the boundaries do not
have either right or left neighbors, so the overall graph is slightly irregular at
the boundaries of the chain. This structured irregularity makes the code more
powerful at the boundaries. Therefore, on the decoder side, the original bits
can be recovered with a lower error rate at the boundaries. Then, the boundary
copies also help their neighboring copies in the decoding, and in turn, this effect
is cascading over the whole chain.

As an example, consider L copies of the protograph of a regular (3,6) LDPC
ensemble shown in Figure 5.1. For this ensemble,

B = [3, 3].

31
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(a)

(b)

(c)

Figure 5.1: SC-LDPC codes.

For coupling memory m = 2, the edges at the tth copy are spread over the
copies at positions t + 1 to t + m, Figure 5.1 (b). A chain of an SC-LDPC
ensemble can be obtained by applying the edge-spreading procedure for all
positions t = 1, . . . , L (Figure 5.1 (c)).

This edge-spreading procedure —also called unwrapping— can be described
by splitting the corresponding matrixB (orH) intom sub-matricesB0, . . . ,Bm

(H0, . . . ,Hm), such that B = B0 + · · · +Bm (H = H0 + · · · +Hm). Then
the Bsc matrix of the corresponding SC-LDPC ensemble is

Bsc =



B0

B1 B0

... B1
. . .

Bm

...
. . . B0

Bm B1

. . .
...
Bm


(L+m)bc×Lbv

. (5.1)

For the example in Figure 5.1, B0 = B1 = B2 = [1, 1], and the corresponding
Bsc can be obtained by replacing these sub-matrices in equation (5.1).
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Figure 5.2: Array representation of braided codes.

It has been shown that the BP threshold of the SC-LDPC codes improves
to the MAP threshold of the underlying LDPC codes. This remarkable phe-
nomenon is called threshold saturation and has been proved for SC-LDPC codes
[15], [16], [47], [48].

Although the complexity and latency of BP decoding increases by the coup-
ling length for the spatially coupled ensembles, this problem can be solved by
the use of sliding window decoding [49], [50], [51], [52]. For that, over the
spatially coupled chain of decoders, only the decoders within a window frame
are getting active. The decoders iterate for a certain number of times. Then,
the window is shifted, and the decoders within the new window are iterating.
This procedure is continuing until the whole chain has been processed by the
window. By this way, while the excellent performance of the BP decoder is pre-
served, the complexity and latency of the decoding are reducing significantly.

5.2 Braided Codes

Braided codes, introduced in [18], [53], [54], can be seen as convolutional—or
spatially coupled— version of PCs. To explain the structure of these codes, one
can use a two dimensional infinite array, consisting of three diagonal ribbons
(see Figure 5.2). Based on the density of the storage array, braided codes can
be categorized into two classes: tightly and sparesly braided codes. A tightly
braided code (TBC) has a dense array of the information and parity symbols.
Sparsely braided codes (SBC) have low density, and show better performance
under iterative decoding. As shown in Figure 5.2, similarly to product codes,
the information and parity symbols are written in cells, and the information
symbols are encoded twice by vertical and horizontal component encoders.
However, for braided codes at time t, the parity of the horizontal encoder vUt
depends on the current information symbol u and the parity of the vertical
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encoder at t−1, vLt−1. Likewise, the vertical encoder gets u and vUt−1 as inputs
to produce vLt . It is considered that vLt = 0 and vUt = 0 for t ≤ 0.

Depending on their component encoders, braided codes are also categor-
ized into two main categories: 1) braided block codes (BCCs) which have
block component encoders 2) braided convolutional codes (BCCs) which have
convolutional component encoders. BBCs with Bose-Chaudhuri- Hocqenghem
(BCH) component codes are closely related to so-called staircase codes [55] and
have been investigated for high speed optical communications, and it has been
shown that they have an excellent performance under iterative hard decision
decoding [56], [57].

u
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Π CL
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ΠL
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. . .

. . .
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Figure 5.3: BCCs: (a) encoder block diagram (b) factor graph.

BCCs are closely related to PCCs and can be considered as a class of TCs.
However, for BCCs, through a feedback the parity sequence of one component
encoder is used as future input of the other component encoder. Therefore, the
information bits and parity bits are equally protected due this symmetric type
of concatenation. The encoder block diagram of a BCC ensemble with R = 1/3
is shown in Figure 5.3 (a). As it is shown, the ensemble is built of two rate-2/3
convolutional encoders, called upper and lower encoders. At time t, the input
to this encoder is ut and the output is v = (ut,v

U
t ,v

L
t ). The upper encoder

gets ut, and a reordered copy of vLt−1 as first and second inputs, respectively.
Likewise, the lower encoder gets a reordered copy of ut, and a reordered copy
of vUt−1 as first and second inputs, respectively. The corresponding factor graph
representation of the BCC ensemble is shown in Figure 5.3 (b).

The delay block, introduced in the encoder block diagram of the BCC en-
semble, makes it inherently a spatially coupled ensemble with coupling memory
m = 1. Figure 5.4 shows the encoder block diagram of the BCC ensemble which
is expanded over the time. The corresponding uncoupled BCC ensemble can
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Figure 5.4: Block diagram of the BCC encoder.

be obtained by considering tail biting of a coupled chain with L = 1.
BCC can be seen as a class of SC-GLDPC codes with trellis constraints.

Therefore, it is expected that threshold saturation also occurs for them. In-
vestigating the impact of coupling on the BP threshold of BCCs has been done
in the Paper I.





Chapter 6

Summary and
Contributions

In this chapter, I summarize the main contributions and results of the included
papers. I also discuss the overall conclusion of the papers and provide comments
on the possible future research.

6.1 Research Contributions

In the following, the contribution of each paper is discussed separately.

6.1.1 Paper I: Density Evolution Analysis of Braided
Convolutional Codes on the Erasure Channel

S. Moloudi, M. Lentmaier,

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, HI, USA, 2014.

As mentioned in the previous chapter, BCCs are a class of concatenated CCs
that are inherently spatially coupled. However, it is possible to obtain the
uncoupled counterpart of a BCC by considering tail-biting of a coupled chain
with length L = 1. Knowing BCCs as the first class of spatially coupled codes
with trellis constraints, we decided to start our studies on SC-TCs with them.

In this paper, based on DE analysis, we investigated the decoding thresholds
of BCCs over the BEC and the impact of spatial coupling on their BP thresholds.
For that, we extended the Markov chain analysis of the decoding metrics— ini-

37
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tially developed for rate R = 1/2 component encoders—, to derive the explicit
input/output transfer functions of the R = 2/3 component decoders of the con-
sidered BCC ensemble. Then, using the obtained transfer functions, we formu-
lated the exact DE equations for block-wise coupled and uncoupled BCCs and
computed the corresponding BP thresholds. We also used the area theorem to
compute the MAP threshold of the considered uncoupled BCC ensemble.

Our results suggest that for the uncoupled BCC ensemble, the gap between
the BP and MAP threshold is more significant than that of PCCs investigated
in the literature; BCCs have better MAP threshold but worse BP threshold
than PCCs. However, spatial coupling improves the BP threshold of BCCs
significantly, such that that the BP threshold of the resulting coupled BCC
is getting even superior to the MAP threshold of the PCCs. To compute
the BP thresholds, we used a sliding window starting at time instant t =
1. The numerical results show that for some component encoders, the BP
threshold of the BCC ensemble with sliding window decoding is worse than
the BP threshold of the ensemble. This observation is the result of the fact
that the error probability over the chain converges to zero from the end of the
coupled chain.

For the original BCC ensemble, the coupling memory is m = 1. Therefore,
we have not observed the threshold saturation phenomenon in this paper. How-
ever, this has been our motivation to propose and investigate some modified
BCC ensembles with larger coupling memories in later papers.

6.1.2 Paper II: Spatially Coupled Turbo Codes

S. Moloudi, M. Lentmaier, and A. Graell i Amat,

Proc. Int. Symp. on Turbo Codes and Iterative Inf. Processing (ISTC), Bremen,

Germany, 2014.

In this paper, we proposed SC-TCs as a class of spatially coupled codes and
studied them by a systematic approach. In particular, we proposed some block-
wise spatially coupled counterparts for PCCs and SCCs with general coupling
memory m and investigated the impact of coupling on their BP thresholds.
For the proposed coupled ensembles, we derived the exact DE equations over
the BEC. Then, using these equations, we obtained the corresponding BP
thresholds by numerical methods. The computed BP thresholds were com-
pared with the corresponding MAP thresholds computed by the area theorem.
Based on the results obtained in this paper, we observed that for both SC-PCCs
and SC-SCCs, the coupling BP threshold approaches the MAP threshold of the
underlying ensemble by increasing coupling memory. In other words, our nu-
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merical results suggest the occurrence of threshold saturation for the proposed
coupled ensembles. To compare the thresholds of SC-PCC and SC-SCC en-
sembles, some ensembles with random puncturing were also considered. The
reported thresholds for two rates, R = 1/2 and R = 1/3, confirm that for
equal rate, SCCs have worse BP but better MAP thresholds than PCCs; by
spatial coupling, the improvement of the BP threshold is more considerable
for the SCC ensemble. Therefore, the BP threshold of the SC-SCC ensemble
surpasses that of the SC-PCC ensemble.

So far, PCCs have been more attractive for many applications than SCCs
because of their better BP thresholds. The results of this paper demonstrate
that SC-SCCs can easily compete with SC-PCCs regarding decoding threshold.

6.1.3 Paper III: Spatially Coupled Turbo-Like Codes

S. Moloudi, M. Lentmaier, and A. Graell i Amat,

IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199-6215, Oct. 2017.

In this paper, we followed two main purposes: First, we investigated the issues
raised in the first two papers—investigating the impact of coupling on the
TC ensembles—in more detail; second, we provided a mathematical proof for
threshold saturation for the SC-TCs.

In the very beginning of the paper, we introduced a graphical representa-
tion for convolutional codes that can be considered as a compact form of the
corresponding factor graph. This new graph representation not only simplifies
the graph representation of TCs and SC-TCs but also makes the DE analysis of
these codes easier. Using the compact graph representation, besides describing
the proposed coupled ensembles for SC-PCC, and SC-SCC with general coup-
ling memory m, we suggested two extensions of BCC ensembles—which are
inherently spatially coupled with m = 1—to higher coupling memories m > 1.
We also assumed random puncturing and performed a DE analysis to compute
the BP thresholds of the considered ensembles over the BEC for a wide range
of rates. Similar to the first two papers, we used the area theorem to compute
the corresponding MAP thresholds of the punctured ensembles.

Our numerical results demonstrate that spatial coupling improves the de-
coding thresholds of TCs for all rates. This improvement is more considerable
for SCCs and BCCs whose uncoupled ensembles suffer from poor BP thresholds.
The uncoupled BCC ensemble has the worst BP threshold but the best MAP
threshold among the considered TC ensembles, and by spatial coupling, the BP
threshold of the BCC ensemble improves to a value close to the correspond-
ing close-to-capacity MAP threshold. In general, our numerical results show
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that an SC-TC ensemble can achieve the MAP threshold of the underlying un-
coupled ensemble for large enough coupling memory, i.e., threshold saturation
happens for SC-TCs.

Motivated by this observation, we proved threshold saturation for SC-TCs
analytically. In general, the DE equations of TCs fall within a vector recursion
format, but we showed that under certain conditions, it is possible to rewrite the
DE equations of the TC ensembles as scalar recursions. This allowed us to use a
proof technique based on the potential function developed by Yedla et al.. For
the case of PCCs, considering the proof technique for vector recursions, we also
generalized the proof to non-symmetric ensembles with different component
encoders.

The results from this paper confirm that TCs, like LDPC codes, can be-
nefit from spatial coupling. So far, TCs have been optimized to have better
thresholds for BP decoding. Threshold saturation guarantees that by spatial
coupling, the MAP threshold of a TC ensemble is achievable with low com-
plexity BP decoding. This suggests optimizing TC ensembles for better MAP
threshold. By spatial coupling of the powerful code ensembles with strong dis-
tance properties such as SCCs and BCCs, the resulting ensembles can then
perform close to capacity with low-complexity BP decoding.

6.1.4 Paper IV: Spatially Coupled Hybrid Concatenated
Codes

S. Moloudi, M. Lentmaier, and A. Graell i Amat,

Proc. Int. ITG Conf. Systems, Commun. and Coding (SCC), Hamburg, Ger-

many, 2017.

Any mixture of PCC and SCC ensembles can be considered as an HCC en-
semble. This fact makes HCC ensembles more flexible for the trade-offs in the
code design. Depending on the structure of the ensemble, an HCC ensemble
can have trade-offs between close-to-capacity threshold and very low error prob-
abilities in the error floor region. Moreover, for some HCC ensembles, the min-
imum distance grows linearly with input block length. All these make HCCs a
powerful class of TCs.

In this paper, we tried to make further investigation on SC-TCs by studying
the impact of spatial coupling on the thresholds of HCCs. In particular, as an
HCC ensemble, we considered a serially concatenation of a PCC ensemble with
an inner encoder; this ensemble is very close to the 3-D turbo code ensemble.
Then, we introduced two spatially coupled ensembles of HCCs, referred to
as Type-I SC-HCCs and Type-II SC-HCCs. Considering different component
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encoders, we computed the thresholds of SC-HCC ensembles and compared
them with the thresholds of BCCs for a range of different rates.

The numerical results show that the MAP threshold of HCCs can be even
better than that of BCCs, and it is achievable by the threshold saturation effect
of coupling. Moreover, the results confirm that, by selecting the component
encoders suitably, HCCs can be either optimized for BP threshold or MAP
threshold. Although HCCs can have the best MAP threshold among the con-
sidered TC ensembles, for a given coupling memory m, their spatially coupled
counterparts do not have necessarily the best coupling threshold. The reported
threshold of Table IV confirm this fact; for small values of m, BCCs have better
coupled threshold than corresponding HCCs.

6.1.5 Paper V: Spatially coupled turbo-like codes: a new
trade-off between waterfall and error floor

S. Moloudi, M. Lentmaier, and A. Graell i Amat,

submitted to IEEE Trans. Commun..

In the previous articles, we showed that TCs have excellent MAP thresholds,
and relying on threshold saturation, these thresholds are achievable by spatial
coupling. Motivated by these excellent decoding thresholds, in this paper, we
discussed the impact of spatial coupling on the performance of TCs in the finite
block-length regime. We investigated the performance of the SC-TCs in both
the waterfall and error floor region over the AWGN channel. To discuss the
waterfall performance, we used the computed decoding thresholds for the BEC
to predict the corresponding decoding thresholds for the AWGN channel. We
also provided simulation results for TCs and SC-TCs. The simulation results
confirm that spatial coupling significantly improves the BER performance of
TCs in the waterfall region, like the decoding thresholds.

Then, we investigated the impact of coupling on the error-floor performance
of TCs. For that, we established conditions under which spatial coupling either
preserves or improves the minimum distance of TCs. The provided conditions
can be seen as a guideline for unwrapping the TC ensembles. To investigate the
minimum distance and error floor of SC-TCs, it is possible to perform a WEF
analysis for the coupled ensembles. However, by increasing the coupling length
and the coupling memory the complexity of computing the average WEF of
the coupled ensemble increases significantly. Instead, relying on the established
connection, we simply performed the WEF analysis of the corresponding un-
coupled ensembles to investigate the minimum distance and error floor of the
coupled ensembles. Using the WEFs for a given block length, we computed
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bounds on the error performance, and bounds on the minimum distance of
TCs. These bounds indicate very low error floor for the SCC, BCC, and HCC
ensembles. Moreover, for the BCC and HCC ensembles, the minimum distance
grows linearly with the block length.

So far, among all the considered TC ensembles, only PCCs have been used
in various standards because of their good BP thresholds. However, other TC
ensembles have better MAP threshold and distance properties than PCCs. The
results from this paper and all previous papers confirm that the BP thresholds
of these ensembles can be significantly improved by applying coupling. Regard-
ing the finite length regime, while their error floor stays at very low error prob-
abilities, their waterfall performance gets much closer to capacity. Interestingly,
it can be seen that by coupling of a TC ensemble with close to capacity MAP
threshold and low error floor, such as SCCs, BCCs, and HCCs, the resulting
spatially coupled ensemble is very promising and can perform close-to-capacity,
yet achieving low error floor, with a low complexity BP decoder.

6.1.6 Paper VI: A Unified Ensemble of Concatenated Con-
volutional Codes

S. Moloudi, M. Lentmaier, and A. Graell i Amat,

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, 2017.

So far, the different classes of TCs have been considered separately. In this
article, we proposed a unified ensemble that contains all four major classes of
TCs; PCCS, SCCs, HCCs, and BCCs. We believe this unified ensemble can
unify the frameworks for the analysis of TCs, and moreover, can lead us to
a better understanding of the similarities and differences between various TC
classes and the possible trade-offs in the code design. This ensemble also allows
us to design new ensembles that do not belong to any of the original classes of
TCs. By proper selection of the design parameters in the unified ensemble, it is
possible to find equivalent ensembles for different TC classes. This ensemble is
based on a single self-concatenated trellis. In particular, we used a single rate-
1/2 component encoder, but it is also possible to build the unified ensemble
based on a component encoder with general rate-R and considering proper
puncturing of the encoder. In this paper, we introduced two elementary steps
to find the self-concatenated equivalents of PCCs and SCCs. Then, we used
these elementary steps to find the self-concatenated equivalents of HCCs and
BCCs. It is worthy to mention that these elementary steps can also be applied
to other concatenated CCs to find the corresponding self-concatenated codes.
Then, we derived the exact DE equations for this unified ensemble over the



Chapter 6. Summary and Contributions 43

BEC. Using these DE equations, we computed the decoding thresholds of the
equivalent TC ensembles. Our results confirm that the obtained thresholds are
very close to those of the original ensembles.

We believe that the proposed unified ensemble also establishes a bridge
between TCs and protograph-based GLDPC codes with convolutional con-
straints. In fact, this unified ensemble can be considered as the first step
toward understanding of the connections between TC ensembles and LDPC
code ensembles.

6.2 General Conclusions

By selecting a TC ensemble and its component convolutional encoders prop-
erly, one can optimize the ensemble for higher BP or MAP thresholds. Among
all the concatenated ensembles, only the PCC ensemble have had the oppor-
tunity to be used in various standards because of their good BP thresholds and
their performance in the waterfall region. However, only for properly designed
permutations a PCC can achieve low error rates in the error floor region. The
other TC ensembles —SCCs, BCCs, and HCCs— have better MAP thresholds
and distance properties than PCCs, but because of their poor BP thresholds,
they have got less commercial attention.

The main purpose of this thesis was to propose, investigate and understand
a powerful class of codes on graphs with trellis constraints, which can achieve
both close-to-capacity performance and very low error rates for moderate block
lengths. In particular, we have proposed spatial coupling for concatenated con-
volutional codes (SC-TCs). Then, we performed DE analysis to investigate the
decoding thresholds of the TCs and the impact of coupling on their thresholds.

Our results confirm excellent decoding thresholds for TC ensembles. These
results also show that the ensemble with the better BP threshold does not have
necessarily the better MAP threshold. More precisely, SCCs, BCCs, and HCCs
have excellent MAP thresholds but worse BP thresholds than the PCC en-
semble. We have proved that by spatial coupling of TCs the resulting ensembles
can achieve the MAP threshold of the underlying TC ensemble (threshold sat-
uration). This brings a new perspective in designing concatenated codes: a TC
scheme can be optimized for the best MAP threshold, and relying on threshold
saturation, this MAP threshold can be achieved by BP decoder.

Based on the WEFs, we also computed bounds on the error rate perform-
ance and the minimum distance of TC ensembles. These bounds show very
low error floor for the SCC, BCC and HCC ensembles. Also, the bounds on
the minimum distance of BCCs and HCCs, demonstrate that their minimum
distance grows linearly with block length. We proved that under certain con-
ditions SC-TCs can have either equal or better minimum distance than the
underlying TC ensemble (preserving the minimum distance).
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The DE and WEF analysis demonstrates that the TC ensembles with bet-
ter MAP thresholds —SCCs, BCCs, and HCCs— also have better minimum
distance and lower error floor. Then, relying on threshold saturation and pre-
serving the minimum distance, by spatial coupling of these ensembles, the res-
ulting ensembles perform close-to-capacity, yet achieving low error floor, with
a low complexity BP decoder.

So far, the different classes of TCs have been studied and investigated separ-
ately. However, its not completely clear how the connection of the component
encoders affects the performance of the TCs. We proposed an unified en-
sembles for the considered TC ensembles which is based on self concatenation
of a convolutional code. The graph representation of this ensemble confirms
that the differences between the TC ensembles are manifested in the proportion
of degree-1, and degree-2 VNs in the graph, or the puncturing of part of the
parity sequence. We believe that this unified ensemble establishes a connection
between concatenated code ensembles and LDPC code ensembles.

6.3 Future Research

This thesis can be seen as one of the beginning steps toward understanding
SC-TCs. Therefore, there are many potentially interesting topics for future
research on SC-TCs. From them I can mention:

• Extending our threshold analysis to the AWGN channel by using Monte
Carlo methods.

• Investigating the impact of increasing memory of component encoders of
SC-TCs or increasing the degree of VNs in the graph.

• Obtaining bounds on the performance of the BP decoder, by investigating
the corresponding absorbing sets, trapping sets and pseudo-codewords.

• Analyzing the benefits of SC-TCs in practical scenarios.

Finally, I believe that my studies on SC-TCs may attract some new interest
in turbo-like coding structures for a wider range of applications.
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Channel

Braided convolutional codes (BCCs) are a class of spatially coupled

turbo-like codes with a structure that is similar to product codes or gen-

eralized LDPC codes. We derive explicit input/output transfer functions

of the component convolutional decoders for the binary erasure channel

(BEC). These are then used to formulate exact density evolution equations

for blockwise BCCs under belief propagation (BP) decoding with optimal

component APP decoders. Thresholds are computed for the coupled and

uncoupled case, which is equivalent to tailbiting. Due to the relatively

high rate of the component codes a significant threshold improvement by

spatial coupling can be observed.
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1 Introduction

Braided block codes (BBCs) [1] are a class of generalized low-density parity-
check (LDPC) convolutional codes that can be viewed as a spatially coupled
version of Elias’ product codes [2]. Similar to LDPC codes, sparsity can be in-
troduced into their structure, without changing the component codes, in order
to construct codes of arbitrary length or memory. BBCs with BCH compon-
ent codes were recently considered for high-speed optical communications in
[3], where product-like codes are commonly applied [4]. Like the closely re-
lated staircase codes [5], they show an excellent performance together with
low-complexity iterative hard decision decoding.

In this paper we consider a counterpart of BBCs called braided convo-
lutional codes (BCCs) [6]. Again the encoding can be described by a two-
dimensional sliding array in which each symbol is protected by a horizontal
and a vertical component code. But now the component codes are convolu-
tional codes, resulting in a class of spatially coupled turbo-like codes with a
structure similar to generalized LDPC codes. Unlike parallel or serially con-
catenated convolutional codes all information and parity symbols are protected
by both component codes in a symmetric fashion.

For a random ensemble of BCCs with Markov permutors it was shown in
[6] that the minimum distance of typical codes grows linearly with their con-
straint length, i.e., BCCs are asymptotically good. Although a formal proof
is still open, it is expected that this is also the case for the slightly different
blockwise BCC construction that we consider here. Indeed, the simulation
results for blockwise BCCs in [6, Figure 12] indicate superior distance prop-
erties compared to parallel concatenated codes since no error floor is visible
for comparable permutor sizes. At the same time, unlike serial concatenated
codes, the BCCs can compete with the parallel concatenation in the waterfall
region. Interestingly, the simulated codes in [6, Figure 12] performed signific-
antly better than the tailbiting case in [6, Figure 13]. For the latter case the
AWGN channel threshold was estimated by Monte Carlo techniques. It was
conjectured that this performance improvement can be prescribed to a similar
effect as the threshold saturation phenomenon known for coupled LDPC codes
[7].

The aim of this paper is to confirm this conjecture by performing a threshold
analysis of blockwise BCCs. After introducing BCCs and their decoding in
Section II and Section III, we derive explicit input/output transfer functions
that characterize the a posteriori probability (APP) decoders of their compon-
ent codes in Section IV. Considering the binary erasure channel (BEC), these
transfer functions can be computed analytically by means of a Markov chain
analysis of the decoder metrics, as presented in [8] for rate R = 1/2 encoders.
We apply the technique from [8] to rate R = 2/3 encoders with different input
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Figure 1: Encoder of BCC.

and output probabilities for each symbol type, resulting in a three-dimensional
transfer function for each of the output symbols. These transfer functions
are then used in Section V to formulate exact density evolution recursions for
the blockwise BCCs and compute belief propagation (BP) thresholds for the
coupled and tailbiting (or uncoupled) case. Due to the higher rate of the com-
ponent codes the tailbiting/uncoupled threshold is worse than the thresholds
of typical parallel concatenated codes. However, as expected, the coupled en-
semble has a significantly better threshold.

2 Braided Convolutional Codes

Similar to turbo codes, BCCs have convolutional codes as component codes but
the most important difference between turbo codes and braided codes is that, in
BCCs, the parity symbols of one component encoder are used as future inputs
of the other component encoder. Throughout this paper we limit ourselves to
the example of rate R = 1/3 blockwise BCCs as illustrated in Figure1. They
consist of two systematic convolutional component encoders of rate R = 2/3.
At time t, a block of N information symbols ut and a block of N parity symbols

v
(2)
t−1 (there is a delay DN of one block) enter Encoder A directly and through

the block permutor P (2), respectively. Encoder B has permuted information

symbols through block permutor P (0) and permuted parity symbols v
(1)
t−1 from

Encoder A through block permutor P (1) and delay block, as inputs. The output

of the encoder at time t is vt = (v
(0)
t ,v

(1)
t ,v

(2)
t ), where v

(0)
t = ut. It follows

from the encoding procedure that BCCs are a class of spatially coupled codes
because the encoded blocks vt depend on blocks from previous time instants.
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Figure 2: Array representation of TBC codes.

An uncoupled braided code can be defined by omitting the delay blocks. It
is also possible to use block length N = 1 and not to use the permutors. In
this case the codes are called tightly braided convolutional codes (TBCCs).

BCCs are closely related to classic product codes, in which the data is
written in an infinite two-dimentional array and the rows and columns are
encoded by separate component codes. Moreover, the horizontal and vertical
encoders are linked for BCCs through parity feedback. The array of a TBCC is
illustrated in Figure 2. It consists of three diagonal ribbons and the information
symbols are placed in the center ribbon. The parity symbols of the horizontal
and vertical encoder are stored in the upper and lower ribbons, respectively. At

time t, the output of the horizontal encoder, which is shown by v
(1)
t , depends on

the current information symbol ut, its left neighbor v
(2)
t−1 and the encoder state.

v
(1)
t will be placed as the right neighbor of ut in the array. Shaded squares of

the array contain the previous inputs and outputs, which are assumed to be
known. The operation of the vertical encoder is analogous to the horizontal

one. Finally, at time t, the coded symbols vt = (ut, v
(1)
t , v

(2)
t ) are sent over the

channel.
Throughout this paper we consider transmission of a sequence of L coupled

blocks v1,v2, . . . ,vL, and distinguish between encoders with termination or
tailbiting. In the first case the encoder is terminated and the blocks at times
t < 1 and t > L are equal to vt = 0. In the second case we have a circular
structure. Uncoupled BCCs can be defined by using tailbiting with L = 1.
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t = 1 t = 2 t = 3 t = L

BCC Decoding

Block

BCC Decoding

Block

BCC Decoding

Block

BCC Decoding

Block
L

(2)
L+1,A!B = +1

L
(1)
L+1,B!A = +1

L
(2)
0,B!A = +1

L
(1)
0,A!B = +1

Figure 4: Block diagram of the iterative message passing decoder of a blockwise
BCC.

3 Iterative Decoding

A factor graph representation of a blockwise BCC is shown in Figure 3. We
consider BP decoding, i.e., an iterative message passing decoder in which the
trellises of the component codes are decoded by the BCJR algorithm. In every
iteration each decoding block at time t, t = 1, . . . , L receives log-likelihood
ratios (LLRs) from the channel and the decoders at the same time t and the
neighboring blocks at time t − 1 and t + 1, resulting from previous iteration.
Figure 4 shows the connection of the decoders at different time instants and
how they exchange LLRs between time slots for coupled BCCs. Note that we
omit the permutations in the block diagram in order to simplify the illustration.
LLRs coming from time t < 1 and t > L are set to +∞, since the corresponding
symbols are equal to zero by definition.

Based on the input values L
(k)
in,t, k = 0, 1, 2, the BCJR decoders create

new extrinsic output values L
(k)
out,t that are passed back to the other BCJR

decoder in the same and neighboring time instants. An illustration of the

decoding block at time t is given in Figure 5. Here L
(k)
ch,t denotes the channel
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Figure 5: BCC Decoding Block at time t.

LLRs of the kth symbol block v
(k)
t and L

(k)
t,A→B defines the extrinsic outputs

L
(k)
out,t of Decoder A, which contributes to the input of Decoder B. L

(k)
t,B→A is

defined analogously. In the first decoding iteration the values from the previous
iteration are initialized as erasures, which means that the respective LLRs are
defined as zero.

In the BCC decoding block of Figure 5, green lines show the LLRs that are
exchanged with the past, and LLRs exchanged with the future are illustrated
in brown lines. Some LLRs are produced at the current time instant and only
used at the current time, namely those which are related to the first inputs of
the component decoders. Blue lines show this kind of LLRs.

As the considered channel is the BEC, the LLRs from the channel and from
the outputs of the decoders can only be one of the values +∞, 0 and −∞ for
0, erasure and 1 and the only combinations that are possible to happen are as
follows:

+∞+∞ = +∞ 0 +∞ = +∞
−∞−∞ = −∞ 0−∞ = −∞
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4 Probability of Bit Erasure for Component
Convolutional Codes

In order to derive an analytical expression for the probability of erasure of
BCCs, the probabilities of erasure of the component codes are required. To
catch this goal, we use the method proposed in [8] and apply it to convolutional
codes with rate R = 2/3.

The extrinsic output erasure probabilities are functions of the input erasure
probabilities p0, p1 and p2,

pe,0 = f0(p0, p1, p2) (1)

pe,1 = f1(p0, p1, p2)

pe,2 = f2(p0, p1, p2)

For each component code, there is a BCJR decoder and its lth input at

trellis section n is denoted by L
(l)
in,n.1

Moving over the trellis, forward and backward state metric values are ob-
tained from the following equations2:

αn(σ) = max∗σ′(γn(σ′, σ) + αn−1(σ′)) (2)

βn−1(σ′) = max∗σ(γn(σ′, σ) + βn(σ)) (3)

where σ and σ′ denote the states at time n and n− 1, respectively, and

γn(σ′, σ) =

3∑
l=1

L
(l)
in,n ·

(
1

2
− v(l)n

)
Finally, the lth output (extrinsic information) can be calculated as

L
(l)
out,n = max∗

(σ′,σ):v(l)n =0

(
αn−1(σ′) + γn(σ′, σ) + βn(σ)

)
−max∗

(σ′,σ):v(l)n =1

(
αn−1(σ′) + γn(σ′, σ) + βn(σ)

)
We define the metric vectors µµµα,n and µµµβ,n, whose length is equal to the

number of the states. µµµα,n(i) is the forward metric of ith state at time n and
µµµβ,n has the backward metric of the ith state as the ith element. Since for

1We use l to denote the symbol index from the perspective of the component decoder,
whereas k denotes the index from the perspective of the overall code. Likewise, t is the time
index of the code sequence vt, while n denotes the index within the trellis of a component
decoder at a given time instant t.

2max∗ denotes the Jacobian logarithm.
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both µµµα,n and µµµβ,n nonzero elements are always equal, we can normalize these
entires to 1.

Due to the linearity of the code, we can assume in the analysis that the

all-zero codeword has been transmitted. Let Mα = {σσσ(1)
α ,σσσ

(2)
α , . . . σσσ

(|Mα|)
α }

and Mβ denote the set of all possible µµµα,n and µµµβ,n, respectively. µµµα,n is one
of the elements of Mα.

Example 1 Consider the rate R = 2/3 convolutional code with generator mat-
rix

G(D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
=

(
1 0 1/7
0 1 5/7

)
(4)

For this code, using observer canonical form, there are four states and in
this case, Mα and Mβ are equal and have finite number of elements.

Mα =Mβ =

{(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}

The sequence . . . ,µµµα,n−1,µµµα,n,µµµα,n+1, . . . forms a Markov chain with trans-
ition matrix Mα, in which Mα(j, k) is the probability of coming from state

σσσ
(j)
α to sate σσσ

(k)
α . This probability depends on the input erasure probabilities

pl, l = 0, 1, 2. Using the following formula, we can obtain the steady state
distribution of the Markov chain,

πα = Mαπα . (5)

With the same method, Mβ and πβ are obtained.
For the encoder defined in (58) we get

Mα =


(1− p)2(2p+ 1) (1− p)2 (1− p)3 0 0

p2(1− p) 0 p(1− p)2 p3 − 2p+ 1 (1− p)2
p2(1− p) p(1− p) p(1− p)2 0 0
p2(1− p) p(1− p) p(1− p)2 0 0

p3 p2 p2(3− 2p) p2(2− p) p(2− p)


For simpler presentation we have asssumed that p0, p1 and p2 are equal to

p, however in general the elements of this matrix are calculated as a function
of these three variables.

Define the matrices T (l)

T
(l)
i,j = P

(
L
(l)
out,n = 0|µµµα,n = σσσ(i)

α ,µµµβ,n+1 = σσσ
(j)
β

)
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The probability of erasure is equal to

p(l)e = P
(
L
(l)
out,n = 0

)
=

|Mα|∑
i=1

|Mβ |∑
j=1

P
(
L
(l)
out,n = 0|µµµα,n = σσσ(i)

α ,µµµβ,n+1 = σσσ
(j)
β

)
· P
(
µµµα,n = σσσ(i)

α

)
· P
(
µµµβ,n+1 = σσσ

(j)
β

)
= πα · T (l) · πβ .

(6)

Using the above formula, the desired transfer functions of (1) are acquired.

5 Analysis of Iterative Decoding

5.1 Density Evolution for BCCs

By means of the erasure probability of the component decoders, we are able
to calculate the evolution of the erasure probability during the decoding pro-
cedure.3 As the decoder is the same in all iterations we can use the transfer
functions obtained in the previous section recursively to obtain the exact de-
coding probability of erasure after a certain number of iterations.

For coupled BCCs, the decoding probability of erasure for symbol l = 0, 1, 2
of decoder A at time t after i iterations can be obtained as

p
(i,t)
DA,0

=fDA,0

(
q
(i−1)
DB ,0

, q
(i−1)
DB ,1

, q
(i−1)
DB ,2

)
(7)

p
(i,t)
DA,1

=fDA,1

(
q
(i−1)
DB ,0

, q
(i−1)
DB ,1

, q
(i−1)
DB ,2

)
(8)

p
(i,t)
DA,2

=fDA,2

(
q
(i−1)
DB ,0

, q
(i−1)
DB ,1

, q
(i−1)
DB ,2

)
, (9)

where

q
(i−1)
DB ,0

=ε · p(i−1,t)DB ,0
(10)

q
(i−1)
DB ,1

=ε · p(i−1,t−1)DB ,2
(11)

q
(i−1)
DB ,2

=ε · p(i−1,t+1)
DB ,1

. (12)

Here fDA,l is the transfer function for the lth symbol of the component decoder
DA and ε denotes the erasure probability of the channel. Because of the sym-
metric design, the update equations for decoder DB are identical to those of
decoder DA after interchanging DA and DB in equations (7)–(12).

3An assumption in density evolution is that the messages exchanged by the decoders are
independent. For turbo codes it has been shown in [9] that this can be achieved by considering
a windowed BCJR decoder. A formal proof for BCCs is still an open problem, but we expect
that the technique in [9] can be generalized to the ensembles considered here.
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Table 1: Thresholds of blockwise BCCs.

G(D) εBP εMAP εSC εWSC

(1/7, 5/7) 0.5541 0.6654 0.6609 0.6554

(1/5, 7/5) 0.5541 0.6654 0.6609 0.6609

The initial LLRs from before the first iteration are assumed to be set to
zero, i.e., p

(i=0,t)
DA,l

= p
(i=0,t)
DB ,l

= 1 for l = 0, 1, 2. However, for coupling length L,
all messages which come from time t < 1 or t > L are assumed to be known,
i.e., all probabilities with time index t < 1 or t > L are equal to zero. The
decoding probability of erasure at time t for blockwise BCCs after i iterations
is:

pe,t = ε · p(i,t)DA,0
· p(i,t)DB ,0

As a special case, an uncoupled BCC can be achieved by tailbiting and the
assumption of L = 1. The transfer function for the uncoupled case can be
achieved from the above mentioned equations for coupled BCCs by omitting
the time index t.

5.2 Results and Discussion

We want to evaluate the largest probability of erasure of the channel ε for which
the probability of erasure of BP decoding pe,t converges to zero for all t. To
obtain such a threshold, pe,t is evaluated as a function of the number of itera-
tions for different values of ε (density evolution). We consider two examples of
blockwise BCC ensembles of rate R = 1/3 with identical component encoders.
The first case corresponds to component encoders with G(D) as defined in
(58), i.e., with generators (1/7, 5/7) in octal form. In the second case we
consider the generators (1/5, 7/5), i.e., the feedback polynomial is exchanged.
The thresholds εBP for the uncoupled case (tailbiting with L = 1) and εSC for
the coupled (terminated) case are shown in Table 14. It can be observed that
spatial coupling leads to a significantly better BP decoding threshold. The
value εWSC denotes the threshold that can be achieved with a sliding window
decoder that starts at time instant t = 1. For the first encoder we see that
εWSC is worse than εSC, which is due to the fact that the decoder converges bet-
ter from the end of the coupled sequence. This suboptimality of the window
decoding threshold can be avoided by exchanging the generator polynomials.

Table 1 shows also an upper bound εMAP on the threshold of an optimal
MAP decoder of the uncoupled codes. This upper bound can be obtained

4It should be noted that the threshold for tailbiting, due to the circular structure, is equal
to the threshold for the uncoupled case for any value of L.
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Figure 6: Probability of erasure of the component convolutional codes.

according to the area theorem [10] as solution to the following equation:∫ 1

εMAP

p̄extr(p)dp = R . (13)

Here R is the rate of the BCC and

p̄extr(p) =
1

3

(
p
(∞)
DA,0

· p(∞)
DB ,0

+ p
(∞)
DA,2

· p(∞)
DB ,1

+ p
(∞)
DA,1

· p(∞)
DB ,2

)
denotes the extrinsic probability of erasure of uncoupled BCCs, which is a
function of the channel parameter p. To solve this equation we compute the area
under the curve p̄extr(p) for a sufficiently large number of decoding iterations.

We see that the BP threshold of the coupled codes is close to εMAP. How-
ever, some gap is still visible for the considered ensemble, which is equivalent
to the one introduced in [6]. As shown in [11], this gap to the MAP threshold
vanishes if the original ensemble is generalized to larger coupling memories
mBCC > 1.

Another interesting observation is that for BCCs the coupling gain, i.e., the
gap between εSC and εBP appears to be significantly larger than for conven-
tional turbo codes (i.e., parallel concatenated convolutional codes). Although
thresholds for spatially coupled turbo codes have not yet been investigated in
the literature, this follows from the gap between their uncoupled BP threshold
and MAP threshold, which have been determined in [10]. The large threshold
improvement for the coupled case can be justified by looking at the transfer
function of the component codes, as illustrated in Figure 6.
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On one hand, since a rate R = 2/3 encoder performs worse than a R = 1/2
encoder it is natural that the BP threshold of an uncoupled turbo code is better
than the BP threshold of an uncoupled BCC code. However, assuming that the
second input of the R = 2/3 encoder is known (i.e., p2 = 0) we effectively obtain
an equivalent encoder of R = 1/2 whose performance is considerably improved
(see black curve in Figure 6). This effect appears for the BCC ensemble at time
t = 1 and t = L, and it propagates further to the other time instants during
the iterative decoding procedure, resulting in a threshold improvement.

6 Conclusions

In this paper, we derived exact density evolution equations for blockwise BCCs
under BP decoding over the BEC. Considering component encoders of memory
m = 2 we computed BP thresholds for the coupled (terminated) and un-
coupled (tailbiting) case and compared them with an upper bound on the
MAP threshold. Our threshold analysis confirms the conjecture made in [6]
that terminated BCCs can have much better thresholds than their tailbiting
counterparts. The threshold of the considered original BCC ensemble is already
close to the MAP threshold but for a vanishing gap some generalization to lar-
ger coupling memories is required. A major advantage of the BCC construction
compared to other turbo-like codes are the superior minimum distance prop-
erties in combination with the capacity approaching thresholds.
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Spatially Coupled Turbo Codes

In this paper, we introduce the concept of spatially coupled turbo codes

(SC-TCs), as the turbo codes counterpart of spatially coupled low-density

parity-check codes. We describe spatial coupling for both Berrou et al.

and Benedetto et al. parallel and serially concatenated codes. For the bin-

ary erasure channel, we derive the exact density evolution (DE) equations

of SC-TCs by using the method proposed by Kurkoski et al. to compute

the decoding erasure probability of convolutional encoders. Using DE,

we then analyze the asymptotic behavior of SC-TCs. We observe that

the belief propagation (BP) threshold of SC-TCs improves with respect

to that of the uncoupled ensemble and approaches its maximum a pos-

teriori threshold. This phenomenon is especially significant for serially

concatenated codes, whose uncoupled ensemble suffers from a poor BP

threshold.
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1 Introduction

Low-density parity-check (LDPC) convolutional codes [1], also known as spa-
tially coupled LDPC (SC-LDPC) codes [2], can be obtained from a sequence of
individual LDPC block codes by distributing the edges of their Tanner graphs
over several adjacent blocks [3]. The resulting spatially coupled codes exhibit
a threshold saturation phenomenon, which has attracted a lot of interest in
the past few years: the threshold of an iterative belief propagation (BP) de-
coder, obtained by density evolution (DE), is improved to that of the optimal
maximum-a-posteriori (MAP) decoder [2], [3]. As a consequence, it is pos-
sible to achieve capacity with simple regular LDPC codes, which show without
spatial coupling a significant gap between BP and MAP threshold.

The concept of spatial coupling is not limited to LDPC codes. Spatially
coupled turbo-like codes, for example, can be obtained by replacing the block-
wise permutation of a turbo code by a convolutional permutation [4]. In
combination with a windowed decoder for the component code, a continuous
streaming implementation is possible [5]. The self-concatenated convolutional
codes in [6] are closely related structures as well. A variant of spatially coupled
self-concatenated codes with block-wise processing, called laminated codes was
considered in [7]. They have the advantage that an implementation similar to
uncoupled turbo codes is possible, without the need for a streaming implement-
ation of the decoder. A block-wise version of braided convolutional codes [8],
a class of spatially coupled codes with convolutional components, has recently
been analyzed in [9].

The aim of this paper is to investigate the impact of spatial coupling on
the thresholds of classical turbo codes. For this purpose we introduce some
special block-wise spatially coupled ensembles of parallel concatenated codes
(SC-PCCs) and serially concatenated codes (SC-SCCs), which are spatially
coupled versions of the ensembles by Berrou et al. [10] and Benedetto et al.
[11], respectively. With a slight abuse of the term, we call both parallel and
serial ensembles spatially coupled turbo codes (SC-TCs). For these ensembles
we derive exact DE equations from the transfer functions of the component
decoders [12], [13] and perform a threshold analysis for the binary erasure
channel (BEC), analogously to [3], [9]. To compare the results for SC-PCC
and SC-SCC ensembles with each other some ensembles with puncturing are
also considered. The BP thresholds of the different ensembles are presented
and compared to the MAP thresholds for different coupling memories.

2 Spatially Coupled Turbo Codes

In this section, we introduce spatially coupled turbo codes. We first describe
spatial coupling for both parallel and serially concatenated codes, and then
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Figure 1: Block diagram of the encoder of a spatially coupled turbo code for coupling
memory m = 1. (a) parallel concatenation (b) serial concatenation.

address their iterative decoding.

2.1 Spatially Coupled Parallel Concatenated Codes

We consider the spatial coupling of R = 1/3 parallel concatenated codes, built
from the parallel concatenation of two rate-1/2 recursive systematic convolu-
tional encoders, denoted by CU and CL (see Figure 1). For simplicity, we
describe spatial coupling with coupling memory m = 1. Consider a collection
of L turbo encoders at time instants t = 1, . . . , L, as illustrated in Figure 1(a).
L is called the coupling length. We denote by ut the information sequence, and
by vUt and vLt the code sequences of CU and CL, respectively, at time t. The
output of the turbo encoder is given by the tuple vt = (ut,v

U
t ,v

L
t ). A SC-PCC

ensemble (with m = 1) is obtained by connecting each turbo code in the chain
to the one on the left and to the one on the right as follows. Divide the inform-
ation sequence ut into two sequences, ut,A and ut,B by a demultiplexer. Also
divide a copy of the information sequence, which is properly reordered by the
permutation Πt, into two sequences, ut,A′ and ut,B′ by another demultiplexer.
At time t, the information sequence at the input of encoder CU is (ut,A,ut−1,B),
properly reordered by a permutation ΠU

t . Likewise, the information sequence
at the input of encoder CL is (ut,A′ ,ut−1,B′), properly reordered by the per-
mutation ΠL

t . In Figure 1 the blue lines represent the information bits from the
current time slot t that are used in the next time slot t+ 1 and the green lines
represent the information bits from the previous time slot t−1. In order to ter-
minate the encoder of the SC-PCC to the zero state, the information sequences
at the end of the chain are chosen in such a way that the output sequence at
time t = L+ 1 becomes vL+1 = 0. Analogously to conventional convolutional
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codes this results in a rate loss that becomes smaller as L increases.
Using the procedure described above a coupled chain (a convolutional struc-

ture over time) of L turbo encoders with coupling memory m = 1 is obtained.
An extension to larger coupling memories m > 1 is presented in Section 4.

2.2 Spatially Coupled Serially Concatenated Codes

We consider the coupling of serially concatenated codes (SCCs) built from
the serial concatenation of two rate-1/2 recursive systematic convolutional en-
coders. The overall code rate of the uncoupled ensemble is therefore R = 1/4.
A block diagram of the encoder is depicted in Figure 1(b) for coupling memory
m = 1. As for SC-PCCs, let ut be the information sequence at time t. Also,
denote by vOt = (vO,st ,vO,pt ) = (ut,v

O,p
t ) and vIt the encoded sequence at the

output of the outer and inner encoder, respectively, and by ṽOt the sequence vOt
after permutation. The SC-SCC with m = 1 is constructed as follows. Con-
sider a collection of L SCCs at time instants t = 1, . . . , L. Divide the sequence
ṽOt into two parts, ṽOt,A and ṽOt,B. Then, at time t the sequence at the input of

the inner encoder CI is (ṽOt,A, ṽ
O
t−1,B). In order to terminate the encoder of the

SC-SCC to the zero state, the information sequences at the end of the chain
are chosen in such a way that the output sequence at time t = L+ 1 becomes
vIL+1 = 0.

Using this construction method, a coupled chain of L SCCs with coupling
memory m = 1 is obtained. An extension to larger coupling memories m > 1
is presented in Section 4.

2.3 Iterative decoding

As standard turbo codes, SC-TCs can be decoded using iterative message
passing (belief propagation) decoding, where the component encoders of each
turbo code are decoded using the BCJR algorithm. The BP decoding of SC-
PCCs can be easily visualized with the help of Figure 2, which shows the factor
graph of a single section of the SC-PCC. We denote by DU and DL the decoder
of the upper and lower encoder, respectively.

The decoder DU receives at its input information from the channel for both
systematic and parity bits. Furthermore, it also receives a-priori information
on the systematic bits from other decoders. As described above, at time t the
information sequence at the input of CU consists of two parts, ut,A and ut−1,B.
Correspondingly, DU at time instant t receives a priori information from DL

at time instants t− 1, t and t+ 1. Based on the information from the channel
and from the companion decoders, DU computes the extrinsic information on
the systematic bits using the BCJR algorithm. Since the structure of SC-PCCs
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Figure 2: Factor graph of a single section of a SC-PCC.
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is symmetric, the decoding of the lower encoder is performed in an identical
manner.

Similarly to SC-PCCs, the decoding SC-SCCs can also be described with
the help of a factor graph. The factor graph of a section of a SC-SCC with
m = 1 is shown in Figure 3.
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3 Density Evolution Analysis on the BEC

In this section, we analyze the asymptotic performance of SC-TCs using DE.
We consider transmission over a BEC with erasure probability ε, denoted by
BEC(ε). We derive the exact DE equations for both (unpunctured) SC-PCCs
and SC-SCCs and discuss the modification of the equations when puncturing
is applied for achieving higher rates.

3.1 Spatially Coupled Parallel Concatenated Codes

Let pU,s and pL,s be the average (extrinsic) erasure probability on the systematic
bits at the output of the upper and lower decoder, respectively. Likewise, we
define pU,p and pL,p for the parity bits.

The erasure probabilities pU,s and pU,p at iteration i and time instant t can
be written as

p
(i,t)
U,s = fU,s

(
q
(i−1)
L , ε

)
(1)

p
(i,t)
U,p = fU,p

(
q
(i−1)
L , ε

)
, (2)

where

q
(i−1)
L = ε ·

2p
(i−1,t)
L,s + p

(i−1,t−1)
L,s + p

(i−1,t+1)
L,s

4
, (3)

and fU,s and fU,p denote the upper decoder transfer functions for the systematic
and parity bits, respectively.

Note that the upper decoder transfer function at time t depends on both
the channel erasure probability and the extrinsic erasure probability on the
systematic bits from the lower decoder at time instants t, t− 1 and t+ 1, due
to the coupling. Because of the symmetric design, the lower decoder update
is identical to that of the upper decoder by interchanging pU and pL, and
substituting qL ← qU in (1)–(3).

Finally, the a-posteriori erasure probability on the information bits at time
t and iteration i is5

p(i,t)a = ε ·
p
(i,t)
U,s p

(i,t)
L,s + p

(i,t)
U,s p

(i,t+1)
L,s + p

(i,t+1)
U,s p

(i,t)
L,s + p

(i,t+1)
U,s p

(i,t+1)
L,s

4
(4)

For the BEC it is possible to compute analytic expressions for the exact
(extrinsic) probability of erasure of convolutional encoders, using the method
proposed in [12] and [13]. Here, we use this method to derive the exact ex-
pressions for the transfer functions of the component decoders. DE is then

5We remark that although (2) is not applied within the DE recursion it is required for
the computation of the area bound on the MAP threshold.
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performed by tracking the evolution of p
(i,t)
a with the number of iterations,

with the initialization p
(0,t)
U,s = p

(0,t)
U,p = p

(0,t)
L,s = p

(0,t)
L,p = 0 for t = 0 and t > L,

and 1 otherwise. The BP threshold corresponds to the maximum channel para-

meter ε for which successful decoding is achieved, i.e., p
(i,t)
a tends to zero for

all time instants t as i tends to infinity.

3.2 Spatially Coupled Serially Concatenated Codes

Similarly to the parallel case, DE equations can be derived for SC-SCCs. Let
pO,s and pI,s be the average (extrinsic) erasure probability on the systematic
bits at the output of the outer and inner decoder, respectively. Likewise, we
define pO,p and pI,p for the parity bits at the output of the outer and inner
decoder, respectively.

The erasure probabilities pI,s and pI,p can be written as

p
(i,t)
I,s = fI,s

(
q
(i−1)
O , ε

)
(5)

p
(i,t)
I,p = fI,p

(
q
(i−1)
O , ε

)
, (6)

where

q
(i−1)
O = ε ·

p
(i−1,t)
O,s + p

(i−1,t)
O,p + p

(i−1,t−1)
O,s + p

(i−1,t−1)
O,p

4
, (7)

and fI,s and fI,p denote the inner decoder transfer functions for the systematic
and parity bits, respectively.

Likewise, pO,s and pO,p are

p
(i,t)
O,s = fO,s

(
q
(i−1)
I , q

(i−1)
I

)
(8)

p
(i,t)
O,p = fO,p

(
q
(i−1)
I , q

(i−1)
I

)
, (9)

where

q
(i−1)
I = ε ·

p
(i−1,t)
I,s + p

(i−1,t+1)
I,s

2
. (10)

The a-posteriori erasure probability on the information bits at time t after
i iterations is

p(i,t)a = ε · p(i,t)O,s ·
p
(i,t)
I,s + p

(i,t+1)
I,s

2
. (11)

DE is then performed by tracking the evolution of p
(i,t)
a with the number

of iterations, with the initialization p
(0,t)
I,s = p

(0,t)
I,p = p

(0,t)
O,s = p

(0,t)
O,p = 0 for t = 0

and t > L and 1 otherwise.
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3.3 Spatially Coupled Turbo Codes with Random Punc-
turing

Higher rates can be obtained by applying puncturing. Here, we consider ran-
dom puncturing. Assume that a code sequence x is randomly punctured such
that a fraction ρ ∈ [0, 1] of the coded bits survive after puncturing, and then
transmitted over a BEC(ε). ρ will be referred to as the permeability rate. For
the BEC, puncturing is equivalent to transmitting x through a BEC(ερ) res-
ulting from the concatenation of two BECs, BEC(ε) and BEC(1 − ρ), where
ερ = 1− (1−ε)ρ. The DE equations derived in the previous subsections can be
easily modified to account for puncturing. Consider first the case of SC-PCCs.
We consider only puncturing of the parity bits, and that both CU and CL are
equally punctured with permeability rate ρ. The code rate of the (uncoupled)
punctured parallel concatenated code (PCC) is R = 1

1+2ρ . This results in a

slight modification of the DE equations, substituting ε← ερ in (1), (2).
For SC-SCCs we consider puncturing as proposed in [14], [15], which results

in better SCCs as compared to standard SCCs. Let ρ0 and ρ1 be the permeab-
ility rate of the systematic and parity bits, respectively, of CO sent directly to
the channel (see [15, Figure 1]), and ρ2 the permeability rate of the parity bits
of CI. The code rate of the (uncoupled) punctured6 SCC is R = 1

ρ0+ρ1+2ρ2
.

The DE for punctured SC-SCCs is obtained by substituting ε ← ερ2 in (5),
(6), and modifying (7) to

q
(i−1)
O =

ε ·
(
p
(i−1,t)
O,s + p

(i−1,t−1)
O,s

)
+ ερ1 ·

(
p
(i−1,t)
O,p + p

(i−1,t−1)
O,p

)
4

,

and (8), (9) to

p
(i,t)
O,s = fO,s

(
q
(i−1)
I , q̃

(i−1)
I

)
(12)

p
(i,t)
O,p = fO,p

(
q
(i−1)
I , q̃

(i−1)
I

)
, (13)

where q
(i−1)
I is given in (10) and

q̃
(i−1)
I = ερ1 ·

p
(i−1,t)
I,s + p

(i−1,t+1)
I,s

2
. (14)

4 Extension to Larger Coupling Memories

The results from the previous sections can easily be generalized to larger coup-
ling memories m > 1.

6In this paper we consider ρ0 = 1, i.e., the overall code is systematic.
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Let us first consider SC-PCCs. In the general case the information se-
quences ut,ut−1, . . . ,ut−m from m + 1 different time instances are used by
the encoders at time t. This is achieved by dividing the information sequence
ut into the sequences ut,j , j = 0, . . . ,m by a multiplexer, and also dividing a
properly reordered copy of the information bits into ut,j′ , j

′ = 0, . . . ,m, which
can be accomplished by permutation Πt followed by a multiplexer. At the in-
put of the upper encoder CU at time t the sequences ut−j,j are multiplexed
and reordered by the permutation ΠU

t . The lower encoder CL receives the in-
formation sequences ut−j′,j′ , multiplexed and reordered by ΠL

t . The encoder
in Figure 1(a) corresponds to the special case m = 1.

In the DE recursion we now have to modify (3) to

q
(i−1)
L = ε ·

∑m
j=0

∑m
k=0 p

(i,t+j−k)
L,s

(m+ 1)2
,

and the a-posteriori erasure probability on the information bits at time t and
iteration i (4) becomes

p(i,t)a = ε ·
∑m
j=0

∑m
k=0 p

(i,t+j)
U,s p

(i,t+k)
L,s

(m+ 1)2
.

Likewise, for SC-SCCs the code sequence vOt of CO is divided randomly
into the sequences ṽOt,j , j = 0, . . . ,m. CI receives at time t the sequences ṽOt−j,j
after passing a multiplexer and a permutation. The encoder in Figure 1(b)
corresponds to the special case m = 1.

Equations (7) and (10) in the DE recursion are modified accordingly to

q
(i−1)
O = ε ·

∑m
j=0 p

(i−1,t−j)
O,s + p

(i−1,t−j)
O,p

2(m+ 1)

and

q
(i−1)
I = ε ·

∑m
j=0 p

(i−1,t+j)
I,s

m+ 1
.

The a-posteriori erasure probability on the information bits at time t after i
iterations (11) becomes

p(i,t)a = ε · p(i,t)O,s ·
∑m
j=0 p

(i,t+j)
I,s

m+ 1
.

5 Results and Discussion

In this section, we give numerical results for some SC-TCs, using the DE de-
scribed in Section 3 and 4. In our examples we consider SC-TCs with identical
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Table 1: Thresholds for SC-TCs.

Ensemble Rate εBP εMAP ε1SC ε3SC

CPCC/CSC−PCC 1/3 0.6428 0.6553 0.6553 0.6553

CSCC/CSC−SCC 1/4 0.6896 0.7483 0.7378 0.7482

rate-1/2, 4-states component encoders. In particular, we consider component
encoders with generator polynomials (1, 5/7) in octal notation. For notational
simplicity, we denote the uncoupled PCC ensemble by CPCC and the corres-
ponding coupled ensemble by CSC−PCC. For SC-SCCs, we denote by CSCC,
and CSC−SCC the uncoupled and coupled ensembles, respectively. Note that
since the two component encoders are identical, fU,s(x, y) = fL,s(x, y) and
fU,p(x, y) = fL,p(x, y) for SC-PCCs, and fI,s(x, y) = fO,s(x, y) and fI,p(x, y) =
fO,p(x, y) for SC-SCCs. All presented thresholds correspond to the stationary
case L → ∞, which lower bounds the thresholds for finite L. For small L the
threshold can be considerably larger but at the expense of a higher rate loss.

In Table 1 we give the BP threshold for several SC-TCs and coupling
memory m = 1 and 3, denoted by ε1SC and ε3SC . We also report in the table
the BP threshold (εBP) and the MAP threshold (εMAP) of the uncoupled en-
sembles. The MAP threshold was computed applying the area theorem [16].
In all cases we observe an improvement of the BP threshold when coupling
is applied. We remark that for CSC−PCC the BP threshold of the uncoupled
ensemble is already close to the MAP threshold, therefore the potential gain
with coupling is limited. However, it is interesting to observe that the BP
threshold of CSC−PCC with m = 1 is very close to εMAP, suggesting threshold
saturation. The results for the ensemble CSC−SCC are also given in Table 1 for
coupling memory m = 1 and 3. We observe that the ensemble CSCC has a poor
BP threshold as compared to the MAP threshold. This is a well-known phe-
nomenon for SCCs, for which the gap between the BP and the MAP threshold is
large. A significant improvement is obtained by applying coupling with m = 1.
However, there is still a gap between εBP and εMAP, meaning that threshold
saturation has not occurred. The BP threshold can be further improved by in-
creasing the coupling memory to m = 3. In this case the BP threshold is very
close to the MAP threshold, suggesting that threshold saturation occurs for
large enough coupling memory. This behavior is similar to the threshold satur-
ation phenomenon of SC-LDPC codes, which occurs for smoothing parameter
w →∞ [2].

In Table 2 we show the BP thresholds of punctured SC-TCs, in order to
compare SC-PCCs and SC-SCCs for a given code rate. We consider R = 1/3
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Table 2: Thresholds for punctured SC-TCs.

Ensemble Rate εBP εMAP ε1SC ε3SC

CPCC/CSC−PCC 1/3 0.6428 0.6553 0.6553 0.6553

CSCC/CSC−SCC 1/3 0.6118 0.6615 0.6519 0.6614

CPCC/CSC−PCC 1/2 0.4606 0.4689 0.4689 0.4689

CSCC/CSC−SCC 1/2 0.4010 0.4973 0.4773 0.4969

and R = 1/2, and coupling memory 1.7 For the SC-SCC we used ρ1 = 1 and
ρ2 = 0.5 for R = 1/3 and ρ1 = 0.2 and ρ2 = 0.4 for R = 1/2. Again, in all
cases an improvement of the BP threshold is observed when coupling is applied.
As expected, for a given rate the PCC ensemble shows a better threshold
than the SCC ensemble. However, the improvement in the BP threshold due
to coupling for the latter is very significant. For R = 1/3 and m = 1 the
BP threshold of CSC−SCC is very close to that of the (unpunctured) ensemble
CSC−PCC, while a large gap is observed for the uncoupled ensembles. For
m = 3, CSC−SCC achieves a better BP threshold than CSC−PCC. The result
is even more remarkable for R = 1/2. In this case, while the uncoupled SCC
ensemble shows a very poor threshold, CSC−SCC shows a superior threshold
than CSC−PCC already for m = 1.

6 Conclusions

In this paper we have introduced some block-wise spatially coupled ensembles of
parallel and serially concatenated convolutional codes and performed a density
evolution analysis on the BEC. In all considered cases spatial coupling results
in an improvement of the BP threshold and our numerical results suggest that
threshold saturation occurs if the coupling memory is chosen significantly large.
The threshold improvement is larger for the serial ensembles, which are known
to have poor BP thresholds without coupling but are stronger regarding the
distance spectrum. Puncturing the serial and parallel ensembles to equal code
rates, we observe that the threshold of the serial ensemble can surpass the one
of the parallel ensemble.

7For R = 1/3 the SC-PCC is not punctured.
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Spatially Coupled Turbo-Like Codes

In this paper, we introduce the concept of spatially coupled turbo-like

codes (SC-TCs) as the spatial coupling of a number of turbo-like code

ensembles. In particular, we consider the spatial coupling of parallel con-

catenated codes (PCCs), introduced by Berrou et al., and that of serially

concatenated codes (SCCs), introduced by Benedetto et al.. Furthermore,

we propose two extensions of braided convolutional codes (BCCs), a class

of turbo-like codes which have an inherent spatially coupled structure,

to higher coupling memories, and show that these yield improved belief

propagation (BP) thresholds as compared to the original BCC ensemble.

We derive the exact density evolution (DE) equations for SC-TCs and

analyze their asymptotic behavior on the binary erasure channel. We

also consider the construction of families of rate-compatible SC-TC en-

sembles. Our numerical results show that threshold saturation of the

belief propagation (BP) decoding threshold to the maximum a-posteriori

threshold of the underlying uncoupled ensembles occurs for large enough

coupling memory. The improvement of the BP threshold is especially

significant for SCCs and BCCs, whose uncoupled ensembles suffer from a

poor BP threshold. For a wide range of code rates, SC-TCs show close-to-

capacity performance as the coupling memory increases. We further give

a proof of threshold saturation for SC-TC ensembles with identical com-

ponent encoders. In particular, we show that the DE of SC-TC ensembles

with identical component encoders can be properly rewritten as a scalar

recursion. This allows us to define potential functions and prove threshold

saturation using the proof technique recently introduced by Yedla et al..

c©2017 IEEE. Reprinted, with permission, from

S. Moloudi, M. Lentmaier, and A. Graell i Amat,

“Spatially coupled turbo-like codes,”

in IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199-6215, Oct. 2017.





Spatially Coupled Turbo-Like Codes 89

1 Introduction

Low-density parity-check (LDPC) convolutional codes [1], also known as spa-
tially coupled LDPC (SC-LDPC) codes [2], can be obtained from a sequence of
individual LDPC block codes by distributing the edges of their Tanner graphs
over several adjacent blocks [3]. The resulting spatially coupled codes exhibit
a threshold saturation phenomenon, which has attracted a lot of interest in
the past few years: The threshold of an iterative belief propagation (BP) de-
coder, obtained by density evolution (DE), can be improved to that of the
optimal maximum-a-posteriori (MAP) decoder, for properly chosen paramet-
ers. It follows from threshold saturation that it is possible to achieve capacity
by spatial coupling of simple regular LDPC codes, which show a significant
gap between BP and MAP threshold in the uncoupled case. A first analytical
proof of threshold saturation was given in [2] for the binary erasure channel
(BEC), considering a specific ensemble with uniform random coupling. An
alternative proof based on potential functions was then presented in [4], [5],
[6], which was extended from scalar recursions to vector recursions in [7]. By
means of vector recursions, the proof of threshold saturation can be extended
to spatially coupled ensembles with structure, such as SC-LDPC codes based
on protographs [8].

The concept of spatial coupling is not limited to LDPC codes. Also codes
on graphs with stronger component codes can be considered. In this case the
structure of the component codes has to be taken into account in a DE ana-
lysis. Instead of a simple check node update, a constraint node update within
BP decoding of a generalized LDPC code involves an a-posteriori probability
(APP) decoder applied to the associated component encoder. In general, the
input/output transfer functions of the APP decoder are multi-dimensional be-
cause the output bits of the component encoder have different protection. For
the BEC, however, it is possible to analytically derive explicit transfer func-
tions [9] by means of a Markov chain analysis of the decoder metric values in
a trellis representation of the considered code [10]. This technique was applied
in [11], [12] to perform a DE analysis of braided block codes (BBCs) [13] and
other spatially coupled generalized LDPC codes. Threshold saturation could
be observed numerically in all the considered cases. BBCs can be seen as a
spatially coupled version of product codes, and are closely related to staircase
codes [14], which have been proposed for high-speed optical communications. It
was demonstrated in [15], [16] that BBCs show excellent performance even with
the iterative hard decision decoding that is proposed for such scenarios. The
recently presented spatially coupled split-component codes [17] demonstrate
the connections between BBCs and staircase codes.

In this paper, we study codes on graphs whose constraint nodes repres-
ent convolutional codes [18], [19], [20]. We denote such codes as turbo-like
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codes (TCs). We consider three particular concatenated convolutional coding
schemes: Parallel concatenated codes (PCCs) [21], serially concatenated codes
(SCCs) [22], and braided convolutional codes (BCCs) [23]. Our aim is to in-
vestigate the impact of spatial coupling on the BP threshold of these TCs. For
this purpose we introduce some special block-wise spatially coupled ensembles
of PCCs (SC-PCCs) and SCCs (SC-SCCs) [24]. In the case of BCCs, which
are inherently spatially coupled, we consider the original block-wise ensemble
from [23], [25] and generalize it to larger coupling memories. Furthermore, we
introduce a novel BCC ensemble in which not only the parity bits but also the
information bits are coupled over several time instants [26].

For these spatially coupled turbo-like codes (SC-TCs), we perform a threshold
analysis for the BEC analogously to [3], [11], [12]. We derive their exact DE
equations from the transfer functions of the convolutional component decoders
[27], [28], whose computation is similar to that for generalized LDPC codes in
[10]. In order to evaluate and compare the ensembles at different rates, we also
derive DE equations for the punctured ensembles. Using these equations, we
compute BP thresholds for both coupled and uncoupled TCs [29] and compare
them with the corresponding MAP thresholds [30], [31]. Our numerical results
indicate that threshold saturation occurs if the coupling memory is chosen suf-
ficiently large. The improvement of the BP threshold is specially significant for
SCCs and BCCs, whose uncoupled ensembles suffer from a poor BP threshold.
We then consider the construction of families of rate-compatible SC-TCs which
achieve close-to-capacity performance for a wide range of code rates.

Motivated by the numerical results, we prove threshold saturation analyt-
ically. We show that, by few assumptions in the ensembles of uncoupled TCs,
in particular considering identical component encoders, it is possible to rewrite
their DE recursions in a form that corresponds to the recursion of a scalar
admissible system. This representation allows us to apply the proof technique
based on potential functions for scalar admissible systems proposed in [4], [5],
which simplifies the analysis. For the general case, the analysis is significantly
more complicated and requires the coupled vector recursion framework of [7].
Finally, for the example of PCCs, we generalize the proof to non-symmetric
ensembles with different component encoders by using the framework in [7].

The remainder of the paper is organized as follows. In Section 2, we intro-
duce a compact graph representation for the trellis of a convolutional code that
is amenable for a DE analysis. Furthermore, we derive explicit input/output
transfer functions of the BCJR decoder for transmission over the BEC. Then, in
Section 3, we describe uncoupled ensembles of PCCs, SCCs and BCCs by means
of the compact graph representation. SC-TCs, their spatially coupled counter-
parts, are introduced in Section 4. In Section 5, we derive exact DE equations
for uncoupled and coupled ensembles of TCs. In Section 6, we consider random
puncturing and derive the corresponding DE equations and analyze SC-TCs as
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a family of rate compatible codes. Numerical results are presented and dis-
cussed in Section 7. Threshold saturation, which is observed numerically in
the results section, is proved analytically in Section 8. Finally, the paper is
concluded in Section 9.

2 Compact Graph Representation and Transfer
Functions of Convolutional Codes

In this section, we introduce a graphical representation of a convolutional code,
which can be seen as a compact form of its corresponding factor graph [20].
This compact graph representation makes the illustration of SC-TCs simpler
and is convenient for the DE analysis. We also generalize the method in [27],
[28] to derive explicit input/output transfer functions of the BCJR decoder of
rate-k/n convolutional codes on the BEC, which will be used in Section 5 to
derive the exact DE for SC-TCs.

2.1 Compact Graph Representation

Consider a rate-k/n systematic convolutional encoder of code length nN bits,
i.e., its corresponding trellis has N trellis sections. At each time instant
τ = 1, . . . , N , corresponding to a trellis section, the encoder encodes k in-

put bits and generates n − k parity bits. Let u(i) = (u
(i)
1 , u

(i)
2 , . . . , u

(i)
N ),

i = 1, . . . , k, and v
(i)
p = (v

(i)
p,1, v

(i)
p,2, . . . , v

(i)
p,N ), i = 1, . . . , n − k, denote the k

input sequences and the n − k parity sequences, respectively. We also de-

note by v(i) = (v
(i)
1 , v

(i)
2 , . . . , v

(i)
N ), i = 1, . . . , n, the ith code sequence, with

v(i) = u(i) for i = 1, . . . , k and v(i) = v
(i−k)
p for i = k + 1, . . . , n. The conven-

tional factor graph of a convolutional encoder is shown in Figure 1(a), where
black circles represent code bits, each black square corresponds to the code
constraints (allowed combinations of input state, input bits, output bits, and
output state) of one trellis section, and the double circles are (hidden) state
variable nodes.

For convenience, we will represent a convolutional encoder with the more
compact graph representation depicted in Figure 1(b). In this compact graph

representation, each input sequence u(i) and each parity sequence v
(i)
p is rep-

resented by a single black circle, referred to as variable node, i.e., each circle
represents N bits. Furthermore, the code trellis is represented by a single empty
square, referred to as factor node. The factor node is labeled by the length N
of the trellis. Each node in the compact graph represents a sequence of nodes
belonging to the same type, similar to the nodes in a protograph of an LDPC
code. Variable nodes in the original factor graph may represent different bit
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Figure 1: (a) Factor graph representation of a rate-k/n systematic convolutional
code. (b) Compact graph representation of the same code.

values, even if they belong to the same type in the compact graph. However,
assuming a tailbiting trellis, the probability distribution of these values after
decoding will be equal for all variables that correspond to the same node type.
As a consequence, a DE analysis can be performed in the compact graph, in-
dependently of the trellis length N , which plays a similar role as the lifting
factor of a protograph ensemble. If a terminated convolutional encoder, which
starts and ends in the zero state, is used instead, the bits that are close to the
start and end of the trellis will have a slightly stronger protection. Since this
effect will not have a significant impact on the performance, we will neglect
this throughout this paper and assume equal output distributions for all bits
of the trellis, even when termination is used.

2.2 Transfer Function of the BCJR Decoder of a Convo-
lutional Code

Consider the BCJR decoder of a memory ν, rate−k/n convolutional encoder
and transmission over the BEC. Without loss of generality, we restrict ourselves
within this paper to encoders with k = 1 or n − k = 1, which can be imple-
mented with 2ν states in controller canonical form or observer canonical form,
respectively. We would like to characterize the transfer function between the
input erasure probabilities (i.e., prior to decoding) and output erasure prob-
abilities (i.e., after decoding) on both the input bits and the output bits of
the convolutional encoder. Note that the erasure probabilities at the input of
the decoder depend on both the channel erasure probability and the a-priori
erasure probabilities on systematic and parity bits (provided, for example, by
another decoder). Thus, in the more general case, we consider non-equal eras-
ure probabilities at the input of the decoder.

Consider the extrinsic erasure probability of the lth code bit, l = 1, 2, . . . , n,
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which is the erasure probability of the lth code bit when it is estimated based
on the other code bits8. This extrinsic erasure probability, at the output of
the decoder, is denoted by pextl . The probabilities pextl depend on the erasure
probabilities of all code bits (systematic and parity) at the input of the decoder,

pextl = fl(p1, p2, . . . , pn), (1)

where pl is the erasure probability of the lth code bit at the input of the
decoder and fl(p1, p2, . . . , pn) is the transfer function of the BCJR decoder for
the lth code bit. For notational simplicity, we will often omit the argument of
fl(p1, p2, . . . , pn) and write simply fl.

Let r(i) = (r
(i)
1 , r

(i)
2 , . . . , r

(i)
N ), i = 1, . . . , n, be the vectors of received sym-

bols at the output of the channel, with r
(i)
j ∈ {0, 1, ?}, where ? denotes an

erasure. The branch metric of the trellis edge departing from state σ′ at time
τ − 1 and ending to state σ at time τ , τ = 1, . . . , N , is

γτ (σ′, σ) =

n∏
l=1

p
(
r(l)τ

∣∣ v(l)τ ) · p(v(l)τ ) , (2)

where p
(
v
(l)
τ

)
is the a-priori probability on symbol v

(l)
τ .

The forward and backward metrics of the BCJR decoder are

ατ (σ) =
∑
σ′

γτ (σ′, σ) · ατ−1(σ′) (3)

βτ−1(σ′) =
∑
σ

γτ (σ′, σ) · βτ (σ′). (4)

Finally, the extrinsic output likelihood ratio is given by

L
(l)
out,τ =

∑
(σ′,σ):v(l)τ =0

ατ−1(σ′) · γτ (σ′, σ) · βτ (σ)∑
(σ′,σ):v(l)τ =1

(
ατ−1(σ′) · γτ (σ′, σ) · βτ (σ)

·
p
(
v
(l)
τ = 1

)
p
(
v
(l)
τ = 0

) .
Let the 2ν trellis states be s1, s2, . . . , s2ν . Then, we define the forward and

backward metric vectors as

ατ = (ατ (s1), . . . , ατ (s2ν )),

and
βτ = (βτ (s1), . . . , βτ (s2ν )),

8Without loss of generality we assume that the first k bits are the systematic bits.
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respectively. For transmission on the BEC, the nonzero entries of vectors ατ
and βτ are all equal. Thus, we can normalize them to 1.

We consider transmission of the all-zero codeword. The sets of values that
vectors ατ and βτ can take on are denoted by

Mα = {m(1)
α , . . . ,m(|Mα|)

α },

and
Mβ = {m(1)

β , . . . ,m
(|Mβ |)
β },

respectively. It is important to remark that these sets are finite. Further-
more, the sequence . . . ,ατ−1,ατ ,ατ+1, . . . forms a Markov chain, which can
be properly described by a probability transition matrix, denoted by Mα. The

(i, j) entry of Mα is the probability of transition from state m
(i)
α to state m

(j)
α .

Denote the steady state distribution vector of the Markov chain by πα, which
can be computed as the solution to

πα = Mα · πα. (5)

Similarly, we can define the transition matrix for the sequence of backward
metrics . . . ,βτ+1,βτ , βτ−1, . . . , denoted byMβ , and compute the steady state
distribution vector πβ .

Example 2 Consider the rate-2/3, 4-state convolutional encoder with gener-
ator matrix

G(D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
.

Mα and Mβ are equal and have cardinality 5,

Mα =Mβ =

{(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}.

Consider equal erasure probability for all code bits at the input of the decoder,
i.e., p1 = p2 = p3 = p. Then,

Mα =


(1− p)2(2p+ 1) (1− p)2 (1− p)3 0 0

p2(1− p) 0 p(1− p)2 p3 − 2p+ 1 (1− p)2
p2(1− p) p(1− p) p(1− p)2 0 0
p2(1− p) p(1− p) p(1− p)2 0 0

p3 p2 p2(3− 2p) p2(2− p) p(2− p)

 .

4
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In order to compute the erasure probability of the lth bit at the output

of the decoder, we have to compute the probability of L
(l)
out,τ = 1. Define the

matrices T l, l = 1, 2, . . . , n, where the (i, j) entry of T l is computed as

Tl(i, j) = p
(
L
(l)
out,τ = 1 | ατ = m(i)

α ,βτ+1 = m
(j)
β

)
.

Thenhresho, the extrinsic erasure probability of the lth output, pextl , introduced
in (1), is obtained as

pextl = fl(p1, p2, . . . , pn) = p
(
L
(l)
out,τ = 1

)
=

|Mα|∑
i=1

|Mβ |∑
j=1

p
(
L
(l)
out,τ = 1 | ατ = m(i)

α ,βτ+1 = m
(j)
β

)
· p
(
ατ = m(i)

α

)
· p
(
βτ+1 = m

(j)
β

)
= πα · T l · πβ . (6)

Example 3 Consider the rate−2/3 convolutional encoder with generator mat-
rix

G(D) =

(
1 0 1

1+D

0 1 D
1+D

)
.

Assuming p1 = p2 = p3 , p, the transfer functions for the corresponding
decoder are

f1 = f2 =
p(p5 − 4p4 + 6p3 − 5p2 + 2p+ 1)

p6 − 4p5 + 6p4 − 6p3 + 5p2 − 2p+ 1
,

f3 =
p2(p2 − 4p+ 4)

p6 − 4p5 + 6p4 − 6p3 + 5p2 − 2p+ 1
.

4

Lemma 1 Consider a terminated convolutional encoder where all distinct in-
put sequences have distinct encoded sequences. For such a system, the transfer
function f(p1, p2, . . . , pn) of a BCJR decoder with input erasure probabilities
p1, p2, . . . , pn, or any convex combination of such transfer functions, is increas-
ing in all its arguments.

Proof 1 We prove the statement by contradiction. Recall that the BCJR de-
coder is an optimal APP decoder. Now, consider the transmission of the same
codeword over two channels, called channel 1 and 2. The erasure probabilit-

ies of the ith bit at the input of the decoder are denoted by p
(1)
i and p

(2)
i for

transmission over channel 1 and 2, respectively. These erasure probabilities are
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equal for all i = 1, . . . , n except for the jth bit, for which p
(1)
j < p

(2)
j . Assume

that the transfer function f is non-increasing in its jth argument,

f(p
(1)
1 , . . . , p

(1)
j , . . . , p(1)n ) ≥ f(p

(2)
1 , . . . , p

(2)
j , . . . , p(2)n ). (7)

Puncture the jth bit sequence of the codeword transmitted over channel 1 such

that p
(1)
j,punc = p

(2)
j . Since puncturing can only make the output of the de-

coder worse (otherwise we could replace our encoder with the punctured one
and achieve a higher rate),

f(p
(1)
1 , . . . , p

(1)
j,punc, . . . , p

(1)
n ) > f(p

(1)
1 , . . . , p

(1)
j , . . . , p(1)n ), (8)

Since after puncturing p
(1)
i and p

(2)
i are equal for all i, then

f(p
(1)
1 , . . . , p

(1)
j,punc, . . . , p

(1)
n ) = f(p

(2)
1 , . . . , p

(2)
j , . . . , p

(2)
n ). Then, we can

rewrite the inequality (8) as

f(p
(2)
1 , . . . , p

(2)
j , . . . , p(2)n ) > f(p

(1)
1 , . . . , p

(1)
j , . . . , p(1)n ). (9)

However, the inequality (9) is in contradiction with (7).

3 Compact Graph Representation of Uncoupled
Turbo-Like Codes

In this section, we describe PCCs, SCCs and BCCs using the compact graph
representation introduced in the previous section. In Section 4, we then intro-
duce the corresponding spatially coupled ensembles.

3.1 Parallel Concatenated Codes

We consider a rate R = 1/3 PCC built from two rate-1/2 recursive systematic
convolutional encoders, referred to as the upper and lower component encoder.
Its conventional factor graph is shown in Figure 2(a), where Π denotes the
permutation. The trellises corresponding to the upper and lower encoders are
denoted by TU and TL, respectively. The information sequence u, of length
N bits, and a reordered copy are encoded by the upper and lower encoder,
respectively, to produce the parity sequences vU and vL. The code sequence is
denoted by v = (u,vU,vL). The compact graph representation of the PCC is
shown in Figure 2(b), where each of the sequences u, vU and vL is represented
by a single variable node and the trellises are replaced by factor nodes TU and
TL (cf. Figure 1). In order to emphasize that a reordered copy of the input
sequence is used in TL, the permutation is depicted by a line that crosses the
edge which connects u to TL.
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Figure 2: (a) Conventional factor graph of a PCC. Compact graph representation
of a (b) PCC, (c) SCC, (d) BCC.
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Figure 3: Block diagram of the encoder of a SC-PCC ensemble with m = 1.

3.2 Serially Concatenated Codes

We consider a rate R = 1/4 SCC built from the serial concatenation of two rate-
1/2 recursive systematic component encoders, referred to as the outer and inner
component encoder. Its compact graph representation is shown in Figure 2(c),
where TO and TI are the factor nodes corresponding to the outer and inner
encoder, respectively, and the rectangle illustrates a multiplexer/demultiplexer.
The information sequence u, of length N , is encoded by the outer encoder to
produce the parity sequence vO. Then, the sequences u and vO are multiplexed
and reordered to create the intermediate sequence ṽO, of length 2N (not shown
in the graph). Finally, ṽO is encoded by the inner encoder to produce the parity
sequence vI. The transmitted sequence is v = (u,vO,vI).
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Figure 4: Compact graph representation of (a) PCC, (b) SC-PCC at time instant
t, (c) SC-PCC.

3.3 Braided Convolutional Codes

We consider a rate R = 1/3 BCC built from two rate-2/3 recursive systematic
convolutional encoders, referred to as upper and lower encoders. The corres-
ponding trellises are denoted by TU and TL. The compact graph representation
of this code is shown in Figure 2(d). The parity sequences of the upper and
lower encoder are denoted by vU and vL, respectively. To produce the parity
sequence vU, the information sequence u and a reordered copy of vL are en-
coded by TU. Likewise, a reordered copy of u and a reordered copy of vU are
encoded by TL in order to produce the parity sequence vL. Similarly to PCCs,
the transmitted sequence is v = (u,vU,vL).

4 Spatially Coupled Turbo-Like Codes

In this section, we introduce SC-TCs. We first describe the spatial coupling
for both PCCs and SCCs. Then, we generalize the original block-wise BCC
ensemble [23] in order to obtain ensembles with larger coupling memories.

4.1 Spatially Coupled Parallel Concatenated Codes

We consider the spatial coupling of rate-1/3 PCCs, described in the previous
section. For simplicity, we first describe the SC-PCC ensemble with coupling
memory m = 1. Then we show the coupling for higher coupling memories. The
block diagram of the encoder for the SC-PCC ensemble is shown in Figure 3.
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In addition, its compact graph representation and the coupling are illustrated
in Figure 4.

As it is shown in Figure 3 and Figure 4(a) we denote by ut the information
sequence, and by vUt and vLt the parity sequence of the upper and lower encoder,
respectively, at time t. The code sequence of the PCC at time t is given by the
triple vt = (ut,v

U
t ,v

L
t ). With reference to Figure 3 and Figure 4(b), in order

to obtain the coupled sequence, the information sequence, ut, is divided into
two sequences of equal size, ut,0 and ut,1 by a multiplexer. Then, the sequence
ut,0 is used as a part of the input to the upper encoder at time t and ut,1 is
used as a part of the input to the upper encoder at time t + 1. Likewise, a
reordered copy of the information sequence, ũt, is divided into two sequences
ũt,0 and ũt,1.

Therefore, the input to the upper encoder at time t is a reordered copy of
(ut,0,ut−1,1), and likewise the input to the lower encoder at time t is a reordered
copy of (ũt,0, ũt−1,1). In this ensemble, the coupling memory is m = 1 as ut is
used only at the time instants t and t+ 1.

Finally, an SC-PCC with m = 1 is obtained by considering a collection of
L PCCs at time instants t = 1, . . . , L, where L is referred to as the coupling
length, and coupling them as described above, see Figure 4(c).

An SC-PCC ensemble with coupling memory m is obtained by dividing each
of the sequences ut and ũt into m+ 1 sequences of equal size and spread these
sequences respectively to the input of the upper and the lower encoder at time
slots t to t+m. The compact graph representation of the SC-PCC with coupling
memory m is shown in Figure 5(a) for a given time instant t. The coupling is
performed as follows. Divide the information sequence ut into m+ 1 sequences
of equal size N/(m+1), denoted by ut,j , j = 0, . . . ,m. Likewise, divide ũt, the
information sequence ut reordered by a permutation, into m + 1 sequences of
equal size, denoted by ũt,j , j = 0, . . . ,m. At time t, the information sequence at
the input of the upper encoder is (ut,0,ut−1,1, . . . ,ut−m,m), properly reordered
by a permutation. Likewise, the information sequence at the input of the lower
encoder is (ũt,0, ũt−1,1, . . . , ũt−m,m), reordered by a permutation. Using the
procedure described above, a coupled chain (a convolutional structure over
time) of L PCCs with coupling memory m is obtained.

In order to terminate the encoder of the SC-PCC to the zero state, the
information sequences at the end of the chain are chosen in such a way that
the code sequences become vt = 0 at time t = L+ 1, . . . , L+m, and ut is set
to 0 for t > L. Analogously to conventional convolutional codes, this results in
a rate loss that becomes smaller as L increases.
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ṽO
t,1

ṽO
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Figure 5: Compact graph representation of (a) SC-PCCs, and (b) SC-SCCs of
coupling memory m for time instant t.

4.2 Spatially Coupled Serially Concatenated Codes

An SC-SCC is constructed similarly to SC-PCCs. Consider a collection of L
SCCs at time instants t = 1, . . . , L, and let ut be the information sequence at
time t. Also, denote by vOt and vIt the parity sequence at the output of the
outer and inner encoder, respectively. The information sequence ut and the
parity sequence vOt are multiplexed and reordered into the sequence ṽOt . The
sequence ṽOt is divided into m + 1 sequences of equal length, denoted by ṽOt,j ,
j = 0, . . . ,m. Then, at time instant t, the sequence at the input of the inner
encoder is (ṽOt−j,0, ṽ

O
t−1,1 . . . , ṽ

O
t−m,m), properly reordered by a permutation.

This sequence is encoded by the inner encoder into vIt. Finally, the code se-
quence at time t is v = (ut,v

O
t ,v

I
t). Using this construction method, a coupled

chain of L SCCs with coupling memory m is obtained. The compact graph
representation of SC-SCCs with coupling memory m is shown in Figure 5(b)
for time instant t.

In order to terminate the encoder of the SC-SCC, the information sequences
at the end of the chain are chosen in such a way that the code sequences become
vt = 0 at time t = L+ 1, . . . , L+m. A simple and practical way to terminate
SC-SCCs is to set ut = 0 for t = L −m + 1, . . . , L. This enforces vt = 0 for
t = L + 1, . . . , L + m, since we can assume that ut = 0 for t > L. Using this



Spatially Coupled Turbo-Like Codes 101

utut�1 ut+1

vU
t+1

vL
t+1vL

t�1

vU
t�1 vU

t

vL
t

N

N

N

N

N

N

TU
TU TU

TL TL
TL

Figure 6: Compact graph representation of the original BCCs.

termination technique, only the parity sequence vIt needs to be transmitted at
time instants t = L−m+ 1, . . . , L.

4.3 Braided Convolutional Codes

The compact graph representation of the original BCCs is depicted in Fig 6.
As for SC-PCCs, let ut, v

U
t and vLt denote the information sequence, the parity

sequence at the output of the upper encoder, and the parity sequence at the
output of the lower encoder, respectively, at time t. At time t, the information
sequence ut and a reordered copy of vLt−1 are encoded by the upper encoder to
generate the parity sequence vUt . Likewise, a reordered copy of the information
sequence, denoted by ũt, and a reordered copy of vLt−1 are encoded by the
lower encoder to produce the parity sequence vLt . The code sequence at time t
is v = (ut,v

U
t ,v

L
t ).

As it can be seen from Fig 6, the original BCCs are inherently spatially
coupled codes9 with coupling memory one. In the following, we introduce two
extensions of BCCs, referred to as Type-I and Type-II, with increased coupling
memory, m > 1.

The compact graph of Type-I BCCs is shown in Figure 7(a) for time in-
stant t. The parity sequence vUt is randomly divided into m sequences vUt,j ,

j = 1, . . . ,m, of the same length. Likewise, the parity sequence vLt is randomly
divided into m sequences vLt,j , j = 1, . . . ,m. At time t, the information se-

9The uncoupled ensemble, discussed in the previous section, can be defined by tailbiting
a coupled chain of length L = 1.
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Figure 7: Compact graph representation of (a) Type-I BCCs, and (b) Type-II BCCs
of coupling memory m at time instant t.

quence ut and the sequence (vLt−1,1,v
L
t−2,2, . . . ,v

L
t−m,m), properly reordered,

are used as input sequences to the upper encoder to produce the parity se-
quence vUt . Likewise, a reordered copy of the information sequence ut and the
sequence (vUt−1,1,v

U
t−2,2, . . . ,v

U
t−m,m), properly reordered, are encoded by the

lower encoder to produce the parity sequence vLt .
The compact graph of Type-II BCCs is shown in Figure 7(b) for time in-

stant t. Contrary to Type-I BCCs, in addition to the coupling of parity bits,
for Type-II BCCs information bits are also coupled. At time t, divide the
information sequence ut into m + 1 sequences ut,j , j = 0, . . . ,m of equal
length. Furthermore, divide the reordered copy of the information sequence,
ũt, into m + 1 sequences ũt,j , j = 0, . . . ,m. The first input of the upper
and lower encoders are now the sequences (ut−0,0,ut−1,1, . . . ,ut−m,m) and
(ũt−0,0, ũt−1,1, . . . , ũt−m,m), respectively, properly reordered.

5 Density Evolution Analysis for SC-TCs over
the Binary Erasure Channel

In this section we derive the exact DE for SC-TCs. For the three considered
code ensembles, we first derive the DE equations for the uncoupled ensembles
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and then extend them to the coupled ones.

5.1 Density Evolution Equations and Decoding
Thresholds

For transmission over the BEC, it is possible to analyze the asymptotic behavior
of TCs and SC-TCs by tracking the evolution of the erasure probability with the
number of decoding iterations. This evolution can be formalized in a compact
way as a set of equations called DE equations. For the BEC, it is possible to
derive a exact DE equations for TCs and SC-TCs. By use of these equations,
the BP decoding threshold can be computed. The BP threshold is the largest
channel erasure probability ε for which the erasure probability at the output of
the BP decoder converges to zero as the block length and number of iterations
grow to infinity.

It is also possible to compute the threshold of the MAP decoder, εMAP, by
the use of the area theorem [31]. According to the area theorem, the MAP
threshold10 can be obtained from the following equation,∫ 1

εMAP

p̄extr(ε)dε = R ,

where R is the rate of the code and p̄extr(ε) is the average extrinsic erasure
probability for all transmitted bits.

5.2 Parallel Concatenated Codes

Uncoupled

Consider the compact graph of a PCC in Figure 2(b). Let p
(i)
U,s and p

(i)
U,p de-

note the average extrinsic erasure probability from factor node TU to u and

vU, respectively, in the ith iteration.11 Likewise, denote by p
(i)
L,s and p

(i)
L,p the

extrinsic erasure probabilities from TL to u and vL, respectively. It is easy

to see that the erasure probability from ut and vUt to TU is ε · p(i−1)L,s and ε,

respectively. Therefore, the DE updates for TU can be written as

p
(i)
U,s = fU,s

(
q
(i)
L , ε

)
, (10)

p
(i)
U,p = fU,p

(
q
(i)
L , ε

)
, (11)

10The threshold given by the area theorem is actually an upper bound on the MAP
threshold. However, the numerical results show that the thresholds of the coupled ensembles
converge to this upper bound. This indicates that the upper bound on the MAP threshold
is a tight bound.

11With some abuse of language, we sometimes refer to a variable node representing a
sequence (e.g., u) as the sequence itself (u in this case).
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where
q
(i)
L = ε · p(i−1)L,s , (12)

and fU,s and fU,p denote the transfer function of TU for the systematic and
parity bits, respectively.

Similarly, the DE update for TL can be written as

p
(i)
L,s = fL,s

(
q
(i)
U , ε

)
, (13)

p
(i)
L,p = fL,p

(
q
(i)
U , ε

)
, (14)

where
q
(i)
U = ε · p(i−1)U,s , (15)

and fL,s and fL,p are the transfer functions of TL for the systematic and parity
bits, respectively.

Coupled

Consider the compact graph of a SC-PCC ensemble in Figure 5(a). The variable
node ut is connected to factor nodes TU

t′ and TL
t′ , at time instants t′ = t, . . . , t+

m. We denote by p
(i,t′)
U,s and p

(i,t′)
U,p the average extrinsic erasure probability from

factor node TU
t′ at time instant t′ to u and vU, respectively, computed in the ith

iteration. We also denote by q̄
(i−1,t)
U the input erasure probability to variable

node ut in the ith iteration, received from its neighbors TU
t′ . It can be written

as

q̄
(i−1,t)
U =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
U,s . (16)

Similarly, the average erasure probability from factor nodes TL
t′ , t
′ = t, . . . , t+

m, to ut, denoted by q̄
(i−1,t)
L , can be written as

q̄
(i−1,t)
L =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
L,s . (17)

The erasure probabilities from variable node ut to its neighbors TU
t′ and TL

t′

are ε · q̄(i−1,t)L and ε · q̄(i−1,t)U , respectively.
On the other hand, TU

t at time t is connected to the set of ut′s for t′ =

t−m, . . . , t. The erasure probability to TU
t from this set, denoted by q

(i,t)
L , is
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given by

q
(i,t)
L = ε · 1

m+ 1

m∑
k=0

q̄
(i−1,t−k)
L

= ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i−1,t+j−k)
L,s . (18)

Thus, the DE updates of TU
t are

p
(i,t)
U,s = fU,s

(
q
(i,t)
L , ε

)
, (19)

p
(i,t)
U,p = fU,p

(
q
(i,t)
L , ε

)
. (20)

Similarly, the input erasure probability to TL
t from the set of connected ut′s

at time instants t′ = t−m, . . . , t, is

q
(i,t)
U = ε · 1

m+ 1

m∑
k=0

q̄
(i−1,t−k)
U

= ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i−1,t+j−k)
U,s , (21)

and the DE updates of TL
t are

p
(i,t)
L,s = fL,s

(
q
(i,t)
U , ε

)
, (22)

p
(i,t)
L,p = fL,p

(
q
(i,t)
U , ε

)
. (23)

Finally the a-posteriori erasure probability on ut at time t and iteration i
is

p(i,t)a = ε · q̄(i,t)U · q̄(i,t)L . (24)

DE is performed by tracking the evolution of the a-posteriori erasure probability
with the number of iterations.

5.3 Serially Concatenated Codes

Uncoupled

Consider the compact graph of the SCC ensemble in Figure 2(c). Let p
(i)
O,s

and p
(i)
O,p denote the erasure probability from TO to u and vO, respectively,

computed in the ith iteration. Likewise, p
(i)
I,s and p

(i)
I,p denote the extrinsic

erasure probability from T I to ṽO = (u,vO) and vI.
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Both u and vO receive the same erasure probability, p
(i−1)
I,s , from T I. There-

fore, the erasure probabilities that TO receives from these two variable nodes
are equal and given by

q
(i)
I = ε · p(i−1)I,s . (25)

The DE equations for TO can then be written as

p
(i)
O,s = fO,s

(
q
(i)
I , q

(i)
I

)
, (26)

p
(i)
O,p = fO,p

(
q
(i)
I , q

(i)
I

)
, (27)

where fO,s and fO,p are the transfer functions of TO for the systematic and
parity bits, respectively.

The erasure probability that T I receives from ṽO = (u,vO) is the average
of the erasure probabilities from u and vO,

q
(i)
O = ε ·

p
(i)
O,s + p

(i)
O,p

2
. (28)

On the other hand, the erasure probability to T I from vI is ε. Therefore, the
DE equations for T I can be written as

p
(i)
I,s = fI,s

(
q
(i)
O , ε

)
, (29)

p
(i)
I,p = fI,p

(
q
(i)
O , ε

)
. (30)

Coupled

Consider the compact graph representation of SC-SCCs in Figure 5(b). Vari-
able nodes ut and vOt are connected to factor nodes T I

t′ at time instants
t′ = t, . . . , t + m. The input erasure probability to variable nodes ut and

vOt from these factor nodes, denoted by q̄
(i−1,t)
I , is the same for both ut and

vOt and is obtained as the average of the erasure probabilities from each of the
factor nodes T I

t′ ,

q̄
(i−1,t)
I =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
I,s . (31)

The erasure probability to TO
t from ut and vOt is

q
(i,t)
I = ε · q̄(i−1,t)I =

ε

m+ 1

m∑
j=0

p
(i−1,t+j)
I,s . (32)
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Thus, the DE updates of TO
t are

p
(i,t)
O,s = fO,s

(
q
(i,t)
I , q

(i,t)
I

)
, (33)

p
(i,t)
O,p = fO,p

(
q
(i,t)
I , q

(i,t)
I

)
. (34)

At time t, T I
t is connected to a set of ṽOt′ s at time instants t′ = t −m, . . . , t.

The erasure probability that T I
t receives from this set is the average of the

erasure probabilities of all ut′s and vOt′ s at times t′ = t−m. . . , t. This erasure
probability can be written as

q
(i,t)
O =

ε

m+ 1

m∑
k=0

p
(i,t−k)
O,s + p

(i,t−k)
O,p

2
. (35)

Hence, the DE updates for the inner encoder are given by

p
(i,t)
I,s = fI,s

(
q
(i,t)
O , ε

)
, (36)

p
(i,t)
I,p = fI,p

(
q
(i,t)
O , ε

)
. (37)

Finally, the a-posteriori erasure probability on information bits at time t and
iteration i is

p(i,t)a = ε · p(i,t)O,s · q̄
(i,t)
I . (38)

5.4 Braided Convolutional Codes

Uncoupled

Consider the compact graph of uncoupled BCCs in Figure 2(c). These can
be obtained by tailbiting BCCs, as shown in Figure 6, with coupling length

L = 1. Let p
(i)
U,k and p

(i)
L,k denote the erasure probabilities of messages from TU

and TL through their kth connected edge, k = 1, 2, 3, respectively. The erasure
probability of messages that TU receives through its edges are

q
(i)
L,1 = ε · p(i−1)L,1 , (39)

q
(i)
L,2 = ε · p(i−1)L,3 , (40)

q
(i)
L,3 = ε · p(i−1)L,2 . (41)

The exact DE equations of TU can be written as

p
(i)
U,1 =fU,1

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
, (42)

p
(i)
U,2 =fU,2

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
, (43)

p
(i)
U,3 =fU,3

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
, (44)
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where fU,k denotes the transfer function of TU for its kth connected edge.
Similarly, the DE equations for TL can be written by swapping indexes U and
L in (39)–(44).

Coupled

Consider the compact graph representation of Type-I BCCs in Figure 7(a). As
in the uncoupled case, the DE updates of factor nodes TU

t and TL
t are similar

due to the symmetric structure of the coupled construction. Therefore, for
simplicity, we only describe the DE equations of TU

t and the equations for TL
t

are obtained by swapping indexes U and L in the equations.
The first edge of TU

t is connected to ut. Thus, the erasure probability that
TU
t receives through this edge is

q
(i,t)
L,1 = ε · p(i−1,t)L,1 . (45)

The second edge of TU
t is connected to variable nodes vLt′ at time instants

t′ = t−m, . . . , t−1. The erasure probability that TU
t receives through its second

edge is therefore the average of the erasure probabilities from the variable nodes
vLt′ that are connected to this edge. This erasure probability can be written as

q
(i,t)
L,2 =

ε

m

m∑
j=1

p
(i−1,t−j)
L,3 . (46)

The third edge of TU
t is connected to vUt , which is in turn connected to the

second edges of factor nodes TL
t′ at time instants t′ = t + 1, . . . , t + m. The

erasure probability that vUt receives from the set of connected nodes TL
t′ is the

average of erasure probabilities from these nodes through their second edges.
The erasure probability from vUt to TU

t is

q
(i,t)
L,3 =

ε

m

m∑
j=1

p
(i−1,t+j)
L,2 . (47)

The DE equations of TU
t can then be written as12

p
(i,t)
U,1 =fU,1

(
q
(i,t)
L,1 , q

(i,t)
L,2 , q

(i,t)
L,3

)
, (48)

p
(i,t)
U,2 =fU,2

(
q
(i,t)
L,1 , q

(i,t)
L,2 , q

(i,t)
L,3

)
, (49)

p
(i,t)
U,3 =fU,3

(
q
(i,t)
L,1 , q

(i,t)
L,2 , q

(i,t)
L,3

)
. (50)

12The DE equations of the original BCCs are obtained by settingm = 1 in the DE equations
of Type-I BCCs.
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The a-posteriori erasure probability on ut at time t and iteration i for Type-I
BCCs is

p(i,t)a = ε · p(i,t)U,1 · p
(i,t)
L,1 . (51)

As we discussed in the previous section, the difference between Type-I and
Type-II BCCs is that ut is also coupled in the latter. Variable node ut in
Type-II BCCs is connected to a set of factor nodes TU

t′ and TL
t′ at time instants

t′ = t, . . . , t + m. The DE equations of Type-II BCCs are identical to those

of Type-I BCCs except for equation (45). Denote by q̄
(i−1,t)
L,1 the input erasure

probability to ut from the connected factor nodes TL
t′ in the ith iteration.

According to Figure 7(b), q̄
(i−1,t)
L,1 is the average of erasure probabilities from

TL
t′ at time instants t′ = t, . . . , t+m,

q̄
(i−1,t)
L,1 =

1

m+ 1

m∑
j=0

p
(i−1,t+j)
L,1 . (52)

Factor node TU
t is connected to variable nodes ut′ at time instants t′ = t −

m, . . . , t. The incoming erasure probability to TU
t through its first edge, denoted

by q
(i,t)
L,1 , is therefore the average of the erasure probabilities from ut′ at times

t′ = t−m, . . . , t,

q
(i,t)
L,1 = ε · 1

m+ 1

m∑
k=0

q̄
(i−1,t−k)
L,1 (53)

= ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i−1,t+j−k)
L,1 .

Finally, the a-posteriori erasure probability on ut at time t and iteration i for
Type-II BCCs is

p(i,t)a = ε · q̄(i,t)U · q̄(i,t)L . (54)

6 Rate-Compatible SC-TCs via Random
Puncturing

Higher rate codes can be obtained by applying puncturing. For analysis pur-
poses, we consider random puncturing. Random puncturing has been con-
sidered, e.g., for LDPC codes in [32], [33] and for turbo-like codes in [34], [35].
In [33], the authors introduced a parameter called θ which allows comparing
the strengths of the codes with different rates. In this section, we consider the
construction of rate-compatible SC-TCs by means of random puncturing.
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We denote by ρ ∈ [0, 1] the fraction of surviving bits after puncturing, re-
ferred to as the permeability rate. Consider that a code sequence v is randomly
punctured with permeability rate ρ and transmitted over a BEC with erasure
probability ε, BEC(ε). For the BEC, applying puncturing is equivalent to
transmitting v over a BEC with erasure probability ερ = 1− (1−ε)ρ, resulting
from the concatenation of two BECs, BEC(ε) and BEC(ερ). The DE equations
of SC-TCs in the previous section can then be easily modified to account for
random puncturing.

For SC-PCCs, we consider puncturing of parity bits only, i.e., the overall
code is systematic. The rate of the punctured code (without considering ter-
mination of the coupled chain) is R = 1

1+2ρ . The DE equations of punctured

SC-PCCs are obtained by substituting ε← ερ in (19), (20), (22) and (23).
For punctured SC-SCCs, we consider the coupling of the punctured SCCs

proposed in [34], [36]13, where ρ0 and ρ1 are the permeability rates of the
systematic and parity bits, respectively, of the outer code (see [36, Figure 1]),
and ρ2 is the permeability rate of the parity bits of the inner code. The code
rate of the punctured SC-SCC is R = 1

ρ0+ρ1+2ρ2
(neglecting the rate loss due

to termination). The DE for punctured SC-SCCs is obtained by substituting
ε← ερ2 in (36) and (37), and modifying (35) to

q
(i,t)
O =

1

m+ 1

m∑
k=0

ε · p(i,t−k)O,s + ερ1 · p(i,t−k)O,p

2

and (33), (34) to

p
(i,t)
O,s = fO,s

(
q
(i,t)
I , q̃

(i,t)
I

)
, (55)

p
(i)
O,p = fO,p

(
q
(i,t)
I , q̃

(i,t)
I

)
, (56)

where q
(i,t)
I is given in (32) and

q̃
(i,t)
I =

ερ1
m+ 1

m∑
j=0

p
(i−1,t+j)
I,s . (57)

For both Type-I and Type-II BCCs, similarly to SC-PCCs, we consider
only puncturing of parity bits with permeability rate ρ. The DE equations of

13 In contrast to standard SCCs, characterized by a rate-1 inner code and for which to
achieve higher rates the outer code is heavily punctured, the SCCs proposed in [34], [36]
achieve higher rates by moving the puncturing of the outer code to the inner code, which is
punctured beyond the unitary rate. This allows to preserve the interleaving gain for high rates
and yields a larger minimum distance, which results in codes that significantly outperform
standard SCCs, especially for high rates. Furthermore, the SCCs in [34], [36] yield better
MAP thresholds than standard SCCs.
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Table 1: Thresholds for rate-1/2 TCs, and SC-TCs.

Ensemble states εBP εMAP ε1SC
CPCC/CSC−PCC 4 0.4606 0.4689 0.4689

CSCC/CSC−SCC 4 0.3594 0.4981 0.4708

CPCC/CSC−PCC 8 0.4651 0.4863 0.4862

CSCC/CSC−SCC 8 0.3120 0.4993 0.4507
Type-I CBCC 4 0.3013 0.4993 0.4932

Type-II CBCC 4 0.3013 0.4993 0.4988

punctured SC-BCCs are obtained by substituting ε← ερ in (46) and (47) and

the corresponding equations for q
(i,t)
U,2 and q

(i,t)
U,3 .

7 Numerical Results

In Table 1, we give DE results for the SC-TC ensembles, and their uncoupled
ensembles for rate R = 1/2. In particular, we consider SC-PCC and SC-SCC
ensembles with identical 4-state and 8-state component encoders with generator
matrix G = (1, 5/7) and G = (1, 11/13), respectively, in octal notation. For
the BCC ensemble, we consider two identical 4-state component encoders and
generator matrix

G1(D) =

(
1 0 1/7
0 1 5/7

)
. (58)

The BP thresholds (εBP) and MAP thresholds (εMAP) for the uncoupled en-
sembles are reported in Table 1. The MAP threshold is obtained using the
area theorem [9], [30]. We also give the BP thresholds of SC-TCs for coupling
memory m = 1, denoted by ε1SC.

As expected, PCC ensembles yield better BP thresholds than SCC en-
sembles. However, SCCs have better MAP threshold. The BP decoder works
poorly for uncoupled BCCs and the BP thresholds are worse than those of
PCCs and SCCs. On the other hand, the MAP thresholds of BCCs are better
than those of both PCCs and SCCs. By applying coupling, the BP threshold
improves and for m = 1, the Type-II BCC ensemble has the best coupling
threshold.

Table 2 shows the thresholds of TCs and SC-TCs for several rates. In the
table, for the ensembles CPCC/CSC−PCC, ρ2 is the permeability rate of the parity
bits of the upper encoder and the lower encoder. For example, ρ2 = 0.5 means
that half of the bits of vU and vL are punctured (thus, the resulting code rate
is R = 1/2). Note that ρ2 corresponds to permeability ρ defined in Section 6.
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Here, we use ρ2 instead to unify notation with that of SCCs. For the ensembles
CSCC/CSC−SCC (based on the SCCs introduced in [34], [36]), for a given code
rate R the puncturing rates ρ0, ρ1 and ρ2 (see Section 6) may be optimized.
In this paper, we consider ρ0 = 1, i.e., the overall code is systematic, and we
optimize ρ1 and ρ2 such that the MAP threshold of the (uncoupled) SCC is
maximized.14 Note that, if ρ0 = 1, for a given R the optimization simplifies
to the optimization of a single parameter, say ρ2, since ρ1 and ρ2 are related
by ρ1 = 1

R − 1 − 2ρ2.15 Rate-compatibility can be guaranteed by choosing ρ1
and ρ2 to be decreasing functions of R. In the table, we report the coupling
thresholds for coupling memory m = 1, 2, 3, denoted by ε1SC, ε2SC, and ε3SC,
respectively. The gap to the Shannon limit is shown by δSH = (1−R)− εMAP.

Table 2: Thresholds for punctured spatially coupled turbo codes.

Ensemble Rate states ρ2 εBP εMAP ε1SC ε3SC ε5SC mmin δSH
CPCC/CSC−PCC 1/3 4 1.0 0.6428 0.6553 0.6553 0.6553 0.6553 1 0.0113

CSCC/CSC−SCC 1/3 4 1.0 0.5405 0.6654 0.6437 0.6650 0.6654 4 0.0012

CPCC/CSC−PCC 1/3 8 1.0 0.6368 0.6621 0.6617 0.6621 0.6621 2 0.0045

CSCC/CSC−SCC 1/3 8 1.0 0.5026 0.6663 0.6313 0.6647 0.6662 6 0.0003

CPCC/CSC−PCC 1/2 4 0.5 0.4606 0.4689 0.4689 0.4689 0.4689 1 0.0311

CSCC/CSC−SCC 1/2 4 0.5 0.3594 0.4981 0.4708 0.4975 0.4981 5 0.0019

CPCC/CSC−PCC 1/2 8 0.5 0.4651 0.4863 0.4862 0.4863 0.4863 2 0.0137

CSCC/CSC−SCC 1/2 8 0.5 0.3120 0.4993 0.4507 0.4970 0.4992 7 0.0007

CPCC/CSC−PCC 2/3 4 0.25 0.2732 0.2772 0.2772 0.2772 0.2772 1 0.0561

CSCC/CSC−SCC 2/3 4 0.25 0.2038 0.3316 0.3303 0.3305 0.3315 6 0.0018

CPCC/CSC−PCC 2/3 8 0.25 0.2945 0.3080 0.3080 0.3080 0.3080 1 0.0253

CSCC/CSC−SCC 2/3 8 0.25 0.1507 0.3326 0.2710 0.3278 0.3323 7 0.0007

CPCC/CSC−PCC 3/4 4 0.166 0.1854 0.1876 0.1876 0.1876 0.1876 1 0.0624

CSCC/CSC−SCC 3/4 4 0.166 0.1337 0.2486 0.2155 0.2471 0.2486 5 0.0014

CPCC/CSC−PCC 3/4 8 0.166 0.2103 0.2196 0.2196 0.2196 0.2196 1 0.0304

CSCC/CSC−SCC 3/4 8 0.166 0.0865 0.2495 0.1827 0.2416 0.2488 8 0.0005

CPCC/CSC−PCC 4/5 4 0.125 0.1376 0.1391 0.1391 0.1391 0.1391 1 0.0609

CSCC/CSC−SCC 4/5 4 0.125 0.0942 0.1990 0.1644 0.1968 0.1989 7 0.0011

CPCC/CSC−PCC 4/5 8 0.125 0.1628 0.1698 0.1698 0.1698 0.1698 1 0.0302

CSCC/CSC−SCC 4/5 8 0.125 0.0517 0.1996 0.1302 0.1885 0.1982 8 0.0004

CPCC/CSC−PCC 9/10 4 0.055 0.0578 0.0582 0.0582 0.0582 0.0582 1 0.0418

CSCC/CSC−SCC 9/10 4 0.055 0.0269 0.0996 0.0624 0.0930 0.0988 8 0.0012

CPCC/CSC−PCC 9/10 8 0.055 0.0732 0.0761 0.0761 0.0761 0.0761 1 0.0239

CSCC/CSC−SCC 9/10 8 0.055 0.0128 0.0999 0.0384 0.0765 0.0931 16 0.0001

For large enough coupling memory, we observe threshold saturation for

14We remark that nonsystematic codes, i.e., ρ0 < 1, lead to better MAP thresholds. In this
case, the optimum is to puncture last the parity bits of the inner encoder, i.e., for R < 1/2
ρ2 = 1 and for R ≥ 1/2 ρ0 = 0, ρ1 = 0 and ρ2 = 1/2R.

15Alternatively, one may optimize ρ1 and ρ2 such that the BP threshold of the SC-SCC is
optimized for a given coupling memory m.
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Table 3: Thresholds for punctured Braided Convolutional Codes.

Ensemble Rate states ρ2 εBP εMAP ε1SC ε3SC ε5SC δSH
Type-I 1/3 4 1.0 0.5541 0.6653 0.6609 0.6644 0.6650 0.0013

Type-II 1/3 4 1.0 0.5541 0.6653 0.6651 0.6653 0.6653 0.0013

Type-I 1/2 4 0.5 0.3013 0.4993 0.4932 0.4980 0.4988 0.0007

Type-II 1/2 4 0.5 0.3013 0.4993 0.4988 0.4993 0.4993 0.0007

Type-I 2/3 4 0.25 – 0.3331 0.3257 0.3315 0.3325 0.0002

Type-II 2/3 4 0.25 – 0.3331 0.3323 0.3331 0.3331 0.0002

Type-I 3/4 4 0.166 – 0.2491 0.2411 0.2473 0.2484 0.0009

Type-II 3/4 4 0.166 – 0.2491 0.2481 0.2491 0.2491 0.0009

Type-I 4/5 4 0.125 – 0.1999 0.1915 0.1979 0.1991 0.0001

Type-II 4/5 4 0.125 – 0.1999 0.1986 0.1999 0.1999 0.0001

Type-I 9/10 4 0.055 – 0.0990 0.0893 0.0966 0.0980 0.0010

Type-II 9/10 4 0.055 – 0.0990 0.0954 0.0990 0.0990 0.0010

both SC-PCCs and SC-SCCs. The value mmin in Table 2 denotes the smallest
coupling memory for which threshold saturation is observed numerically. In-
terestingly, thanks to the threshold saturation phenomenon, for large enough
coupling memory SC-SCCs achieve better BP threshold than SC-PCCs. We
remark that SCCs yield better minimum Hamming distance than PCCs [22].

Comparing ensembles with 8-state component encoders and ensembles with
4-state component encoders, we observe that the MAP threshold improves for
all the considered cases, since the overall codes become stronger. For PCCs,
the BP threshold also improves for 8-state component encoders, but only with
puncturing, i.e., for R > 1/3. For SCCs, on the other hand, the BP threshold
gets worse if higher memory component encoders are used. Due to this fact, a
higher coupling memory mmin is needed for SC-SCCs with 8-state component
encoders until threshold saturation is observed, and this effect becomes more
pronounced for larger rates. However, the achievable BP thresholds of SC-SCCs
are better than those of SC-PCCs for all rates.

In Table 3, we give BP thresholds for Type-I and Type-II SC-BCCs with
different coupling memories and several rates.16 As for PCCs, ρ2 is the per-
meability rate of the parity bits of the upper encoder and the lower encoder. We
also report the BP threshold and MAP threshold of the uncoupled ensembles.
Almost in all rates, the BP decoder works poorly for uncoupled BCCs and the
BP thresholds are worse than those of PCCs and SCCs (an exception are SCCs
with R = 1/3). This is specially significant for rates R ≥ 2/3, for which the BP
thresholds of uncoupled BCCs are very close to zero. On the other hand, the

16The BP threshold of the Type-I BCC with m = 1 corresponds to the BP threshold of
the original BCC.
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MAP thresholds of BCCs are better than those of both PCCs and SCCs for all
rates. As for SC-PCCs and SC-SCCs, the BP thresholds improve if coupling is
applied. Type-II BCCs yield better thresholds than Type-I BCCs and achieve
threshold saturation for small coupling memories. In contrast, for the coupling
memories considered, threshold saturation is not observed for Type-I BCCs.

For comparison purposes, in Table 4 we report the εBP, εMAP, and ε1SC
for three rate-1/2 LDPC code ensembles. As it is well known, by increasing
the variable node degree, the MAP threshold improves, but the BP threshold
decreases. Similarly to TCs, applying the coupling improves the BP threshold.
Among all the ensembles shown in Table 4, the (5, 10) LDPC ensemble has the
best MAP threshold. However, for this ensemble the gap between the BP and
MAP thresholds is larger than that of the other LDPC code ensembles and the
coupling (with m = 1) is not able to completely close this gap, therefore ε1SC
is worse than that of other two SC-LPDC code ensembles. Among all codes
in Table 4, the best εBP is achieved by the Type II BCC ensemble. Similar
to the (5, 10) LDPC code ensemble, the gap between the BP and the MAP
threshold is relatively large for BCCs. However, for BCCs the BP threshold
increases significantly after applying coupling with m = 1. In addition, the
only way to increase the MAP threshold of the LDPC codes is to increase their
variable node degree, but in TCs the BP threshold can be improved by several
different methods, e.g., increasing the component code memory, selecting a
good ensemble, or increasing the variable node degree.

Table 4: Thresholds for rate-1/2 TCs, SC-TCs, LDPC and SC-LDPC codes.

Ensemble states εBP εMAP ε1SC
LDPC (3, 6) - 0.4294 0.4881 0.4880

LDPC (4, 8) - 0.3834 0.4977 0.4944

LDPC (5, 10) - 0.3415 0.4994 0.4826

CPCC/CSC−PCC 4 0.4606 0.4689 0.4689

CSCC/CSC−SCC 4 0.3594 0.4981 0.4708

CPCC/CSC−PCC 8 0.4651 0.4863 0.4862

CSCC/CSC−SCC 8 0.3120 0.4993 0.4507
Type-I CBCC 4 0.3013 0.4993 0.4932

Type-II CBCC 4 0.3013 0.4993 0.4988

Figure 8 shows the bit error rate (BER) for SC-SCCs with L = 100 and
m = 1 on the binary erasure channel for two different rates, R = 1/4 (solid
blue line) and R = 1/3 (solid red line). Here, we consider the coupling of SCCs
with block length K = 1024, hence the information block length of the SC-SCC
ensemble is K = 101376. In addition, we plot in the figure the BER curves
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Figure 8: BER results for SC-SCCs with L = 100 and m = 1 on the binary erasure
channel.

for the uncoupled ensemble (dotted lines) with K = 3072. For comparison, we
also plot the BER using a sliding window decoder with window size W = 3
and K = 1024 (dashed lines) which has a decoding latency equal to that of the
uncoupled ensemble. For both rates, the BER improves significantly applying
coupling and the use of the window decoder entails only a slight performance
degradation with respect to full decoder 17. We remark that the comparison
between SC-TCs and other types of codes is a new and ongoing field of research.
In [38] the authors have compared BCC and SC-LDPC codes for rate 1/2 and
under the assumption of similar latency for both. The results in [38] show that
the considered BCC ensemble outperforms the SC-LDPC code ensemble.

8 Threshold Saturation

The numerical results in the previous section suggest that threshold saturation
occurs for SC-TCs. In this section, for some relevant ensembles, we prove that,

17In this work, we are focusing on the BER of TC and SC-TC ensembles in the waterfall
region. However, spatial coupling does also preserve, or even improve, the error floor per-
formance. For example, the minimum distance of each SC-TC ensemble is lower bounded by
the minimum distance of the corresponding uncoupled TC ensemble. This can be shown by
extending the results for BCCs derived in [37].
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indeed, threshold saturation occurs. To prove threshold saturation we use the
proof technique based on potential functions introduced in [4], [7]. In the gen-
eral case, the DE equations of TCs form a vector recursion. However, we show
that, for some relevant TC ensembles, it is possible to rewrite the DE vector
recursion in a form which corresponds to the recursion of a scalar admissible
system. We can then prove threshold saturation using the framework in [4] for
scalar recursions. Since the proof for scalar recursions is easier to describe, we
first address this case, and we then highlight the proof for the general case of
TCs with a vector recursion based on the framework in [7].

Definition 1 ([4], [5]) A scalar admissible system (f, g), is defined by the
recursion

x(i) = f
(
g(x(i−1)); ε

)
, (59)

where f : [0, 1] × [0, 1] → [0, 1] and g : [0, 1] → [0, 1] satisfy the following
conditions.

1. f is increasing in both arguments x, ε ∈ (0, 1];

2. g is increasing in x ∈ (0, 1];

3. f(0; ε) = f(x; 0) = g(0) = 0;

4. f and g have continuous second derivatives.

In the following we show that the DE equations for some relevant TCs form
a scalar admissible system.

8.1 Turbo-like codes as Scalar Admissible Systems

PCC

The DE equations (10)–(15) form a vector recursion. However, if the code is
built from identical component encoders, i.e., fU,s = fL,s , fs, it follows

p
(i)
U,s = p

(i)
L,s , x

(i).

Using this and substituting (12) into (10) and (15) into (13), the DE can then
be written as

x(i) = fs(εx
(i−1), ε), (60)

with initialization x(0) = 1.

Lemma 2 The DE recursion of a PCC with identical component encoders,
given in (60), forms a scalar admissible system with f(x; ε) = fs(ε · x, x) and
g(x) = x.
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Proof 2 It is easy to show that all conditions in Definition 1 are satisfied for
g(x) = x. We now prove that f(x; ε) satisfies Conditions 1, 3 and 4. Note that
f(x; ε) is the transfer function of a rate-1/2 convolutional encoder. According
to equation (1), this function can be written as f(p1, p2), where p1 = ε · x and
p2 = ε. Using Lemma 1, f(p1, p2) is increasing with p1 and p2, therefore f(x; ε)
is increasing with x and ε and Condition 1 is satisfied.

To show that Condition 3 holds, it is enough to realize that for ε = 0
the input sequence can be recovered perfectly from the received sequence, i.e.,
f(x; 0) = 0, as there is a one-to-one mapping between input sequences and
coded sequences. Furthermore, when x = 0, the input sequence is fully known
by a-priori information and the erasure probability at the output of the decoder
is zero, i.e., f(x; 0) = 0.

Finally, f(x; ε) is a rational function and its poles are outside the interval
x, ε ∈ [0, 1] (otherwise we may get infinite output erasure probability for a finite
input erasure probability), hence it has continuous first and second derivatives
inside this interval.

SCC

Consider the DE equations of the SCC ensemble in (25)–(30), which form
a vector recursion. For identical component encoders, fI,s = fO,s , fs and

fI,p = fO,p , fp. Using this and q
(i)
I , x(i), by substituting (26)–(30) into

(25), the DE recursion can be rewritten as

x(i) = ε · fs
(
εg(x(i−1)), ε

)
, (61)

where

g(x(i)) =
fs

(
x(i), x(i)

)
+ fp

(
x(i), x(i)

)
2

, (62)

and the initial condition is x(0) = 1.

Lemma 3 The DE recursion of a SCC with identical component encoders,
given in (61) and (62), form a scalar admissible system with f(x; ε) = ε · fs(ε ·
x, ε) and

g(x) =
fs(x, x) + fp(x, x)

2
.

Proof 3 The proof follows the same arguments as the proof of Lemma 2.

BCC

Similarly to PCCs and SCCs, the DE equations of BCCs (see (42)–(44)) form
a vector recursion. With identical component encoders, due to the symmetric
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structure of the code, fU,k = fL,k , fk and p
(i)
U,k = p

(i)
U,k , x

(i)
k for k = 1, 2, 3.

Using this, (42)–(44) can be rewritten as

x
(i)
1 = f1

(
ε · x(i−1)1 , ε · x(i−1)3 , ε · x(i−1)2

)
(63)

x
(i)
2 = f2

(
ε · x(i−1)1 , ε · x(i−1)3 , ε · x(i−1)2

)
(64)

x
(i)
3 = f3

(
ε · x(i−1)1 , ε · x(i−1)3 , ε · x(i−1)2

)
. (65)

The above DE equations are still a vector recursion. To write the recursion
in scalar form, it is necessary to have identical transfer functions for all the
edges which are connected to factor nodes TU and TL. This is needed because
all variable nodes in a BCC receive a-priori information. In order to achieve
this property, we can apply some averaging over the different types of code
symbols. In particular, we can randomly permute the order of the encoder out-

puts v
(l)
τ , l = 1, . . . , n. For each trellis section τ the order of these n symbols

is chosen indepently according to a uniform distribution. Equivalently, instead
of performing this permutation on the encoder outputs we can define a cor-
responding component encoder with a time-varying trellis in which the branch

labels are permuted accordingly. Then, it results x
(i)
1 = x

(i)
2 = x

(i)
3 , x(i) and

all transfer functions are equal to the average of the transfer functions f1, f2, f3,

fave =
f1 + f2 + f3

3
.

Using this, the DE equations can be simplified as

x(i) = fave(ε · x(i−1), ε · x(i−1), ε · x(i−1)). (66)

Lemma 4 The DE recursion of a BCC with identical component encoders
and time varying trellises, given in (66), form a scalar admissible system with
f(x; ε) = fave(ε · x, ε · x, ε · x) and g(x) = x.

Proof 4 The proof follows the same arguments as the proof of Lemma 2.

8.2 Single System Potential

Definition 2 ([4], [5]) For a scalar admissible system, defined in Definition 1,
the potential function U(x; ε) is

U(x; ε) =

∫ x

0

(
z − f(g(x); ε)

)
g′(z)dz (67)

= xg(x)−G(x)− F (g(x); ε),

where F (x; ε) =
∫ x
0
f(z; ε)dz and G(x) =

∫ x
0
g(z)dz.
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Proposition 1 ([4], [5]) The potential function has the following properties.

1. U(x; ε) is strictly decreasing in ε ∈ (0, 1];

2. An x ∈ [0, 1] is a fixed point of the recursion (59) if and only if it is a
stationary point of the corresponding potential function.

Definition 3 ([4], [5]) If the DE recursion is the recursion of a BP decoder,
the BP threshold is [4]

εBP = sup
{
ε ∈ [0, 1] : U ′(x; ε) > 0, ∀x ∈ (0, 1]

}
.

According to Definition 3, for ε < εBP, the derivative of the potential function
is always larger than zero for x ∈ (0, 1], i.e., the potential function has no
stationary point in x ∈ (0, 1].

Definition 4 ([4], [5]) For ε > εBP, the minimum unstable fixed point is
u(ε) = sup

{
x̃ ∈ [0, 1] : f(g(x); ε) < x, x ∈ (0, x̃)

}
. Then, the potential

threshold is defined as [4]

ε∗ = sup
{
ε ∈ [0, 1] : u(x) > 0, min

x∈[u(x),1]
U(x; ε) > 0

}
.

The potential threshold depends on the functions f(x; ε) and g(x).

Example 4 Consider rate-1/3 PCCs with identical 2-state component encoders
with generator matrix G = (1, 1/3). For this code ensemble,

fs(ε · x, ε) =
xε2(2− 2ε+ xε2)

(1− ε+ xε2)2
.

Therefore,

Fs(x; ε) =
xε2

1− ε+ xε2
,

and

U(x; ε) =
xε3 + (1− ε− 2ε2)x2

2(1− ε+ xε2)
.

4

Example 5 Consider the PCC ensemble in Figure 2(b) with identical com-
ponent encoders with generator matrix G = (1, 5/7). The DE recursion of
this ensemble is given in (60), where fs is the transfer function of the (1, 5/7)
component encoder. The corresponding potential function is

U(x; ε) = x2 −G(x)− Fs(x; ε) =
x2

2
− Fs(x; ε) , (68)
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Figure 9: Potential function of a PCC ensemble.

where Fs(x; ε) =
∫ x
0
fs(ε · z, ε)dz and G(x) =

∫ x
0
g(z)dz = x2

2 . The potential
function is shown in Figure 9 for several values of ε. As it is illustrated, for
ε < 0.6428 the potential function has no stationary point. The BP threshold
and the potential threshold are ε = 0.6428 and ε = 0.6553, respectively (see
Definitions 3 and 4). These results match with the DE results in Table 2. 4

Example 6 The potential function of the SCC ensemble in Figure 2(c) with
identical component encoders with generator matrix G = (1, 5/7) is shown in
Figure 10. The BP threshold and the potential threshold are ε = 0.689 and
ε = 0.748, respectively, which match with the DE results in Table 2. 4

Example 7 Consider the BCC ensemble in Figure 2(d) with identical com-
ponent encoders with generator matrix given in (58) and time-varying trellises.
The potential function of this code is depicted in Figure 11. The BP threshold
and the potential threshold are ε = 0.5522 and ε = 0.6654, respectively. Note
that these values are slightly different from the values in Table 3. This is due to
the fact that we considered an ensemble with time-varying trellises, which can
be modeled by means of a scalar recursion. The ensemble considered in Table 3
needs to be analyzed by means of a vector recursion. 4
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Figure 10: Potential function of a SCC ensemble.

8.3 Coupled System and Threshold Saturation

Theorem 1 Consider a spatially coupled system defined by the following re-
cursion at time t,

x
(i)
t =

1

1 +m

m∑
j=0

ft+j

( 1

1 +m

m∑
k=0

g(x
(i−1)
t+j−k); ε

)
. (69)

If f(x; ε) and g(x) form a scalar admissible system, for large enough coupling
memory and ε < ε∗, the only fixed point of the recursion is x = 0.

Proof 5 The proof follows from [4].

In the following we show that the DE recursions of SC-TCs (with identical
component encoders) can be written in the form (69). As a result, threshold
saturation occurs for these ensembles.

PCCs

Consider the SC-PCC ensemble in Figure 5(a) with identical component en-
coders. Due to the symmetric coupling structure, it follows that (cf. (16) and
(17))

q̄
(i,t)
U = q̄

(i,t)
L , x(i)t .
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Figure 11: Potential function of a BCC ensemble.

Now, using x
(i)
t in (18) and (21), we can write

q
(i,t)
L = q

(i,t)
U = ε · 1

m+ 1

m∑
k=0

x
(i−1)
t−k . (70)

Finally, by substituting (70) into (19) and (20) and the results into (16) and
(17), the recursion of SC-PCCs can be rewritten as

x
(i)
t =

1

1 +m

m∑
j=0

fs,t+j

( ε

m+ 1
·
m∑
k=0

x
(i−1)
t+j−k, ε

)
. (71)

Note that the recursion in (71) is identical to the recursion in (69).

SCCs

Consider the SC-SCC ensemble in Figure 5(b) with identical component en-

coders. Define x
(i)
t , q

(i,t)
I (see (32)) Now, use it in (33)–(36). Finally, by

substituting the result in (32), the recursion of a SC-SCC an be rewritten as

x
(i)
t =

1

1 +m

m∑
j=0

ε · fs,t+j
( ε

m+ 1
·
m∑
k=0

g(x
(i−1)
t+j−k), ε

)
, (72)
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where g(x) is shown in equation (62). The recursion in (72) is identical to the
recursion in Theorem 1.

BCCs

Consider a coupling for BCCs slightly different from the one for Type-II BCCs.
At time t, each of the parity sequences vUt and vLt is divided into m + 1 se-
quences, vUt,j , j = 0, . . . ,m, and vLt,j , j = 0, . . . ,m, respectively (in Type-II

BCCs they are divided into m sequences). The sequences vUt−j,j and vLt−j,j
are multiplexed and reordered, and are used as the second input of the lower
and upper encoder, respectively. Note that in this way of coupling, part of
the parity bits at time t are used as input at the same time instant t. Now,

similarly to uncoupled BCCs, consider identical time-varying trellises. Let x
(i)
t

denote the extrinsic erasure probability from TU
t through all its edges in the ith

iteration. The erasure probabilities to TU
t through all its incoming edges are

equal and are given by the average of the erasure probabilities from variable
nodes vt′ , t

′ = t−m, . . . , t,

q
(i)
t =

ε

1 +m

m∑
k=0

x
(i−1)
t−k .

Thus, the erasure probabilities from TU
t and TL

t are identical and equal to

fave,t(q
(i)
t , q

(i)
t , q

(i)
t ). Finally, the recursion at time slot t is

x
(i)
t =

1

1 +m

m∑
j=0

fave,t+j(q
(i)
t+j , q

(i)
t+j , q

(i)
t+j). (73)

The recursion in (73) is identical to (69).

8.4 Random Puncturing and Scalar Admissible System

In the following, we show that the DE recursion of punctured TC ensembles can
also be rewritten as a scalar admissible system for some particular cases. Then,
threshold saturation follows from the discussion in the previous subsection.

PCC

Consider the PCC ensemble with identical component encoders and random
puncturing of the parity bits with permeability rate ρ. The DE recursion can
be rewritten as,

x(i) = fs(εx
(i−1), 1− (1− ε)ρ).
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The above equation is a recursion of a scalar admissible system and satisfies
the conditions in Definition 1, where g(x) = x and

f(x; ε) = fs(ε · x, 1− (1− ε)ρ) .

SCC

Consider random puncturing of the SCC ensemble with identical component
encoders. Assuming ρ0 = ρ1 (i.e., we puncture also systematic bits of the outer
code), we can rewrite the DE recursion as

x(i) = ερ1 · fs(ερ1x(i−1), ερ2),

where ερ1 = 1− (1− ε)ρ1 and ερ2 = 1− (1− ε)ρ2. The above equation is the
recursion of a scalar admissible system, where f(x; ε) = ερ1fs(ερ1 · x, ερ2) and
g(x) is obtained by equation (62).

BCC

Consider random puncturing of the BCC ensemble with identical time-varying
trellises. Assume that the systematic bits and the parity bits of the upper
and lower encoders are punctured with the same permeability rate ρ. Then,
the DE recursion can be rewritten as (66), where ε should be replaced by
ερ = 1− (1− ε)ρ.

8.5 Turbo-like Codes as Vector Admissible Systems

In general, the DE recursions of TCs are vector recursions. In this case, it is
possible to prove threshold saturation using the technique proposed in [7] for
vector recursions. The proof is similar to that of scalar recursions, albeit more
involved. In the following, we show how to rewrite the recursion of punctured
PCCs as a vector admissible system recursion. Then, following [7], we can
prove threshold saturation. Using the same technique, it is possible to prove
threshold saturation for SCCs and BCCs as well.

Consider the DE equations of the PCC ensemble in (10)–(15). To reduce
the number of the equations, substitute (12) and (15) into (10) and (13), re-
spectively. Consider random puncturing of information bits, upper encoder
parity bits and lower encoder parity bits with permeability rates ρ0, ρ1 and ρ2,

respectively. By considering x
(i)
1 , pU,s and x

(i)
2 , pL,s, the DE recursion can

be simplified to

x
(i)
1 = fU,s(ερ0 · x(i−1)2 , ερ1)

x
(i)
2 = fL,s(ερ0 · x(i−1)1 , ερ2).
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The above equations can be written in vector format as

x(i) = f(g(x(i−1)); ε), (74)

where, x = [x1, x2], f(x; ε) = [fU,s(ερ0 · x1, ερ1), fL,s(ερ0 · x2, ερ2)] and g(x) =
[x2, x1]. Is it easy to verify that the recursion in (74) satisfies the conditions in
[7, Def. 1], hence (74) is the recursion of a vector admissible system. For this
vector admissible system, the line integral is path independent in [7, Eq. (2)]
and the potential function is well defined. So, we can define (see [7]) D = I2×2,
G = x1 · x2 and

F =

∫ x1

0

fU,s(ερ0 · z, ερ1) dz +

∫ x2

0

fL,s(ερ0 · z, ερ2) dz.

It is possible to show that the DE recursion of SC-PCCs can be rewritten in
the same form as [7, Eq. (5)] and by using [7, Th. 1], threshold saturation can
be proven.

9 Conclusion

In this paper we investigated the impact of spatial coupling on the BP decoding
threshold of turbo-like codes. We introduced the concept of spatial coupling
for PCCs and SCCs, and generalized the concept of coupling for BCCs. Con-
sidering transmission over the BEC, we derived the exact DE equations for
uncoupled and coupled ensembles. For all spatially coupled ensembles, the BP
threshold improves and our numerical results suggest that threshold satura-
tion occurs if the coupling memory is chosen sufficiently large. We therefore
constructed rate-compatible families of SC-TCs that achieve close-to-capacity
performance for a wide range of code rates.

We showed that the DE equations of SC-TC ensembles with identical com-
ponent encoders can be properly rewritten as a scalar recursion. For SC-PCCs,
SC-SCCs and BCCs we then proved threshold saturation analytically, using the
proof technique based on potential functions proposed in [4], [5]. Finally, we
demonstrated how vector recursions can be used to extend the proof to more
general ensembles.

A generalization of our results to general binary-input memoryless channels
is challenging, because the transfer functions of the component decoders can no
longer be obtained in closed form. Even a numerical computation of the exact
thresholds is difficult, but Monte Carlo methods and Gaussian approximation
techniques could be helpful tools for finding approximate thresholds. EXIT
charts, for example, have been widely used for analyzing uncoupled TCs and
may be useful for estimating the thresholds of SC-TCs. A connection between
EXIT functions and potential functions of spatially coupled systems is given



126 PAPER III

in [6]. An investigation of SC-TC ensembles along this line may be an inter-
esting direction for future work. The simulation results for SC-BCCs over the
AWGN channel in [23] and [38] clearly show that spatial coupling significantly
improves the performance, suggesting that threshold saturation also occurs for
this channel.

The invention of turbo codes and the rediscovery of LDPC codes, allowed
to approach capacity with practical codes. Today, both turbo-like codes and
LDPC codes are ubiquitous in communication standards. In the academic
arena, however, the interest on turbo-like codes has been declining in the last
years in favor of the (considered) more mathematically-appealing LDPC codes.
The invention of spatially coupled LDPC codes has exacerbated this situation.
Without spatial coupling, it is well known that PCCs yield good BP thresholds
but poor error floors, while SCCs and BCCs show low error floors but poor BP
thresholds. Our SC-TCs, however, demonstrate that turbo-like codes can also
greatly benefit from spatial coupling. The concept of spatial coupling opens
some new degrees of freedom in the design of codes on graphs: designing a con-
catenated coding scheme for achieving the best BP threshold in the uncoupled
case may not necessarily lead to the best overall performance. Instead of op-
timizing the component encoder characteristics for BP decoding, it is possible
to optimize the MAP decoding threshold and rely on the threshold satura-
tion effect of spatial coupling. Powerful code ensembles with strong distance
properties such as SCCs and BCCs can then perform close to capacity with
low-complexity iterative decoding. We hope that our work on spatially coupled
turbo-like codes will trigger some new interest in turbo-like coding structures.
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Spatially Coupled Hybrid Concatenated

Codes

The main purpose of this paper is to make the study of spatially coupled

turbo-like codes (SC-TCs) more complete by investigating the impact of

spatial coupling on the thresholds of hybrid concatenated codes (HCCs).

In our previous studies, we introduced some classes of SC-TCs and con-

sidered their density evolution (DE) analysis. The obtained results indic-

ated that for a fixed coupling memory, braided convolutional codes (BCCs)

have the best belief propagation (BP) thresholds among the considered

classes. Besides having excellent BP thresholds, BCCs have good distance

properties and their minimum distance grows linearly with block length.

Similarities between BCCs and HCCs make HCCs good competitors for

BCCs. This has motivated us to investigate the impact of spatial coupling

on HCCs. In this paper, we introduce two spatially coupled ensembles

of HCCs, referred to as Type-I SC-HCCs and Type-II SC-HCCs. Then,

we derive the exact density evolution (DE) equations for the uncoupled

and the coupled ensembles for the binary erasure channel (BEC). Finally,

considering different component encoders, we compute the thresholds of

the SC-HCC ensembles and compare them with the thresholds of BCCs

for a range of different rates.
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1 Introduction

In the last years, there has been a growing interest in low-density parity-check
(LDPC) convolutional codes [1], also known as spatially coupled LDPC (SC-
LDPC) codes [2]. These codes exhibit a remarkable behavior called threshold
saturation; for them, the belief propagation (BP) decoder can achieve the
threshold of the optimal maximum-a-posteriori (MAP) decoder.

However, spatial coupling is a general concept and is not limited to LDPC
codes. Spatially coupled turbo-like codes (SC-TCs) were introduced in [3], [4].
In these articles, various ensembles of spatially coupled parallel and serially
concatenated codes (SC-PCCs and SC-SCCs) were proposed. Moreover, two
extensions of braided convolutional codes (BCCs) for higher coupling memory
were introduced, referred to as Type-I BCCs and Type-II BCCs. For the binary
erasure channel (BEC), the exact density evolution (DE) equations of the con-
sidered SC-TCs were computed and the BP thresholds of the coupled ensembles
were obtained. The numerical results in [4] indicate improvements in the BP
thresholds of the coupled ensembles and the occurrence of threshold satura-
tion. Moreover, the occurrence of threshold saturation is proved analytically
for SC-TCs over the BEC in [4], [5].

The DE analysis of SC-TCs shows that the Type-II BCC ensemble has
the best BP threshold among the considered SC-TC ensembles. On the other
hand, the finite block length analysis of BCCs in [6] indicates that the minimum
distance of BCCs grows linearly with the permutation size. It is also shown
that for BCCs very low error rates can be achieved by avoiding a small fraction
of bad permutations. Having close-to-capacity thresholds and very low error
floor, make BCCs a very promising class of codes.

Hybrid concatenated codes (HCCs) [7], [8] are a class of turbo-like codes
which are closely related to BCCs. Similar to the BCC ensemble, the HCC
ensemble is a mixture of parallel and serially concatenated code ensembles.
Also for HCCs, the minimum distance grows linearly with the permutation
size. In addition, they can achieve very low error rates in the floor region [7],
[8]. The remarkable properties of HCCs and their similarities with BCCs, have
motivated us to investigate the impact of spatial coupling on HCCs.

As a first step, we briefly review the SC-TCs. Then, we propose two en-
sembles of spatially coupled HCCs (SC-HCCs), referred to as Type-I SC-HCCs
and Type-II SC-HCCs. We also derive the exact DE equations for the proposed
ensembles and compute the thresholds of BP decoding for the BEC. Using the
area theorem we compute the MAP threshold. We also consider different com-
ponent encoders to investigate the impact of the component encoders on the
decoding thresholds of SC-HCCs. By considering random puncturing, we per-
form a threshold analysis for a family of rate compatible SC-HCCs. Finally,
we compare the obtained numerical results with the corresponding results for
BCCs.
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Figure 1: (a) Block diagram of PCCs, Compact graph representation of (b) PCCs,
(c) SCCs and (d) BCCs.

2 Spatially Coupled Turbo-Like Codes

2.1 Compact Graph Representation

In our previous studies [4], we considered three main classes of TCs; including
PCCs, SCCs, and BCCs. The compact graph representations of these codes are
shown in Figure 1. This new representation makes the illustration of TCs and
SC-TCs simpler, and makes the DE analysis of theses codes more convenient. In
this graph representation, the variable nodes, corresponding to information and
parity sequences, are shown by black circles, and the factor nodes corresponding
to the component trellises are represented by squares. These factor nodes are
also labeled by the length of the corresponding trellises.

As an example, the block diagram of the PCC encoder and the compact
graph of PCCs are shown in Figure 1 (a) and (b), respectively. In the compact
graph representation, the information sequence u is connected to the upper
trellis TU to produce the upper parity sequence vU. Likewise, a reorded copy
of u is connected to the lower trellis TL to produce the lower parity sequence vL.
To illustrate that a reordered copy of u is connected to TL, the corresponding
permutation is shown by a cross line on the edge which connects u to TL.

Consider the PCC ensemble at time t in Figure 2 (a). In order to obtain the
coupled ensemble —as it is shown in Figure 2 (b)— the information sequence,
ut, is divided into two sequences of equal size, ut,0 and ut,1, by a multiplexer
(the multiplexer is illustrated by a rectangle in the graph). Then, the sequence
ut,0 is used as a part of the input to the upper encoder at time t, and ut,1 is
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Figure 2: Compact graph representation (a) PCC (b) SC-PCC at time instant t (c)
SC-PCC.

used as a part of the input to the upper encoder at time t + 1. Likewise, a
reordered copy of the information sequence, ũt, is divided into two sequences
ũt,0 and ũt,1. These sequences are connected to the lower encoders at time t
and t+ 1, respectively.

Consider a collection of L PCCs at time instants t = 1, ..., L (Figure 2 (c)),
where L is called the coupling length. Similarly to Figure 2 (b), divide the
information sequence ut, t = 1, . . . , L into two sequences ut,0 and ut,1. The
input to the upper encoder at t is a reordered copy of (ut,0,ut−1,1). Likewise,
the input to the lower encoder at time t is a reordered copy of (ũt,0, ũt−1,1).

In the SC-PCC ensemble in Figure 2 (c), the coupling memory is equal to
m = 1 as ut is used only at the time instants t and t + 1. It is possible to
obtain higher coupling memory m by dividing each of the sequences ut and ũt
into m + 1 sequences of equal size and spread these sequences respectively to
the input of the upper and the lower encoder at time slots t to t+m [4].

Similarly to PCCs, it is possible to apply spatial coupling on SCCs and,
increase the coupling memory for BCCs. The SC-TC enseble are described in
detail and illustrated in [4].

2.2 Density Evolution Equations and Decoding
Thresholds

Considering transmission over a BEC, we can analyze the asymptotic behavior
of TCs and SC-TCs by tracking the evolution of the erasure probability in
different iterations of the decoding procedure. This evolution can be shown as
a set of equations called density evolution (DE) equations, and for the BEC, it
is possible to derive an exact expression for them. By use of the DE equations,
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Table 1: Thresholds of PCCs, SCCs and BCCs with R = 1
3
, m = 1.

Ensemble εBP εMAP εSC
PCC 0.6428 0.6553 0.6553
SCC 0.5405 0.6654 0.6437

Type-I BCC 0.5541 0.6653 0.6609
Type-II BCC 0.5541 0.6653 0.6651

we compute the threshold of BP decoding. The BP threshold is the largest
channel erasure probability ε for that the erasure probability at the output of
the BP decoder converges to zero as the block-length and number of iterations
go to infinity. The BP thresholds, εBP, of the considered TC ensembles are
computed and summarized in Table 2 for rate R = 1

3 .
We also computed the MAP thresholds of the ensembles, εMAP, by use of

the area theorem [9]. According to the area theorem, the MAP threshold18 can
be obtained from the following equation:∫ 1

εMAP

p̄extr(ε)dε = R ,

where R is the rate of the code and p̄extr(ε) is the average extrinsic probability
of erasure for all transmitted bits.

According to the values shown for εBP and εMAP, while the uncoupled BCC
ensembles have the worst BP thresholds, they have very good MAP thresholds.
The last column of the table shows the BP thresholds of coupled ensembles
with coupling memory m = 1. The BP threshold of the Type-II BCC ensemble
improves significantly and this coupled ensemble has the best BP threshold for
m = 1.

3 Hybrid Concatenated Codes

In this paper, we consider a rate R = 1
5 HCC ensemble consisting of a PCC

encoder as an outer encoder which is serially concatenated with an inner en-
coder. The block diagram representation of the HCC encoder is shown in
Figure 5. The outer encoder is built of two rate-1 recursive systematic convo-
lutional (RSC) encoders with N trellis sections, referred to as upper and lower
encoders, respectively. The inner encoder is an RSC encoder with 2N trellis
sections.

18The obtained threshold from the area theorem is an upper bound on the MAP threshold.
However, the numerical results show that the threshold of the coupled ensemble converges
to this upper bound. This indicates that the upper bound on the MAP threshold is a tight
bound.
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The information sequence u is connected to CU to produce the upper parity
sequence vU. Likewise, a reordered copy of u is connected to CL, to produce
the lower parity sequence vL. Then, the sequences vU and vL are multiplexed
and properly reordered by permutation ΠI . The resulting sequence is used as
the input sequence for the inner encoder CI to produce the parity sequence vI.
Finally, the encoded sequence is v = (u,vU,vL,vI).

CU

CL

⇢U

⇢L

⇢ICI⇧I⇧L

M M

U U

X X

vU

vL

vI

u

GI

GU

GL

Figure 3: Block diagram representation of an HCC encoder.

A family of rate-compatible SC-HCCs can be obtained by applying punc-
turing. We denote by ρ ∈ [0, 1] the fraction of surviving bits in a sequence
after puncturing, referred to as permeability rate. Consider random punctur-
ing with the permeability rates ρU, ρL and ρI for the sequences vUt , vLt , and
vIt, respectively. The overall rate of the code is

R =
1

1 + ρU + ρL + 2ρI
.

Figure 2(a) shows the compact graph representation of the considered HCC
ensemble. The factor nodes corresponding to upper, lower, and inner trellises
are represented by squares and denoted by TU, TL and TI, respectively.

The information sequence u is connected to TU to produce the upper parity
sequence vU. Likewise, a reordered copy of u is connected to TL, to produce
vL. Note that in the graph, the permutation ΠL is illustrated by the line which
crosses the edge between u and TL. The sequences vU and vL are multiplexed
and properly reordered. The resulting sequence is connected to TI to produce
vI.
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4 Spatially Coupled Hybrid Concatenated Codes

4.1 Type-I Spatially Coupled HCCs

The compact graph representation of the Type-I SC-HCC ensemble with coup-
ling memory m is shown in Figure 2(b) for time instant t. Consider a collection
of L blocks of HCCs at time instants t = 1, . . . , L. The information sequence
at time t is denoted by ut. Similarly to uncoupled HCCs, ut and a reordered
copy of ut are connected to TU

t and TL
t to produce the current parity sequences

vUt and vLt , respectively. Then, vUt and vLt are multiplexed and reordered. The
resulting sequence is denoted by ṽOt . In order to obtain a coupled ensemble
with memory m, ṽOt is divided into m + 1 equal-sized sequences, denoted by
ṽOt,j , j = 0, . . . ,m. At time t, the input of the inner encoder is a reordered

version of (ṽOt,0, ṽ
O
t−1,1, . . . , ṽ

O
t−m,m). The corresponding parity sequence is de-

noted by vIt. Finally, the unpunctured code sequence is vt = (ut,v
U
t ,v

L
t ,v

I
t).
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4.2 Type-II Spatially Coupled HCCs

Figure 2(c) depicts the compact graph representation of the Type-II SC-HCC
ensemble. This ensemble is equivalent to the Type-I SC-HCC ensemble in
most of the parts. For Type-II SC-HCCs, in addition to the coupling of the
parity sequences vUt and vLt , we consider the coupling of the information se-
quence ut. At time t, ut is divided into m + 1 equal-sized sequences ut,j ,
j = 0, . . . ,m. Likewise, a reordered copy of the information sequence, ũt,
is divided into m + 1 equal-sized sequences ũt,j , j = 0, . . . ,m. At time t,
the sequence (ut−0,0,ut−1,1, . . . ,ut−m,m) and a reordered copy of the sequence
(ũt−0,0, ũt−1,1, . . . , ũt−m,m) are the input sequences for the upper and the lower
encoder, respectively.

5 Density Evolution Analysis on the BEC

In this section, we assume transmission over the BEC with erasure probability
ε. Then, we derive the exact DE equations for the SC-HCC ensembles with
the coupling memory m. Note that the DE equations for the uncoupled HCC
ensemble can be obtained by considering m = 0 and removing the time index in
the DE equations of the SC-HCC ensembles. Using the obtained DE equations,
we analyze the asymptotic behaviors of the ensembles in the next section.

5.1 Type-I Spatially Coupled HCCs

Consider the Type-I SC-HCC ensemble with coupling memory m, in Fig-
ure 2(b). The factor node TU is connected to the variable nodes ut and vUt . In
the ith iteration, the average extrinsic erasure probabilities from TU to ut and

vUt are denoted by p
(i,t)
U,s and p

(i,t)
U,p , respectively. Likewise, p

(i,t)
L,s and p

(i,t)
L,p denote

the average extrinsic erasure probabilities from TL to ut and vLt , respectively.
Then, the DE updates for TU are

p
(i,t)
U,s = fU,s

(
q
(i−1,t)
L , q

(i−1,t)
I

)
, (1)

p
(i,t)
U,p = fU,p

(
q
(i−1,t)
L , q

(i−1,t)
I

)
, (2)

where

q
(i,t)
L = ε · p(i,t)L,s , (3)

q
(i,t)
I = ε ·

∑m
j=0 p

(i,t+j)
I,s

m+ 1
, (4)

and fU,s and fU,p are the transfer functions of TU for the systematic and parity

bits, respectively. Note that p
(i,t)
I,s in equation (4), denotes the average extrinsic
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erasure probabilities from T I to the set of vUt′ and vLt′ , t
′ = t −m, . . . , t which

are connected to it. The method proposed in [10] is used to obtain the exact
transfer functions of the component decoders.

The DE updates of the lower decoder are identical to those of the upper
decoder if the indexes U and L are interchanged.

Similarly the DE updates of T I can be written as

p
(i,t)
I,s = fI,s

(
q
(i−1,t)
UL , ε

)
, (5)

p
(i,t)
I,p = fI,p

(
q
(i−1,t)
UL , ε

)
, (6)

where

q
(i,t)
UL = ε ·

∑m
k=0 p

(i,t−k)
U,s + p

(i,t−k)
L,s

2(m+ 1)
, (7)

and fI,s and fI,p are the transfer functions of T I for the systematic and parity
bits, respectively.

Finally, the a-posteriori erasure probability on ut at time t and iteration i
is

p(i,t)a = ε · p(i,t)U,s · p
(i,t)
L,s . (8)

5.2 Type-II Spatially Coupled HCCs

Consider the Type-II SC-HCC ensemble with coupling memory m in Fig-
ure 2(c). As we discussed in the previous section, this ensemble is identical
to the Type-I SC-HCC ensemble except that in the Type-II SC-HCC ensemble
the information bits are also coupled. Therefore, the DE updates of the Type-
II SC-HCC ensemble are identical to the DE updates of the Type-I SC-HCC
ensemble except for the equations (3). According to the compact graph rep-
resentation in Figure 2(c), the information variable node ut is connected to
the set of TU

t′′s at time instants t′′ = t, . . . , t + m. The reordered copy of ut is
also connected to the set of TL

t′′s, t
′′ = t, . . . , t+m. Thus, the equations (3) is

rewritten as

q
(i,t)
L = ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i,t+j−k)
L,s , (9)

Finally, the a-posteriori erasure probability on ut at time t and iteration i
is

p(i,t)a =
q
(i,t)
U · q(i,t)L

ε
. (10)
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5.3 Random Puncturing

Assume transmission over a BEC with erasure probability ε. Puncturing a
sequence with permeability rate ρ is equivalent to transmitting the sequence
over a BEC with erasure probability ερ = 1−(1−ε)ρ. Thus, we can modify the
DE equations of SC-HCCs to account for the random puncturing by considering
the corresponding ερs for the transmitted sequences.

As we discussed in the previous section, we denote the permeability rates
for the upper, lower, and inner sequence by ρU, ρL and ρI, respectively. The
DE updates for the punctured Type-I SC-HCCs are obtained by substituting
ερU ← ε in equation (4) ( ερL ← ε in the corresponding equation for the lower
decoder) and ερI ← ε in equations (5) and (6). Moreover, the equation (7) is
modified to

q
(i,t)
UL =

∑m
k=0 ερU · p

(i,t−k)
U,s + ερL · p(i,t−k)L,s

2(m+ 1)
. (11)

The DE updates for the punctured Type-II SC-HCC ensemble are identical
to those of the punctured Type-I SC-HCC ensemble, except of the modified
versions of the equation (3) and its corresponding equation for the lower de-

coder. For the punctured Type-II SC-HCCs, q
(i,t)
L is obtained by substituting

ερU ← ε in equation (9). Likewise, q
(i,t)
U is obtained by substituting ερL ← ε in

the corresponding equation for the lower decoder.

6 Results and Discussion

In this chapter, we compute the BP thresholds of HCCs and SC-HCCs by use
of the DE equations derived in Section IV. In order to investigate the impact of
the component encoders on the thresholds of HCCs, we consider three different
cases, referred to as HCC-I, HCC-II and HCC-III. In all cases, we assume
identical upper and lower component encoders. The generator matrices of the
component encoders are shown in Table 2, in octal notation. In this table, the
generator matrix of the upper, lower, and inner encoder are denoted by GU,
GL and GI, respectively.

Table 2: Generator matrices of the component encoders

Ensemble GU = GL GI.
SC-HCC-I (1, 1/3) (1, 5/7)
SC-HCC-II (1, 5/7) (1, 5/7)
SC-HCC-III (1, 5/7) (1, 1/3)
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In HCC-I, the upper and lower component encoders are considered to be
a simple 2-state RSC encoder with generator matrix G = (1, 1/3). The
inner component encoder is a 4-state RSC encoder with generator matrix
G = (1, 5/7). In HCC-II, we consider three identical RSC encoders for the
upper, lower and inner components. These encoders have generator matrix
G = (1, 5/7). Finally, in HCC-III, we considered similar component encoders
as in HCC-I but with a different order. The upper and lower components
are the 2-state RSC encoders, while the inner component is the 4-state RSC
encoder.

The corresponding thresholds to Table 2 are computed for HCC-I, HCC-II
and HCC-III. These results are summarized in Table 3. In order to obtain a
code with rate R = 1/3, random puncturing is considered with ρU = 0, ρL = 0
and ρI = 1.

According to our numerical results, in general, all three considered HCC en-
sembles suffer from relatively bad BP thresholds and the HCC-II ensemble has
the weakest BP threshold. The MAP thresholds, εMAP, are almost identical,
but that of the HCC-III ensemble is slightly smaller; however, the MAP thresholds
of all three cases are excellent, even better than the MAP thresholds of BCCs
and SCCs. In other words, for the HCC ensembles, the gap to the Shannon
limit is smaller than that for the BCC and SCC ensembles. Applying the coup-
ling results in improved BP thresholds. Similarly to BCCs, Type-II SC-HCC
ensembles have better BP thresholds than Type-I SC-HCC ensembles.

As the HCC-II ensemble has the smallest BP threshold, the gap between
BP and MAP threshold is big for this ensemble. Although its BP threshold
improves significantly after applying spatial coupling with m = 1, the coupled
threshold ε1SC is still much smaller than those of the other cases. The SC-
HCC-I ensemble has the best ε1SC between the considered SC-HCCs ensembles.
Overall, however, the Type-II BCC ensemble still has the best ε1SC according
to the results in Table 3.

To make the comparison more complete, we consider the SC-HCC ensembles
with some higher rates and higher coupling memories. In order to obtain
higher rate R, we consider random puncturing with ρU = 0, ρL = 0 and
ρ2 = ρI = 1−R

2R .19 The obtained BP and MAP thresholds are summarized
in Table 4. The corresponding BP thresholds for Type-II BCCs in [4] are also
given in this table. As we discussed, Type-II BCCs have better thresholds than
Type-I BCCs. Therefore, only the thresholds of Type-II BCCs are reported in
Table 4.

According to the results in the table, for all rates, the HCC ensembles
suffer from small BP thresholds and among them, the HCC-II ensemble has
the smallest BP threshold. The MAP thresholds of the HCC ensembles are
almost identical and very close to the Shannon limit for all rates. However, for

19To have consistent notation with [4], we replace ρI with ρ2 in the table.
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Table 3: Thresholds for PCCs, SCCs, BCCs and HCCs with R = 1
3
.

Ensemble Type εBP εMAP ε1SC
PCC - 0.6428 0.6553 0.6553
SCC - 0.5405 0.6654 0.6437
BCC Type-I 0.5541 0.6653 0.6609
BCC Type-II 0.5541 0.6653 0.6651
HCC-I Type-I 0.4961 0.6666 0.6398
HCC-I Type-II 0.4961 0.6666 0.6611
HCC-II Type-I 0.3480 0.6666 0.5667
HCC-II Type-II 0.3480 0.6666 0.6181
HCC-III Type-I 0.5456 0.6665 0.5943
HCC-III Type-II 0.5456 0.6665 0.6382

some rates, the HCC-III ensemble has smaller MAP threshold than those of
the two other HCC ensembles. But this threshold is still slightly better than
the MAP threshold of the BCC ensemble.

The BP thresholds of the spatially coupled ensembles with coupling memory
m = 1, 3, 5 are presented in the columns corresponding to ε1SC, ε3SC and ε5SC,
respectively. In all considered cases of SC-HCCs, the BP thresholds improve
by increasing the coupling memory. For a large enough coupling memory, the
BP thresholds achieve the threshold of the MAP decoder. It can be seen that,
for a fixed coupling memory, the Type-II SC-HCC ensembles have better BP
thresholds than the corresponding Type-I SC-HCC ensembles and for them,
saturation occurs for smaller m. Although the Type-II BCC ensemble has the
best BP threshold for m = 1 for all rates, by increasing m, the BP thresholds
of the SC-HCC ensembles get better those of BCCs.

7 Conclusions

In this paper, we have investigated the impact of spatial coupling on the BP
thresholds of HCCs. Similarly to BCCs, these codes are a powerful class of
turbo-like codes and their MAP thresholds are even better than those of BCCs.
We have shown that the BP thresholds of the HCC ensembles increase signi-
ficantly by applying spatial coupling and threshold saturation occurs. By se-
lecting the component encoders properly, we can optimize the HCC ensemble
for higher BP or MAP thresholds. However, optimizing the HCC ensemble
for higher BP or MAP threshold does not guarantee a high BP threshold for
SC-HCC for a fixed coupling memory.
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Table 4: Thresholds for punctured BCCs and HCCs.

Ensemble Type Rate ρ2 εBP εMAP ε1SC ε3SC ε5SC
BCC Type-II 1/3 1.0 0.5541 0.6653 0.6651 0.6653 0.6653
HCC-I Type-I 1/3 1.0 0.4961 0.6666 0.6398 0.6621 0.6651
HCC-I Type-II 1/3 1.0 0.4961 0.6666 0.6611 0.6666 0.6666
HCC-II Type-I 1/3 1.0 0.3480 0.6666 0.5667 0.6166 0.6312
HCC-II Type-II 1/3 1.0 0.3480 0.6666 0.6181 0.6652 0.6666
HCC-III Type-I 1/3 1.0 0.5456 0.6665 0.5943 0.6243 0.6352
HCC-III Type-II 1/3 1.0 0.5456 0.6665 0.6382 0.6655 0.6663
BCC Type-II 1/2 0.5 0.3013 0.4993 0.4988 0.4993 0.4993
HCC-I Type-I 1/2 0.5 0.2486 0.4999 0.4601 0.4947 0.4982
HCC-I Type-II 1/2 0.5 0.2486 0.4999 0.4846 0.4999 0.4999
HCC-II Type-I 1/2 0.5 0.1502 0.4999 0.3766 0.4472 0.4659
HCC-II Type-II 1/2 0.5 0.1502 0.4999 0.4272 0.4970 0.4999
HCC-III Type-I 1/2 0.5 0.3501 0.4999 0.4135 0.4540 0.4685
HCC-III Type-II 1/2 0.5 0.3501 0.4999 0.4597 0.4979 0.4994
BCC Type-II 2/3 0.25 – 0.3331 0.3323 0.3331 0.3331
HCC-I Type-I 2/3 0.25 0.0622 0.3333 0.2671 0.3274 0.3314
HCC-I Type-II 2/3 0.25 0.0622 0.3333 0.2952 0.3327 0.3333
HCC-II Type-I 2/3 0.25 0.0331 0.3333 0.1972 0.2787 0.3024
HCC-II Type-II 2/3 0.25 0.0331 0.3333 0.2355 0.3252 0.3328
HCC-III Type-I 2/3 0.25 0.1820 0.3332 0.2434 0.2876 0.3044
HCC-III Type-II 2/3 0.25 0.1820 0.3332 0.2821 0.3295 0.3327
BCC Type-II 3/4 0.166 – 0.2491 0.2481 0.2491 0.2491
HCC-I Type-I 3/4 0.166 0.0199 0.2499 0.1662 0.2398 0.2481
HCC-I Type-II 3/4 0.166 0.0199 0.2499 0.1930 0.2479 0.2499
HCC-II Type-I 3/4 0.166 0.0102 0.2492 0.1161 0.1919 0.2184
HCC-II Type-II 3/4 0.166 0.0102 0.2492 0.1431 0.2348 0.2477
HCC-III Type-I 3/4 0.166 0.1106 0.2491 0.1624 0.2043 0.2215
HCC-III Type-II 3/4 0.166 0.1106 0.2491 0.1933 0.2433 0.2485
BCC Type-II 4/5 0.125 – 0.1999 0.1986 0.1999 0.1999

HCC-I Type-I 4/5 0.125 0.0085 0.1999 0.1091 0.1821 0.1982

HCC-I Type-II 4/5 0.125 0.0085 0.1999 0.1315 0.1956 0.1997

HCC-II Type-I 4/5 0.125 0.0043 0.1999 0.0747 0.1406 0.1677

HCC-II Type-II 4/5 0.125 0.0043 0.1999 0.0940 0.1795 0.1970

HCC-III Type-I 4/5 0.125 0.0743 0.1999 0.1173 0.1557 0.1726

HCC-III Type-II 4/5 0.125 0.0743 0.1999 0.1422 0.1917 0.1990

BCC Type-II 9/10 0.055 – 0.0990 0.0954 0.0990 0.0990

HCC-I Type-I 9/10 0.055 0.0006 0.0999 0.0245 0.0603 0.0822

HCC-I Type-II 9/10 0.055 0.0006 0.0999 0.0317 0.0798 0.0960

HCC-II Type-I 9/10 0.055 0.0003 0.0990 0.0159 0.0427 0.0610

HCC-II Type-II 9/10 0.055 0.0003 0.0990 0.0208 0.0617 0.0850

HCC-III Type-I 9/10 0.055 0.0190 0.0990 0.0367 0.0587 0.0714

HCC-III Type-II 9/10 0.055 0.0190 0.0990 0.0463 0.0805 0.0941
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Spatially coupled turbo-like codes (SC-TCs) have been shown to have

excellent decoding thresholds due to the threshold saturation effect. Fur-

thermore, even for moderate block lengths, simulation results demonstrate

very good bit error rate performance (BER) in the waterfall region. In

this paper, we discuss the effect of spatial coupling on the performance of

TCs in the finite block-length regime. We investigate the effect of coup-

ling on the error-floor performance of SC-TCs by establishing conditions

under which spatial coupling either preserves or improves the minimum

distance of TCs. This allows us to investigate the error-floor performance

of SC-TCs by performing a weight enumerator function (WEF) analysis of

the corresponding uncoupled ensembles. While uncoupled TC ensembles

with close-to-capacity performance exhibit a high error floor, our results

show that SC-TCs can simultaneously approach capacity and achieve very

low error floor.
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1 Introduction

Turbo-like codes (TCs) [1] and low-density parity check (LDPC) codes [2] are
adopted in many communication standards because they can practically ap-
proach the Shannon limit. Recently, it has been proved that LDPC convo-
lutional codes [3], [4] —also known as spatially coupled LDPC (SC-LDPC)
codes—exhibit the remarkable threshold saturation phenomenon [5], [6], [7],
[8], i.e., for an SC-LDPC ensemble, the belief propagation (BP) decoder can
achieve the threshold of the optimal maximum-a-posteriori (MAP) decoder of
the underlying uncoupled ensemble. It then follows that regular SC-LDPC
codes achieve capacity as their variable node degrees tend to infinity. Spatially
coupled TCs (SC-TCs) were introduced in [9], [10], [11], and it was proved that
threshold saturation also occurs for this class of codes. A density evolution
analysis shows that, by having stronger component codes, SC-TCs can achieve
excellent decoding thresholds with variable nodes of degree one and two only.

In this paper, motivated by the excellent asymptotic behavior of SC-TCs,
we investigate the performance of these codes in the finite block-length regime.
We consider the same TC ensembles as those in [9], [10], [11], namely parallel
concatenated codes (PCCs) [1], serially concatenated codes (SCCs) [12], [13],
braided convolutional codes (BCCs) [14], [15], and hybrid concatenated codes
(HCCs) [16], [17]. As the first step of our investigation, using the decoding
thresholds of the binary erasure channel (BEC) obtained in [10], [11] and the
method described in [18], [19], we predict the decoding thresholds over the ad-
ditive white Gaussian noise (AWGN) channel. Using these thresholds together
with the provided simulation results, we discuss the effect of spatial coupling on
the performance of TCs in the waterfall region over the AWGN channel. Then,
we investigate the effect of coupling on the error-floor performance of TCs. We
prove that under certain conditions the minimum distance of a coupled SC-TC
ensemble cannot get smaller than that of the corresponding TC ensemble. This
means that the error-floor performance of the TCs is not degraded by spatial
coupling. These conditions can be seen as a guideline for unwrapping the TC
ensembles. This connection between the minimum distance of TC and SC-TC
ensembles allows us to avoid the complexity of computing the weight enumer-
ator functions (WEFs) of the coupled ensembles. Instead, we simply perform
a WEF analysis for the uncoupled TC ensemble to investigate and discuss the
distance properties of SC-TCs. Thus, we compute the WEFs of TC ensembles
[12], [20], [21], [22] to obtain bounds on their bit error rate (BER) perform-
ance and a bound on the minimum distance. Finally, in the last step of our
investigation, we use the obtained results to discuss the overall performance of
SC-TCs for the finite block-length regime.

The remainder of the paper is organized as follows. In Section 2, we briefly
describe several TC and SC-TC ensembles by use of the compact graph rep-
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resentation introduced in [10]. We discuss the decoding thresholds of these
ensembles in Section 3. In the same section, we provide some simulation res-
ults to discuss the waterfall region performance of SC-TCs. In Section 4, we
prove that the minimum distance of SC-TC ensembles is either better or equal
than that of the corresponding uncoupled ensemble. In Section 5, we compute
the average WEF of TC ensembles to obtain bounds on their BER performance
and minimum distance. Finally, in Section 6, we discuss the trade-off between
waterfall and error floor performance of SC-TCs, and we conclude the paper in
the same section.

2 Spatially Coupled Turbo-Like Codes

In this section, we briefly describe four major classes of TCs— namely, PCCs,
SCCs, BCCs, and HCCs— and their coupled counterparts. In particular, we
discuss PCCs and SC-PCCs with coupling memory m = 1, and refer the in-
terested reader to [10] for details on the other SC-TC ensembles and higher
coupling memories, m > 1.

Figure 1(a) shows the block diagram of a rate R = 1/3 PCC encoder built
of two recursive systematic convolutional encoders, referred to as upper and
lower encoder. As shown in the figure, the information sequence u is encoded
by the upper encoder CU to produce the upper parity sequence vU. Likewise,
a reordered copy of u is encoded by the lower encoder CL to produce the
lower parity sequence vL. The corresponding permutation is denoted by ΠUn.
Finally, the output of the PCC encoder is the sequence v = (u,vU,vL).

The compact graph representation [10] of the PCC ensemble is depicted
in Figure 1(b). Each of the sequences u, vU, and vL is represented by a
black circle, referred to as variable node. The trellises corresponding to the
component encoders are shown by squares, called factor nodes, and they are
labeled by the length of the trellises. The sequences u and vU are connected
to the upper trellis TU. Likewise, a reordered copy of u and vL are connected
to the lower trellis TL. In order to emphasize that a reordered copy of u is
connected to TL, the corresponding permutation is represented by a line that
crosses the edge which connects u to TL.

Figure 1(c) shows the compact graph representation of the spatially coupled
PCC (SC-PCC) ensemble with coupling memory m = 1 at time t. Consider a
collection of PCC ensembles at time slots t = 1, . . . , L, where L is the coupling
length. The SC ensemble can be obtained by dividing the information sequence
at time t, ut, and its reordered copy, ũt, into two subsequences, denoted by
ut,j and ũt,j , j = 0, 1, respectively. Then these subsequences are spread over
time t and t + 1. The input sequence to the upper encoder at time t is the
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Figure 1: (a) Encoder block diagram of PCC. Compact graph representation of (b)
PCC, (c) SC-PCC.

Table 1: Predicted AWGN channel thresholds for rate-1/3 TCs and SC-TCs.

Ensemble Type Eb/N0 [dB]BP Eb/N0 [dB]MAP Eb/N0[dB]
1
SC Eb/N0 [dB]

3
SC Eb/N0[dB]

5
SC

CPCC/CSC−PCC - -0.1053 -0.3070 -0.3070 -0.3070 -0.3070

CSCC/CSC−SCC - 1.4024 -0.4740 -0.1196 -0.4673 -0.4740

CBCC Type-I 1.2139 -0.4723 -0.3992 -0.4573 -0.4673

CBCC Type-II 1.2139 -0.4723 -0.4690 -0.4723 -0.4723

CHCC/CSC−HCC Type-I 3.8846 -0.4941 1.0366 0.3038 0.0780

CHCC/CSC−HCC Type-II 3.8846 -0.4941 0.2809 -0.4706 -0.4941

sequence (ut,0,ut−1,1), reordered by permutation ΠU
t .20 Likewise, the input

sequence to the lower encoder at time t is the sequence (ũt,0, ũt−1,1), reordered
by permutation ΠL

t . The information bits at time slots t ≤ 0 are initialized by
zero and the information bits at t = L are chosen in such a way that uL,1 = 0
and ũL,1 = 0 (i.e., we consider the termination of the coupled chain).

Figure 2 shows the compact graph representation of the SCC, BCC, and
HCC ensembles, and their corresponding spatially coupled ensembles. In this
paper, we restrict ourselves to PCC, SCC and HCC ensembles with identical 4-
state component trellises and generator matrix G = (1, 5/7), in octal notation.
For the BCC ensemble, we consider two identical 4-state component trellises
with generator matrix

G(D) =

(
1 0 1/7
0 1 5/7

)
. (1)

20The multiplexer is represented by a rectangular in the compact graph representation.
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Figure 2: Compact graph representation of (a) SCC, (b) SC-SCC, (c) BCC, (d)
SC-BCC, (e) HCC, and (f) SC-HCC.

We also restrict ourselves to systematic TCs and SC-TCs with rate R = 1/3.
Therefore, for the SCC and HCC ensembles, we consider full puncturing of the
parity sequences of the outer encoders [10], [11].

3 Spatial Coupling: Waterfall Region Perform-
ance

3.1 Asymptotic Performance

Using the decoding threshold of an ensemble computed for the BEC, it is
possible to predict its decoding threshold over the AWGN channel [18], [19].
This allows us to use the decoding thresholds of the TC and SC-TCs from [10],
[11] to predict the corresponding thresholds over the AWGN channel. The
results are shown in Table 1. Similar to the BEC, among all the uncoupled
TC ensembles, the PCC ensemble has the best BP threshold but the worst
MAP threshold. Conversely, the HCC ensemble has the worst BP threshold
but the best MAP threshold, which is very close to the Shannon limit. It
can also be seen that for all coupled ensembles, threshold saturation occurs.
In general, as the numerical results in Table 1 suggest, SC-TC ensembles can
achieve close-to-capacity BP thresholds.
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Figure 3: Simulation results for PCC, SC-PCC vs. SCC, SC-SCC, R = 1/3.

3.2 Finite Block-Length Performance

Figure 3 shows BER simulation results for PCCs, SCCs, SC-PCCs, and spa-
tially coupled SCC (SC-SCCs) with R = 1/3 and input block length K = 1024
and K = 4096. For the coupled ensembles, we consider a coupling length
L = 100 and a sliding window decoder with window size W = 4 [15]. The
decoding latency is W · K. It is well known that the PCC ensemble yields
better performance than the SCC ensemble in the waterfall region [12]; how-
ever, the SCC ensemble has a much lower error floor than the PCC ensemble.
By applying spatial coupling, the performance of the PCC and SCC ensembles
improves significantly for both input block lengths. This improvement is more
substantial for the SCC ensemble than for the PCC ensemble. For instance,
the performance of the SCC ensemble with K = 1024 at BER= 10−5 improves
more than 1 dB with coupling. The coupling gains are in agreement with the
decoding thresholds in Table 1. As it can be seen, the gap between the BP and
MAP threshold of the SCC ensemble is larger than that of the PCC ensemble,
hence the expected gain from coupling is bigger for the SCC ensemble.

In Figure 3, the uncoupled ensemble with K = 4096 and the coupled en-
semble with K = 1024 have equal latency, i.e., both ensembles have a decoding
latency of 4096 bits. For this latency, the SC-SCC ensemble performs better
than the SCC ensemble. However, in the case of PCCs, for a latency of 4096
bits, the uncoupled ensemble performs slightly better than the corresponding
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coupled ensemble. Interestingly, for equal latency, the SC-SCC ensemble out-
performs the SC-PCC ensemble in the waterfall region. Thus, the SC-SCC
ensemble yields better performance in both the waterfall and error floor re-
gions.

In the following section, we investigate the impact of spatial coupling on
the error floor performance of TCs.

4 Spatial Coupling: Error Floor Region Per-
formance

Similar to uncoupled TC ensembles, to analyze the performance of SC-TC
ensembles in the error floor region, one could derive bounds based on the WEFs
of the ensembles. Unfortunately, deriving the WEF for SC-TCs is cumbersome.
In this section, we establish a connection between the WEF of SC-TC ensembles
and that of the corresponding uncoupled ensembles. In particular, we prove
that, under certain conditions, spatial coupling does not decrease the minimum
distance of TCs. This allows us to use the WEF analysis of TCs to estimate
the error floor performance of SC-TCs. A similar connection between LDPC
and SC-LDPC codes is proved in [23], [24], [25]. Here, we restrict ourselves
to SC-TCs with coupling memory m = 1, but the proof can be generalized to
higher coupling memories.

Theorem 2 Consider an uncoupled PCC, C̃, (see Figure 1(b)) with permuta-
tion ΠUn and parity-check matrices HU and HL corresponding to the upper
and lower component encoders. It is possible to unwrap the PCC to form an
SC-PCC, C (Figure 1(c)). For the SC-PCC, we assume a length-L coupled
chain with termination or tailbiting, and time-invariant permutations. Let us
denote the permutations by ΠU

t = ΠU, ΠL
t = ΠL, and Πt = Π, and assume that

they satisfy
ΠUn = (ΠU)−1 ·Π ·ΠL.

Then, for any codeword v ∈ C, v = (v1, . . . ,vL), vt = (ut,v
U
t ,v

L
t ), with

Hamming weight wH(v), there exists a codeword ṽ ∈ C̃ such that

wH(ṽ) ≤ wH(v) .

Proof 6 We prove this theorem for tailbiting of the coupled chain, which con-
tains termination as a special case. The result is thus valid for both cases. Any
codeword v ∈ C satisfies the local constraints for t = 1, . . . , L. Therefore, at
time t,
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(
(ut,0,ut−1,1) ·ΠU vUt

)
·HT

U = 0, (2)(
(u′t,0,u

′
t−1,1) ·ΠL vLt

)
·HT

L = 0, (3)

where u′t = ut · Π. The constraints are linear and time-invariant. Thus, for
t = 1, . . . , L, any superposition of the vectors

(
(ut−1,1,ut,2) · Π1 vUt

)
and(

(u′t−1,1,u
′
t,2) · Π1 vLt

)
satisfies (2) and (3), respectively. In particular,

consider

L∑
t=1

(
(ut,0,ut−1,1) ·ΠU vUt

)
=
( L∑
t=1

(ut,0,ut−1,1) ·ΠU
L∑
t=1

vUt
)

=
( L∑
t=1

ut ·ΠU
L∑
t=1

vUt
)
, (4)

and

L∑
t=1

(
(u′t,0,u

′
t−1,1) ·ΠL vLt

)
=
( L∑
t=1

(u′t,0,u
′
t−1,1) ·ΠL

L∑
t=1

vLt
)

=
( L∑
t=1

u′t ·ΠL
L∑
t=1

vLt
)

=
( L∑
t=1

ut ·Π ·ΠL
L∑
t=1

vLt
)
. (5)

Let

ũ =

L∑
t=1

ut ·ΠU, ṽU =

L∑
t=1

vUt , ṽL =

L∑
t=1

vLt .

Then, the vectors obtained from (4) and (5) can be rewritten as (ũ ṽU) and
(ũ ·ΠUn ṽL), respectively.

The vectors from (4) and (5) satisfy (2) and (3), respectively. Thus,

(ũ ṽU) ·HT
U = 0, (6)

(ũ ·ΠUn ṽL) ·HT
L = 0. (7)
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Therefore, ṽ = (ũ, ṽU, ṽL) is a codeword of the uncoupled ensemble.
If all nonzero elements of vt, t = 1, . . . , L, occur at different positions, then

wH(ṽ) = wH(v). Otherwise, the overlap of the nonzero elements reduces the
weight of ṽ and wH(ṽ) < wH(v).

This theorem can be extended to the other TC ensembles.

Theorem 3 Consider an uncoupled SCC (BCC/HCC), C̃, (Figure 2). It is
possible to unwrap the SCC (BCC/HCC) to form an SC-SCC (BCC/SC-HCC),
C (Figure 2). For the coupled code, we assume a length-L coupled chain with
termination or tailbiting, and time-invariant permutations which satisfy certain
conditions. Then, for any codeword v ∈ C, v = (v1, . . . ,vt, . . . ,vL), vt =
(ut,v

U
t ,v

L
t ), there exists a codeword ṽ ∈ C̃ such that

wH(ṽ) ≤ wH(v) .

Proof 7 See Appendix.

Corollary 1 The minimum distance of an SC-TC ensemble C is larger than
or equal to the minimum distance of the underlying uncoupled TC ensemble C̃,

dmin(C) ≥ dmin(C̃) .

�

By the above theorems, we establish conditions on the permutations under
which SC-TCs have equal or better minimum distance than their corresponding
TCs. These conditions can be considered as guidelines for selecting proper
permutations for SC-TCs. According to the theorems and the corollary above,
the WEF analysis of uncoupled TC ensembles can be used to investigate the
error floor and the minimum distance of SC-TC ensembles.

5 Weight Enumerator Analysis

In this section, we describe how to derive upper bounds on the error rate
performance of TC ensembles and bounds on the minimum distance of these
ensembles based on their WEFs [12], [20]. Then, we compare these bounds for
different classes of TCs. For that, we first derive the average input-parity WEF
(IP-WEF) of the component encoders. In particular, we describe the steps for
a rate-2/3 recursive systematic convolutional encoder. A similar method can
be used to derive the IP-WEF of any convolutional encoder with arbitrary rate
R. Then, we use the obtained IP-WEFs to compute the average IP-WEFs of
the TC ensembles.



A New Trade-off Between Waterfall and Error Floor 161

5.1 Input-Parity Weight Enumerator

Let A(I1, I2, P ) denote the IP-WEF of a rate-2/3 recursive systematic convo-
lutional encoder,

A(I1, I2, P ) =
∑
i1

∑
i2

∑
p

Ai1,i2,p I
i1Ii2P p,

where the coefficient Ai1,i2,p denotes the number of codewords with weight
i1, i2, and p for the first input, the second input, and the parity sequence,
respectively.

A(I1, I2, P ) can be computed as follows. For a trellis with s states, trans-
itions within a trellis section can be described by an s × s matrix M . The
element of M in the rth row and the cth column, [M ]r,c, corresponds to the
trellis branch from the rth state to the cth state. More precisely, [M ]r,c is a
monomial Ii11 I

i2
2 P

p, where i1, i2, and p are the weights corresponding to the
first, second, and third outputs of the transition from the rth state to the cth
state. For a trellis with N sections, the overall transition matrix is MN . Con-
sidering that the trellis is initialized and terminated to the all-zero state, the
IP-WEF is given by the element [MN ]1,1.

Example 8 Assume a terminated, rate-2/3 convolutional encoder with three
trellis sections and generator matrix in (1).

The transition matrix can be written as

M(I1, I2, P ) =


1 I2P I1I2 I1P
I1 I1I2P I2 P
I2P 1 I1P I1I2
I1I2P I1 P I2

 ,

and the IP-WEF becomes

A(I1, I2, P ) = [M3]1,1 =

1 + I32P
2 + 2I1I2P + I1I2P

3 + 2I1I
2
2P+

I1I
2
2P

3 + I21I2 + 2I21I2P
2 + 3I21I

2
2P

2 + I31P + I31I
3
2P .

4
For a rate-1/2 convolutional encoder, we can obtain the transition matrix

M in a similar way. Then, the IP-WEF of the encoder is given by [MN ]1,1
and can be written as

A(I, P ) =
∑
i

∑
p

Ai,p I
iP p,

where Ai,p is the number of codewords of input weight i and parity weight p.
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Consider the PCC ensemble shown in Figure 2(b). Let ATU(I, P ) and
ATL(I, P ) denote the IP-WEFs corresponding to the upper and lower compon-
ent encoder, respectively. The overall IP-WEF depends on the IP-WEF of the
component encoders and the permutation used. Averaging over all possible
permutations, the coefficients of the average IP-WEF of the PCC ensemble,
ĀPCC
i,p , can be obtained as [20]

ĀPCC
i,p =

∑
p1
ATU
i,p1
·ATL

i,p−p1(
N
i

) . (8)

For the SCC ensemble shown in Figure 2(b), we denote the IP-WEFs of
the outer and inner encoder by ATO(I, P ) and ATI(I, P ), respectively. Similar
to PCCs, the average IP-WEF of the SCC ensemble, ĀSCC

i,p , can be computed

by averaging over all possible permutations [12]. The coefficients ĀSCC
i,p can be

written as

ĀSCC
i,p =

∑
p1

ATO
i,p1
·ATI

i+p1,p−p1(
2N
i+p1

) . (9)

We denote the IP-WEFs corresponding to the upper and lower component
encoders of the BCC ensemble (Figure 2(c)) by ATU(I, P ) and ATL(I, P ), re-
spectively. The coefficients of the average IP-WEF, ĀBCC

i,p , can be computed
as

ĀBCC
i,p =

∑
p1

ATU
i,p1,p−p1 ·A

TL
i,p−p1,p1(

N
i

)(
N
p1

)(
N

p−p1
) . (10)

To compute the average IP-WEF of the HCC ensemble, ĀHCC
i,p , it is possible

to combine the methods that we used for PCCs and SCCs. First, the average
IP-WEF of the parallel component is computed. Then, ĀHCC

i,p can be obtained

by substituting ATO(I, P ) in (9) by the computed average IP-WEF of the
parallel component [16],

ĀHCC
i,p =

∑
p1

∑
p2

ATU
i,p1
·ATL

i,p2
·ATI

p1+p2,p−p1−p2(
N
i

)(
2N

p1+p2

) . (11)

It is worth mentioning that by the use of the compact graph representation,
TCs can be seen as a class of protograph-based generalized LDPC (GLDPC)
codes. Therefore, equivalently, it is possible to compute the average IP-WEF
of TCs by the method developed for GLDPC codes in [21], [22].



A New Trade-off Between Waterfall and Error Floor 163

2 4 6 8 10
10−20

10−15

10−10

10−5

100

Eb/N0

B
E

R

PCC

SCC

BCC

HCC

Figure 4: Union bound on performance of the TCs, K = 512, R = 1/3.

5.2 Bounds on the Error Probability

Consider transmission of codewords of a rate-R TC ensemble over the AWGN
channel. For a maximum likelihood (ML) decoder, the BER is upper bounded
by

Pb ≤
N∑
i=1

N(1/R−1)∑
p=1

i

N
Āi,p Q

(√
2(i+ p)R

Eb

N0

)
. (12)

Likewise, the frame error rate (FER) is upper bounded by

PF ≤
N∑
i=1

N(1/R−1)∑
p=1

Āi,p Q

(√
2(i+ p)R

Eb

N0

)
, (13)

where Q(.) is the Q-function and Eb/N0 is the signal-to-noise ratio.
Figure 4 shows the bounds on the BER performance of the different classes

of TCs for R = 1/3 and K = 512. The bounds are truncated at weight
w = 320, which is larger than the corresponding Gilbert-Varshamov limit. The
HCC ensemble has the lowest error floor, while the BCC and PCC ensembles
have the highest error floors. Surprisingly, the error floor of the BCC ensemble
is not only high but also has the worst slope among all TC ensembles. On
the other hand, the excellent MAP thresholds of the BCC ensemble suggest
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Figure 5: Bounds on performance of the BCCs and simulation results for uniformly
random and fixed permutations, K = 512, R = 1/3.

a good performance for this ensemble under MAP decoding. The contradic-
tion between the excellent MAP threshold of the BCC ensemble and its poor
bound suggests that the performance is dominated by few bad permutations.
To verify this, we simulated the BCCs for two scenarios; first, a randomly se-
lected but fixed set of permutations; second randomly chosen permutations for
each simulated block. The results are shown in Figure 5, together with the cor-
responding bounds. The figure shows that the bounds are in agreement with
the simulation results for uniformly random permutations. However, it indic-
ates a significant improvement in FER for the fixed set of permutations. For
example, at Eb/N0 = 2.5 dB, the FER improves from 9.5 · 10−5 to 6.8 · 10−7.
This significant improvement caused by fixing the permutations, supports that
the high floor of the BCC ensemble is caused by the poor performance of a
small fraction of codes. Thus, in the next section, we compute expurgated
union bounds.

5.3 Bound on the Minimum Distance and Expurgated
Bounds

Consider a TC ensemble consisting of Ω codes in total. The value Ω follows from
the different possible combinations of permutations and depends on the type
of the ensemble. Assume that all codes in the ensemble are selected with equal
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probability. Then, the number of codewords with weight w over all possible
codes in the ensemble is ΩĀw, where Āw is the average WEF of the ensemble.
Therefore, given an integer value d̃, the total number of codewords with weight
w < d̃ can be computed as

Ωw<d̃ = Ω

d̃−1∑
w=1

Āw .

By considering that these codewords are spread over different possible codes,
we can obtain an upper bound on the number of codes with minimum distance
dmin ≥ d̃,

Ωw≥d̃ < Ω− Ω

d̃−1∑
w=1

Āw .

Let α denote the fraction of codes with dmin ≥ d̃. Then, α is upperbounded by

α < 1−
d̃−1∑
w=1

Āw . (14)

For a given α and Āw, an analytical bound on the minimum distance of an
ensemble can be obtained by computing the largest d̃ which satisfies (14). In
fact, this bound shows that a fraction α of all possible codes has minimum dis-
tance dmin ≥ d̃. In Figure 6, considering different classes of TCs with R = 1/3,
this bound is computed for α = 0.5 and different input block lengths. As it can
be seen, the HCC ensemble has the best minimum distance, and the PCC en-
semble the worst. As an example, for K = 300 the values computed for HCCs,
BCCs, SCCs, PCCs are d̃ = 129, 99, 37, and 10, respectively. Comparing
the results in Figure 6 and the thresholds in Table 1, we can observe that the
TC ensembles with good MAP threshold also have good minimum distance.
According to Figure 6, for both the BCC and HCC ensembles, the minimum
distance grows linearly with the input block length [16], [26]. However, the
bound on the minimum distance of the HCC ensemble has a higher slope and
grows faster than that of the BCC ensemble.

Consider excluding a fraction (1 − α) of codes with dmin < d̃ from a TC
ensemble. Then, it is possible to compute the upper bound on the performance
of this expurgated ensemble. The average BER of the expurgated ensemble is
upperbounded by

Pb ≤
1

α

kN∑
i=1

nN∑
w=d̃

i

N
Āi,w Q

(√
2wR

Eb

N0

)
. (15)
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Figure 6: Bound on the minimum distance, fraction α = 0.5 of codes have dmin > d̃.

The bounds for the expurgated TC ensembles are shown in Figure 7 for α =
0.5, which means that half of the codes with dmin < d̃(α) are excluded. For
comparison, we also provide the corresponding union bounds in the same figure.
It can be seen that for all TC ensembles except the PCC ensemble, the error
floor estimated by the expurgated bound is much steeper and lower than that
resulting from the union bound. In other words, expurgation improves the
performance of the SCC, BCC, and HCC ensembles significantly.

For the BCC and HCC ensembles, the gap between the expurgated bound
and the union bound is very large and notable. To investigate the influence of
expurgation on the performance of these ensembles, in Figure 8 we provide the
expurgated bound on the BER of the BCC and HCC ensembles for α = 0.5
and α = 0.99. Note that for α = 0.99, the expurgated bounds are computed
by excluding only 1% of the possible codes, and these bounds are still signific-
antly lower and steeper than the corresponding union bounds. For the BCC
ensemble, the gap between the expurgated bounds for α = 0.5 and α = 0.99
is much smaller than that of the HCC ensemble. Therefore, for α = 0.99,
the BCC ensemble has slightly steeper and lower error floor than the HCC
ensemble. The fact that changing α has a little impact on the expurgation of
the BCC ensemble suggests that only a small fraction of the codes have poor
distance properties. This means that for a BCC with randomly selected but
fixed permutations, with high probability the error floor is as steep and low as
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Figure 7: Expurgated union bound on performance of TCs, α = 0.5, K = 512, and
R = 1/3.

the corresponding expurgated bound for an ML decoder.

6 Discussion and Conclusion

We investigated the performance of SC-TC ensembles with finite block length
in both waterfall and error floor regions. The two primary results can be sum-
marized as follows. First, spatial coupling not only improves the asymptotic
decoding threshold of an ensemble but also, for finite length and given latency,
it improves the performance of the ensemble in the waterfall region. Second,
considering certain conditions, spatial coupling either improves or preserves
the minimum distance of the ensemble. Therefore, the coupled ensembles can-
not have worse error floor than the corresponding uncoupled TC ensembles.
Using this fact, instead of performing the cumbersome WEF analysis for the
coupled ensemble, we derived the WEF for uncoupled ensembles. Then, based
on the WEF, we computed bounds on BER performance and the minimum
distance of TCs. As the coupled ensembles have equal or larger minimum dis-
tance than the uncoupled ensembles, the computed bounds for TCs can be
used to approximate the error floor of SC-TCs. The results from the WEF
analysis of TCs demonstrate very low error floors for SCC, BCC, and HCC
esnembles. Moreover, for the BCC and HCC ensembles, the minimum distance
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Figure 8: Expurgated union bound of HCCs and BCCs for α = 0.5 and α = 0.99,
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grows linearly with block length.
Comparing the thresholds of SC-TC ensembles (see Table 1) and the res-

ults from the WEF analysis, we observe that the ensembles with better MAP
thresholds also have larger minimum distance and lower error floor. How-
ever, so far, only PCCs have been widely used in various standards—such as
UMTS and LTE— because of their good BP thresholds and good performance
in the waterfall region. Other TC ensembles have received much less attention
for commercial use, although they have better MAP threshold and distance
properties than PCCs. Our results confirm that the BP thresholds of these
ensembles can be significantly improved by applying coupling. Also, regarding
the finite length regime, while their error floor stays at very low error probab-
ilities, their waterfall performance gets much closer to capacity. This brings us
to the conclusion that by coupling a given ensemble with close to capacity MAP
threshold and low error floor, such as SCCs, BCCs, and HCCs, the resulting
ensemble is very promising and can perform close-to-capacity, yet achieving
low error floor, with a low complexity iterative decoder.

Finally, we should remark that the considered bounds estimate the error
floor of an ML decoder. To obtain bounds on the performance of the BP de-
coder, more investigations on the corresponding absorbing sets [27] and pseudo-
codewords [28] need to be done.
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Proof of Theorem 2

We prove the theorem for the general case of tailbiting.

Serially Concatenated Codes

Consider the SCC and SC-SCC ensembles in Figure 2(a) and (b), and assume
that

ΠUn = Π(1) ·Π(2).

Any codeword v ∈ C satisfies the local constraints for t = 1, . . . , L. Therefore,
at time t, (

ut v
O
t

)
·HT

O = 0 , (1)(
(ṽ′t,0 ṽ′t−1,1) ·Π(2) vIt

)
·HT

I = 0 , (2)

where ṽ′t = (ut,v
O
t ) · Π(1). The constraints are linear and time-invariant.

Therefore, any superposition of the vectors
(
ut vOt

)
and

(
(ṽ′t−1,1 ṽ′t,2) ·

Π(2) vIt
)

from different time slots t = 1, . . . , L, satisfy (1) and (2), respectively.
In particular, we can consider

L∑
t=1

(
ut v

O
t

)
=
( L∑
t=1

ut

L∑
t=1

vOt
)
, (3)

169
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and

L∑
t=1

(
(ṽ′t,0 ṽ′t−1,1) ·Π(2) vIt

)
=
( L∑
t=1

(ṽ′t,0 ṽ′t−1,1) ·Π(2)
L∑
t=1

vIt
)

=
( L∑
t=1

ṽ′t ·Π(2)
L∑
t=1

vIt
)

=
( L∑
t=1

(ut v
O
t ) ·Π(1) ·Π(2)

L∑
t=1

vIt
)
. (4)

Let

ũ =

L∑
t=1

u, ṽO =

L∑
t=1

vO, ṽI =

L∑
t=1

vI,

and substitute (3) and (4) into (1) and (2), respectively. Then(
ũ ṽO

)
·HT

O = 0 , (5)(
(ũ ṽO) ·ΠUn ṽI

)
·HT

I = 0 . (6)

Therefore, ṽ = (ũ, ṽO, ṽI) is a codeword of the uncoupled code. If all nonzero
elements of vt, t = 1, . . . , L, occur at different positions, then wH(ṽ) = wH(v).
Otherwise, the overlap of the non zero elements reduces the weight of ṽ and
wH(ṽ) < wH(v).

Braided Convolutional Codes

Consider the SCC and SC-SCC ensembles in Figure 2(c) and (d), and assume
that Πt = Π, ΠU

t = ΠU and ΠL
t = ΠL. A valid code sequence of C has to satisfy

the local constraints (
ut vLt−1 ·ΠU

t vUt
)
·HT

U = 0 , (7)(
ut ·Πt vUt−1 ·ΠL

t vLt
)
·HT

L = 0 (8)

for all t = 1, . . . , L, where HU and HL are the parity-check matrices that rep-
resent the constraints imposed by the trellises of the upper and lower component
encoders, respectively. Since these constraints are linear and time-invariant, it
follows that any superposition of vectors vt = (ut,v

U
t ,v

U
t ) from different time

instants t ∈ {1, . . . , L} will also satisfy (7) and (8). In particular, if we let

ũ =

L∑
t=1

ut , ṽL =

L∑
t=1

vLt , ṽU =

L∑
t=1

vUt
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then (
ũ ṽL ·ΠU ṽU

)
·HT

U = 0 , (9)(
ũ ·Π ṽU ·ΠL ṽL

)
·HT

L = 0 . (10)

Here we have implicitly made use of the fact that vt = 0 for t < 1 and t > L.
But now it follows from (9) and (10) that ṽ = (ũ, ṽU, ṽL) ∈ C̃, i.e., we obtain
a codeword of the uncoupled code. If all nonzero symbols within vt occur at
different positions for t = 1, . . . , L, then wH(ṽ) = wH(v). If, on the other hand,
the support of nonzero symbols overlaps, the weight of ṽ is reduced accordingly
and wH(ṽ) < wH(v).

The same result can be proved for HCCs by combining the proofs for PCCs
and SCCs.
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A Unified Ensemble of Concatenated

Convolutional Codes

We introduce a unified ensemble for turbo-like codes (TCs) that con-

tains the four main classes of TCs: parallel concatenated codes, serially

concatenated codes, hybrid concatenated codes, and braided convolutional

codes. We show that for each of the original classes of TCs, it is possible to

find an equivalent ensemble by proper selection of the design parameters

in the unified ensemble. We also derive the density evolution (DE) equa-

tions for this ensemble over the binary erasure channel. The thresholds

obtained from the DE indicate that the TC ensembles from the unified

ensemble have similar asymptotic behavior to the original TC ensembles.
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1 Introduction

Over the last few years, research on low-density parity-check (LDPC) convo-
lutional codes [1], also known as spatially coupled LDPC (SC-LDPC) codes
[2], has become very popular. It is proved that for these codes, the be-
lief propagation (BP) decoder can achieve the threshold of the maximum-a-
posteriori (MAP) decoder [2], [3]. This remarkable phenomenon is known as
threshold saturation. Spatial coupling is a general concept that is not lim-
ited to LDPC codes. Recently, spatially coupled turbo-like codes (SC-TCs)
were introduced in [4], [5], [6]. In these works, the spatial coupling of the
four main classes of TCs was considered. These included parallel concatenated
codes (PCCs) [7], serially concatenated codes (SCCs) [8], braided convolutional
codes (BCCs)[9], and hybrid concatenated codes (HCCs) [10], [11]. The dens-
ity evolution (DE) analysis performed in [4], [5], [6] suggests that SC-TCs have
an excellent asymptotic behavior and for them, threshold saturation occurs.
This gives a new perspective in designing a concatenated coding scheme: op-
timizing the uncoupled ensembles for achieving the best BP threshold may not
necessarily lead to the best overall performance.

TCs are adopted in many communication standards. Each class of TCs
exhibits a unique asymptotic behavior. While certain classes—such as PCCs—
yield good BP thresholds, certain others—such as SCCs and BCCs—have ex-
cellent MAP thresholds. However, spatial coupling gives a new perspective
in the designing of TCs; relying on threshold saturation, we can optimize the
component codes of SC-TCs for higher MAP threshold. In this way, powerful
ensembles with good distance properties can perform very close to capacity [6].

So far, the different classes of TCs have been considered separately. A uni-
fied ensemble which contains all main TC ensembles can unify the frameworks
for analysis, and clarify the connections between the TC classes. In fact, this
ensemble can lead to a better understanding of the similarities and differences
between various TC classes and the possible trade-offs in the code design. In
addition, the ensemble allows us to design new ensembles that do not belong
to any of the original classes of TCs.

In [12], the authors introduced an ensemble which unifies PCCs and SCCs.
This ensemble is based on concatenations of several component encoders and
does not cover the BCC and HCC ensembles. In this paper, we introduce an
ensemble of concatenated convolutional codes that encompasses all the above-
mentioned four major classes of TCs. For simplicity, we only use a single
rate-1 component code 21. In other words, the different trellises are com-
bined to a single self-concatenated trellis. Probably, the most famous class of

21 In particular, we use a single rate-1/2 component encoder for which the systematic bits
are punctured, thus obtaining a rate-1 encoder. We remark that it is also possible to build
the unified ensemble based on a component encoder with general rate R and considering
proper puncturing of the encoder.
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self-concatenated convolutional codes are repeat accumulate (RA) codes, first
introduced in [13]. This class of codes is covered by the proposed ensemble
if the component code in the equivalent PCC ensemble is set as an accumu-
lator. In order to find a self-concatenated equivalent for the other classes of
TCs, some feedback path has to be introduced in the encoder structure. The
differences between the various original TC ensembles are then reflected in the
permutation structure and the amount of feedback in the unified ensemble.

We also derive the exact density evolution equations for the binary erasure
channel (BEC). Using these equations, we compute the BP thresholds of the
corresponding classes of TCs and we show that the obtained thresholds are
very close to the thresholds of the original ensembles.

2 Steps toward the Self-Concatenated Ensemble

In this section, for each class of TCs, we separately describe how to reduce the
number of component codes in order to obtain the equivalent self-concatenated
ensemble.

2.1 Parallel Concatenated Codes

Figure 3.4(a) and (b) show the encoder block diagram and compact graph
representation [6] of a PCC, respectively. The considered PCC ensemble is built
of two identical rate-1 component encoders, called upper and lower encoders,
and shown by CU and CL, respectively. The information sequence u is connected
to CU to produce the parity sequence vU. Likewise, a reordered copy of u
is connected to CL to produce the parity sequence vL. The output of the
PCC encoder is the tuple (u,vU,vL). In the compact graph representation
(see Figure 3.4(b)), the trellises corresponding to CU and CL, are depicted by
squares (factor nodes) and denoted by TU and TL, respectively. These factor
nodes are labeled with the length of the corresponding trellises. Each of the
sequences u, vU, and vL is represented by a black circle, called variable node.
The permutation Π in the block diagram is replaced in Figure 3.4(b) by a line
that crosses the edge between u and vL.

Figure 3.4(c) and (d) show respectively the encoder block diagram and
compact graph representation of the self-concatenated coding ensemble cor-
responding to a PCC. In this ensemble, the two component encoders of the
PCC ensemble are replaced by a repetition encoder CR (with repeating factor
2) followed by a rate-1 convolutional encoder C. The information sequence u
is connected to CR to produce the sequence (u,u). The resulting sequence is
reordered by the permutation Π̃ and used as input to C. The parity sequence
v has length 2N and corresponds to both vU and vL in the original ensemble.
Note that, by replacing C by an accumulator in Figure 3.4(c), an RA code can
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Figure 1: (a) Block diagram of a PCC, (b) Compact graph of a PCC, (c) Block
diagram of a self-concatenated PCC, and (d) Compact graph of a self-concatenated
PCC.

be obtained. However, the ensemble in Figure 3.4(c) is more general as C can
be any convolutional encoder.

In the compact graph representation (see Figure 3.4(d)), the repetition of
the information sequence is shown by increasing the degree of the corresponding
variable node. As it is shown in the figure, the sequence u and its repetition
are multiplexed to produce the sequence (u,u). The multiplexer is represented
by a rectangle. The resulting sequence is connected to trellis T to produce the
parity sequence v. Note that the length of the trellis in the self-concatenated
ensemble is twice of the length of TU and TL in the original ensemble.

In this paper we consider block-wise multiplexers. By selecting

Π̃ =

[
I 0
0 Π

]
, (1)

where I is the N ×N identity matrix, the self-concatenated ensemble is equi-
valent to the original ensemble.

2.2 Serially Concatenated Codes

The encoder block diagram and the compact graph representation of the SCC
ensemble are shown in Figure 2(a) and (b), respectively. This ensemble is built
of two identical rate-1 component encoders called outer and inner encoders and
shown by CO and CI, respectively. The length-N information sequence, u, is
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Figure 2: (a) Block diagram of a SCC, (b) Compact graph of a SCC, (c) Block
diagram of a self-concatenated SCC, and (d) Compact graph of a self-concatenated
SCC.

connected to CO to produce the parity sequence vO. Then, the sequences u
and vO are multiplexed and reordered. The resulting sequence is used as input
for CI to produce the parity sequence vI.

The encoder block diagram and compact graph representation of the equi-
valent self-concatenated ensemble are shown in Figure 2(c) and (d), respect-
ively. In this ensemble, the trellises of the outer and inner encoders are com-
bined to make a trellis with length 3N . Similarly to the self-concatenated
ensemble for PCCs, u is connected to CR with repetition factor 2 to produce
the sequence ũ = (u,u). In the original ensemble vO is used as part of the
input to CI. To satisfy this condition with only one component encoder, the
overall parity sequence of the self-concatenated ensemble, v, is divided into
two sequences v(1) and v(2), of length 2N and N , respectively. Then, v(2) is
used as a part of the input sequence through a feedback path. The feedback
path connects v(2) to a multiplexer. Then, this sequence is multiplexed with
sequence ũ. The resulting sequence is reordered by Π̃ and used as input to
C. Note that sequences v(1) and v(2) correspond to vO and vI in the original
ensemble, respectively.

We remark that, in general, the encoder of the self-concatenated ensemble
is not causal. However, this problem can be solved by proper selection of Π̃ or
by spatial coupling. By selecting Π̃ as in (1) the corresponding trellis is split
into two parts. The information sequence u is connected to the first part to
produce v(2). Then, a reordered copy of the sequence (u,v(2)) is connected to
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Figure 3: (a) Block diagram of a HCC, (b) Compact graph a HCC, (c) Block diagram
of a self-concatenated HCC (step 1), (d) Compact graph of a self-concatenated HCC
(step 1), (e) Block diagram of a self-concatenated HCC (step 2), and (f) Compact
graph of a self-concatenated HCC (step 2).

the second part of the trellis to produce v(1). By spatial coupling, the feedback
path can be fed forward to the corresponding multiplexer in the next time slots.

2.3 Hybrid Concatenated Codes

Figure 3(a) shows the encoder block diagram of an HCC ensemble built from
three identical rate-1 component encoders. The corresponding compact graph
representation is also shown in Figure 3(b). The considered HCC ensemble
is a serial concatenation of a parallel ensemble with an inner encoder. The
information sequence u and a reordered copy of it are fed to two encoders,
referred to as upper and lower encoders, and denoted by CU and CL, to produce
parity sequences vU and vL, respectively. Then, vU and vL are multiplexed
and reordered. The resulting sequence is used as an input to the inner encoder
CI.

The corresponding self-concatenated ensemble can be obtained in two steps.
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First, as it is shown in Figure 3(c)(d), the upper and lower trellises can be
unified into a single trellis with length 2N by the method described for PCCs.
Then, the resulting trellis can be connected to the inner trellis using the method
described for SCCs.

The self-concatenated ensemble for HCCs is shown in Figure 3(e)(f). In
this ensemble, the overall trellis has length 4N . The parity sequence v is
divided into two equal-size sequences v(1) and v(2) of length 2N . Then, v(2)

is multiplexed with sequence (u,u) generated by a repetition encoder CR. The
resulting sequence is reordered and used as an input to a rate-1 convolutional
encoder C. Note that v(1) and v(2) correspond to (vU,vL) and vI of the original
ensemble. By selecting

Π̃ =

 I 0 0

0 ΠL 0

0 0 ΠI

 , (2)

the self-concatenated ensemble is equivalent to the original ensemble.

2.4 Braided Convolutional Codes

Figure 4(a) shows the encoder block diagram of a BCC ensemble. This ensemble
is similar to the PCC ensemble but the BCC ensemble is built of two rate-2 22

convolutional encoders and the parity sequence of each encoder is fed back to
the input of the other encoder. Similarly to PCCs, the component encoders are
denoted by CU and CL and called upper and lower encoders, respectively. The
compact graph representation of the ensemble is shown in Figure 4(b). The
information sequence u and a reordered copy of vL are used as the first and
second input of CU, respectively to produce the parity sequence vU. Likewise,
a reordered copy of u and a reordered copy of vU are used as the first and
second input of CL respectively, to produce vL.

In order to obtain the self-concatenated ensemble for BCCs, we can use the
method described for PCCs. Figure 4(c) and (d) show the encoder block dia-
gram and compact graph representation of the corresponding self-concatenated
ensemble. The two component encoders, with N trellis sections, in the original
ensembles are combined to a component encoder with length-2N trellis. The
sequence u is connected to a repetition encoder CR to produce the sequence

(u,u). The resulting sequence is reordered by permutation Π̃
(1)

and used as
the first input of a rate-2 convolutional encoder C. The second input of the
encoder is a copy of the parity sequence v that is reordered by the permutation

22The component encoders are rate-2/3 convolutional encoders with all systematic bits
punctured.
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Figure 4: (a) Block diagram of a BCC, (b) Compact graph a BCC, (c) Block diagram
of a self-concatenated BCC (step 1), (d) Compact graph of a self-concatenated BCC
(step 1), (e) Block diagram of a self-concatenated BCC (step 2), and (f) Compact
graph of a self-concatenated BCC (step 2).

Π̃
(2)

. By selecting the permutations as

Π̃
(1)

=

[
I 0
0 Π

]
,

Π̃
(2)

=

[
0 ΠU

ΠL 0

]
,

the encoders in Figure 4(a) and (c) are equivalent.
The encoder ensembles in Figure 4(a) and (c) are not causal. For the

original ensemble of BCCs introduced in [9], this problem was solved by spatial
coupling. In the block-wise BCC ensemble, the parity sequences vU and vL,
(or v in the self-concatenated ensemble), are connected to the inputs of the
corresponding encoders after passing delay blocks. This makes the encoder
causal.

It is also possible to find a self-concatenated ensemble for BCCs that is very
close to those for the other TC classes. We can replace the rate-2 component
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Figure 5: (a) Block diagram of encoder (b) Compact graph representation of the
unified ensemble.

encoder in the self-concatenated ensemble by a rate-1 encoder for that half of
its output sequence is punctured. The encoder block diagram for this ensemble
is shown in Figure 4(e) and its corresponding compact graph representation is
depicted in Figure 4(f). As it is shown in these figures, the parity sequence is
divided into two parts v(1) and v(2). Sequence v(1) is fully punctured and v(2)

is multiplexed with the sequence (u,u) at the output of the repetition encoder
CR. The resulting sequence is reordered and fed to the convolutional encoder
C with corresponding trellis of length 4N .

3 The Unified Ensemble

Comparing the obtained self-concatenated ensembles introduced in the previous
section for the considered classes of TCs, we note similarities between them (see
Figure 3.4-Figure 4). Based on these similarities, we develop a unified ensemble.
The block diagram of the encoder and the compact graph representation of this
ensemble is shown in Figure 5. In this ensemble, the component convolutional
encoder is a rate-1 convolutional encoder. The information sequence u, of
length N , is connected to a repetition encoder CR with repetition factor 2
to produce the sequence ũ = (u,u). This sequence is multiplexed with v(2)

which is a part of the overall parity sequence v. Then, the resulting sequence
is reordered by the permutation Π(1), of size lN , and fed to the convolutional
encoder C. Parameter l is a design parameter which can be tuned to yield a
specific TC class (PCC, SCC, BCC, or HCC). The values of l for the different
classes of TCs are presented in Table 1.

The sequence v is divided into two sequences v(1) and v(2) of length l1N
and l2N , respectively. In order to guarantee random division of v, first, this
sequence is reordered by a permutation. Then, it is divided into the two se-
quences v(1) and v(2). The values of l1 and l2 for each class of TCs, are provided
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Table 1: Parameters of PCCs, SCCs, BCCs and HCCs.

Ensemble R ρ1 ρ2 l l1 l2 l2/l1

PCC 1/3 1 - 2 2 0 0

SCC 1/4 1 1 3 2 1 1/2

BCC 1/3 0 1 4 2 2 1

HCC 1/5 1 1 4 2 2 1

in Table 1. Note that l = l1 + l2.
Parameters ρ1 and ρ2 in Table 1 are the permeability rates for sequences

v(1) and v(2), respectively, giving the fraction of surviving bits of v(1) and v(2)

after puncturing. For example, to obtain the equivalent ensemble for BCCs,
ρ1 = 0, as v(1) is fully punctured. We remark that by selecting ρ1 and ρ2
properly, the obtained ensemble covers a family of rate compatible TCs.

An inspection of Figure 5(b) reveals that the compact graph representation
of the unified ensemble is very close to the protograph of an irregular LDPC
code. The factor node is a trellis with length lN , where its degree is fixed to
two. The variable nodes are classified into three groups as follows: u is an
information variable node with degree 2, v(1) is a parity variable node with
degree 1, and v(2) is a parity variable node with degree 2. The length of
theses variable nodes are not equal. Considering length N for u, v(1) and v(2)

have length l1N and l2N = 2N , respectively. According to Table 1, different
ensembles of TCs can be obtained by changing the ratio l2/l1 which is the
proportion of degree-1 and degree-2 parity variable nodes. This is very close
to defining the variable node degree distribution for LDPC codes.

3.1 Density Evolution

Considering transmission over a BEC with channel parameter ε, we can analyze
the asymptotic behavior of the unified ensemble by tracking the evolution of the
erasure probability with the number of iterations of the decoding procedure.
This evolution can be shown as a set of equations called DE equations, and
for the BEC, it is possible to derive an exact expression for them. In the ith
iteration, the extrinsic erasure probabilities from factor node T toward variable

nodes are denoted by x
(i)
1 and x

(i)
2 , respectively, for the first and second edge

connected to it. Then, the DE equations can be written as,

x
(i+1)
1 = f1(y

(i)
1 , y

(i)
2 ), (3)

x
(i+1)
2 = f2(y

(i)
1 , y

(i)
2 ) (4)
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Table 2: Thresholds of PCCs, SCCs, BCCs and HCCs.

Ensemble R εBP εUBP εMAP εUMAP

PCC 1/3 0.6428 0.6428 0.6553 0.6552

SCC 1/4 0.6895 0.6863 0.7481 0.7482

BCC 1/3 0.5541 0.5603 0.6653 0.6646

HCC 1/5 0.7261 0.6997 0.7995 0.7994

where

y
(i)
1 =

2εx
(i)
1 + l2(ρ2εx

(i)
2 + (1− ρ2)x

(i)
2 )

2 + l2
, (5)

y
(i)
2 =

l2(ρ2εx
(i)
1 + (1− ρ2)x

(i)
1 ) + l1(ρ1ε+ (1− ρ1))

2 + l2
. (6)

Here, f1 and f2 are the transfer functions of T for the systematic and parity
bits, respectively. The a-posteriori erasure probability of bits in the information
sequence u at the ith iteration is,

p(i)a = ε · (x(i)1 )2.

The decoding thresholds obtained by DE are reported in Table 2. The
table shows the BP threshold εBP and the MAP threshold εMAP of the original
ensembles. To obtain εBP and εMAP, we used the corresponding DE equations
and the area theorem, respectively. We also report in the table the BP threshold
εUBP and the MAP threshold εUMAP of the proposed equivalent ensembles. From
the results in the table, it can be seen that in the PCC case there is a good
match between the thresholds of the original ensemble and the corresponding
values of the equivalent ensemble. For the other cases, εBP and εUBP are similar.
However, there is a small gap between these thresholds. This gap can be
explained as follows. In the DE analysis of the unified ensemble, we consider
that the permutations are chosen randomly. Therefore, in equations (5) and
(6), we average over all possible cases. However, the original TC ensembles
are more structured and, in consequence, except for BCCs, εBP is larger than
εUBP. For BCCs, replacing the rate-2 component encoder by a rate-1 component
encoder with puncturing, is another reason for observing the gap between εBP

and εUBP. We also computed the thresholds for the self-concatenated ensemble
in Figure 4(c). The obtained BP and MAP thresholds for this ensemble are
identical to those of the original BCC ensemble.

The results in Table 2 demonstrate that thresholds similar to those of the
original TC classes can be obtained by changing the design parameters in the
unified ensemble.
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4 Conclusions

In this paper, a unified ensemble for various classes of TCs is introduced. This
ensemble is based on a single trellis with self-concatenation. We introduced two
elementary steps to find the self-concatenated equivalent of PCCs and SCCs.
We also used these elementary steps to find the self-concatenated HCCs and
BCCs. These elementary steps can also be applied to more general concatena-
tions.

Then, by considering the similarities between the self-concatenated en-
sembles for different TC classes, we found a unified ensemble. By changing
the proportion of degree-1, and degree-2 variable nodes in the graph or punc-
turing a part of the parity sequence, the original TC ensembles can be obtained.
The compact graph representation of our ensemble establishes a bridge between
TCs and protograph based LDPC codes, where the check nodes are replaced
by trellis constraints.

We believe that the unified ensemble may help in better understanding the
connections between concatenated code ensembles and LDPC code ensembles.
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