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Abstract

Ultra reliable low latency communication (URLLC) is an important feature in

future mobile communication systems, as they will require high data rates, large

system capacity and massive device connectivity [11]. To meet such stringent

requirements, many error-correction codes (ECC)s are being investigated; turbo

codes, low density parity check (LDPC) codes, polar codes and convolutional codes

[70, 92, 38], among many others. In this work, we present generalized low density

parity check (GLDPC) codes as a promising candidate for URLLC.

Our proposal is based on a novel class of GLDPC code ensembles, for which

new analysis tools are proposed. We analyze the trade-off between coding rate and

asymptotic performance of a class of GLDPC codes constructed by including a

certain fraction of generalized constraint (GC) nodes in the graph. To incorporate

both bounded distance (BD) and maximum likelihood (ML) decoding at GC nodes

into our analysis without resorting to multi-edge type of degree distribution (DD)s,

we propose the probabilistic peeling decoding (P-PD) algorithm, which models the

decoding step at every GC node as an instance of a Bernoulli random variable with

a successful decoding probability that depends on both the GC block code as well

as its decoding algorithm. The P-PD asymptotic performance over the BEC can

be efficiently predicted using standard techniques for LDPC codes such as Density

evolution (DE) or the differential equation method. We demonstrate that the

simulated P-PD performance accurately predicts the actual performance of the

GLPDC code under ML decoding at GC nodes. We illustrate our analysis for

GLDPC code ensembles with regular and irregular DDs.

This design methodology is applied to construct practical codes for URLLC.

To this end, we incorporate to our analysis the use of quasi-cyclic (QC) structures,

to mitigate the code error floor and facilitate the code very large scale integra-

tion (VLSI) implementation. Furthermore, for the additive white Gaussian noise

(AWGN) channel, we analyze the complexity and performance of the message

passing decoder with various update rules (including standard full-precision sum-
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product and min-sum algorithms) and quantization schemes. The block error rate

(BLER) performance of the proposed GLDPC codes, combined with a comple-

mentary outer code, is shown to outperform a variety of state-of-the-art codes, for

URLLC, including LDPC codes, polar codes, turbo codes and convolutional codes,

at similar complexity rates.
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Extended Abstract

URLLC is one of the key factors in the fifth-generation (5G) of cellular mobile

communications. To meet expectations for the demanding digital industry and

latency-sensitive services, it requires high data rates, large system capacity and

massive device connectivity [11]. Many error-correction codes (ECCs) are being

investigated to meet the stringent requirements of URLLC: turbo codes, LDPC

codes, polar codes, and convolutional codes [70, 92, 38], among many others. Be-

yond any doubt, LDPC codes, Polar codes and their variants will be included in

other new standards in the future. The state-of-the-art achievements of LDPC

codes show capacity achieving performance.

However, this requires large block length. For short block length, the error

floor problem which refers to the problem that the bit error rate (BER) perfor-

mance curve does not decrease as the SNR increases [33], becomes relevant. Under

iterative message passing decoding, the error floor of LDPC codes depends on a

number of structural properties of the codes and tanner graphs, such as girth, min-

imum weight, weight distribution of pseudocodewords [94, 84, 99], and is higher

than the one under Maximum a posterior probability (MAP) decoding. Thus, the

design of error correcting codes with short block length and good performance

under practical iterative decoding, as required for next-generation wireless com-

munication systems, is still very challenging. Generalized low-density parity-check

(GLDPC) codes are a promising class of codes for low latency communication. To

design codes for URLLC, we propose a novel class of GLDPC code ensembles, for

which new analysis tools are proposed.

We analyze the trade-off between coding rate and asymptotic performance of

a class of GLDPC codes constructed by including a certain fraction of general-

ized constraint (GC) nodes in the graph. The rate of the GLDPC ensemble is

bounded using classical results on linear block codes, namely Hamming bound

and Varshamov bound. We study the impact of the decoding method used at

GC nodes. To incorporate both bounded-distance (BD) and Maximum Likelihood
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(ML) decoding at GC nodes into our analysis without resorting to multi-edge

type of degree distributions (DDs), we propose the probabilistic peeling decoding

(P-PD) algorithm, which models the decoding step at every GC node as an in-

stance of a Bernoulli random variable with a successful decoding probability that

depends on both the GC block code as well as its decoding algorithm. The P-PD

asymptotic performance over the BEC can be efficiently predicted using standard

techniques for LDPC codes such as density evolution (DE) or the differential equa-

tion method. Furthermore, for a class of GLDPC ensembles, we demonstrate that

the simulated P-PD performance accurately predicts the actual performance of

the GLPDC code under ML decoding at GC nodes. We illustrate our analysis for

GLDPC code ensembles with regular and irregular DDs.

This design methodology is applied to construct practical codes for URLLC.

To this end, we incorporate to our analysis the use of quasi-cyclic structures,

to mitigate the code error floor and facilitate the code VLSI implementation.

Furthermore for the AWGN channle, we analyze the complexity and performance

of the message passing decoder with various update rules (including standard full-

precision sum-product and min-sum algorithms) and quantization schemes. The

block error rate (BLER) performance of the proposed GLDPC codes, combined

with a complementary outer code, is shown to outperform a variety of state-of-

the-art codes for URLLC, including LDPC codes, polar codes, turbo codes and

convolutional codes, at similar complexity rates.
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1
Introduction

1.1 Motivation

Ultra Reliable Low Latency Communication (URLLC) is one of the key factors in

future cellular mobile communications, including the fifth generation (5G). Three

main service categories in 5G have been defined by the third generation partnership

project [90]. The first is Enhanced Mobile Broadband (eMBB), which is the service

category, designed for services that have high requirements for bandwidth, such

as virtual reality and augmented reality. The second is Massive Machine-Type

Communication (mMTC) that supports a massive number of devices characterized

by ultra-low power consumption to increase the device lifetime. The third category

is Ultra Reliable Low Latency Communication (URLLC), which focuses on delay

sensitive applications and services, such as assisted and automated driving, remote

management, fault detection, frequency and voltage control in smart grids [11]. As

9
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Figure 1.1: Reliability and latency requirements for different URLLC services (Figure

borrowed from [90])

shown in Figure 1.1, URRLC requires very low error rates: factory automation

and tele-surgery have reliability requirements of 10−9 with an end-to-end latency

of less than 1ms.

Other services, such as smart grids or the tactile internet have reliability re-

quirements of 10−6 at latencies between 1ms and 100ms [90]. In this thesis, we

focus on designing error-correction codes (ECCs) to meet the requirements of

URLLC. Many ECCs are being investigated to this end. For instance, turbo

codes, LDPC codes, polar codes, or convolutional codes [70, 92, 38]. In addition,

LDPC codes have been selected for the EMBB data channels for 5G New Radio,

while Polar codes have been chosen for the corresponding control channel [90].

The state-of-the-art achievements of LDPC codes show capacity-achieving per-

formance when the block length is large. In the finite length regime, LDPC codes

suffer from non-negligible error floors [51]. The error floor of LDPC codes depends

on a number of structural properties of the Tanner graph they are designed on,

such as girth and distance codeword spectrum [94, 84, 99]. Furthermore, under

iterative message passing decoding, the error floor problem gets worse because of

10



Chapter 1. Introduction

“stopping sets” [87, 41, 76, 84], related to pseudocodewords [16], which is partic-

ularly noticeable in the short block length regime [98, 19]. Thus, error-correcting

codes of short length that have a good performance under iterative message pass-

ing decoding, as required for next-generation wireless communication systems, is

a great challenge.

Another class of ECCs that recently received a lot of attention are Polar codes

[35], which is a family of capacity-achieving error-correction linear block codes,

constructed on a recursive concatenation of a short kernel code, which transforms

the physical channel into virtual outer channels [58]. In [7], a comparison between

Polar codes, LDPC code and Turbo decoders for existing communications stan-

dards is investigated, both in terms of error-correction performance and hardware

efficiency. Belief Propagation (BP) decoding algorithm, Successive Cancellation

(SC) decoding algorithm and Successive-Cancellation List (SCL) decoding algo-

rithms are considered. Figure 1.2 (a) compares the performance of such coding

schemes. It turns out that both the BP and SC decoding are not powerful enough

to approach the fundamental limits in the finite block length regime at moderate

SNR values. As we can see, extended BCH (eBCH) with ordered statistics decoder

(OSD) codes outperform all other existing codes at all SNRs. However, OSD is

a quasi-ML decoding method, with large computational complexity. Figure 1.2

(b) shows the trade-off between performance and complexity. Among the two sets

of Polar codes with cyclic redundancy check (CRC)-aided SCL (CA-SCL) with

list sizes 4 and 32, the decoder with list size 32 is significantly better, but has a

significantly larger decoding complexity. The performance of short block length

LDPC codes designed for enhanced mobile broadband (eMBB) under BP decoding

is slightly better than the CA-Polar code with SCL decoding of list size 4.

We conclude that novel approaches are needed to meet the demands of URLLC

systems, we put forward generalized LDPC (GLDPC) codes as strong candidates

for URLLC, able to outperform both LDPC codes and Polar codes at similar

complexity. In the rest of the chapter, we briefly review the basic concepts of

LDPC codes, GLDPC codes, and message-passing decoding.

11
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Figure 1.2: In figure (a), we show the rates versus SNR for different error correcting codes

with block length 128 at BLER = 10−4. As benchmark, we further show the capacity of

the binary-input AWGN channel and the corresponding normal approximation at BLER

= 10−4. In figure (b) we plot the algorithmic complexity versus performance for different

rate 1/2 channel codes with block length 128 at BLER = 10−4. (Figure borrowed from

[90] )
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Chapter 1. Introduction

1.2 Low Density Parity-Check Codes

1.2.1 Background

Low density parity-check (LDPC) codes are a class of linear block codes, which

were originally proposed by Gallager in 1960’s [26], but were not quite developed

for a long time, due to the fact that the existing hardware could not support

effective decoder implementation [67]. 35 years later, MacKay, Luby, Urbanke and

Richardson, among others [55], [53], [3] rediscovered LDPC codes and proved that

LDPC codes are capable of closely approaching the channel capacity under feasible

low-complexity iterative decoding. Since then, LDPC codes have been included in

many communication standards, such as IEEE 802.6, IEEE 802.20, IEEE 802.3,

DBV-RS2 and China mobile multimedia broadcasting (CMMB).

Compared to turbo codes [21, 91], LDPC codes have performance and com-

plexity advantages, particularly at high code rates [5, 23]. Among others, we can

mention that the number of iterations for turbo codes is fixed in the decoder,

while the LDPC decoder easily incorporates an early stopping rule, which sig-

nificantly reduces the number of iterations. Moreover, the LDPC decoder can be

implemented in a parallel scheme, which is important when considering large block

lengths and low latency [23]. Furthermore, several works have reported that LDPC

codes have favorable error floors compare to turbo codes [84]. In the following we

give the notations and parameters used to define and analyze the LDPC codes.

1.2.2 LDPC ensemble Notation

LDPC codes are linear block codes specified by parity-check matrices containing

mostly 0’s and only a small number of 1’s [27]. For instance, a (N, J,K) regular

13



Chapter 1. Introduction

+
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N
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c
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Figure 1.3: Tanner graph of a LDPC code. N is the number of variable nodes and c is

the total number of check nodes in the Tanner graph.

LDPC code has block length N with a parity-check matrix as follows

H =




1 1 1 0 1 . . . 0 0 0 0 0 0

1 0 0 0 1 . . . 0 0 1 0 1 0

1 1 0 0 0 . . . 0 0 1 0 0 1
...

...
...

...
... . . .

...
...

...
...

...
...

1 0 0 0 1 . . . 0 0 1 0 0 1




,

where each column contains a small fixed numbers, J , of 1’s, and each row contains

a small fixed number, K, of 1’s [27]. The code can be represented by a Tanner

graph, shown in Figure 1.3, where the left part in the graph represents the N

variable node (VN)s and the right part represents the c single parity check (SPC)

nodes. The lines between VN and SPC are called edges. The degree of a VN is

the number of edges adjacent to it. Similarly, the degree of SPC is the number of

edges adjacent to this node. If all VNs have constant degree J and all SPC nodes

have constant degree K, then the LDPC code is said to be regular. Otherwise, it

is an irregular LDPC code. We denote by E the number of edges in the Tanner

graph. Given these definitions, the degree distribution (DD) of the LDPC code is

characterized as follows. The vector λ = (λ1, λ2, ..., λJ) is the left DD, where λi

represents the fraction of edges (w.r.t. E) connected to a variable node of degree

14



Chapter 1. Introduction

+

+

+

...

+
...

...

+

+

+

...

+
...

...

+

+

...

+
...

...

+

+

...

+
...

...

(a) (b) (c) (d)

Figure 1.4: The peeling decoding process.

i. Therefore, λ, N and E are related as follows [86]

N = E

J∑

i=1

λi/i. (1.1)

The right DD is defined by vector ρp = (ρp1, ρp2, ..., ρpK), where ρpj denotes the

fraction of edges (w.r.t. E) connected to a SPC node that has degree j. Note

that the LDPC graph is specified in terms of fractions of edges, not nodes, of each

degree. The average left degree of the graph is
∑

i iλi, the average right degree is
∑

j jρpj , and so the design coding rate is [86]

R = 1−
∑

i iλi∑
j jρpj

. (1.2)

1.2.3 Decoding over the Binary Erasure Channel

A binary erasure channel (BEC) is a communication channel model extensively

used in coding theory and information theory. It was first introduced by Elias

in 1954 as a toy example [86]. In this channel, the receiver either receives a

transmitted binary bit (0 or 1) correctly or an erasure (?), with the probability ε,

as shown in Figure 1.5. The BEC is often used because it is one of the simplest

noisy channels to analyze. It is also a good communication channel model for

packed communications.

Iterative decoding of LDPC codes over the BEC can be performed by peeling

decoding (PD) algorithms [50, 57, 75], which iteratively remove variable nodes
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Figure 1.5: Binary erasure channel with channel erasure ε.

Algorithm 1 PD

Remove from the Tanner graph of the LDPC code all variable nodes with indexes

in Γy.

Construct Ψ, the index set of check nodes that correspond to degree-one SPC

nodes.

repeat

1) Select at random a member of Ψ.

2) Remove from the Tanner graph the check node with the index drawn in

Step 1). Further, remove the connected variable node, and all attached edges.

3) Update Ψ.

until All variable nodes have been removed (successful decoding) or Ψ = ∅
(decoding failure).

whose value is known from the Tanner graph. We illustrate the PD process in

Figure 1.4. Suppose we use a random LDPC code of block length N to transmit

over a BEC(ε),for which each of the N code bits is erased with probability ε.

Without loss of generality, we assume that the all-zero codeword is transmitted,

hence the received vector y belongs to the set {0, ?}N , where ? denotes an erasure.

Let Γy ⊆ {1, . . . , N} be the index set of the bits correctly received, namely yi = 0

for all i ∈ Γy. After the BEC transmission, first of all, the PD removes all corrected

received VNs along with all adjacent edges from the tanner graph, as shown in
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Figure 1.4 (a). In the next step, the PD picks at random a degree-1 SPC node.

Note that a degree-1 SPC node represents a parity-check equation in which we

know all variables in the parity equation but one. The PD removes the degree-1

SPC node from the graph, along with the adjacent edge, as shown in Figure 1.4 (b)

and Figure 1.4 (c), respectively. Furthermore, the VN connected with this edge is

decodable and will be removed from the graph, along with all adjacent edges, as

shown in Figure 1.4 (d). Continuously, the PD repeats this procedure until there

is no VN left in the graph, which corresponds to a decoding success. If there is no

degree-1 SPC left in the graph before successful decoding, then we say that there

was a decoding failure. Thus, the key point of a successful decoding is to keep

having degree-1 SPC nodes on the residual graphs that are sequentially generated

during the PD process. We summarize the PD in Algorithm 1.

As a result, the PD decoding process yields a sequence of graphs. As shown in

[50], the mean of such sequence of residual graphs coincides with the asymptotic

(in the blocklength) average evolution of the ensemble. This asymptotic evolution

can be computed by solving a particular set of differential equations [50]. The

threshold of the LDPC code ensemble is given by the maximum BEC parameter

for which there is always at least one degree-1 SPC node until decoding success.

PD asymptotic analysis

In the following, we define the notation used to predict asymptotic DD evolution of

the residual LDPC tanner graph and introduce the differential equation technique

proposed in [50]. Suppose we use a LDPC code ensemble with maximum left

degree J and right degree K for transmission over the BEC with parameter ε.

The total number of edges in the LDPC graph is E. Given the residual graph

at the `-th iteration of the PD algorithm, let L
(`)
i represent the number of edges

that have left degree i at iteration `, and let R
(`)
pj represent the number of edges

that have right degree j at iteration `. Using Wormald’s theorem (See Appendix

A.1.1), in [50] the authors prove that the DD of the residual graph at iteration `
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under PD algorithm converges with E to

L
(`)
i /E→ l

(τ)
i , i ∈ {1, . . . , J} (1.3)

R
(`)
pj /E→ r

(τ)
pj , j ∈ {1, . . . ,K} (1.4)

where the notion of convergence is given in Appendix A.1.1 and τ = `
E
∈

[0,
∑J

i=1 l
(τ)
i /i]. In (1.3) and (1.4), (l

(τ)
i , r

(τ)
pj ) are the solutions to the following

system of differential equations:

dl
(τ)
i

dτ
= − il

(τ)
i

e(τ)
, (1.5)

dr
(τ)
pj

dτ
= (r

(τ)
p(j+1) − r

(τ)
pj )

j(a(τ) − 1)

e(τ)
− I[j = 1], (1.6)

where I[·] denotes the indicator function, and

e(τ) =
J∑

i=1

l
(τ)
i =

K∑

j=1

r
(τ)
pj , (1.7)

a(τ) =
∑

i

il
(τ)
i /e(τ), (1.8)

are, the fraction of remaining edges in the graph ate time τ and the average left

degree, respectively. The initial conditions of the system of differential equations

(1.5)-(1.6) are given by

l
(0)
i = ελi, (1.9)

r
(0)
pj =

∑

α≥j
ρpα

(
α− 1

j − 1

)
εj(1− ε)α−j (1.10)

for i = 1, . . . J , j = 1, . . . ,K [50]. The asymptotic PD threshold is computed

by the largest channel parameter ε for which r
(τ)
p1 > 0 during the whole decoding

process, τ ∈ [0,
∑J

i=1
li
i ]. For instance, in Figure 1.6 we plot the fraction rp1(τ) of

edges with right degree one as a function of the e(τ), the fraction of edges remain-

ing in the residual LDPC graphs, when the DD of the LDPC codes correspond to

(3,6)-regular, (4,8)-regular and (5,10)-regular LDPC code ensembles. The quanti-

ties rp1(τ) and e(τ) are computed by numerical integration from (1.5) and (1.6)

using Luby’s method. The thresholds computed by this differential technique are

18



Chapter 1. Introduction

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fraction of edges remaining in LDPC graph (e )

0

0.005

0.01

0.015

0.02

0.025

0.03
F

ra
c
ti
o

n
 o

f 
e

d
g

e
s
 w

it
h

 r
ig

h
t 
d

e
g

re
e

 o
n

e
(5,10) regular, threshold is 0.341
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Figure 1.6: Fraction of edges with right degree one as a function of the fraction of edges

remaining in the graph.

equivalent to those computed by other methods, such as density evolution (DE)

and EXIT charts [85].

Two classes of LDPC codes have been shown to present capacity-achieving

thresholds. On the one hand, irregular LDPC codes, which were first proposed in

[50, 83] contain both low-degree VNs (mostly degree-2 VNs) and VNs of very high

degrees. However, irregular LDPC codes have severe error floors [83]. On the other

hand, capacity-achieving LDPC code ensembles can also be obtained by spatially-

coupling LDPC block codes with regular DDs [32]. In [62], the authors constructed

protograph-based Spatially-coupled LDPC (SC-LDPC) codes by coupling together

a series of disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled

chain. This opened up a new way to construct capacity-achieving codes for memo-

ryless binary-input symmetric-output channels with low-complexity BP decoding.

A scaling law to predict the error probability of finite-length spatially coupled

LDPC codes over BEC is proposed in [74]. It is shown that, while SC-LDPC

codes do not suffer from error floors, their performance is severely degraded in the
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I[x2 ⊕ x3 ⊕ x4] CN4

Figure 1.7: Factor graph of a linear block code.

finite block length regime, hence block lengths in the order of at least thousands

of bits are required to improve upon uncoupled LDPC codes.

1.2.4 LDPC decoding for the additional white Gaussian noise

channel

For the AWGN channel, LDPC decoding is performed by means of sub-optimal

sum-product algorithm (SPA), also known as iterative belief propagation (BP)

[86, 88]. In [40], the authors use factor graphs to illustrate the operation of the

SPA in a straightforward way. In Figure 1.7 we show the factor graph of a linear

block code. The left factor nodes are channel likelihoods, p(yi|xi), and the right

nodes are parity check functions.

SPA is a message passing algorithm, in which variable nodes and factor nodes

exchange probability messages at every iteration. Initially, every variable computes

its probability using the channel likelihood. Then, the probabilities pi0 and pi1

corresponding to the ith variable node are given by

pi0 =
p(yi|0)

p(yi|0) + p(yi|1)
pi1 =

p(yi|1)

p(yi|0) + p(yi|1)
,

for i = 1, . . . , J . VNs send these probabilities to parity check factor nodes, which

re-compute them according to the information received and the parity condition.

Let p̂i→j(0,1) be the message propagated from the ith variable node to the the jth

check node, and let pj→i(0,1) be the message propagated from the jth check node

to the the ith variable node. For instance, in the example shown in Figure 1.7,

degree-3 CN1 receives (p̂1→1
(0) , p̂1→1

(1) , p̂2→1
(0) , p̂2→1

(1) ) and it recomputes (p1→4
(0) , p1→4

(1) ) as
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follows:

(p1→4
(0) , p1→4

(1) ) = CHK[p̂1→1
(0) , p̂1→1

(1) , p̂2→1
(0) , p̂2→1

(1) ]

= (p̂1→1
(0) p̂2→1

(0) + p̂1→1
(1) p̂2→1

(1) , p̂1→1
(0) p̂2→1

(1) + p̂1→1
(1) p̂2→1

(0) ). (1.11)

where CHK refers to the update rules of the message propagated from variable

nodes to check nodes. Note that the message received from x4 is not used to re-

compute (p1→4
(0) , p1→4

(1) ) , and that (1.11) already produces normalized probabilities.

It proceeds similarly with the rest of messages.

Binary probability mas functions can be parametrized by a single value given

that p̂i→j(0) + p̂i→j(1) = 1, pj→i(0) + pj→i(1) = 1, i = 1, 2, . . . , J, j = 1, 2, . . . ,K. Given

(1.11), following [40] we define that Likelihood ration (LR) and Log-likelihood

ration (LLR) parametrizations as follows [40]

Likelihood Ratio (LR) :

Definition : λi = p̂i→1
(0) /p̂

i→1
(1)

(p1→4
(0) , p1→4

(1) ) = CHK(λ1, λ2) =
1 + λ1λ2

λ1 + λ2
, (1.12)

Log-Likelihood Ratio (LLR) :

Definition : Λi = ln(p̂i→1
(0) /p̂

i→1
(1) )

(p1→4
(0) , p1→4

(1) ) = CHK(Λ1,Λ2) = 2tanh−1(tanh(Λ1/2)tanh(Λ2/2)),

(1.13)

When the SPC nodes have degree larger than three, we can extend the CHK

functions to more than two arguments via the relations [40]:

CHK(x1, x2, . . . , xn) = CHK(x1,CHK(x2, . . . , xn)).

Considering parallel hardware implementation, we can also extend the CHK like

following (i.e., when degree is four)

CHK(x1, x2, . . . , xn) = CHK(CHK(x1, x2),CHK(x3, x4)).
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After VNs received the incoming messages from factor nodes, they re-compute

the probabilities according to the information received [40]. For example, xi re-

ceives p1→1
(0) , p1→1

(1) , p2→1
(0) , p2→1

(1) and it recomputes normalized (p̂1→3
(0) , p̂1→3

(1) ) output

messages as follows

(p̂1→3
(0) , p̂1→3

(1) ) = VAR[p1→1
(0) , p1→1

(1) , p2→1
(0) , p2→1

(1) ]

=

(
p10p

1→1
(0) p2→1

(0)

p10p1→1
(0) p2→1

(0) + p11p1→1
(1) p2→1

(1)

,
p11p

1→1
(1) p2→1

(1)

p10p1→1
(0) p2→1

(0) + p11p1→1
(1) p2→1

(1)

)
.

(1.14)

where VAR refers to the update rules of the message propagated from check nodes

to variable nodes. Note that the message received from the factor node CN3 is

not used, and the message received from the channel have to be considered.

Similar to the previous discussion, we have [40]

Likelihood Ratio (LR) :

Definition : λc = p(0)/p(1)

λi = pi→1
(0) /p

i→1
(1)

(p̂1→3
(0) , p̂1→3

(1) ) = VAR(λc, λ1, λ2) = λcλ1λ2 (1.15)

Log-Likelihood Ratio (LLR) :

Definition : Λc = ln(p(0)/p(1))

Λi = ln(pi→1
(0) /p

i→1
(1) )

(p̂1→3
(0) , p̂1→3

(1) ) = VAR(Λc,Λ1,Λ2) = Λc + Λ1 + Λ2 (1.16)

When the VNs have degree larger than three, we can extend the VAR functions

to more than two arguments via the relations [40]:

VAR(x1, x2, . . . , xn) = VAR(x1,VAR(x2, . . . , xn)).

we can also extend the VAR like following (i.e., when degree is four)

VAR(x1, x2, . . . , xn) = VAR(VAR(x1, x2),VAR(x3, x4)).
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In computer programming, an overflow occurs when an arithmetic operation

attempts to create a numeric value that is outside of the range that can be repre-

sented with a given number of digits. Using LLR, we avoid the overflow problem

and this makes it more favorable in practical design. In LLR domain, for x� 1

ln(cosh(x) ≈ |x| − ln(2)).

Thus, as shown in [40], a good approximation to the CHK function (1.13) is

CHK(λ1, λ2) ≈ |(λ1 + λ2)/2| − |(λ1 − λ2)/2| = sgn(λ1)sgn(λ2)min(|λ1|, |λ2|).
(1.17)

This approximation yields a decoding algorithm of reduced complexity as the min-

sum (MS) update rule. In practical hardware implementation, the MS update rule

is widely used due to its low decoding complexity and because it allows a parallel

hardware implementation.

Asymptotic analysis tools such as density evolution (DE) and extrinsic informa-

tion transfer (EXIT) chart [86] can be used to predict the asymptotic performance

of LDPC codes under the BP message-passing decoding. However, in the rest of

the thesis, we focus on the BEC and the differential equation method, which is

why we do not explain these tools in detail.

1.2.5 LDPC finite length performance

The performance of LDPC codes decreases as the block length becomes small. It is

well known that the finite length performance of LDPC codes is determined by a set

of structural properties of the Tanner graphs, such as girth and cycle distribution,

and is limited by weaknesses of the iterative message passing decoding algorithm

[16], such as weight distribution of pseudocodewords [94, 84, 99], and poor distance

spectra. Specifically, the girth of a LDPC code is the length of the shortest cycle

in the LDPC tanner graph, where a cycle starts from a node and ending at the

same node, other nodes in the cycle is different. The PD algorithm often fails

when there are cycles, e.g., cycle-6 in Figure 1.8, during the iterative message

passing decoding. The performance of finite-length LDPC codes in the waterfall
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Figure 1.8: Tanner graph of a cycle-6.

region is provided in [71], a finite length analysis of LDPC codes under graph-cover

decoding is studied in [100], and a finite length analysis of LDPC codes with large

left degrees can be found in [109].

Many different methods are applied to design LDPC codes with large girth, and

thus low error floor. In particular, for this thesis we are interested in protograph

LDPC codes and quasi-cyclic (QC) LDPC codes [64]. A protograph or projected

graph, is a Tanner graph with a relatively small number of nodes [62, 73, 96].

Here we use an example to illustrate how to construct a protograph-based LDPC

code ensemble. The protograph shown in Figure 1.9 (a), it contains 4 variable

nodes (named as type 1, 2, 3 and 4), and 3 check nodes, denoted as (A, B, C).

To generate a code spanned by this protograph, we proceed by using a copy-and-

permute process [96], as shown in Figure 1.9 (b) and Figure 1.9 (c). Specifically,

in Figure 1.9 (b), the protograph has been copied three times, resulting in three

disconnected subgraphs. The number of copies is referred to as the Lifting Factor.

In Figure 1.9 (c), the endpoints of the three copies of each edge have been permuted

at random among the three copies. After this swapping step, the three subgraphs

are interconnected. In general, by increasing the lifting factor, the copy-and-

permute operation can be applied to any protograph to obtain derived graphs

of different sizes [96]. Suitably-designed protograph-based LDPC code ensembles

have many desirable features, such as good iterative decoding thresholds and linear

minimum distance growth, and they are asymptotically good [63]. In [64], the

authors show empirically that the structural properties of the pre-lifted codes

result in a decreased error floor and an improved minimum distance as the lifting

factor increases.
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As a simple example, we consider the protograph shown in Fig. 1. This graph consists of |V | = 4
variable nodes and |C| = 3 check nodes, connected by |E| = 8 edges. The four variable nodes in the
protograph are denoted by “Type 1, 2, 3, 4,” and the three check nodes by “Type A, B, C.” By itself, this
graph may be recognized as the Tanner graph of an (n = 4, k = 1) LDPC code (in this case, a repetition
code).

We can obtain a larger graph by a “copy-and-permute” operation, illustrated in Figs. 2 and 3. In
Fig. 2, the protograph has been copied three times. Here the three copies are overlaid so that same-type
vertices are in close proximity, but the overall graph consists of three disconnected subgraphs. In Fig. 3,
the endpoints of the three copies of each edge in the protograph have been permuted among the three
copies of the corresponding variable and check nodes. After this swapping of endpoints of edges, the three
subgraphs are now interconnected. The graph in Fig. 3 is the Tanner graph of an (n = 12, k = 3) LDPC
code. We call this graph the derived graph, and the corresponding LDPC code a protograph code.

Type 1 Type 2 Type 3 Type 4

Type A Type B Type C

Fig. 1.  A simple protograph.

Type 1 Type 1 Type 1 Type 2 Type 2 Type 2 Type 3 Type 3 Type 3 Type 4 Type 4 Type 4
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Fig. 2.  A protograph copied three times.
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Fig. 3.  A derived graph.
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(c) A generated LDPC code

Figure 1.9: In figure (a) we plot a simple protograph. In figure (b) we copy the protograph

three times. In figure (c) we do the permutation step. (Figures borrowed from [96])
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The algebraic structure of quasi-cyclic codes is determined by permutation

matrices selected in the protograph-based construction that are restricted to be

circulant. This class of codes allows simple encoding using shift registers, with a

complexity that is linear in the block length [17]. Properly-designed QC graphs

have been shown to perform as well as computer-generated random LDPC codes,

regular or irregular, in terms of bit-error performance, block-error performance,

and error floor for codes with short to moderate block lengths [45, 49]. More

details of QC graphs are given in Chapter 3.

1.3 Generalized LDPC Codes

1.3.1 Background

As we discussed in the previous sections, LDPC codes are known to achieve channel

capacity in the limit as the block length tends to infinity under sub-optimal BP

decoding [98, 19]. However, it is unclear how to design LDPC codes able to

approach the fundamental limits of information theory in the finite length case [79].

Generalized low-density parity-check (GLDPC) codes, which were first proposed

by Tanner [95], have been shown to provide both good minimum distance and

low decoding complexity [9]. In contrast to standard LDPC codes, which are

represented by bipartite Tanner graphs where variable nodes and single parity-

check (SPC) nodes are connected according to a given degree distribution (DD), in

GLDPC codes the SPC nodes in the graph are replaced by generalized constraint

(GC) nodes [95], as shown in Figure 3.1. The sub-code associated to each GC

node is referred to as the component code. Examples of component codes used

in the GLDPC literature are Hamming codes [44], Hadamard codes [107], Bose

Chaudhuri Hocquenghem (BCH) code [61] or expurgated random codes [48, 22].

With powerful component codes, GLDPC codes have many potential advantages,

including improved performance in noisy channels, fast convergence speed [68] and

low error floor [48, 65].

Upon selecting a particular class of component codes, the DD of the GLDPC
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Figure 1.10: Tanner graph of a GLDPC code.

code ensemble can be optimized, and near-capacity iterative decoding thresholds

can be achieved [44, 48, 1]. Capacity-achieving GLDPC code ensembles can also

be obtained by spatially-coupling GLDPC block codes with regular DDs [43, 36].

Furthermore, the asymptotic exponents of the weight/stopping set spectrum for ir-

regular and spatially-coupled GLDPC ensembles have been derived in [65] and [24],

respectively. Based on these works, it is possible to design asymptotically good

GLDPC code ensembles to achieve capacity-approaching iterative decoding thresh-

olds and a minimum distance that grows linearly with the blocklength. To design

GLDPC codes with large graph girth, many different techniques, such as quasi-

cyclic designes, protograph-based design and random designs, have been proposed

recently [49, 2, 60, 108]. A family of GLDPC codes for optical communications is

proposed in [20], which uses Hamming, BCH, and Reed-Muller codes as GC nodes,

and the Ashikhmin-Lytsin algorithm for decoding. Remarkable coding gains can be

obtained from properly designed GLDPC codes, derived from multiple component

codes. In [108], the authors consider imposing Hadamard code constraints at the

check nodes for a low-rate approach, termed LDPC-Hadamard codes, and they also

introduce a low-complexity message-passing based iterative soft-input soft-output

(SISO) decoding algorithm. They further optimize the LDPC-Hadamard code

ensemble by applying a low-complexity optimization technique based on approx-

imating the density evolution by a one-dimensional dynamic system represented
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by an extrinsic mutual EXIT chart. Simulation results show that the optimized

LDPC-Hadamard codes not only offer better performance in the low-rate region

than low-rate turbo-Hadamard codes, but also enjoy a fast convergence rate with

respect to the block length. In [61], GLDPC codes with BCH or Reed-Solomon

codes as component codes under bounded distance decoding are investigated. Sim-

ulation results show that the proposed technique yields competitive performance

with a good decoding complexity trade-off for the BSC.

1.3.2 GLDPC decoding algorithms over the BEC

As in LDPC decoding, for the BEC, iterative decoding of GLDPC codes can

be performed by means of peeling decoding (PD) algorithms [50, 57, 75], which

iteratively remove from the Tanner graph variable nodes whose value is known. In

the case of GLDPC codes, the derivation of the differential equations that predict

the asymptotic performance requires to specify in advance the DD of the graph

and a description of what kind of erasure patterns are locally decodable at any

GC node, which depends on both the component codes and the corresponding

decoding algorithm. In fact, the resulting decoding threshold of GLDPC codes

heavily depends on this latter point [107, 22, 75]. For instance, for a (2, 7) base DD

in which all check nodes are (7, 4)-Hamming GC nodes, the asymptotic threshold

over the BEC is ε∗ ≈ 0.7025 if maximum likelihood (ML) decoding is performed at

each GC node. However, it drops to ε∗ ≈ 0.5135 if suboptimal bounded distance

(BD) decoding is used instead of ML. In both cases, the coding rate is exactly the

same. The reason for this difference in performance is that BD-decoded GC nodes

only resolve erasure patterns up to degree d− 1, where d is the minimum distance

of the component code, whereas ML-decoded GC nodes can resolve a subset of

erasure patterns of degree above d − 1. Note, however, that this improvement of

performance comes at the cost of higher complexity. Let K denote the blocklength

of the component code. For the BEC, the ML-decoding complexity at GC nodes is

of order O(K3), since it is equivalent to solving a system of binary linear equations

[10].
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Algorithm 2 BD-PD

Remove from the Tanner graph of the GLDPC code all variable nodes with

indexes in Γy.

Construct Ψ, the index set of check nodes that correspond to either degree-one

SPC nodes or GC nodes of degree less or equal to d− 1.

repeat

1) Select at random a member of Ψ.

2) Remove from the Tanner graph the check node with the index drawn in

Step 1). Further, remove all connected variable nodes, and all attached edges.

3) Update Ψ.

until All variable nodes have been removed (successful decoding) or Ψ = ∅
(decoding failure).

Bounded Distance Peeling Decoding (BD-PD)

BD-PD is a suboptimal decoding method that considers decodable all GC nodes

up to degree d−1 [36, 59]. When BD is considered at GC nodes, a straightforward

generalization of the PD algorithm presented in Section 1.2.3 is possible. Similar

with the assumption in Section 1.2.3, we use a random GLDPC code of block length

N to transmit over a BEC(ε). Decoding will be performed using a generalization of

the PD algorithm [50] similar to that proposed for GLDPC codes in [75], denoted

as PD with BD decoding at GC nodes (BD-PD). If we assume all GC nodes have

minimum distance d, the iterative algorithm BD-PD removes at random either

a degree-1 SPC node or a GC node with degree smaller than d. In Figure 1.11

we illustrate the BD-PD process assuming d = 3. After the BEC transmission,

BD-PD remove all correctly received VNs along with all adjacent edges from the

tanner graph, as shown in Figure 1.11 (a). In the next stage, we pick at random a

degree-1 SPC node or a GC nodes with degree smaller than d, remove it from the

graph, along with the adjacent edge, as shown in Figure 1.11 (b). Furthermore,

the VN connected with this edge is decodable and will be removed from the graph,

along with all adjacent edges, as shown in Figure 1.11 (c). Continuously, the BD-
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Figure 1.11: The bounded distance decoding process.

PD algorithm repeat this process until there are no VN left in the graph, which

corresponding to a decoding success. If there are no more degree-1 SPC or GC

nodes with degree smaller than d before successful decoding, we shall say that

there is a decoding failure. Algorithm 2 summarizes the BD-PD algorithm. The

threshold of BD-PD can be analyzed by extending the differential equation method

proposed in [50, 75].

Beyond BD-PD

While deriving the asymptotic differential equations to analyze BD-PD follows

a straightforward extension of the standard PD differential equations for LDPC

codes [50], the GLDPC asymptotic analysis of PD under ML-decoded component

codes (ML-PD) requires the use of multi-edge-type (MET) DDs [86] to track down

all possible decodable erasure patterns at GC nodes [43, 75]. As a consequence,

the list of code parameters to jointly optimize becomes cumbersome. Specifically,

the parameters include the description of the multi-edge type DD, the position

of GC nodes in the graph, the edge labelling at every GC node used to deter-

mine positions in the component block code, and the list of locally ML-decodable

erasure patterns. In [22], the authors were able to incorporate ML-decoded GC

nodes without resorting to multi-edge type DDs by analyzing the GLDPC aver-

age performance using extrinsic information (EXIT) charts when each GC node
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Fig. 1. A (2, 7)-regular protograph with edge labeling.

2) All constraint nodes in H that are copies of a particular
constraint node in B are characterized by the same
component code.

Protograph-based codes are a class of multi-edge type
LDPC codes. To define the degree distribution (DD), we label
each edge in B connecting a different pair of nodes from 1 to
e. For example, in Fig. 1 we show the Tanner graph associated
with the base matrix of a (2, 7)-regular GLDPC code. Edges
are labelled from 1 to e = 14. In the Tanner graph of H, we
say that a particular edge is of type j, j 2 {1, 2, . . . , e}, if it
connects a variable node and a constraint node that are copies
of the two nodes that edge j connects in B. Also, we define the
type of a variable node by a vector d = (d1, . . . , de), where
dj 2 N0 represents the number of edges of type j connected to
this variable node. Similarly, for a constraint node, we define
its type by a vector c. Let Ld (Rc) represent the number of
variable (constraint) nodes of type d (c). We denote the set of
variable (constraint) node types in the graph by Fv (Fc).

III. TRANSMISSION OVER THE BEC AND THE GPD
The PD is used to analyze the finite-length performance of

binary LDPC block codes over the BEC [7]. The PD iteratively
removes a degree-one check node in the graph along with
the variable node attached to it and all edges connected to
these two nodes. The PD is initialized by removing from the
Tanner graph of H all variable nodes correctly received after
transmission. In this paper, we define an extension to the PD
referred to as the generalized peeling decoder (GPD).

A. GPD Initialization
The GPD is initialized as the PD algorithm: every variable

node of H and its attached edges are removed from the graph
with probability (1� ✏). Note that, after such an initialization,
the residual graph contains constraint nodes with types that are
not included in Fc; however, the set of variable node types Fv

remains the same. Given a constraint node of type c, define
D(c) as the set of all possible constraint node types that might
appear in the graph when edges are removed from a constraint
node of type c (assume c 2 D(c)). The extended set of all
possible constraint node types in the residual graph after the
GPD initialization is then Fc =

S
c2Fc

D(c). For example, in
the (2, 7)-regular protograph in Fig. 1, we have two constraint
node types and, from each one, a set of 27 = 128 types can
be found in the residual graph.

According to the above definitions, the expected DD after
initialization can be expressed as follows:

E[Ld(0)] = ✏Ld, E[Rc(0)] =
X

q2Fc:
c2D(q)

Rq✏
|c|(1 � ✏)|q|�|c|

(1)

for d 2 Fv and c 2 Fc, where Ld(0) (Rc(0)) is the
number of variable (constraint) nodes of type d(c) after GPD
initialization.

B. Decodable constraint nodes and the GPD
As discussed in Section II, each constraint node in the

protograph B is associated with a component code. Let Cc be
the component code associated with the constraint node in B
of type c 2 Fc. By extension, each constraint node in the graph
H is associated with a component code according to its type.
After the GPD initialization, the type of a given constraint
node can be modified from c to c0, where |c0| < |c|. We
say that c0 is the input erasure pattern seen by the component
code Cc. The question now is if we are able to recover the |c0|
variables still connected to the constraint node by decoding
the component code Cc using a given decoding algorithm, for
instance ML decoding. In general, for each component code
Cc, only a subset of input erasure patterns can be decoded.
This subset is denoted by A(c) ⇢ D(c). If a constraint node
is of type c0 2 A(c), then we say it is a decodable constraint
node and c0 is a decodable constraint node type.

The set of all decodable constraint node types is given by
A .

= [c2Fc
A(c). The GPD algorithm is an extension of the

PD from binary LDPC codes to binary GLDPC codes. After
initialization, the GPD choses at random from the graph one
decodable constraint node. This constraint node, all connected
variable nodes, and all attached edges are then removed from
the graph. The GPD continues in this way until there are no
further constraint nodes that can be removed from the graph,
which corresponds to a decoding failure, or until there are
no variable nodes left in the graph, which corresponds to
successful decoding.

IV. EXPECTED GRAPH EVOLUTION

Our goal is to analyze the statistical evolution of the DD of
the residual graph as the GPD iterates. Based on this analysis
we can characterize the asymptotic and finite-length properties
of the GLDPC code ensemble [7]. We define the normalized
DD as follows

⌧
.
=

`

n
, rc(⌧)

.
=

Rc(⌧)

n
, ld(⌧)

.
=

Ld(⌧)

n
, (2)

where ` is the GPD iteration index, Rc(⌧) (Ld(⌧)) is the
number of constraint (variable) nodes in the graph of type
c(d) at time ⌧ , and n is the code length. Note that ⌧ 2 [0, ✏).
Following the methodology developed in [7] to analyze the
performance of finite-length LDPC block codes, we can in-
vestigate the finite-length performance of GLDPC codes by
analyzing the statistical evolution of the DD in (2) during the
decoding process. As shown in [7], the expected value of rc(⌧)
and ld(⌧), denoted by l̂d(⌧) and r̂c(⌧), can be computed using
following system of differential equations:

@l̂d(⌧)

@⌧
= E

h
Ld(⌧ +

1

n
) � Ld(⌧)

���{l̂d(⌧), r̂c(⌧)}d2Fv,c2Fc

i
,

(3)
@r̂c(⌧)

@⌧
= E

h
Rc(⌧ +

1

n
) � Rc(⌧)

���{l̂d(⌧), r̂c(⌧)}d2Fv,c2Fc

i
.

(4)

2684

Figure 1.12: Tanner graph corresponding to a (2, 7)-regular protograph base matrix. We

include the edge labeling used to define the ensemble degree distribution. (Figure is

borrowed from [75])

in the graph is selected at random within the family of block component codes

with fixed block length and minimum distance larger than 2. This approach has a

design caveat though, as it does neither allow the use of a single type of component

codes, nor to narrow down the family of component codes by fixing the minimum

distance.

As an example of a class of MET DD required to fully specify ML-decoded GC

nodes, we present here the protograph-based GLDPC code ensemble described in

[75]. In this paper, to define the DD of the proposed codes, the authors labeled

each edge in the base matrix B connecting a different pair of nodes. For example,

Figure 1.12 shows the Tanner graph associated with the base matrix of a (2, 7)-

regular GLDPC code. Edges are labeled from 1 to 14. Consequently, the degree

of generalized codes is specified by 14-length vectors. In the original graph, only

two possible degrees exist:

c1 = [1 0 1 0 1 0 1 0 1 0 1 0 1 0]

c2 = [0 1 0 1 0 1 0 1 0 1 0 1 0 1]

However, after PD intialization, in which variable nodes are removed from the

graph, the extended set of GC degrees present in the residual graph is 256. In

general, the more structure we include in the GLDPC graph, the more dimension

the MET DD has, which dramatically impacts the complexity of the GLDPC code

analysis. In this thesis, we propose a new class of GLDPC code ensembles and

31



Chapter 1. Introduction

new analysis tools that do not require the use of MET DDs and provides a simple

design framework from which powerful finite-length GLDPC codes are proposed.

1.3.3 GLDPC decoding algorithms over general channels

Compared to the conventional belief propagation update rules for LDPC decoders,

the only difference of the iterative message passing of GLDPC codes is how to

process probabilistic messages at the GC nodes. In this regard, the processing

depends on the codebook of the chosen component code. We take the (2, 6)-

regular GLDPC code as a running example, where the component code used at

GC nodes is a shortened (6, 3) Hamming code, whose codebook can be expressed

in matrix form as

C(6,3) =




0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 1 0 1

0 1 1 1 1 0

1 0 0 1 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 0 0 0




. (1.18)

The GLDPC update rule at GC nodes is determined by the component code-

book C(6,3). Let Λj denote the input LLR message coming from the j-th variable

node connected to the GC node, where index j, j = 1, 2, . . . , 6, corresponds to the

jth input to the component code. Let Λ̃j denote the output LLR message to be

sent to the j-th variable node. In Appendix D.1, we show that Λ̃j , j = 1, 2, . . . , 6,

can be computed as follows

Λ̃j = log



∑

i∈{1,8}
Ci,j=0

exp




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 0)](Λpj − Λ∗)







− log



∑

i∈{1,8}
Ci,j=1

exp




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 1)](Λpj − Λ∗)





 , (1.19)
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where C
(6,3)
i,m denotes the m-th bit of the i-th codeword, i = 1, 2, . . . , 8, Λ∗ =

maxj Λj , and we use the log-sum-exp trick to avoid numerical issues in the eval-

uation of the exponential terms.1 The value of Λ∗ can be efficiently computed

using a digital comparator. Note that the decoding complexity at GC nodes is

determined by the degree of the GC nodes and grows exponentially as the degree

increases.

1.3.4 Contributions of the proposed asymptotic analysis tech-

nique in this work

In Chapter 2 of this thesis, we propose a flexible and efficient asymptotic analysis

of GLDPC codes over the BEC that allows us to easily incorporate ML-decoded

GC nodes with specific properties and still maintain a random definition of the

graph degree distribution. In other words, there is no need for multi-edge type

DD to define the GLDPC ensemble, which opens the door for flexible code design

and optimization, as the number of parameters that define both the ensemble and

decoding algorithm remain small. An example of such novel design methodology

are the class of GLDPC code ensembles analyzed in Chapter 2. Instead of select-

ing a particular class of component codes and optimizing the graph DD, we are

interested in analyzing the trade-off between coding rate and iterative decoding

threshold of GLDPC code ensembles with fixed DD as we increase the fraction

of GC nodes in the graph. We study the trade-off between iterative decoding

threshold, coding rate and minimum distance, and we study what is the required

fraction of GC nodes required to minimize the gap to channel capacity and still

provides a code ensemble with linear growth of the minimum distance w.r.t. the

block length. These results have been summarized in the following publications:

• Yanfang Liu, Pablo M. Olmos, and Tobias Koch. A Probabilistic Peeling

Decoder to Efficiently Analyze Generalized LDPC codes over the BEC. Sub-

1The log-sum-exp trick works as follows: let a = [a1, a2, . . . , ad] be a real-valued vector. Instead

of directly evaluating b = log(
∑d
i=1 exp(ad)), we first compute a∗ = maxi ai and then we compute

b as b = a∗ + log(
∑d
i=1 exp(ad − a∗)).

33



Chapter 1. Introduction

mitted to IEEE Transactions on Information Theory (2nd review, available:

https://arxiv.org/pdf/1709.00873.pdf).

• Yanfang Liu, Pablo M. Olmos and Tobias Koch On LDPC code ensembles

with generalized constraints. Proceedings of 2017 IEEE Information Theory

(ISIT), 2017 IEEE pp. 371-375, Acchen, Germany, June, 2017.

The obtained results demonstrate that simple regular GLDPC codes are in-

deed robust if the right fraction of GC nodes is included in the graph. In Chapter

3, we derive practical implementations of such codes using quasi-cyclic graphs

and demonstrate their application for URLLC. We further study low-complexity

decoding schemes with quantization and sub-optimal min-sum like update rules.

Our results demonstrate that we can achieve remarkable gains compared to ex-

isting schemes in the literature at similar complexity. These results have been

summarized in the following publications:

• Yanfang Liu, Pablo M. Olmos, and David G. M. Mitchell. On Generalized

LDPC Codes for 5G Ultra Reliable Communication. Proceedings of the 2018

IEEE Information Theory Workshop (ITW), Guangzhou, China, November,

2018.

• Yanfang Liu, Pablo M. Olmos, and David G. M. Mitchell. Generalized LDPC

Codes for Ultra Reliable Low Latency Communication in 5G and Beyond.

Accepted for publication in IEEE Access, Special issue on Advances in Chan-

nel Coding in 5G and Beyond. November 2018.
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2
Probabilistic Peeling Decoder Analysis of

GLPDC codes

In this chapter, we propose an analysis methodology that allows to easily incorpo-

rate into the PD algorithm ML-decoded GC nodes with specific properties, such

as particular value of the minimum distance d or how many erasure patterns be-

yond minimum distance it can decode. We develop a probabilistic description of

all components of the GLDPC code, namely the graph degree distribution (DD),

the presence of GC nodes in the graph, and the decoding method implemented at

GC nodes. Regarding the latter aspect, we parameterize the decoding capabilities

of at every node with a blocklength-K component code by a vector (p1, p2, ..., pK),

where pw ∈ [0, 1], w ∈ {1, . . . ,K}, is the probability that a weight-w erasure

pattern chosen at random is decodable. Thus, pw is the fraction of decodable

weight-w erasure patterns. Note that if we take pw = 1 for w ≤ d− 1 and pw = 0
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for w = {d, . . . ,K}, we recover BD-PD. We show how to properly incorporate such

a probabilistic description of component codes into the PD algorithm, and denote

the resulting algorithm as probabilistic PD (P-PD). Due to its probabilistic nature,

the asymptotic analysis of P-PD does not require the use of multi-edge type DDs.

We show by computer simulations that the P-PD performance accurately predicts

the actual GLDPC performance when ML decoding is performed at GC nodes.

We note that the proposed techniques are valid for binary GLDPC codes and that

we do not consider non-binary LDPC codes [52], which can also be considered a

special class of GLDPC codes.

The performance predicted using P-PD is valid for any linear component code

of blocklength-K and decoding profile (p1, p2, ..., pK). To analyze a family of lin-

ear component codes of blocklength-K and minimum distance d, we employ two

bounds to compute the GLDPC coding rate. The Hamming or sphere-packing

bound [56] is used to determine a converse bound on the rate of the GLDPC code

ensemble as a function of a triplet of (ν, d,K). The Varshamov bound is consid-

ered to determine an achievable rate of the GLDPC code ensemble [34]. In many

scenarios of interest, we show that these bounds are sufficiently tight and thus

relevant for the code designer.

By employing a probabilistic description of the decoding capabilities at GC

nodes, we are able to analyze a large class of GLDPC code ensembles and beyond-

BD decoding methods with a fairly small set of parameters. We demonstrate our

approach by analyzing the tradeoff between coding rate and iterative decoding

threshold of GLDPC code ensembles with fixed DD, referred to as the base DD,

as we increase the fraction ν of GC nodes in the graph. This approach is novel in

the literature and we believe it is appealing from a design perspective, since one

might be interested in introducing a certain amount of GC nodes in the Tanner

graph of a given LDPC code, aiming at reducing the gap to channel capacity at

the resulting coding rate, and at the same time improving the minimum distance

of the code and thus the error floor.

We illustrate our analysis for both regular GLDPC code ensembles using (2, 6),
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(2, 7), (2, 8) and (2, 15) base DDs and irregular GLDPC code ensembles with simi-

lar graph densities [77, 31]. To obtain realistic values for the coding capabilities of

the component codes, we have performed an exhaustive search of linear block codes

of lengths r ∈ [6, 7, 8, 15], including Hamming codes, Cyclic codes, Quasi Cyclic

codes and Cordaro-Wagner Codes, and tabulated their corresponding description

in terms of minimum distance d and (p1, p2, ..., pK). In all cases, we show that a

large fraction of GC nodes is required in the GLDPC graph to reduce the original

gap to capacity. However, the closest gap to capacity is not achieved at ν = 1, but

a smaller value must be used. Namely, there exists a critical ν∗ value for which

the gap to capacity is minimum. Furthermore, the best results are obtained for

high-rate component codes, suggesting that the use of very powerful component

codes does not pay off, since the gain in threshold does not compensate for the

severe decrease of the GLDPC code rate. We also include into our analysis the

weight spectral analysis of GLDPC ensembles in [24] to explore the range of ν

values for which the GLDPC ensembles reduce the original gap to capacity and at

the same time maintain a linear growth of the minimum distance with the block

length.

Finally, we illustrate how to incorporate further design techniques that can

help to reduce the gap to capacity of the code ensembles. Specifically, we discuss

both random puncturing [66] and a simple class of doubly generalized LDPC (DG-

LDPC) codes [101, 102]. In general, the methodology presented in this work is

flexible and decouples the problems of bounding the GLDPC coding rate and the

asymptotic analysis of the ensemble. In this regard, broader classes of component

codes at variable nodes and GC nodes could also be incorporated in a systematic

way.

The chapter is organized as follows. In Section 2.1, we introduce GLDPC

code ensembles and the notation used to characterize the DDs. Sections 2.2 and

2.3 present the decoding algorithm and its asymptotic analysis. In Section 2.4

we bound the GLDPC code rate and analyze the rate-threshold tradeoff as a

function of the fraction ν of GC nodes in the graph. The behavior of the GLDPC

37



Chapter 2. Probabilistic Peeling Decoder Analysis of GLPDC codes

code ensembles with specific component codes is analyzed in Section 2.5. Finally,

Sections 2.6 and 2.7 consider techniques to improve the asymptotic behavior of the

code ensemble, by means of random puncturing and generalized variable nodes.

In Section 2.8 we conclude the chapter with a discussion of our results.

2.1 GLDPC ensembles with increasing fraction of GC

nodes

In this section, we introduce the GLDPC code ensembles that will be analyzed in

the rest of the chapter and the notation used to define their DD.

2.1.1 Degree distribution

As illustrated in Fig. 2.1, the Tanner graph of every member in the ensemble

contains n variable nodes (coded bits) and c parity-check nodes, among which a

fraction ν corresponds to GC nodes while the rest corresponds to SPC nodes. We

denote by E the number of edges in the Tanner graph and we define the degree of

a node as the number of edges connected to it.

The DD of the ensemble is characterized as follows. The vector λ =

(λ1, λ2, ..., λJ) is the left DD, where λi represents the fraction of edges (w.r.t.

E) connected to a variable node of degree i. Given λ, N and E are related by [86]

N = E

J∑

i=1

λi/i. (2.1)

The right DD is defined by two vectors ρp = (ρp1, ρp2, ..., ρpK) and ρc =

(ρc1, ρc2, ..., ρcK), where ρpj denotes the fraction of edges (w.r.t. E) connected

to a SPC node that has degree j and ρcj denotes the fraction of edges (w.r.t. E)

connected to a GC node that has degree j. Throughout the paper, we use the

subscript p for any DD component related to standard parity check nodes and

the subscript c for any DD component related to generalized component codes.

The DD is then characterized by the tuple (λ, ρp, ρc, ν) and the ensemble of codes

generated by this DD is denoted by Cλ,ρp,ρc,ν . Since the fraction of GC nodes in
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Figure 2.1: Tanner graph of a GLDPC code.

the graph is ν, the following must hold:

ν =

∑K
j=1 ρcj/j∑K

u=1(ρcu + ρpu)/u
. (2.2)

For simplicity, we restrict most of our analysis to the class of GLDPC ensembles

characterized by variable nodes with constant degree J and SPC and GC nodes

with constant degree and K. The Tanner graph of any code in this ensemble

contains N variable nodes, E = JN edges, ν JKN GC nodes, and (1− ν) JKN SPC

nodes. The DD of the GLDPC codes is characterized by the triple (J,K, ν), and

the ensemble of codes generated by this DD is denoted by CJ,K,ν . The DD of

the LDPC ensemble obtained by taking ν = 0 is defined as the base DD, and

the corresponding LDPC code ensemble is referred to as the base ensemble. The

coding rate of the base ensemble is denoted by R0 and can be computed as:

R0 = 1− J

K
. (2.3)

Finally, we assume that the incoming edges to every degree-K GC node are

assigned uniformly at random to each position of the component code.

2.1.2 The coding rate of the CJ,K,ν ensemble

As discussed in the introduction of the paper, we propose tools to analyze the

decoding performance of GLDPC under ML-decoded GC nodes that do not require
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to set in advance a specific component code to be used as the GC nodes. Instead,

we consider the family of linear block codes with blocklength K and minimum

distance d, and we use the classical results on linear block codes to bound the

coding rate of the GLDPC code ensembles.

Let k(`) ∈ N+, ` = 1, . . . , νE/K, be the number of rows in the parity-check

matrix associated with the component code of the `-th GC node.

Lemma 1. The design rate R(ν) of the CJ,K,ν ensemble is

R(ν) = R0 − ν(1− R0)(kavg − 1), (2.4)

where kavg , (ν E
K )−1

∑ν E
K

`=1 k
(`) is the average number of rows in the parity-check

matrix of the component codes.

Proof. Any SPC node in the Tanner graph accounts for a single row in the parity-

check matrix of the GLDPC code, and any GC node accounts for k(`) rows. Thus,

the design rate R(ν) is given by

R(ν) = 1− (1− ν) E
K +

∑ν E
K

`=1 k
(`)

N
= 1− (1− ν) E

K + ν E
K kavg

E/J

= R0 − ν(1− R0)(kavg − 1). (2.5)

Note that the second term in (2.4) accounts for the rate loss at GC nodes.

When the component codes are linear block codes with minimum distance d, we

obtain the following bounds on R(ν):

Lemma 2. If all component codes in the CJ,K,ν ensemble are linear block codes

with minimum distance d > 2, then

R(ν) ≤ R0 − ν(1− R0) log2


1

2

b d−1
2
c∑

q=0

(
K

q

)
 . (2.6)

Furthermore, there exists a set of linear block codes to be used as component codes

such that

R(ν) ≥ R0 − ν(1− R0)




log2


1

2
+

1

2

d−2∑

q=0

(
K − 1

q

)



. (2.7)
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Here, we use d·e and b·c to denote the ceiling and floor functions, respectively.

The two bounds coincide, for example, when d = 3 and K = 2z−1, where z ∈ Z+.

Proof. First, the condition d > 2 is required to differentiate between the rate loss

at SPC nodes, which are block codes with minimum distance 2, and at GC nodes.

We start by proving the converse bound in (2.6). By the sphere-packing bound

[15, Theorem 12, p.531], any component code with blocklength K and minimum

distance d must satisfy

2K−k ≤ 2K

∑b d−1
2
c

q=0

(
K
q

) , (2.8)

where k is the number of rows in the parity-check matrix. Here we consider non

redundant parity check matrices (i.e. K − k is exactly the information dimension

of the code). This implies that the term (kavg − 1) in (2.4) is bounded by

kavg − 1 ≥ log2


1

2

b d−1
2
c∑

q=0

(
K

q

)
 , (2.9)

which proves (2.6). Regarding the achievable bound in (2.7), the Varshamov Bound

[34, Theorem 2.9.3] guarantees the existence of a linear component code with

blocklength K and minimum distance at least d if

2K−k ≥ 2
K−

⌈
log2

(
1+
∑d−2
q=0 (K−1

q )
)⌉
. (2.10)

If the above condition is satisfied, then there exists a set of linear block codes to

be used as component codes with blocklength K and minimum distance at least

d such that

kavg − 1 ≤




log2


1

2
+

1

2

d−2∑

q=0

(
K − 1

q

)



, (2.11)

which proves (2.7).

Finally, if we substitute d = 3 and K = 2z − 1 for some z ∈ Z+ into (2.6) and

(2.7), a straightforward computation shows that the converse bound in (2.6) can

be simplified to

R(ν) ≤ R0 − ν(1− R0)(z − 1), (2.12)
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and, likewise, the achievable bound in (2.7) simplifies to

R(ν) ≥ R0 − ν(1− R0)(z − 1). (2.13)

2.1.3 Growth rate of the weight distribution of the CJ,K,ν ensemble

A useful tool for analysis and design of LDPC codes and their generalizations

is the asymptotic exponent of the weight distribution. The growth rate of the

weight distribution was introduced in [26] to show that the minimum distance of a

randomly-generated regular LDPC code with variable nodes of degree of at least

three is a linear function of the codeword length with high probability. The growth

rate of the weight distribution for a class of doubly generalized LDPC (D-GLDPC)

codes was introduced in [24]. The CJ,K,ν GLDPC code ensemble can be seen as a

particular instance of the codes analyzed in that work. The weight spectral shape

of the CJ,K,ν ensemble captures the behavior of codewords whose weight is linear

in the block length N and is defined by

G(α) , lim
N→∞

1

N
logECJ,K,ν [XαN ] (2.14)

for α > 0, where Xw denotes the number of codewords of weight-w of a randomly

chosen code in the CJ,K,ν code ensemble. This limit assumes the inclusion of only

those positive integers for which αN ∈ Z. We define the critical exponent codeword

weight ratio as α̂ , inf{α ≥ 0|G(α) ≥ 0}. If α̂ > 0, then the code’s minimum

distance asymptotically grows as O(α̂N) and the ensemble is said to have good

growth rate behavior. If α̂ = 0, then the minimum distance of the code may still

grow with the block length N but at a slower rate, e.g., as O(log(N)).

Lemma 3. If all component codes in the CJ,K,ν ensemble are linear block codes

with minimum distance d > 2, then α̂ > 0 for J > 2. For J = 2, α̂ > 0 if and only

if

ν >
K − 2

K − 1
, ν̂. (2.15)

Otherwise, α̂ = 0.
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Proof. The lemma follows directly by particularizing the results in [24] [Section II]

to the CJ,K,ν ensemble.

2.2 Probabilistic Peeling Decoding over the BEC

Suppose we use a random sample of the CJ,K,ν ensemble to transmit over a BEC(ε).

For this channel, each of the N coded bits is erased with probability ε. Without

loss of generality, we assume that the all-zero codeword is transmitted, hence the

received vector y belongs to the set {0, ?}N , where ? denotes an erasure. Let

Γy ⊆ {1, . . . , N} be the index set of the bits correctly received, namely yi = 0 for

all i ∈ Γy. Decoding will be performed using a generalization of the PD algorithm

[50] similar to that proposed for GLDPC codes in [75]. The final formulation of

the decoding algorithm depends on the decoding capabilities we assume at GC

nodes. For instance, if we assume BD decoding at component codes, then the

generalized PD algorithm, denoted as BD-PD, proceeds as described in Algorithm

2 (See Section 1.3.2).

BD-PD is a suboptimal decoding method that considers decodable all GC

nodes up to degree d−1 [36, 59]. However, it ignores the fact that any component

code will be able to decode a certain fraction of erasure patterns of weight equal to

or greater than d. As already reported in various works, e.g., [43, 75], the GLPDC

code performance dramatically improves if we consider ML decoding at GC nodes.

In principle, to consider ML decoding at GC nodes, we have to specify a full list

of decodable erasure patterns and, label each of the incoming edges at every GC

node to differentiate between decodable and non-decodable GC nodes. As shown

in [75], incorporating this labelling into the asymptotic analysis requires the use

of multi-edge type DDs.

In order to incorporate beyond-BD decoding at GC nodes into our analysis, and

at the same time maintain a formulation compatible with the random definition

of the CJ,K,ν ensemble, we will further constrain the family of component codes

to be used at degree-K GC nodes. More specifically, we assume that the fraction

of ML-decodable weight-w erasure patterns at every GC node is given by some
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+

+

+

+

(a) (b)

Figure 2.2: We illustrate one iteration of the P-PD algorithm. Assuming GC nodes with

d = 3, in (a) right after dashed edges are removed, the remaining GC node (gray shadowed)

becomes degree-2 and thus it will be considered decodable in future iterations. In (b), after

the GC node becomes degree-3, a sample from Bernoulli Random Variable with success

probability equal to p3 is drawn. If the sample is a success, we tagged the GC node as

decodable for future iterations. Otherwise, it is tagged as non-decodable and only after

the node losses any additional edge the tag can be reverted to decodable.

pw ∈ [0, 1], w = 1, . . . ,K. Thus, the family of component codes under analysis

is the family of blocklength-K linear block codes with minimum distance d and

with decoding profile described by the vector p = (p1, . . . , pK). Note that if the

minimum distance of the component code is d, then pw = 1 for w ≤ d − 1. The

bounds on R(ν), predicted in Lemma 2, could in principle be refined according to

p. While this is an interesting open question, we will later show that the bounds

are tight in certain scenarios and there is little room for refinement.

By exploiting the fact that incoming edges at every GC node are assigned to

each position of the component code uniformly at random, we can incorporate ML-

decoded GC nodes into the PD as shown in Algorithm 3, denoted as probabilistic

PD (P-PD). Observe that the key P-PD feature is to tag GC check nodes as

decodable with probabilities given by p only when they lose one or more edges,

which may happen either at the initialization or after a connected variable is

removed. If only one decodable check node is removed per iteration, after every

P-PD iteration only a few GC nodes can change its state (from non-decodable to
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Algorithm 3 P-PD

Remove from the Tanner graph of the GLDPC code all variable nodes with

indexes in Γy.

for all GC nodes do

If the GC has degree w, tag the check node as decodable with probability pw.

end for

Construct Ψ, the index set of check nodes corresponding to either degree-one

SPC nodes or GC nodes tagged as decodable.

repeat

1) Select at random a member of Ψ.

2) Remove from the Tanner graph the check node with the index drawn in

Step 1). Further remove all connected variable nodes and all attached edges.

3)

for every non-decodable GC node that has lost one or more edges in the

current iteration do

If the GC has degree w, draw a sample of a Bernoulli distribution with

success probability pw. If the sample is a success, tag the check node as

decodable.

end for

4) Update Ψ.

until All variable nodes have been removed (successful decoding) or Ψ = ∅
(decoding failure).

decodable). See Fig. 2.2 for an explanatory diagram. Thus, at every iteration,

P-PD emulates the ML decoding operation of a degree-w GC node by drawing

the decoding capability according to a Bernoulli distribution with parameter pw,

w ∈ {1, . . . ,K}. Note that P-PD is a procedure that allows for simpler analysis

rather than a practical decoding algorithm. Further note that we recover the

bounded distance PD (BD-PD) algorithm from P-PD if we set pw = 0 for w ≥ d
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and pw = 1 otherwise.

2.2.1 Comparing the P-PD and ML-PD performances by Monte

Carlo simulation

If we select a specific component code, we can compare the simulation performance

of the CJ,K,ν ensemble for the corresponding parameters under P-PD with that of

the practical GLDPC codes with GC nodes that are decoded via ML, using the

actual parity-check matrix of the component codes. We refer to this latter case as

ML-PD.

More precisely, for a given finite blocklength N , fixed ν ∈ [0, 1], and base DD,

we generate a member of the CJ,K,ν ensemble as follows:

1. Generate at random a Tanner graph according to the (J,K) base DD. Then,

select at random a fraction ν of check nodes to be used as GC nodes. Overall,

the graph contains N variable nodes, νE/K GC nodes and (1− ν)E/K SPC

nodes.

2. For each of the νE/K GC nodes, we generate uniformly at random a permu-

tation of the set {1, 2, . . . ,K}, which is used to associate each of the incoming

edges to the GC node to a position in the component code.

We estimate by Monte Carlo simulation the bit error rate (BER) over the BEC

achieved by both P-PD, which follows Algorithm 3, and ML-PD, which uses a

look-up table of decodable erasure patterns. In Fig. 2.3 (a), we plot the BER

as a function of the channel erasure probability of P-PD and ML-PD for a (2, 6)-

regular base DD with a rate-1/2 Hamming (6, 3) linear block code as component

code. In Fig. 2.3 (b), we plot the same quantities for a (2, 8)-regular base DD

using a rate-1/2 (8, 4) Hamming component code. Results have been averaged

over 10 generated samples from the CJ,K,ν ensemble. Observe the perfect match

between the BERs for P-PD and ML-PD in all cases. This illustrates that we are

not sacrificing accuracy with the probabilistic description of the decoder, as long

as GLDPC codes are generated as described above.
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Figure 2.3: In Fig. 2.3 (a), we plot the BER as a function of the channel erasure probability

for a (2, 6) base DD and a rate-1/2 Hamming (6, 3) linear block code as component code.

In Fig. 2.3 (b), we plot the BER as a function of the channel erasure probability for a (2, 8)

base DD and a rate-1/2 (8, 4) Hamming component code. Results have been averaged over

10 generated samples from the CJ,K,ν ensemble with a blocklength of N = 10000 bits.

2.3 Asymptotic analysis

The P-PD decoder yields a sequence of residual graphs by sequentially removing

degree-one SPC nodes and decodable GC nodes from the GLDPC Tanner graph.

Our next goal is to predict the asymptotic behaviour of the CJ,K,ν ensemble under

P-PD by extending the methodology proposed in [50] to analyze the asymptotic

behavior of LDPC ensembles under PD. In [50], it is shown that if we apply the

PD to elements of an LDPC ensemble, then the expected DD of the sequence of

residual graphs can be described as the solution of a set of differential equations.

Furthermore, the deviation of the process w.r.t. the expected evolution decreases

exponentially fast with the LDPC blocklength. This analysis is based on a result

on the evolution of Markov processes due to Wormald [103]. The proof that
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the GLDPC asymptotic graph evolution under P-PD can be predicted using the

same result is given in Appendix A.1. In this section, we introduce the notation

used to characterize the DDs of the residual Tanner graphs of GLDPC ensembles

with P-PD decoding and then present the system of differential equations that

describes the asymptotic GLDPC graph evolution. In order to characterize the

DDs of the residual Tanner graphs of GLDPC ensembles is to augment the DD

notation introduced in Section 2.1 to differentiate between GC nodes that have

been tagged as decodable and those tagged as non-decodable. In order to simplify

the formulation, we restrict ourselves to the case pw = 0 for w ≥ d + 2, i.e.,

we consider component codes that can only decode a certain fraction of erasure

patterns of degrees d and d + 1 and all erasure patterns of degree below d. This

may not be a strong assumption. After exhaustive search of short linear block

component codes (blocklengths up to 15 bits), we have not found any component

code with pw > 0 for w ≥ d + 2. In any case, the analysis provided here directly

generalizes to any arbitrary pw.

As introduced in Section 2.1, any edge adjacent to a degree i variable node is

said to have left degree i, i = 1, . . . , J . Similarly, any edge adjacent to a degree

j SPC (GC) node is said to have right SPC (GC) degree j, j = 1, . . . ,K. Given

the residual graph at the `-th iteration of the P-PD algorithm, let L
(`)
i denote the

number of edges with left degree i at iteration `. Similarly, let R
(`)
pj denote the

number of edges with right SPC degree j and R
(`)
cj denote the number of edges

with right GC degree j at iteration `. For j ∈ {d, d + 1}, we split R
(`)
cj into two

terms, R̂
(`)
cj and R̄

(`)
cj , where R̂

(`)
cj , j ∈ {d, d + 1} denotes the number of edges with

right GC degree j connected to GC nodes tagged as decodable, and R̄
(`)
cj denotes

the number of edges with right GC degree j connected to GC nodes tagged as

not-decodable. Clearly, we have R
(`)
cj = R̂

(`)
cj + R̄

(`)
cj , j = d, d + 1. Recall that E

denotes the number of edges in the original GLPDC graph.

In the following theorem, we make use of Wormald’s theorem [103] to show

that the DD of the sequence of residual graphs during P-PD of a specific instance

of the CJ,K,ν ensemble converges to a function that can be computed by solving
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a set of deterministic differential equations. More specifically, for any element

Z(`) ∈ {L(`)
i , R

(`)
pj , R

(`)
cj } i=1,...,J

j=1,...,K
there exists a constant ξ such that

P
(∣∣∣Z(`)/E− z(`/E)

∣∣∣ > ξE−
1
6

)
= O

(
e−
√
E
)
, (2.16)

where z(`/E) is the solution of a set of differential equations for that element of

the DD, and O
(

e−
√
E
)

summarizes terms of order e−
√
E. See Appendix A.1 for

more details. In the following, we use the notation Z(`)/E → z(`/E) to describe

convergence in the sense of (2.16).

Theorem 4. Consider a BEC with erasure probability ε and assume we use el-

ements of the Cλ,ρp,ρc,ν code ensemble for transmission. If we use P-PD with pa-

rameters (d, pd, pd+1), then the DD of the residual graph at iteration ` converges

to

L
(`)
i /E→ l

(τ)
i , i ∈ {1, . . . , J} (2.17)

R
(`)
pj /E→ r

(τ)
pj , j ∈ {1, . . . ,K} (2.18)

R
(`)
cj /E→ r

(τ)
cj , j ∈ {1, . . . ,K} and j /∈ {d, d + 1} (2.19)

R̂
(`)
cj /E→ r̂

(τ)
cj , j ∈ {d, d + 1} (2.20)

R̄
(`)
cj /E→ r̄

(τ)
cj , j ∈ {d, d + 1} (2.21)

where l
(τ)
i , r

(τ)
pj , r

(τ)
cj , r̂

(τ)
cj , r̄

(τ)
cj , and τ = `

E
∈ [0,

∑J
i=1 l

(τ)
i /i] are the solutions to the

following system of differential equations:

dl
(τ)
i

dτ
= − il

(τ)
i

e(τ)

(
P

(τ)
p1 +

d+1∑

w=1

wP (τ)
cw

)
, (2.22)

dr
(τ)
pj

dτ
= P

(τ)
p1

(
(r

(τ)
p(j+1) − r

(τ)
pj )

j(a(τ) − 1)

e(τ)
− I[j = 1]

)

+
d+1∑

w=1

P (τ)
cw (r

(τ)
p(j+1) − r

(τ)
pj )

jw(a(τ) − 1)

e(τ)
, (2.23)

dr
(τ)
cj

dτ
= P

(τ)
p1

(
(r

(τ)
c(j+1) − r

(τ)
cj )

j(a(τ) − 1)

e(τ)

)
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+
d+1∑

w=1

P (τ)
cw

(
(r

(τ)
c(j+1) − r

(τ)
cj )

jw(a(τ) − 1)

e(τ)
− wI[j = w]

)
, j /∈ {d, d + 1}

(2.24)

dr̂
(τ)
cj

dτ
= P

(τ)
p1

(
(pj r̄

(τ)
c(j+1) + r̂

(τ)
c(j+1) − r̂

(τ)
cj )

j(a(τ) − 1)

e(τ)

)

+

j+1∑

w=1

P (τ)
cw

(
(pj r̄

(τ)
c(j+1) + r̂

(τ)
c(j+1) − r̂

(τ)
cj )

jw(a(τ) − 1)

e(τ)
− wI[w = j]

)
, j ∈ {d, d + 1}

(2.25)

dr̄
(τ)
cj

dτ
= P

(τ)
p1

(
((1− pj)r̄(τ)

c(j+1) − r̄
(τ)
cj )

j(a(τ) − 1)

e(τ)

)

+

j+1∑

w=1

P (τ)
cw

(
((1− pj)r̄(τ)

c(j+1) − r̄
(τ)
cj )

jw(a(τ) − 1)

e(τ)
− wI[w = j]

)
, j ∈ {d, d + 1}

(2.26)

In (2.22)-(2.26), I[·] denotes the indicator function, and

e(τ) =

J∑

i=1

l
(τ)
i =

K∑

j=1

[r
(τ)
pj + r

(τ)
cj ], (2.27)

a(τ) =
∑

i

il
(τ)
i /e(τ), (2.28)

P
(τ)
p1 =

r
(τ)
p1

s(τ)
, (2.29)

Pcj(τ) =





r
(τ)
cj /j

s(τ)
j < d

r̂
(τ)
cj /j

s(τ)
j ∈ {d, d + 1}

(2.30)

s(τ) = r
(τ)
p1 +

d−1∑

w=1

r
(τ)
cw

w
+
r̂

(τ)
cd

d
+
r̂

(τ)
c(d+1)

d + 1
. (2.31)

The initial conditions of the system of differential equations (2.22)-(2.26) are given

by

l
(0)
i = ελi, (2.32)

r
(0)
pj =

∑

α≥j
ρpα

(
α− 1

j − 1

)
εj(1− ε)α−j , (2.33)
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r
(0)
cj =

∑

α≥j
ρcα

(
α− 1

j − 1

)
εj(1− ε)α−j , (2.34)

r̂(0)
cν = pνr

(0)
cν , (2.35)

r̄(0)
cν = (1− pν)r(0)

cν (2.36)

for i = 1, . . . J , j = 1, . . . ,K, and ν = d, d + 1.

Proof. See Appendix A.1.

Using Theorem 4, we can predict the P-PD threshold for the CJ,K,ν code en-

semble by setting λi = I[i = J ] in (2.32), ρpα = (1 − ν)I[α = K] in (2.33), and

ρcα = νI[α = K] in (2.34). We then numerically search for the highest ε value for

which the function r
(τ)
p1 +

∑d−1
w=1 r

(τ)
cw /w + r̂

(τ)
cd /d + r̂

(τ)
c(d+1)/(d + 1) remains strictly

positive for any τ ∈ [0,
∑J

i=1 l
(τ)
i /i] such that e(τ) > 0.

2.3.1 An upper bound on the iterative-decoding threshold

For standard LDPC code ensembles, it is known that the BP iterative decoding

threshold is upper bounded by the so-called stability condition (STC) [82]:

ε∗ ≤
[
λ2 ρ

′(1)
]−1

, (2.37)

where ρ(x) is the right degree polynomial, ρ′(1) its derivative at x = 1 and λ2 is the

fraction of edges in the graph with left degree equal to 2. In [78], Paolini, Fossorier,

and Chiani extended the bound for GLDPC code ensembles by performing a Taylor

expansion of the asymptotic GLDPC EXIT function. In particular, they proved

that if the GLDPC code ensemble only contains generalized component codes with

d ≥ 3, then the iterative decoding threshold is upper bounded by

ε∗ ≤
[
λ2 ρ

′
p(1)

]−1
, (2.38)

where

ρp(x) =
∑

j≥2

ρpjx
j−1, (2.39)
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and ρpj , as defined in Section 2.1, is the fraction of edges in the GLDPC Tanner

graph connected to degree-j SPC nodes. For the CJ,K,ν ensemble with J = 2, this

bound simplifies to

ε∗ ≤ 1

(K − 1)(1− ν)
, (2.40)

while for J > 2 this bound is non-informative (it is infinite) since λ2 = 0.

2.4 Analysis of the CJ,K,ν ensemble under P-PD

In this section, we study the asymptotic performance of the CJ,K,ν ensemble for

different base DDs as we vary the fraction ν of GC nodes in the graph. We use

high rate base DDs that correspond to regular LDPC code ensembles with variable

degree equal to J = 2. Further examples with J > 2 are discussed in Sections 2.5.2

and 2.7. We summarize the parameter of the base DD considered here in Table

3.1. We denote by ε0 the PD threshold of the base LDPC ensemble. Recall that

pw = 1 for w ≤ d − 1 and pw = 0 for w ≥ d + 2. In order to determine pd, pd+1,

we performed an exhaustive search over the database [29, 30], which implements

MAGMA [8] to design block codes with the largest minimum distance. For every

K, we search for the code with the largest minimum distance d, and we use the

corresponding pd and pd+1 parameters. Like this, we ensure that there exists at

least one linear block code that satisfies these requirements. We use this specific

block code as the reference of a family of linear block codes with the same decoding

capabilities. The values found are listed in Table 3.2 and used as a reference for

a whole family of linear block codes. The corresponding reference block codes are

listed in Appendix C.1. Note that despite having different blocklength and rate,

many reference block codes share the same pd, pd+1 parameters.

We construct CJ,K,ν ensembles by combining various base DDs with the compo-

nent code families summarized in Table 3.2. For each code ensemble, we compute

the P-PD threshold ε∗ as a function of ν.
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Table 2.1: Base DDs, their design rates and iterative decoding thresholds under PD

Base DD K R0 ε0 Gap to capacity (1− R0 − ε0)

(2, 6)-regular 6 2/3 0.206 0.127

(2, 7)-regular 7 5/7 0.167 0.119

(2, 8)-regular 8 3/4 0.147 0.103

(2, 15)-regular 15 13/15 0.071 0.062

Table 2.2: Families of component linear block codes.

Code Family Index blocklength K d pd pd+1

I 6 3 0.8 0

II 6 4 0.8 0

III 7 3 0.8 0

IV 7 4 0.8 0

V 8 4 0.8 0

VI 8 4 0.9143 0.5714

VII 8 5 0.9643 0.75

VIII 15 3 0.9231 0.6154

IX 15 4 0.9231 0.6154

2.4.1 Results for (2, 6) and (2, 7) base DDs

Fig. 2.4 shows the computed P-PD threshold ε∗ of the CJ,K,ν ensemble for a

base DD (2, 6)-regular as a function of ν. We consider GC nodes with minimum

distance d equal to 3 and 4 and parameters given by Families I and II in Table

3.2. We also include the BD-PD threshold, which only depends on the minimum

distance d of the component codes and can be computed by solving the system of

differential equations in Theorem 4 by setting pd = pd+1 = 0. First of all, observe

that the P-PD gains in threshold w.r.t. BD-PD are only significant for large values

of ν. Furthermore, for both P-PD and BD-PD, using component codes with larger

minimum distance (d = 4 instead of d = 3) pays off only for very large values of ν.

Since increasing ν also modifies the code rate R(ν) in (2.4), the comparison
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Figure 2.4: P-PD and BD-PD thresholds as a function of ν for the (2, 6) base DD.

in Fig. 2.4 can be misleading, as we cannot directly evaluate the distance to the

channel capacity. In fact, not all values of ν are achievable, since they would give

rise to a negative rate R(ν). We overcome this issue by directly comparing the

asymptotic threshold and code rate, both defined as parametric curves w.r.t. ν.

Denote by ε∗(ν) the threshold ε∗ as a function of ν ∈ [0, 1]. From Fig. 2.4 we

see that ε∗(ν) is a continuous, strictly increasing function of ν and that for ν = 0

its value is equal to ε0, the threshold of the base LDPC ensemble. The inverse of

this function, which can be obtained numerically, is denoted by ν(ε∗) and provides

the minimum fraction of GC nodes in the graph required to achieve an ensemble

threshold at least ε∗. Given the function ν(ε∗) described above, we use Lemma

2 to determine bounds on R(ν) for a given targeted decoding threshold ε∗. More

precisely, by using ν(ε∗) in (2.6), we obtain a converse bound on the coding rate

required to achieve a P-PD decoding threshold equal to ε∗ using component codes

with minimum distance d. Similarly, using ν(ε∗) in (2.7), we obtain an achievable

bound on the coding rate required to achieve a P-PD decoding threshold equal to

ε∗ using linear component codes with minimum distance d. We proceed along the

same lines to obtain bounds on the CJ,K,ν rate for the BD-PD thresholds.
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Figure 2.5: In Fig. 2.5 (a), we plot the bounds on the CJ,K,ν coding rate in (2.6) and (2.7)

for the base DD (2, 6) and component codes of minimum distance d = 3 as a function of

the P-PD and BD-PD thresholds. In Fig. 2.5 (b), we show their gap to channel capacity.

We also indicate the P-PD threshold for ν = ν̂.

In Fig. 2.5 (a) we plot these bounds as a function of ε∗, both for P-PD and

BD-PD, using Code Family I component codes with minimum distance d = 3. We

further include the STC upper bound in (2.40). Observe that (2.40) coincides with

the rate-threshold converse bound in (2.6) up to ν ≈ 0.75. Above ν = 0.8, the

STC bound exceeds channel capacity.

In Fig. 2.5 (b), we show the gap to channel capacity computed for each case,

and indicate the threshold ε∗(ν̂) with ν̂ given in (2.15). Since ε∗(ν) is monoton-

ically increasing in ν, any configuration with threshold larger than ε∗(ν̂) has a

minimum distance that grows linearly with the block length N . Observe that the

performance of both BD-PD and P-PD overlaps for coding rates close to the orig-

inal rate of the base DD, i.e., for small values of ν. However, as ε∗(ν) increases,

P-PD significantly outperforms BD-PD. Furthermore, there are values of ν for

which the gap to capacity of P-PD is smaller than that for the base LDPC en-

semble under PD. For the (2, 6) base DD, the minimum gap to capacity of P-PD,

measured using the achievable rate bound, is 0.0823 for a coding rate of 0.1667.
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For ν = ν̂, the gap to capacity grows to 0.0987 but it is still below the base LDPC

gap to capacity, which is 0.1273 according to Table 3.1. Thus, for ν slightly above

ν̂ we are able to reduce the original gap to capacity and at the same time obtain

a good ensemble with respect to minimum distance. Observe also that the region

where the CJ,K,ν ensemble outperforms the base LDPC ensemble is very narrow,

and it does not include the case where all check nodes are GC nodes (ν = 1).
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Figure 2.6: Bounds on the CJ,K,ν coding rate in (2.6) and (2.7) for a base DD (2, 6) and

d = 4 component codes as a function of the P-PD and BD-PD thresholds.

Fig. 2.6 reproduces the results for the Code Family II with minimum distance

d = 4. However, in this case the two bounds are loose and it is uncertain whether

we can find a specific component code in the family that is able to operate close

to the converse bound. The P-PD converse bound now overlaps with the STC

bound in the whole regime and, for large ε∗(ν), it coincides with the capacity.

Furthermore, the bounds for P-PD and BD-PD overlap in a large region despite

the fact that P-PD using component codes from Family II resolves degree-d erasure

patterns with high probability (0.8).

In Fig. 2.7 we show the asymptotic behaviour of the CJ,K,ν ensemble con-

structed using a (2, 7) base DD with d = 3 component codes. As predicted by
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Lemma 2, when using component codes of blocklength K = 7 with minimum dis-

tance d = 3, the converse and achievable bound on the CJ,K,ν coding rate coincide.

Thus, the existence of a linear block component code that satisfies the properties

of Code Family III and for which the CJ,K,ν ensemble asymptotically achieves the

results in Fig. 2.7 is guaranteed. Again, there is a region where the gap to capacity

of P-PD can be reduced with respect to that of the base LDPC ensemble, which is

roughly aligned with the point where the P-PD threshold separates from the STC

upper bound in (2.40).
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Figure 2.7: In (a), we plot the bounds on the CJ,K,ν coding rate in (2.6) and (2.7) for a

base DD (2, 7) as a function of the P-PD and BD-PD thresholds. Note that the bounds

overlap in this case. In (b), we show the gap to channel capacity for each case. We also

indicate the P-PD threshold for ν = ν̂.

2.4.2 Results for higher-density base DDs

We finish this section by extending the above results to base DDs with higher check

degree and, thus higher ensemble density. In Fig. 2.8(a), we show the asymptotic

behavior of the CJ,K,ν ensemble constructed using a (2, 8) base DD with component

codes in Code Families V, VI and VII (See Table 3.2). Observe first that the rate

bounds for Code Families V and VI coincide, even though Code Family VI has
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better decoding capabilities. In both cases the bounds are loose, but we can still

observe a significant improvement w.r.t. the Code Family VII, which has very

large (d = 5) minimum distance and, hence, and small coding rate. This again

illustrates the trade-off between the threshold performance and the rate penalty

induced by considering lower rate GC nodes. In Fig. 2.8(b), we consider a (2, 15)

base DDs with a component code of Code Family VIII (d = 3). In this case, as

predicted by lemma 2, the bounds coincide and the gap to capacity is minimized at

a coding rate R ≈ 0.54 and threshold ε∗ ≈ 0.379, resulting in a gap capacity equal

to 0.074. This is slightly above the gap to capacity for the base LDPC ensemble

(0.062). Also, at this point the GLDPC ensemble does not have linear growth of

the minimum distance, since for this ensemble, ε∗(ν̂) = 0.493.
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Figure 2.8: We plot the bounds on the CJ,K,ν coding rate in (2.6) and (2.7) for a base DD

(2, 8) (Fig. 2.8 (a)) and (2, 15) (Fig. 2.8 (b)) as a function of the P-PD threshold.

2.5 Selecting specific component codes

By using the bounds on the CJ,K,ν code rate, we have been able to assess the

performance of CJ,K,ν ensembles for a family of linear component codes. In certain

scenarios the proposed bounds on the CJ,K,ν code rate provide meaningful design
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information about the asymptotic behavior of the ensemble. The natural question

that arises at this point is whether we can find specific component codes within the

family that outperform the achievable bound in (2.7), reducing the gap to the rate

converse bound in (2.6). In this section, we analyze the asymptotic performance of

CJ,K,ν when component codes are chosen from the the list of reference linear block

component codes summarized in Table 2.3. The construction of these linear block

codes is detailed in [29], and their generator matrix is given in Appendix C.1. We

use the notation R-I to denote the reference linear block code of Code Family I.

Table 2.3: Reference component codes. The parameter k describes the number of rows in

the parity-check matrix.

Code index Blocklength K k Rate Code family in Table 3.2

R-I 6 3 1/2 I

R-II 6 4 1/3 II

R-III 7 3 4/7 III

R-IV 7 4 3/7 IV

R-V 8 4 1/2 V

R-VI 8 5 3/8 VI

R-VII 8 6 1/4 VII

R-VIII 15 4 11/15 VIII

R-IX 15 5 2/3 IX

Once we fix a particular class of component codes to be used at GC nodes,

we can replace the CJ,K,ν code bounds by the actual code rate in (2.4). In Fig.

2.9 we plot the CJ,K,ν coding rate (using markers), and the STC upper bound

and and the achievable bound of the corresponding family of codes for (2, 6) and

(2, 7) base DDs. Results for (2, 8) and (2, 15) base DDs can be found in Fig. 2.10.

Observe that, with the proposed component codes, we are able to perform at least

as good as the achievable bound of the corresponding family of block component

codes. In some cases, e.g. the (2, 8) base DD, the achievable bound is significantly

outperformed. Recall that for the (2, 8) base DD the rate bounds in Fig. 2.8(a)
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Figure 2.9: CJ,K,ν coding rate and achievable bound in (2.7) for (2, 6) and (2, 7) base DDs

and component codes from Table 3.2 and 2.3 as a function of the P-PD decoding threshold.

are loose. While for the (2, 7) and (2, 15) codes the STC bound is attained except

for large values of ν, for the (2, 6) and (2, 8) ensembles results suggest that there

is still room for improving the component code design.

Finally, in the same figures, we highlight those points for which, asymptotically,

the CJ,K,ν ensemble with the proposed linear component codes under P-PD oper-

ates closer to channel capacity than the base LDPC code ensemble under PD. For

both the (2, 6), (2, 7), and the (2, 8) base DDs we were able to find such points. For

the (2, 15) ensemble, the minimum gap to capacity obtained is slightly above the

one of the base LDPC code ensemble under PD (0.0743 and 0.0623 respectively).

2.5.1 Growth Rate of the Weight Distribution

Upon selecting a specific block code, we can compute the weight spectral shape

G(α) in (2.14) using the tools proposed in [24]. In Fig. 2.11, we plot G(α) for

different values of ν, computed for the (2, 6) base DD with Code R-I as component

code (Fig. 2.11 (a)) and the (2, 7)-regular base DD with Code R-III as component

code (Fig. 2.11 (b)). Recall that the critical exponent codeword weight ratio is

defined as α̂ , inf{α ≥ 0|G(α) ≥ 0}. In the plots, we highlight α̂ with a star. By
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Figure 2.10: CJ,K,ν coding rate and achievable bound in (2.7) for (2, 8) and (2, 15) base

DDs and component codes from Tables 3.2 and 2.3 as a function of the P-PD decoding

threshold.

Lemma 3, we have α̂ = 0 at ν = ν̂. As ν grows, α̂ grows, too, and it achieves

its maximum at ν = 1. These results indicate that there is a trade-off between

the gap to capacity and α̂(ν), the critical exponent codeword weight ratio. As an

example, we include values of both quantities in Table 2.4 for the (2, 6)-regular

base DD with Code R-I as component code.

Table 2.4: α̂, ε∗ and Gap to capacity for different values of ν, computed for the (2, 6)-base

DD with Code R-I component codes

ν α ε∗ Gap to capacity

80% 0 0.768 0.0987

87.5% 0.2049 0.788 0.1287

90% 0.2556 0.792 0.1413

92.5% 0.3038 0.797 0.1530

95% 0.3526 0.801 0.1657

97.5% 0.4056 0.806 0.1773

100% 0.6078 0.809 0.1910
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Figure 2.11: In Fig. 2.11 (a), we plot the weight spectral shape G(α) in (2.14) of the

CJ,K,ν ensemble for a (2, 6) base DD and with Code R-I as component code. In Fig. 2.11

(b), we plot the same quantity for the CJ,K,ν ensemble for a (2, 7) base DD and with Code

R-II as component code (b).

2.5.2 Extension to irregular GDLPC code ensembles

To finish this section, we present some further examples using GLDPC code en-

sembles with irregular DD. Note that the initial conditions in (2.32)-(2.36) of the

P-PD asymptotic analysis presented in Section 2.3 already consider an arbitrar-

ily irregular DD, and hence the methodology presented is directly applicable to

irregular GLDPC code ensembles. As an example, here we discuss two irregular

GLDPC code ensembles:

• Ensemble I [77]. Rate 1/3, λ(x) = 0.2x+ 0.7118x2 + 0.0882x4, ν∗ = 0.6719

and Hamming (7, 4) component codes. Using ML decoding at GC nodes, the

reported threshold is 0.540.

• Ensemble II [31]. Rate 1/2, λ(x) = 0.80x2 + 0.01x5 + 0.01x7 + 0.18x9,

ν∗ = 0.40 and Hamming (15, 11) component codes. Using ML decoding at

GC nodes, the reported threshold is 0.466.

These ensembles have been constructed using numerical-constrained optimization
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Figure 2.12: P-PD asymptotic threshold and coding rates for different regular and irregular

GLDPC code ensembles with varying fraction ν of GC nodes in the graph.

methods. In Fig. 2.12 we show the results of the P-PD asymptotic analysis when

we vary ν around the fraction ν∗ defined above for each case. Observe first that

in both cases our results are consistent with the thresholds computed in [77, 31].

In addition, they show that the gap to capacity for Ensemble II can be reduced

if we slightly reduce the ensemble rate, i.e. by reducing ν to roughly 35% instead

of 40%. For Ensemble I, the gap to capacity is indeed minimized at exactly the

point predicted in [77]. For comparison, we have included (2, X)-regular GLDPC

code ensembles with the same check node degrees (and thus same graph density)

as Ensembles I and II. Observe that while Ensemble II significantly outperforms

the rate-threshold tradeoff of the (2, 15)-GLDPC code ensemble with Code R-VIII

as component code, the (2, 7)-regular GLDPC code with Code R-III as component

code approximately attains threshold 0.540 at rate R = 1/3, but can reduce the

gap to capacity as we decrease the coding rate.
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2.6 Random puncturing

We have proposed the P-PD algorithm as a flexible model to analyze beyond-

BD decoding algorithm at GC nodes. Observe that for the P-PD algorithm, the

evaluation of the coding rate and the iterative decoding threshold are decoupled

problems. This provides a flexible analysis framework that allows the exploration

of additional techniques to modify the designs presented above and further reduce

the gap to capacity. In this section and the following one, we consider two relevant

examples. Specifically, in this section we consider the use of random puncturing

to accommodate the coding rate by dropping the transmission of a fraction of

coded bits [66]. In the next section, a simple model of doubly-generalized LDPC

(DG-LDPC) code ensembles is analyzed [101, 102, 22].

As illustrated in [66], a linear code is punctured by removing a set of columns

from its generator matrix. After puncturing at random a fraction ξ of the coded

bits in the CJ,K,ν ensemble, the resulting coding rate is

R(ν, ξ) =
R(ν)

1− ξ , ξ ∈ [0, 1), (2.41)

where we recall that R(ν) denotes the coding rate of the original CJ,K,ν ensemble.

In [66], the authors derive a simple analytic expression for the iterative belief prop-

agation (BP) decoding threshold of a randomly punctured LDPC code ensemble

on the binary erasure channel (BEC). Following their proof, it can be verified that

the same results apply to a randomly punctured GLDPC code ensemble. The

result reads as follows. Given a CJ,K,ν ensemble with iterative decoding threshold

ε∗(ν), the threshold ε∗(ν, ξ) of the GLDPC ensemble that follows by randomly

puncturing a fraction ξ of the coded bits is related to the unpunctured case as

follows:

ε∗(ν, ξ) = 1− 1− ε∗(ν)

1− ξ . (2.42)

Observe that the larger the unpunctured threshold ε∗(ν) is, the larger the threshold

of the punctured ensemble will be. In this regard, we can think of the design of

a punctured GLDPC ensemble as a two stage process: First, the GLDPC code
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ensemble can be designed by choosing ν to minimize the gap to capacity. Second,

for a fixed ν, we can analyze the overall gap to capacity as we increasing the code

rate by combining (2.41) and (2.42). We perform this experiment in Fig. 2.13

(a) for the (2, 6) and the (2, 7) base DDs and component codes R-I and R-III,

respectively. With markers we show the CJ,K,ν threshold-rate curve as we increase

the fraction of GC nodes in the graph. Solid lines indicate the evolution of the rate

and threshold of the punctured ensemble for fixed ν as we increase the puncturing

fraction ξ. Observe that with puncturing it is possible to increase the coding rate

and obtain an iterative decoding threshold that is closer to capacity than those

obtained by the original CJ,K,ν ensemble. The accuracy of the predicted threshold

can be observed in Fig. 2.13 (b), where we include both the threshold predicted by

(2.42) (dashed lines) and the simulated P-PD performance for the (2, 6) base DD

with component code R-I, N = 10000 bits, and different values of the puncturing

rate ξ (solid lines). We note that, once we introduce puncturing, the STC upper

bound in (2.40) is not applicable anymore.

2.7 Doubly-generalized LDPC codes

A different technique that can potentially help to find a better balance between

coding rate and threshold is the inclusion of generalized variable nodes, giving

rise to a doubly-generalized LDPC code ensemble [101]. In this section we de-

velop an example with a simple class of a DG-LDPC ensemble. We modify the

CJ,K,ν ensemble by replacing a certain fraction β of regular variable (RV) nodes

by generalized variable (GV) nodes, see Fig. 2.14. Degree-J RV nodes in the

CJ,K,ν graph can be seen as rate 1/J repetition code of block length J , where

the input to the repetition code represents one bit of the DG-LDPC codeword.

On the other hand, degree-J GV nodes are characterized by a (J, m) linear block

code, where the input to the variable component code represents m bits of the DG-

LDPC codeword. Thus, the total block length of the DG-LDPC code ensemble is

N ′ = (1 − β)N + βNm, where N is the number of variable nodes (both RV and

GV) in the graph. In the following, we will assume J = 3, m = 2 and the following
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Figure 2.13: In Fig. 2.13 (a), we show with markers the CJ,K,ν threshold-rate curve for

the (2, 6) and the (2, 7) base DDs and component codes R-1 and R-3, respectively. Solid

lines indicate the evolution of the rates and thresholds of the punctured ensemble for a

fixed ν as we increase the puncturing fraction ξ. In Fig. 2.13 (b), we show the simulated

P-PD performance for the (2, 6) base DD with component codes R-1, N = 10000 bits,

and different values of the puncturing rate ξ. Vertical dashed lines indicate the thresholds

predicted by (2.42).

generator matrix for GV nodes:

G =


1 1 0

0 1 1


 . (2.43)

Thus, each GV node encodes two bits of the DG-LDPC codeword. Denote this

ensemble by C3,K,ν,β. If the component codes at GC nodes are linear block codes

with a k-row parity check matrix, an easy calculation shows that the coding rate

of the ensemble is

R(α, β) = 1− (1− R0)

(
1 + (k− 1)ν

1 + β

)
. (2.44)

As before, we characterize the component codes at GC nodes by the triple
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Figure 2.14: Tanner graph of the DG-LDPC code ensemble.

(d, pd, pd+1). Furthermore, the code associated with the generator matrix (2.43)

has minimum distance 2 and can only decode erasure patterns of weight one.

2.7.1 Decoding via P-PD

Suppose we use a random sample of the C3,K,ν,β code ensemble to transmit over a

BEC(ε). RV nodes are removed from the graph with probability 1− ε. Regarding

GV nodes, we have to consider the following three scenarios:

• With probability (1−ε)2 the two DG-LDPC coded bits are correctly received

and the GV node can be removed from the graph.

• With probability 2ε(1− ε), only one of the two coded bits is received. Since

the node is only encoding one unknown bit, note that we can replace the GV

node in the graph by a degree-2 RV node.

• With probability ε2 the GV node remains in the graph as a degree-3 GV

node.

Decoding will be performed via P-PD. Since the code spanned by (2.43) can only

decode one error, during the P-PD procedure every GV node needs to lose at least

two edges before it can be removed from the graph. Further, once it loses one
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edge, it can be replaced by a degree-2 RV node. Hence, a small modification is

required at step 2) in the P-PD Algorithm in Section 2.2. Now, it reads as follows:

2) Remove from the Tanner graph the check node with the index drawn in

Step 1). Further remove all connected RV nodes, connected degree-2 GV

nodes and all attached edges.

2.7.2 Degree Distribution and Asymptotic Analysis

While no change is needed to describe the evolution of the check nodes of the

residual DG-LDPC code ensemble during P-PD, additional definitions at the vari-

able side are needed to tackle both RV nodes and GV nodes. Let L
(`)
r2 and L

(`)
r3

represent the total number of edges in the graph connected to RV nodes of degree

2 and 3, respectively, after iteration ` of the decoder. Further let L
(`)
g3 be the total

number of edges in the graph connected to GV nodes of degree 3.

Theorem 5. Consider a BEC with erasure probability ε and assume we use ele-

ments of the C3,K,ν,β code ensemble for transmission. If we use P-PD with param-

eters (d, pd, pd+1), then the DD of the residual graph at iteration ` converges in the

sense of (2.16) to

L
(`)
r2 /E→ l

(τ)
r2 , (2.45)

L
(`)
r3 /E→ l

(τ)
r3 , (2.46)

L
(`)
g3 /E→ l

(τ)
g3 , (2.47)

R
(`)
pj /E→ r

(τ)
pj , j ∈ {1, . . . ,K} (2.48)

R
(`)
cj /E→ r

(τ)
cj , j ∈ {1, . . . ,K} and j /∈ {d, d + 1} (2.49)

R̂
(`)
cj /E→ r̂

(τ)
cj , j ∈ {d, d + 1} (2.50)

R̄
(`)
cj /E→ r̄

(τ)
cj , j ∈ {d, d + 1} (2.51)

where l
(τ)
r2 , l

(τ)
r3 , l

(τ)
g3 r

(τ)
pj , r

(τ)
cj , r̂

(τ)
cj , r̄

(τ)
cj , τ = `

E
∈ [0,

∑J
i=1 l

(τ)
i /i] are the solutions

to the system of differential equations given by (2.22)-(2.26) using a(τ) = (3l
(τ)
r3 +
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2l
(τ)
r2 + l

(τ)
g3 )/e(τ) and

dl
(τ)
r2

dτ
= 2

(
l
(τ)
g3 − l

(τ)
r2

e(τ)

)(
P

(τ)
p1 +

d+1∑

w=1

wP (τ)
cw

)
(2.52)

dl
(τ)
r3

dτ
= −3l

(τ)
r3

e(τ)

(
P

(τ)
p1 +

d+1∑

w=1

wP (τ)
cw

)
(2.53)

dl
(τ)
g3

dτ
= −

3l
(τ)
g3

e(τ)

(
P

(τ)
p1 +

d+1∑

w=1

wP (τ)
cw

)
, (2.54)

Here, e(τ), P
(τ)
p1 and P

(τ)
cw are defined in (2.27), (2.29), and (2.30), respectively.

The initial conditions of the system of differential equations in (2.22)-(2.26) and

(B.7)-(B.9) are given by

l
(0)
g3 = ε2β, (2.55)

l
(0)
r3 = ε(1− β), (2.56)

l
(0)
r2 = 4βε(1− ε)/3 (2.57)

and by (2.33)-(2.36) evaluated at ε′ = ε(1 + β(1− ε)/3).

Proof. See Appendix B.1.

2.7.3 Results for the (3, 6) and (3, 7) base DDs

Fig. 2.15 shows the computed rate-threshold curve parametrized by ν for both the

C3,K,ν,β ensembles, both with β = 0, i.e., when the code graph has no generalized

variable nodes, and with β = 0.3. We use a (3, 6) base DD with code R-I (see Table

2.3) as component code. While in the former case the minimun gap to capacity

is achieved for the base LDPC code ensemble (with a gap to capacity of 0.0710),

by using a certain amount of generalized variable nodes we are able to reduce this

gap to 0.0592. Further, since all variable nodes in the graph have degree 3, by

Lemma 3, for any value of ν the code ensemble has a minimum distance that grows

linearly with the block length. Fig. 2.16 shows similar results for a (3, 7) base DD

with Code R-III as component code.
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2.8 Applications of GLDPC codes

We proposed the P-PD algorithm as a flexible and efficient decoding algorithm

that allows us to easily incorporate ML-decoded GC nodes with specific properties

into the asymptotic analysis and still maintain a random definition of the graph

degree distribution. Using P-PD, asymptotic analysis of the GLDPC ensemble

is carried out by a simple generalization of the original PD analysis by Luby et

al. in [50]. The only information required about the component code and its

decoding method is the fraction of decodable erasure patterns of a certain weight.

We consider a class of GLDPC code ensembles characterized by a regular base

DD where we include a certain fraction of GC nodes, and we study the tradeoff

between iterative decoding threshold, coding rate and minimum distance. We

have shown that one can find a fraction of GC nodes required that reduces the

original gap to capacity and yields a GLDPC ensemble with linear growth of

the minimum distance w.r.t. the block length. Finally, we show how the P-

PD analysis can be combined with additional techniques to find a better balance

between coding rate and asymptotic gap to capacity. In particular, we consider

random puncturing and the use of generalized variable nodes. We would like to

emphasize that, in the proposed analysis framework, the evaluation of both coding

rate and of iterative decoding threshold are decoupled problems. Consequently,

broader classes of component codes or improved decoding methods at GC nodes

can be incorporated in a systematic way.

In the next chapter we analyze the GLDPC codes with regular base DD and

a certain fraction of GC nodes in the finite-length regime. Due to their regularity

of the DD, we show such codes possess a robust finite-length behavior compared

to GLDPC code designs proposed in the literature, characterized by capacity-

achieving DDs. Furthermore, the simulation results of designed codes outperform

other potential candidate codes, which makes our designed codes candidates for

ultra reliable low latency communication, such as 5G.
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3
Generalized LDPC Codes for Ultra

Reliable Low Latency Communication

Fifth-generation (5G) systems aim to increase the capacity of existing mobile net-

works by a factor of 1000 [15], supporting an extremely high user density, as well as

numerous device-to-device and machine communications. Ultra Reliable Low La-

tency Communication (URLLC) constitutes one of the critical operating regimes

in 5G, since it will enable low-cost and power-efficient anywhere and anytime sig-

nalling services [80]. The selected channel code must have an excellent error rate

performance in a specific range of block lengths and code rates; low computation

complexity, low latency, low cost and higher flexibility are also critical [28].

A number of potential candidate codes for 5G URLLC have been proposed

recently. A representative summary can be found in three recent papers [28, 92, 90],

where, among the coding schemes compared, low-density parity-check (LDPC),
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polar codes, and convolutional/turbo codes stand out in the comparisons. To meet

the predicted constraints of a host of machine-to-machine (M2M) communications,

the authors in [92] consider a low coding rate R = 1/12 and short block lengths

(480 bits or 2400 bits). A polar code stands out in the performance comparison,

although this solution is limited by the decoding delay imposed by the sequential

nature of successive cancelation (SC) decoding algorithms, which ultimately limits

the decoding throughput. Furthermore, polar code design is channel dependent,

hence not versatile for mobile fading channels. In [28], the comparison focuses on

larger coding rates, R = 1/3, R = 1/2, and R = 2/3, with similar block lengths to

[92]. As in [92], a polar code with SC decoding combined with a cyclic redundancy

check (CRC) outperforms turbo and LDPC codes. However, LDPC codes exhibit

relatively good performance over all the coding rates and block lengths considered

without the aid of a CRC outer code. Similar conclusions are drawn in [90], where

the low complexity and high-throughput decoder implementations associated with

iterative message passing schemes are emphasized to be desirable in practice.

Our goal in this work is to present GLDPC block codes as a strong candidate

for URLLC that, so far, has been largely ignored by the community. We will show

that quasi-cyclic GLDPC (QC-GLDPC) codes combined with simple hard-decision

decoded outer codes are able to surpass the decoding performance reported in [28,

92] with iterative message passing decoding algorithms. To this end, we propose a

novel GLDPC design methodology that has its roots in the contribution presented

in Chapter 2. Indeed in Chapter 2, it is shown that the tradeoff between rate and

iterative decoding threshold presents a unique optimal operational point where

the gap to capacity is minimized as we vary the proportion of GC nodes in the

GLDPC code graph. Using a GLDPC code operating at exactly this rate, we first

optimize a quasi-cyclic (QC) graph lifting to avoid harmful small structures in the

graph. The QC structure also has the benefit of efficient hardware implementation

[45, 106, 93, 12] and analysis [13, 25]. The locations of GC nodes are optimized

to avoid weak areas in the graph (i.e., many variables connected together using

only SPC nodes). As the GLDPC optimal operational rate is typically larger than
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the target rate (e.g., R = 1/12), we combine the optimized GLDPC code with a

complementary low-complexity hard-decision decoded outer code that is designed

to match the overall rate to the desired target. Note that the use of a hard-decision

decoded outer code allows for flexible and low-complexity rate adaptation. To the

best of our knowledge, the idea of combining a GLDPC code with an outer code

as a viable solution for low latency 5G URLLC is novel in the area. We note

that we do not propose any class of turbo-like decoding scheme, in which the inner

(G)LDPC code and the outer code exchange messages iteratively [14, 89, 104, 105].

In our proposal, to limit the complexity, the hard-decision outer code cleans up

some of the errors remaining after the GLDPC decoding stage and its decision is

not fed back to the GLDPC decoder.

In particular, we propose exemplary designs using (J,K)-regular QC-GLDPC

codes with degree-2 variable nodes (J = 2), which allow efficient implementation

of the GLDPC message passing decoder, since variable nodes only have to prop-

agate (pass) incoming messages without performing any computation. We note

that, unlike a conventional LDPC code, a (2,K)-regular GLDPC code has good

distance properties and message passing performance [47]. We consider schemes

with degree K = 6, K = 7, and K = 15 constraint nodes and propose designs

that can meet a variety of target coding rate constraints up to R = 1/2. To re-

duce decoding complexity, we propose different sub-optimal decoding algorithms

in which we investigate the effect of varying the number of decoding iterations,

update rules (including a hybrid min-sum GLDPC decoder), and message quan-

tization. Even with such practical limitations, performance comparisons with the

candidates proposed in [28] and [92] show that remarkable error control perfor-

mance can be achieved over the AWGN channel with quadrature phase shift keying

(QPSK) modulation. Ultimately, this paper aims to present general design rules

for QC-GLDPC and demonstrate their strength and suitability as candidates for

power-constrained devices, such as those in 5G URLLC applications.

The remainder of the chapter is structured as follows: In Section 3.1, we in-

troduce the GLDPC code ensembles and the notation used to characterize the
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Figure 3.1: Tanner graph of a GLDPC code, where c is the total number of check nodes

in the Tanner graph.

degree distribution (DD) of the ensemble. Section 3.2 presents the practical code

design process for 5G URLLC. In Section 3.3 we investigate the message pass-

ing process of GLDPC codes, including suboptimal message-passing update rules,

finite-precision with uniform quantization, the effects of different maximum it-

eration numbers, and the decoding complexity. In Section 3.4, we compare the

performance of the designed code with the codes proposed in [28, 92]. Finally, in

Section 4.1 we conclude the paper with a discussion of our results.

3.1 Parameters of the designed GLDPC codes

In this section, we introduce the notation used to define the properties of the

GLDPC code ensembles considered in this paper. We restrict our attention to

(J,K)-regular graphs, where J is the variable node degree and K is the check

node degree, since regular graphs are attractive for VLSI decoder implementation

and possess robust finite-length scaling behavior [4]. Following [46], we consider

a GLDPC code ensemble that is obtained from an LDPC code ensemble (e.g., an

LDPC code ensemble defined by a protograph [97], a QC ensemble, or following

a degree distribution (λ(x), ρ(x))) by replacing a randomly-chosen fraction ν of

SPC nodes with identical GC nodes corresponding to an (K,K −m) component

code, while the remaining constraint nodes are SPC, where K is the block length
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of the component code, K −m is the dimension of the code, and m is the number

of rows in the parity check matrix of the linear component code. The Tanner

graph of a GLDPC code from such an ensemble with block length N is illustrated

in Fig. 3.1. The Tanner graph of any code in this ensemble contains N variable

nodes, c check nodes, ν JKN GC nodes, and (1−ν) JKN SPC nodes. We refer to the

LDPC ensemble obtained by taking ν = 0 as the underlying LDPC code ensemble

or simply the underlying ensemble. The design rate of the underlying ensemble

R0 is given as R0 = 1 − J/K and the design rate R(ν) of the GLDPC ensemble is

given by R(ν) = R0 − ν(1 − R0)(m − 1). We assume that the incoming edges to

every degree-K GC node are assigned uniformly at random to each position of the

component code.1

In the rest of the paper, as the component code at GC nodes we will present

exemplary design results for :

1. (2, 6)-regular GLDPC codes with (6, 3, dmin = 3) shortened Hamming linear

block codes as GC component codes and generator matrix

G(6,3) =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


 ; (3.1)

2. (2, 7)-regular GLDPC codes with (7, 4, dmin = 3) Hamming linear block codes

as GC component codes; and

3. (2, 15)-regular GLDPC codes with (15, 11, dmin = 3) linear block component

1Note that the GLDPC ensemble has three sources of randomness: the underlying Tanner

(LDPC) graph, the location of the GC nodes in the graph, and the edge labeling at each GC

node.
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codes with generator matrix

G(15,11) =




0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 1 1 0 0 0 0 0 0 0 1




. (3.2)

This code is taken from the database [29, 30], which implements the tools

proposed in [8] to design block codes with the largest distance spectrum.

Note that all ensembles only contain degree-2 variable nodes, which allows

simpler message passing as a result of their low density. While the (2, 15)-regular

GLDPC code ensemble better accommodates larger coding rates (roughly up to

R = 1/2), the (2, 6) and (2, 7) ensembles have better decoding complexity due to

the lower graph density. These two ensembles illustrate the GLDPC complex-

ity/performance trade-offs. Following the design methodology proposed in this

paper, we note it may be possible to find GLDPC ensembles that achieve better

complexity-performance tradeoffs. For example, as described in Section 3.3.4, the

additional decoding complexity of the (2, 15)-regular GLDPC is significant due

to the high rate component codes. In this regard, as described in [46], alterna-

tive regular/irregular GLDPC ensembles with less graph code complexity could be

considered.

Using the asymptotic analysis proposed in [46] for a binary erasure chan-

nel (BEC), we investigate the tradeoff between rate and the iterative-decoding

threshold as a function of ν for the (2, 6)-regular, (2, 7)-regular and (2, 15)-regular

GLDPC ensembles. The results are shown in Fig. 3.2. Observe that the asymp-
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Figure 3.2: Design rate vs. BEC threshold of ensembles of (2, 6)-regular, (2, 7)-regular,

and (2, 15)-regular GLDPC codes as a function of the proportion of GC nodes ν in the

graph.

totic gap to capacity, which is also a crucial parameter in the finite-length behav-

ior of iteratively-decoded LDPC ensembles [4], is minimized for ν = 0.75 in the

(2, 6)-regular, and (2, 7)-regular cases, and for ν = 0.80 in the (2, 15)-regular case.

Beyond these values of ν, the gap to capacity increases and, as we will see in the

next section, dramatically impacts the finite-length performance of the code. In

light of these results, we propose to combine R2,6,0.75 = 1/6 (2, 6)-regular GLDPC

codes, R2,7,0.75 = 0.286 (2, 7)-regular GLDPC codes, and R2,15,0.8 = 0.547 (2, 15)-

regular GLDPC codes with low-complexity hard-decoded outer codes to match the

target coding rate. In particular, the (2, 6)-regular GLDPC codes can be used as

a component of the concatenated scheme when the target rate is below R = 1/6,

the (2, 7)-regular GLDPC codes when the target rate is below R = 0.286, and the

(2, 15)-regular can be used when the target rate is below R = 0.547.
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Table 3.1: Design parameters of the proposed concatenated GLDPC coding schemes

Underlying Ensemble ν R(ν) Router Information Length M Block length N R

(2, 6)-regular 0.75 1/6 40/79 40 474 40/474

(2, 7)-regular 0.75 0.286 40/138 40 469 40/469

(2, 15)-regular 0.80 0.547 40/254 40 465 40/465

(2, 15)-regular 0.80 0.547 233/254 233 465 233/465

(2, 15)-regular 0.80 0.547 155/254 155 465 155/465

3.2 Practical GLDPC Code Design for 5G URLLC

In this section, we investigate several aspects of code design, including QC graph

lifting, placement of GC nodes, and outer code design/code rate matching.

3.2.1 Code Design Parameters

In [28] and [92], several coding-rates and block lengths are considered to test

coding scheme candidate for URLLC. As exemplary scenarios, we will compare

our proposed scheme (QC-GLDPC combined with an appropriate outer code to

match the rate) with some of the URLLC candidates in [28] and [92] using the

following specifications:

• Overall coding rate R: R = 1/12 [92], R = 1/3, and R = 1/2 [28].

• Information length M : M = 40 bits [92], M = 170, and M = 256 bits [28].

• Block length N : N = 480 bits [92], N = 512 bits [28].

The design parameters of our proposed schemes are listed in Table 3.1. As we de-

scribe in the sequel, the granularity of the QC-structure in the underlying GLDPC

graph slightly restricts the design parameters. As a consequence, the proposed cod-

ing schemes may not exactly match the above specifications, but we stress that

our comparisons will always be fair with the results of [28] and [92] in the sense

that our proposed constructions will have slightly larger coding rates and smaller

block lengths.
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3.2.2 QC Graph Lifting

The underlying LDPC code ensemble for a given length N can be drawn from

a random ensemble defined by a degree distribution (λ(x), ρ(x)), from a semi-

structured protograph-based ensemble, or from the structured sub-ensemble of QC

codes, where the permutation matrices selected in the protograph-based construc-

tion are restricted to be circulant. It is well known that the algebraic structure of

QC codes allows simple encoding using shift registers, with a complexity linear in

the block length [17]. Properly-designed QC graphs have been shown to perform

as well as computer-generated random LDPC codes, regular or irregular, in terms

of bit-error performance, block-error performance, and error floor for codes with

short to moderate block lengths [45].

We first write the parity-check matrix H of the underlying (2,K)-regular QC-

LDPC code, lifted from the all-ones base matrix of size s × s with lifting factor

si,j and code length N = sK, as

H =




I(0) I(0) · · · I(0)

I(0) I(s1,1) · · · I(s1,K−1)
...

...
...

I(0) I(sJ−1,1) · · · I(sJ−1,K−1)



, (3.3)

where si,j , 1 ≤ i ≤ J − 1, 1 ≤ j ≤ K − 1 are the left shifting parameters, such that

I(0) is the s× s identity matrix and I(si,j) is the left shifted s× s identity matrix,

where each row of I(0) is circularly shifted to the left by si,j positions.

In order to guide our design, we randomly sampled 100 codes from the (2, 6)-

regular QC GLDPC ensemble with block length 474 (using a random placement

of the fraction ν = 0.75 of GC nodes in the graph) and empirically determined

the dominant error objects over the BEC at moderate to high SNRs. The two

structures that were found to dominate the code performance in the error floor

region are shown in Fig. 3.3. Fig. 3.3(a) corresponds to two 4-cycles connected

by a GC node and Fig. 3.3(b) corresponds to an 8-cycle composed of SPC nodes.

Both of these objects, and some other less dominant objects not shown here, can

be eliminated simply by increasing the girth g of the base LDPC graph.
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Figure 3.3: Dominant error patterns detected in randomly constructed (2, 6)-regular QC

GLDPC codes. Gray shaded squares represent GC nodes, while white squares represent

SPC nodes.

Following [25], to ensure that the H matrix defined in (3.3) has a girth of at

least 2(i+ 1), a necessary and sufficient condition is

m−1∑

t=0

∆jt,jt+1(kt) 6= 0 mod s, (3.4)

where ∆jt,jt+1(kt) = sjt,kt − sjt+1,kt for all 2 ≤ m ≤ i, 0 ≤ jt, jt+1 ≤ J − 1 and

0 ≤ kt ≤ K − 1, with j0 = jm, jt 6= jt+1, and kt 6= kt+1.

Design of the (2, 6)-regular Underlying QC Graph

Given that all of the check nodes have degree 6 and that s should be chosen to be

a prime, we selected s = 79, which gives a slightly smaller block length of 474 bits

than the 480 bits used in [92]. The resulting (2, 6)-regular matrix has the form

H(2,6) =


I(0) I(0) I(0) I(0) I(0) I(0)

I(0) I(s1,1) I(s1,2) I(s1,3) I(s1,4) I(s1,5)


 . (3.5)

There are many possible ways of choosing s1,j , 1 ≤ j ≤ 5, to maximum girth

and/or improve code performance. We remark at this point that girth optimization

is greatly facilitated by the low-density (2, 6)-regular structure. Note that (2, 6)-

regular LDPC codes have poor distance properties. In fact, any QC-LDPC code

of the form (3.5) has dmin ≤ 6, independent of s [54]. This implies, in turn, that
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the largest girth we can achieve is g = 12 in the base LDPC code, since a cycle

of length 2c implies the existence of a codeword of weight c in a (2,K)-regular

code. In order to choose the shift parameters, we can make use of Theorem 2.1

in [25], and adopt the so-called Power construction to select s1,j , 1 ≤ j ≤ 5 as

s1,j = a1bj mod s, which promises g ≤ 12. For s = 79, if we choose a = 3, and

b = 5, this gives [s1,1, s1,2, s1,3, s1,4, s1,5] = [15, 75, 59, 58, 53] and achieves g = 6.

Alternatively, since the shift parameter space is relatively small for the (2, 6)-

ensemble, we could run a straightforward search, which provides a QC graph with

girth g = 12 and shift parameters

[s1,1, s1,2, s1,3, s1,4, s1,5] = [54, 66, 71, 55, 69]. (3.6)

Design of the (2, 7)-regular Underlying QC Graph

Similar to the (2, 6)-regular case, we pick s = 67 and use the power construction

with a = 3, and b = 5. This gives [s1,1, s1,2, s1,3, s1,4, s1,5] = [15, 4, 20, 29, 3, 15]

with resulting girth g = 6. Given that the shift parameter space is still relatively

small, we can also run an exhaustive search, which provided a QC graph with girth

g = 12 and shift parameters

[s1,1, s1,2, s1,3, s1,4, s1,5, s1,6] = [61, 49, 44, 1, 46, 14]. (3.7)

Design of the (2, 15)-regular Underlying QC Graph

For the (2, 15) case, we proceed similarly and pick s = 31, which results in a

block length of N = 465. However, a brute-force search is more complicated in

this case due to the dimension of the shift parameter space. Applying the Power

construction to find suitable shift parameters, we obtain a QC girth with the

largest possible girth, g = 12, by using a = 2 and b = 3, where

[s1,1,s1,2, . . . , s1,14]

= [6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 28, 16, 17, 20]. (3.8)
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GLDPC performance with QC underlying LDPC graphs

In Fig. 3.4, we plot the GLDPC bit error rate performance obtained on the BEC

of several (2, 6)-regular, (2, 7)-regular, and (2, 15)-regular underlying LDPC code

ensembles, including QC-LDPC codes constructed using the shift parameter set

in (3.6), (3.7) and (3.8) all with girth 12. The (2, 6)-GLDPC code and the (2, 7)-

GLDPC code have ν = 75% of GC nodes in the graph, while the (2, 15)-GLDPC

code ensemble has ν = 80% GC nodes in the graph. We also include the GLDPC

performance when we use underlying QC-LDPC codes constructed following the

power method with [a, b] = [3, 5] (girth g = 6), unstructured randomly constructed

graph codes, and randomly constructed semi-structured protograph-based codes

(but not QC). In ll simulations, we set the maximum number of allowed decoding

iterations to Imax = 50. We remark that the waterfall performance of all codes

of a given rate are similar, but the GLDPC error floor is optimized for the QC-

LDPC underlying codes with the proposed QC designs, which demonstrates that

the robustness against error floor is inherited by the code after a certain fraction

of SPC nodes are replaced by GC nodes (recall that our earlier motivation was

to increase the girth to remove harmful objects from the graphs of the GLDPC

codes). Finally, note that the (2, 15)-regular QC-LDPC code displays a steeper

error rate decrease, potentially giving rise to a lower error floor.

3.2.3 Location of the GC Nodes

After the underlying QC-LDPC code graph is designed, we turn our attention to

the locations of the GC nodes. As discussed in Section 3.1, the optimal proportion,

from a threshold perspective, is that 75% percent of the check nodes should be

replaced by GC nodes in the (2, 6)-regular and (2, 7)-regular cases. This fraction

increases to the 80% in the (2, 15)-regular case. In Fig. 3.5, we show the average

performance (red circles) of the proposed rate R = 1/12 (2, 6)-regular QC-GLDPC

code, including a rate Router = 40/79 outer code (see Table 3.1) that corrects up

to 15 errors,2 obtained over 600 randomly chosen GC node locations (all using the

2As described in Section 3.2.4, this is rather a conservative assumption.
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(2, 6) QC graph, a = 3, b = 5

(2, 6) Randomly constructed graph
(2, 6) Protograph constructed graph
(2, 7) QC graph, [s1,1, . . . , s1,5] in (7)
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(2, 7) Protograph constructed graph
(2, 15) QC graph, [s1,1, . . . , s1,14] in (8)
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Figure 3.4: Bit error rate for the BEC for a selection of (2, 6)-regular, (2, 7)-regular and

(2, 15)-regular GLDPC codes with different underlying graph constructions. The (2, 6)-

GLDPC code and the (2, 7)-GLDPC code have ν = 75% of GC nodes in the graph, while

the (2, 15)-GLDPC code ensemble has ν = 80% GC nodes in the graph.
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same underlying QC graph). The GLDPC message passing decoder (see Section

3.3) is run for 5 iterations. We also highlight the best performing case (blue

triangles), which achieves a gain of 0.2 dB over the average at a BLER equal to

10−5. We further include the performance of a GLDPC code with a hand-crafted

location of GC nodes (black squares) that are intended to give poor performance by

ensuring that the remaining SPC nodes in the graph are all connected to the same

set of variable nodes, thereby creating a weak region in the GLDPC graph and

resulting in significant performance loss. With such a large fraction of GC nodes in

the graph, the performance of the resulting GLDPC code is reasonably robust with

respect to the locations of the GC nodes in the graph, unless we specifically create

regions of the graph with multiple local SPC nodes are connected to the same set

of variables. However, there is likely to be a larger variance in performance for

smaller fraction of GC nodes.

3.2.4 Target Coding Rates

To adapt the designed GLDPC code to other target rates, such as those in the 5G

URLLC regime, we consider techniques to lower the coding rate and improve the

error correcting capability. Among others, this could be achieved by adding more

GC nodes and/or utilizing an outer code. (Similarly, the rate could be increased by

using fewer GC nodes and/or puncturing.) Both approaches have advantages and

disadvantages. From Fig. 3.2, we observe that the gap to capacity grows as we move

away from the optimal operational point of the given GLDPC ensemble, i.e., if we

decrease the GLDPC coding rate RJ,K,ν by including a larger fraction of GC nodes

in the graph. This will certainly impact the GLDPC finite-length performance,

since it is well known that the gap to capacity is one of the critical parameters

of the finite-length scaling law of iteratively decoded LDPC code ensembles [4].

As an alternative, we propose to maintain the GLDPC coding rate at its optimal

point ν (from an asymptotic perspective), i.e., use a rate R2,6,0.75 = 1/6 (2, 6)-

regular GLDPC code with ν = 0.75, a rate R2,7,0.75 = 0.286 (2, 7)-regular GLDPC

code with ν = 0.75, or a rate R2,15,0.80 = 0.547 (2, 15)-regular GLDPC code with
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Figure 3.5: BLER over an AWGN channel with QPSK modulation for the proposed (2, 6)-

regular GLDPC coding scheme with different locations of GC nodes in the graph. Results

were obtained using a rate Router = 40/79 outer code (see Table 3.1) that corrects up to

15 errors.

ν = 0.8, and lower the rate accordingly by using a rate Router low-complexity

hard-decoded outer code.

As a representative comparison, in Fig. 3.6 we compare the BLER performance

of a rate R2,6,0.875 = 40/474 ≈ 1/12 GLDPC code, obtained by selecting ν = 0.875,

versus that of the rate R2,6,0.75 = 1/6 GLDPC code with a rate Router = 40/79

outer code (resulting in approximately the same overall coding rate R = 1/12,

see Table 3.1). Note that we assume a systematic generator matrix. In all our

simulations, the outer code is applied with a genie over the whole block, i.e., we

correct up to a certain amount of errors over the whole block assuming a worst-

case scenario that those bits are all information bits. Results with an actual

implementation of the systematic scheme can only be better. The outer code can

be chosen to be any (n, k) linear block code of appropriate length and rate to
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Figure 3.6: BLER on an AWGN channel with QPSK modulation as a function of the SNR

for a rate R2,6,0.875 = 40/474 ≈ 1/12 GLDPC code and a R = 1/12 scheme that combines

a rate R2,6,0.75 = 1/6 GLDPC code with Router = 40/79 outer code that can correct up

to 15 errors.

meet the target, such as a (79, 40) shortened BCH code. We would expect to use

a low-cost, high-speed, hard-decision decodable code for the outer code. With a

block length of 79 bits and a rate Router = 40/79, we can conservatively assume

that the outer decoder can correct up to 15 errors [17]. For this comparison, both

(2, 6)-regular GLDPC codes were randomly constructed following the protograph

method with randomly placed GC nodes (similar results are obtained for different

random draws of the matrices). The GLDPC message passing decoder (see Section

3.3) is run for at most Imax = 5 iterations in both cases. The results show that

the higher rate GLDPC code, optimized for threshold, with a hard-decision outer

code has significantly better performance than the GLDPC code alone that was

constructed by adding more GC nodes. Note that, in addition to good waterfall

performance, we do not observe an error floor down to a BLER of 10−8 with the

outer code version.
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3.3 GLDPC Message Passing

In this section, we discuss the message passing update decoding rules for the iter-

atively decodable GLDPC code. Compared to the conventional belief propagation

update rules for LDPC decoders, the only difference here is how to process prob-

abilistic messages at the GC nodes. In this regard, the processing depends on the

chosen component code. We take the (2, 6)-regular GLDPC code as a running

example in this section. As described in Section 3.1, the component code used

at GC nodes is a shortened (6, 3) Hamming code, with generator matrix given in

(3.1) and codebook C(6,3) written in matrix form as

C(6,3) =




0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 1 0 1

0 1 1 1 1 0

1 0 0 1 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 0 0 0




. (3.9)

The GLDPC update rule at GC nodes is determined by the component code-

book C(6,3). Let Λj denote the input LLR message coming from the j-th variable

node connected to the GC node, where index j, j = 1, 2, . . . , 6, corresponds to the

jth input to the component code. Let Λ̃j denote the output LLR message to be

sent to the j-th variable node. In Appendix D.1, we show that Λ̃j , j = 1, 2, . . . , 6,

can be computed as follows

Λ̃j = log



∑

i∈{1,8}
Ci,j=0

exp




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 0)](Λpj − Λ∗)







− log



∑

i∈{1,8}
Ci,j=1

exp




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 1)](Λpj − Λ∗)





 , (3.10)
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where I[·] denotes the indicator function, C
(6,3)
i,m denotes the m-th bit of the i-th

codeword, i = 1, 2, . . . , 8, Λ∗ = maxj Λj , and we use the log-sum-exp trick to avoid

numerical issues in the evaluation of the exponential terms.3 Λ∗ can be efficiently

computed using a digital comparator. Note that at variable nodes and SPC nodes

the message passing update rules used are those for standard LDPC decoding

[40]. Hereafter, we refer to the update rule in (3.10) as the sum-product algorithm

(SPA) GLDPC decoder. Also, in the following we denote the maximum number of

message passing iterations as Imax. A hard-decision stopping rule is implemented

so the decoding terminates when all parity check conditions (at both SPC and GC

nodes) are satisfied.

3.3.1 Min-sum Decoding Algorithms

It is well known that floating-point operations such as log(·) or exp(·) increase

the decoder implementation complexity and its power-consumption [39, 42]. In

the following we explore several simplifications of the SPA update rules in (3.10)

and investigate the effect on decoder performance. First, we adapt the min-sum

decoding algorithm for LDPC decoders [40] to the GC node update rules as

Λ̃j = maxi∈{1,8}
Ci,j=0




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 0)](Λpj − Λ∗)




−maxi∈{1,8}
Ci,j=1




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 1)](Λpj − Λ∗)


 . (3.11)

Comparing (3.10) and (3.11), we have replaced the log(·) and exp(·) operators

by a simpler maximum-search operator that can be efficiently implemented with

a digital comparator. The decoding algorithm based on these update rules is

referred hereafter as the min-sum algorithm (MSA) GLDPC decoder. In Fig. 3.7,

we compare the performance of the (2, 6)-regular GLDPC code with the Router =

3The log-sum-exp trick works as follows: let a = [a1, a2, . . . , ad] be a real-valued vector. Instead

of directly evaluating b = log(
∑d
i=1 exp(ad)), we first compute a∗ = maxi ai and then we compute

b as b = a∗ + log(
∑d
i=1 exp(ad − a∗)).
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Figure 3.7: BLER over an AWGN channel with QPSK modulation for the the (2, 6)-

regular GLDPC code with the Router = 40/79 outer code (see Table 3.1) and different

decoding algorithms.

40/79 outer code (see Table 3.1) achieved by the full-precision SPA decoder in

(3.10) with the MSA decoder in (3.11). Several combinations of SPA and MSA

update rules at either SPC nodes and/or GC nodes are considered. In all cases,

we consider a relatively large maximum number of message passing iterations

(Imax = 50) so that we can assume in all cases that the decoder has been run until

convergence. The performance loss is only numerically relevant at large SNR,

where the MSA decoder at both GC and SPC nodes loses approximately 0.3 dB

at a BLER equal to 10−5 compared to full precision SPA at both types of nodes.

We note that it is well known that offset min-sum and scaled min-sum algorithms

have been shown to suffer very little to no performance loss when compared to

SPA. We have not investigated such improvements to (3.11) in this paper, leaving

it for future work.
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3.3.2 Finite-precision with Uniform Quantization

Along with low complexity MSA decoding update rules, it is practically relevant

to study the effects of quantizing the messages with finite-precision. Here, we

consider uniform quantization since it is widely used in practice [72]. We use 1

bit to encode the LLR sign. After analyzing the empirical LLR distribution using

5 · 106 samples at different SNR values (we used SNR ∈ [−8,−7,−6,−5,−4] dB),

we observed that 95% of the distribution was contained in the [−4, 4] range, so

2 bits is considered sufficient to represent the integer part of each LLR message.

Finally, in Fig. 3.8 we show the 8 bin empirical histogram of the decimal part

of the LLR floating-point messages. Despite more mass being concentrated at

small values, the histogram shows a heavy tail of the distribution. Therefore,

even though a non-uniform quantizer could allow more precision at small values

of the decimal part, it is expected that a 3 bit uniform quantizer would provide an

acceptable reconstruction. To verify our expectation, we also include the quantized

MS decoder performance when Imax = 50 using both 6 bits (1 sign + 2 integer + 3

decimal) and 5 bits (1 sign + 2 integer + 2 decimal) for LLR quantization in Fig.

3.7. Observe that, compared to full precision MSA decoding, the performance loss

with 6 bits is numerically negligible.

3.3.3 The Effects of Different Maximum Iteration Numbers

The number of decoding iterations is usually limited in practice since it deter-

mines the latency and throughput of the system and heavily impacts the energy

consumption of the decoding circuitry [18]. In Fig. 3.9 we evaluate the robustness

of the different decoding algorithms considered as we reduce the number Imax of

allowed iterations. Curves with circle markers denote full-precision SPA decod-

ing, where we can observe that an approximate 0.25 dB loss at a BLER of 10−4

is incurred when Imax is set to only 5 iterations compared to Imax = 50. When

full precision MSA (square markers) and the same number of iterations is used,

this loss is essentially doubled, close to 0.6 dB at a BLER of 10−4 . The loss

increases up to approximately 1 dB when quantized MSA (triangle markers) is
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Figure 3.8: Empirically determined histogram of the decimal part of LLR numbers com-

puted for the (2, 6)-regular GLDPC code.

considered. Therefore, suboptimal decoding rules may require a larger number of

(less complex) iterations to maintain acceptable performance. With Imax = 10 the

performance loss of each case (when compared to the Imax = 50 case) is essentially

reduced to half that of Imax = 5 .

It is important to note that the performance degradation reported is compara-

ble to that reported for non-generalized LDPC codes with a standard MSA decoder

[110]. Therefore, it is expected that better complexity/performance tradeoffs can

be achieved if more robust implementations of MSA decoding strategies (e.g., at-

tenuated MSA, offset MSA, approximated MSA) are implemented. An in-depth

survey of these methods can be found in Chapter 5 of [88].

3.3.4 Decoding Complexity

For the sake of complexity comparison with other URLLC coding schemes proposed

in the literature, particularly those in [28, 92], we now determine the computa-
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Figure 3.9: BLER over an AWGN channel with QPSK modulation for the (2, 6)-regular

GLDPC code with an Router = 40/79 outer code (see Table 3.1) and different decoding

algorithms.

tional complexity of the GLDPC decoder by enumerating the number of additions,

subtractions, multiplications, divisions, comparisons, max (min) operations, and

look-up table operations. Most of these operations correspond to one equivalent

addition, whereas the comparison operation, in most cases, corresponds to two

equivalent additions [92]. In the following, we ignore the hard-decision decoding

complexity of the outer code, as the additional complexity is negligible compared

to the GLDPC message passing complexity. Also, note that this study does not
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differentiate between floating point operations (such as those in a SPA decoder)

and the simpler operations required by a MSA decoder. It is nonetheless informa-

tive to compare with the results in [28, 92], as the authors there used the same

metrics for complexity.

For the (2, 6)-regular GLDPC code, according to (3.10) the update of every

GC node requires 19 ×K additions/subtractions. Also, the SPA update at SPC

nodes requires 10 ×K multiplications/divisions [40]. Furthermore, note that the

variable node degree is J = 2, hence there is only one addition to perform when

updating the variable nodes, and thus the decoding complexity per iteration for

variable node is J×N = 948. Altogether, the decoding complexity per iteration is

J NK ν19K+J NK (1−ν)10K+JN = JN(11+9ν) = 16827, given J = 2, N = 474, and

ν = 0.75. If Imax denotes the maximum iteration number, the decoding complexity

(in the worst case) is 16827× Imax. Similarly, for the (2, 7)-regular GLDPC code,

we obtain 48×K additions/subtractions to update the output messages at every

GC node, and 12×K multiplications/divisions to output messages at every SPC

node, and 994 additions to update variable nodes. Thus, the decoding complexity

per iteration is J NK ν48K + J NK (1− ν)12K + JN = JN(13 + 36ν) = 37520, given

J = 2, N = 469, and ν = 0.75. The decoding complexity (in the worst case) is

Imax × 187600. Finally, by following a similar procedure, we can show that the

worst-case complexity for the (2, 15)-regular GLDPC code is Imax × 10671378.

For the case R = 1/12 with M = 40 information length, in Table 3.2 we

include a complexity comparison with different coding schemes proposed in [92].

Recall that the GLDPC decoding complexity is dominated by the GC update rule

in (3.10), which requires a full enumeration over the component code codebook.

The small codebook of the shortened (6, 3) Hamming code in (3.1) and the (7, 4)

Hamming code explain the comparable complexity of the (2, 6)-regular and (2, 7)-

regular GLDPC code w.r.t. to the coding schemes in [92]. However, the (15, 11)

component code given by (3.2) spans a codebook of size 2048, which explains the

near 1000 times complexity factor in Table 3.2. As it is shown in the next section,

both GLDPC coding schemes provide remarkable performance gains, even up to

95



Chapter 3. Generalized LDPC Codes for Ultra Reliable Low Latency
Communication

Table 3.2: Decoding complexity of R = 1/12 coding schemes

Coding Scheme Block length Complexity Multiplicative factor (w.r.t turbo code )

Turbo code with BCJR decoding in [92] 480 61440.00 1.0000

LDPC with MSA decoding in [92] 480 61880.09 1.0070

Polar code with SCL decoding in [92] 480 61751.19 1.0050

Convolutional code with BCJR decoding in [92] 480 40960.00 0.6670

(2, 6)-regular GLDPC, Imax = 5 474 84135.00 1.3694

(2, 7)-regular GLDPC, Imax = 5 469 187600.00 3.0534

(2, 15)-regular GLDPC Imax = 5 465 53356890.00 868.4390

1 dB or more, at different rates and target error probabilities.

Several options can be explored to find GLDPC code ensembles with better

performance/complexity tradeoffs that are also able to scale to larger coding rates.

For example, one could explore existing algorithms in the literature that perform

approximate soft-decoding of algebraic codes at polynomial cost [69, 6, 37]. This

would dramatically reduce the complexity of the (2, 15)-regular GLDPC code,

for instance, by using (15, 11) Hamming codes instead of the code in (3.2). Al-

ternatively, less dense regular/irregular GLDPC ensembles can be used, such as

those investigated in [46], where the asymptotic performance of some quasi-regular

GLDPC ensembles were analyzed, along with puncturing to adapt to larger coding

rates. An exhaustive analysis of all this possible design alternatives, including the

effect of sub-optimal soft-decoding methods at GC nodes, is beyond the scope of

this chapter, in which our main goal is to bring attention to the remarkable perfor-

mance that GLDPC codes achieve in the short finite-length regime and highlight

their potential for practical URLLC applications in 5G and beyond.

3.4 Experimental Results

We now compare the BLER performance over the AWGN channel of the overall

rate R = 1/12, 1/2, and 1/3 coding schemes summarized in Table 3.1 versus those

with same rates proposed in [28, 92], which include turbo codes with BCJR decod-

ing, LDPC codes with MSA decoding and offset MSA decoding, polar codes with

successive cancellation list (SCL) decoding and a CRC outer code, and convolu-
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Figure 3.10: BLER over an AWGN channel with QPSK modulation for the proposed

coding schemes (first two rows of Table 3.1) compared to several other rate R = 1/12

coding schemes with M = 40 information bits proposed in [92].
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tional codes with BCJR decoding, among others. Specific details on these coding

schemes are given [28, 92]. Here we just reproduce their simulation results for the

sake of comparison.

To simulate the GLDPC coding scheme, we apply the usual hard-decision syn-

drome stopping rule for the decoder and, as discussed in Section 3.2.4, we assume

a worst scenario where all the remaining errors after GLDPC coding coincide with

information bits of a systematic-encoded outer code. The GLDPC message pass-

ing is run for up to Imax = 5 iterations with full-precision SPA decoding. Fig. 3.10

shows the performance of rate R = 1/12 ≈ 0.0834 coding schemes proposed in [92]

with M = 40 information bits and a block length of N = 480 bits. We include the

performance of the following GLDPC designs (first three rows in Table 3.1):

• Rate R = 40/474 ≈ 0.0844 (2, 6)-regular QC-GLDPC code with a rate

Router = 40/79 outer code (see the first row of Table 3.1), resulting in a

block length N = 474. We conservatively assume that the outer code can

decode up to 15 errors.

• Rate R = 40/469 ≈ 0.0853 (2, 7)-regular QC-GLDPC code with a rate

Router = 40/138 outer code (see the second row of Table 3.1), resulting

in a block length N = 469. We conservatively assume that the outer code

can decode up to 45 errors.

• Rate R = 40/465 ≈ 0.0860 (2, 15)-regular QC-GLDPC code with a rate

Router = 40/254 outer code (see the third row of Table 3.1), for which we

again conservatively assume that it can correct up to 80 errors [17].

In all cases, the performance gain is a 1.5 dB at a BLER equal to 10−5 over the

SCL decoded polar code. The (2, 15)-regular QC-GLDPC code achieves even a

larger gain at the cost of increased complexity (see Section 3.3.4). The (2, 7)-

regular QC-GLDPC code outperforms the (2, 6)-regular ensemble for high SNRs

with a similar complexity, and is less than 1 dB away from the (2, 15)-regular QC-

GLDPC code at a BLER equal to 10−5 where the decoding complexity is roughly

three orders of magnitude smaller.
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In Fig. 3.11, we extend the analysis to higher rates and we compare our

proposed schemes with those in [28]. In Fig. 3.11(a), we consider the rate R =

233/465 ≈ 0.5010 (2, 15)-regular QC-GLDPC code with a rate Router = 233/254

outer code coding scheme (third row of Table 3.1) and block length N = 465.

Its BLER performance is compared with codes of slightly lower rate R = 1/2 and

larger block lengthN = 512 bits. At low-to-moderate SNR values, the performance

gain achieved is remarkable, despite that in this case (probably related to the

high rate outer code used) it appears to vanish with increasing the SNR. In Fig.

3.11(b), we consider the rate R = 155/465 (2, 15)-regular GLDPC coding scheme

(last row of Table 3.1), and we compare its performance with rate R = 1/3 coding

schemes with M = 170 information bits and block length N = 512 proposed in

[28]. The (2, 15)-regular GLDPC code achieves a gain w.r.t. to state-of-the-art

of almost 1.5 dB at BLER of 10−4. In Fig. 3.11(b), we also include a (2, 7)-

regular GLDPC coding scheme designed to match the target coding rate of 1/3,

in which the fraction of GC nodes in the graph is slightly reduced compared to

the optimal fraction ν = 75% that yield ed R ≈ 0.286. By setting ν = 0.667,

the coding rate is slightly above 1/3 (R = 0.335). In Fig. 3.11(b) we also show

the performance of such a design using the (2, 7)-regular QC graph with N = 469

and no outer code. Observe that, despite the pronounced error floor due to the

lack of an outer code, the (2, 7)-regular GLDPC code shows an important gain

w.r.t. the rest of the coding schemes at small to moderate SNR values (almost

2 dB at BLER 10−1). This indicates that performance can dramatically improve

as long as we can accommodate an outer code that cleans up a small fraction of

remaining errors. This is indeed shown to be the case in Fig. 3.10, where the

(2, 7)-regular GLDPC code demonstrates excellent performance with comparable

complexity. Furthermore, the (2, 7)-regular GLDPC code could be considered for

coding rates up to R = 0.287, while the (2, 6)-regular GLDPC code can only go

up to R = 1/6.

Recall that in all cases (including those in Fig. 3.10) our proposed schemes

have slightly larger rate and smaller block length, yet large performance gains
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Figure 3.11: BLER over an AWGN channel with QPSK modulation for (a) the proposed

rate R = 233/465 (2, 15)-regular GLDPC coding scheme (third row of Table 3.1) compared

to rate R = 1/2 coding schemes with M = 256 information bits and N = 512 block length

proposed in [28] and (b) the rate R = 155/465 (2, 15)-regular GLDPC coding scheme (last

row of Table 3.1) compared to rate R = 1/3 coding schemes with M = 170 information

bits and block length N = 512 proposed in [28]. We also include the performance of a rate

R = 0.335 (2, 7)-regular GLDPC coding with ν = 0.667 of GC nodes in the graph with

M = 156 information bits, block length N = 469, and no outer code.

are reported. These results demonstrate the potential of the proposed design

methodology: an inner GLDPC code optimized asymptotically for threshold and

proportion of GC nodes, with finite length QC design based on eliminating prob-

lematic objects along with a relatively simple, off-the-shelf, hard-decision decoded

outer code that cleans up the remaining errors. With such a performance gain,

we believe our proposed design approach is a strong candidate for future URLLC

standards.
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Conclusions and Future work

4.1 Conclusions

In this thesis, we propose the Probabilistic Peeling Decoder algorithm as a flexible

and efficient decoding algorithm that allows us to easily incorporate ML-decoded

GC nodes with specific properties into the asymptotic analysis and still maintain

a random definition of the graph degree distribution. Using P-PD, an asymptotic

analysis of the GLDPC ensemble is carried out by a simple generalization of the

original PD analysis by Luby et al. in [50]. The only information required about

the component code and its decoding method is the fraction of decodable erasure

patterns of a certain weight. We consider a class of GLDPC code ensembles

characterized by a regular base DD where we include a certain fraction of GC

nodes, and we study the tradeoff between iterative decoding threshold, coding

rate and minimum distance. We have shown that one can find a fraction of GC
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nodes that reduces the original gap to capacity and yields a GLDPC ensemble

with linear growth of the minimum distance w.r.t. the block length. Finally, we

show how the P-PD analysis can be combined with additional techniques to find a

better balance between coding rate and asymptotic gap to capacity. In particular,

we consider random puncturing and the use of generalized variable nodes. We

would like to emphasize that, in the proposed analysis framework, the evaluation

of both coding rate and of iterative decoding threshold are decoupled problems.

Consequently, broader classes of component codes or improved decoding methods

at GC nodes can be incorporated in a systematic way.

We further presente a novel coding scheme suited for applications such as

5G URLLC. The approach is based on combining an inner GLDPC code with

a simple outer hard-decision decoded outer code (e.g., a BCH code). For this

GLDPC code, the proportion of the GC nodes is optimized to guarantee an op-

timal asymptotic distribution (in the limit as the block length tends to infinity),

while it is constructed with a simple regular quasi-cyclic graph to ensure good

finite-length performance and facilitate analysis and VLSI implementation. Our

results demonstrate that we can achieve remarkable gains compared to existing

schemes in the literature. A (2, 6)-regular QC-GLDPC code, a (2, 7)-regular QC-

GLDPC code and a (2, 15)-regular GLDPC code were used as examples. With the

first example, we demonstrate that significant performance gains with compara-

ble complexities (w.r.t. the state-of-the-art) can be achieved at very low coding

rates. For a (2, 15)-regular GLDPC code, we demonstrate that these gains can

also be achieved at higher rates. The naive brute-force enumeration decoding of

the (15, 11) component code results in a larger overall complexity than state-of-

the-art competitors. However, we are confident that GLDPC ensembles with more

favorable performance/complexity tradeoffs can be found using the design method-

ologies presented in this work, including the use of lower complexity (sparser)

ensembles combined with puncturing techniques.
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4.2 Future lines of work

Many practical relevant aspects have not been considered in this thesis. In the

following, we provide a list of what we believe are promising lines of future work:

• Doubly-Generalized LDPC codes. The extension of the P-PD analysis to

DG-GLDPC codes will allow us to find more favourable performance vs.

rate trade-offs at larger coding rates.

• Efficient encoding of QC LDPC codes. It is known that QC-LDPC codes

can be encoded with linear complexity (w.r.t. the blocklength) [81]. It is

unknown whether the same result holds for QC GLDPC codes. Deriving

efficient encoding algorithms that fully exploit the QC nature of the graph

is critical for practical deployment of this kind of codes.

• Finite-length GLDPC analysis using the P-PD. In [4], the PD analysis was

generalized to the finite-length regime, and scaling laws able to accurately

predict the LDPC performance in the waterfall regime were derived. A

priori, the same steps presented in [4] can be extended to the P-PD case.

The resolution of the so-called covariance evolution equations will probably

constitute the most challenging task to this end.

• Analysis of Spatially-Coupled GLDPC codes. While LDPC codes con-

structed from spatial coupling achieve capacity, the finite-length performance

is poor, unless a moderately large number of bits are used in every position

of the coupled chained. It has been demonstrated by simulation that SC-

GLDPC codes can provide a more favourable tradeoff between performance

and block length. The P-PD analysis framework can certainly help the code

designer to find the most adequate balance between required fraction of GC

nodes and desired performance.
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A
Wormald’s Theorem and the proof of

Theorem 4

A.1 Wormald’s Theorem and the proof of Theorem 4

Proving Theorem 4 is tantamount to showing that the conditions of Wormald’s

theorem are satisfied [103]. In this case, Theorem 4 follows directly from (A.3)

and (A.4) below.

A.1.1 Wormald’s theorem [103]

Let {Z(`)(a)}a≥1 be a d-dimensional discrete-time Markov random process with

state space {0, 1, . . . , baαc}d for α > 0 and ` ∈ N+ denotes the time index. Further

let Z
(`)
i (a), i = 1, . . . , d denote the i-th component of Z(`)(a). Let D be some open
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connected bounded set containing the closure of
{

(z1, ..., zd) : P

(
Z

(0)
i (a)

a
= zi, 1 ≤ i ≤ d

)
> 0 for some a

}
. (A.1)

We define the stopping time `D to be the smallest time index ` such that

(Z
(`D)
1 (a)/a, ..., Z

(`D)
d (a)/a) /∈ D (A.2)

Furthermore, let fi(·), i = 1, . . . , d, be functions from Rd+1 to R. Assume that the

following conditions are satisfied:

1. (Boundedness) There exists a constant ν such that for all i = 1, . . . d, ` =

0, . . . , `D − 1 and a ≥ 1,

∣∣∣Z(`+1)
i (a)− Z(`)

i (a)
∣∣∣ ≤ ν.

2. (Trend functions) For all i = 1, . . . , d, ` = 0, . . . , `D − 1 and a ≥ 1,

E
[
Z

(`+1)
i (a)/a− Z(`)

i (a)/a
∣∣∣Z(`)(a)/a

]
= fi

(
`/a, Z

(`)
1 (a)/a, ..., Z

(`)
d (a)/a

)

+O(1/a).

3. (Lipschitz continuity) Each function fi(· ), i = 1, . . . , d, is Lipschitz contin-

uous on D. Namely, for any pair b, c ∈ D that belongs to such intersection,

there exists a constant κ such that

|fi(b)− fi(c)| ≤ κ
d+1∑

j=1

|bj − cj |.

Under these conditions, the following holds:

• The system of differential equations

∂zi
∂τ

= fi(τ, z1, ..., zd), i = 1, ..., d, (A.3)

has a unique solution for any initial condition (b1, ..., bd) ∈ D.

• There exists a strictly positive constant ζ such that

P
(∣∣∣Z(`)

i (a)/a− zi(`/a)
∣∣∣ > ζa−

1
6

)
= O

(
e−
√
a
)

(A.4)

for i = 1, ..., d and 0 ≤ t ≤ tD, where zi(`/a) is the solution to (A.3) for

bi = E[Z
(0)
i (a)]/a, i = 1, . . . , d. (A.5)
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The result in (A.4) states that any realization of the process Z
(t)
i (a) concentrates

around the solution predicted by (A.3) in the limit as a→∞. In the next subsec-

tion we show that this theorem is suitable to describe the expected GLDPC graph

evolution of the P-PD.

A.1.2 Expected graph evolution under P-PD

To analyze the asymptotic behavior of the CJ,K,ν ensemble under P-PD using

Wormald’s theorem, we identify the Markov random process Z(`)(a) in the previous

section by the random process G(`)(E), where

G(`)(E) =
{
L

(`)
i , R

(`)
pj , R

(`)
cj , R̂

(`)
cd , R̄

(`)
cd , R̂

(`)
c(d+1), R̄

(`)
c(d+1)

}
i=1,...,J

j=1,...,d−1,d+2,...,K

(A.6)

namely G(`)(E) is the random process that contains all terms in the DD of the

residual graph after `− 1 iterations. Note that any component in G(`)(E) belongs

to the set {0, 1, . . . , E}, and recall that E is the number of edges in the original

GLPDC graph. Thus, E will play the role of the parameter a. In this subsection

we prove that the evolution of G(`)(E) under P-PD satisfies the three conditions of

Wormald’s theorem stated in the previous subsection. We start by computing the

conditional expected evolution of all elements in G(`)(E) after one P-PD iteration.

We define the following normalized quantities:

τ ,
`

E
, l

(`)
i ,

L
(`)
i

E
, r

(`)
pj ,

R
(`)
pj

E
, r

(`)
cj ,

R
(`)
cj

E
, r̂(`)

cν ,
R̂

(`)
cν

E
, r̄(`)

cν ,
R̄

(`)
cν

E
, (A.7)

for i ∈ {1, . . . , J}, j ∈ {1, . . . , d−1, d+ 2, . . . ,K} and ν ∈ {d, d+ 1}. We have that

r(`)
cν = r̂(`)

cν + r̄(`)
cν , ν = d, d + 1, (A.8)

e(`) ,
J∑

i=1

l
(`)
i =

K∑

j=1

[r
(`)
pj + r

(`)
cj ], (A.9)

and e(τ) is the fraction of edges remaining in the residual graph at time `. The

P-PD process starts at ` = 0, after BEC transmission and initialization. The

following relation holds between the quantities defined above at ` = 0 and the

CJ,K,ν DD described in Section 2.1:

E[l
(0)
i ] = ελi, (A.10)
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E[r
(0)
pj ] =

∑

α≥j
ρpα

(
α− 1

j − 1

)
εj(1− ε)α−j , (A.11)

E[r
(0)
cj ] =

∑

α≥j
ρcα

(
α− 1

j − 1

)
εj(1− ε)α−j , (A.12)

for i = 1, . . . J and j = 1, . . . ,K, where the expectation is computed w.r.t. the

CJ,K,ν ensemble and the channel output. Upon initialization, every degree-d GC

node is tagged as decodable with probability pd, and every degree-(d+1) GC node

is tagged as decodable with probability pd+1. Recall that all GC nodes with degree

less than d are decodable and, by assumption, all GC nodes with degree more than

d + 1 are not decodable. We thus have the following initial conditions

E[r̂
(0)
cj ] = pjE[r

(0)
cj ],

E[r̄
(0)
cj ] = (1− pj)E[r

(0)
cj ], j = d, d + 1. (A.13)

The equations (A.10)-(A.13) correspond to the initial conditions in (A.5). Ob-

serve that since the largest GC degree is K and the largest variable node degree is

J , the graph loses at most JK edges per iteration. This is an upper bound on the

absolute variation of any component in G(`)(E) between two consecutive iterations.

Hence, Condition 1) of Wormald’s theorem is satisfied.

Suppose we observe G(`)(E). To derive the conditional expectations in Condi-

tion 2) of Wormald’s Theorem, the so-called trend functions, we have to average

among every possible scenario that we can observe after a P-PD iteration. Ac-

cording to Step 1) in Algorithm 3, we chose at random a decodable check node.

Let P
(`)
p1 be the probability of selecting a degree-one SPC node, and let P

(`)
cj denote

the probability of selecting a decodable degree-j GC node, j = 1, . . . , d + 1. By a

simple counting argument, if the check node is selected uniformly at random then

P
(`)
p1 =

r
(`)
p1

s(τ)
, (A.14)

P
(`)
cj =

r
(`)
cj /j

s(τ)
, j < d, (A.15)

P
(`)
cj =

r̂
(`)
cj /j

s(τ)
, j ∈ {d, d + 1}. (A.16)
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In (A.14)-(A.16),

s(τ) = r
(`)
p1 +

d−1∑

w=1

r
(`)
cw

w
+
r̂

(`)
cd

d
+
r̂

(`)
c(d+1)

d + 1
(A.17)

is the normalized sum of decodable check nodes at the `-th iteration.

Evolution of left edge degrees in the Tanner graph after one P-PD

iteration

Suppose we observe the residual graph G(`) at iteration `. Our aim is to evaluate

E
[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E)
]
, (A.18)

for i = 1, 2, ..., J . Given the graph DD G(`), recall that P
(`)
p1 denotes the probability

of P-PD selecting a degree-one SPC node in the current iteration, and P
(`)
cj denotes

the probability of selecting a degree-j decodable GC node. We can decompose the

expectation in (A.18) according to each possible type of check node to be removed,

namely,

E
[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E)
]

= P
(`)
p1 E

[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degp1

]

+

d+1∑

w=1

P (`)
cw E

[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degcw

]
, (A.19)

where Degp1 indicates that the P-PD removes a degree-one SPC node from the

graph, and Degcw indicates that P-PD removes a degree-w decodable GC node

from the graph. Computing the expectation in the first case is similar to the

derivation carried out in [50] for PD with LDPC ensembles. Indeed probability

that the edge adjacent to the removed degree-one SPC node has left degree i is

l
(τ)
i /e(τ). In such a case, after deleting this variable node, the graph loses i − 1

additional edges adjacent to this variable node, so

E
[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degp1

]
= − il

(`)
i

e(`)
. (A.20)

When the P-PD decoder removes a decodable degree-w GC node, this node is

connected to w variable nodes that are also removed from the residual Tanner
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graph, along with their connected edges (assuming the graph does not have double

edges). Note that left degrees of the w edges connected to the removed GC node

are, in general, not independent. Let Xu ∈ {1, . . . , J} the RV that indicates the

left degree of the u-th edge, u = 1, . . . , w. Arbitrarily, we can decompose the joint

probability of X1, . . . , Xw as follows

P (X1, . . . , Xw) = P (X1)P (X2|X1)P (X3|X1, X2) . . . P (Xw|X1, . . . , Xw−1).

(A.21)

While P (X1 = x1) = l
(`)
x1 /e

(`), x1 = 1, . . . , J , the conditional distribution of X2

given X1 is given by

P (X2 = x2|X1 = x1) =





l
(τ)
x2

e(`) − 1/E
x2 6= x1

l
(`)
x2 − 1/E

e(`) − 1/E
x2 = x1

, (A.22)

for x1, x2 ∈ {1, . . . , J}, where the 1/E terms appear due to the fact that the DD

has to be reparameterized after we condition on X1 = x1. The above expression

can be generalized to any of the factors in (A.21) as follows:

P (Xu = xu|X1 = x1, . . . , Xu−1 = xu−1) =
l(`)xu −

∑u
u′=1 I[xu′ = xu]

E

e(τ) − u− 1

E

=

(
l
(`)
xu

e(`)
−
∑u

u′=1 I[xu′ = xu]

e(`)E

)
e(`)E

e(`)E− (u− 1)
.

(A.23)

Note that e(τ)E is the number of edges in the graph at time `. Since u ≤ w < J and

J is a constant independent of E, the second factor in (A.23) is of order 1−O(1/E).

Thus

P (X1 = x1, . . . , Xw = xw) =

w∏

u=1

(
l
(`)
xu

e(`)
−
∑u

u′=1 I[xu′ = xu]

e(`)E

)
+O(1/E), (A.24)

using again that w ≤ d + 1 ≤ J where J is a constant independent of E, and that

l
(`)
xu/e

(`) is independent of E, we can write (A.21) as follows

P (X1 = x1, . . . , Xw = xw) =

w∏

u=1

l
(`)
xu

e(`)
+O(1/E). (A.25)
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Thus, the joint probability distribution of the left degrees of w edges connected to

a degree-w GC node asymptotically factorizes as E→∞ and the number of edges

with left degree-i connected to the removed GC node can be roughly described by

a binomial RV with parameter l
(`)
i /e(`). Hence, we obtain

E
[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E),Degcw

]
= − iwl

(`)
i

e(τ)
+O(1/E). (A.26)

Combining (A.26) and (A.20) with (A.19), we obtain

E
[
L

(`+1)
i − L(`)

i

∣∣∣G(`)(E)
]

= − il
(`)
i

e(τ)

(
P

(`)
p1 +

d+1∑

w=1

wP (`)
cw

)
+O(1/E)

, fi(G(`)(E)/E) +O(1/E). (A.27)

Note that fi(G(`)(E)/E) depends on every component in G(`), normalized by E.

Observe that fi(G(`)(E)/E) in (A.27) is of the form required by Condition 2) of

Wormald’s theorem.

Evolution of right edge degrees in the Tanner graph after one P-PD

iteration

Our goal now is to evaluate

E
[
R

(`+1)
pj −R(`)

pj

∣∣∣G(`)(E)
]
, j = 1, . . . ,K,

E
[
R

(`+1)
cj −R(`)

cj

∣∣∣G(`)(E)
]
, j = 1, . . . ,K and j /∈ {d, d + 1}

E
[
R̂

(`+1)
cj − R̂(`)

cj

∣∣∣G(`)(E)
]
, j ∈ {d, d + 1}

E
[
R̄

(`+1)
cj − R̄(`)

cj

∣∣∣G(`)(E)
]
, j ∈ {d, d + 1}

As before, we evaluated these terms by conditioning on the type of check node

to be removed at the current P-PD iteration. Using (A.25), the average number

of edges removed from the graph after a degree-w GC node is removed is given by

∆
(τ)
w , wa(`) +O(1/E), where a(`) =

∑
il

(`)
i /e(`). Among those, w are connected to

the same degree-w GC node, i.e. they have right degree w. Consider the remaining

∆w − w edges. Following a similar argument as in (A.25), it can be shown that

the joint probability distribution of their right degree asymptotically factorizes as
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E → ∞ and that the deviation in the finite case is dominated by O(1/E) terms.

By taking w = 1, the same arguments hold for the case where decoder removes a

degree-1 SPC node. In addition to this results, in order to evaluate the expected

variation in the number of edges of certain right degree we also have to take into

account that, when we remove one edge from the graph, we modify the right degree

of the rest of edges still connected to the same SPC/GC node. For example, if

one of the edges that are removed from the graph has right SPC degree j, after

deleting such edge the graph loses j edges with right SPC degree j and gains j−1

edges with right SPC degree j − 1.

Following the above arguments, conditioned on G(`)(E), the expected change in

the number of edges with right SPC degree j is given by the following expression

E
[
R

(`+1)
pj −R(`)

pj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
(r

(`)
p(j+1) − r

(`)
pj )

j(a(`)− 1)

e(`)
− I[j = 1]

)

+

d+1∑

w=1

P (`)
cw (r

(`)
p(j+1) − r

(`)
pj )

j(wa(`)− w)

e(`)
+O(1/E)

, gpj(G(`)/E) +O(1/E). (A.28)

It can be further shown that the expected variation in the number of edges of right

GC degree j with j 6= d, d + 1 satisfies

E
[
R

(`+1)
cj −R(`)

cj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
(r

(`)
c(j+1) − r

(`)
cj )

j(a(`)− 1)

e(`)

)

+
d+1∑

w=1

P (`)
cw

(
(r

(`)
c(j+1) − r

(`)
cj )

j(wa(`)− w)

e(`)
− wI[j = w]

)
+O(1/E)

, gcj(G(`)/E) +O(1/E). (A.29)

To analyze the expected change in the number of edges connected to decodable and

not decodable GC nodes of degree d and d + 1, we have to take into account that

if a non-decodable degree-(d + 2) GC node loses one edge, it becomes decodable

with probability pd+1. Similarly, if a non-decodable degree-(d+ 1) GC node loses

one edge, it becomes decodable with probability pd. Also note that if a decodable
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GC node of degree d+1 loses one edge, it becomes a decodable GC node of degree

d with probability 1. It follows that the expected change in the fraction of edges

connected to decodable and not decodable GC nodes of degree j = d, d + 1, are

given by

E
[
R̂

(`+1)
cj − R̂(`)

cj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
(pj r̄

(`)
c(j+1) + r̂

(`)
c(j+1) − r̂

(`)
cj )

j(a(`)− 1)

e(`)

)

+

j+1∑

w=1

P (`)
cw

(
(pj r̄

(`)
c(j+1) + r̂

(`)
c(j+1) − r̂

(`)
cj )

j(wa(`)− w)

e(`)
− wI[w = j]

)
+O(1/E)

, ĝcj(G(`)/E) +O(1/E) (A.30)

E
[
R̄

(`+1)
cj − R̄(`)

cj

∣∣∣G(`)(E)
]

= P
(`)
p1

(
((1− pj)r̄(`)

c(j+1) − r̄
(`)
cj )

j(a(`)− 1)

e(`)

)

+

j+1∑

w=1

P (`)
cw

(
((1− pj)r̄(`)

c(j+1) − r̄
(`)
cj )

j(wa(`)− w)

e(`)
− wI[w = j]

)
+O(1/E)

, ḡcj(G(`)/E) +O(1/E) (A.31)

Note that R̄
(`)
c(d+2) = R

(`)
c(d+2) and R̂

(`)
c(d+2) = 0. Further, observe that (A.27)-(A.31)

are of the form required by Condition 2) of Wormald’s theorem.

On the Lipschitz continuity of the trend functions in (A.27)-(A.31)

Condition 3) of Wormald’s theorem requires that the trend functions in (A.27)-

(A.31) are Lipschitz in the set of all possible DDs. First, we note that if we would

restrict the P-PD to remove only decodable check nodes (either degree-1 SPC

nodes or GC nodes of one particular degree), then (A.27)-(A.31) are still valid by

simply setting the corresponding probabilities P
(`)
p1 and P

(`)
cj , j = 1, . . . , d + 1 to

either zero or one. In such a case, (A.27)-(A.31) are equal up to a multiplicative

constant to the PD trend functions for LDPC codes in [50], hence they are Lips-

chitz continuous. When we drop the restriction to remove one particular type of

decodable check node, then the trend functions in (A.27)-(A.31) are convex the
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combinations of Lipschitz continuous functions, with the coefficients given by the

functions P
(`)
p1 and P

(`)
cj , j = 1, . . . , d+ 1 in (A.14)-(A.16), which are also Lipschitz

continuous (note their similarity in form with (A.20), which is Lipschitz continu-

ous [50]). Since they are all bounded functions, we conclude that Condition 3) of

Wormald’s theorem is also satisfied.
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Proof of Theorem 5

B.1 Proof of Theorem 5

The proof of Theorem 5 closely follows that of Theorem 4 given in Appendix

A.1. As before, it is sufficient to show that the conditions of Wormald’s theorem

are satisfied. Following the definitions given in Section 2.7.2, the left DD of the

residual graph of the C3,K,ν,β code ensemble during P-PD has three components:

the number of edges connected to degree-2 or degree-3 RV nodes (L
(`)
r2 and L

(`)
r3

respectively), and the number of edges connected to degree-3 GV nodes (L
(`)
g3 ).

The right DD of the residual graph has the same elements as those defined for the

CJ,K,ν ensemble in Appendix A.1.2. Thus, the DD of the residual graph is defined
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by the random process

G(`)(E) =
{
L

(`)
r2 , L

(`)
r3 , L

(`)
3g , R

(`)
pj , R

(`)
cj , R̂

(`)
cd , R̄

(`)
cd , R̂

(`)
c(d+1), R̄

(`)
c(d+1)

}
j=1,...,d−1,d+2,...,K

.

(B.1)

We define

l
(`)
r2 ,

L
(`)
r2

E
, l

(`)
r3 ,

L
(`)
r3

E
, l

(`)
g3 ,

L
(`)
g3

E
. (B.2)

After P-PD initialization, i.e. ` = 0, it can be shown that

E
[
l
(0)
g3

]
= ε2β, (B.3)

E
[
l
(0)
r3

]
= ε(1− β), (B.4)

E
[
l
(0)
r2

]
= 4βε(1− ε)/3. (B.5)

To evaluate (B.5), we compute the average number of GV nodes for which one of

the two DG-LDPC coded bits is received. According to the generator matrix in

(2.43), GV nodes can be viewed as degree-2 variable nodes. Based on (B.3)-(B.5),

the average fraction of edges remaining in the graph after P-PD initialization is

ε′ = ε(1− β) + 4βε(1− ε)/3 + ε2β = ε

(
1 +

β(1− ε)
3

)
. (B.6)

We can further determine expected initial conditions of the right DD of the residual

graph after P-PD initialization by using (2.33) and (2.35) and replacing ε by ε′.

By following a similar procedure as in Appendix A.1.2, it can be shown that

conditioned, on G(`)(E), the expected variation in L
(`)
r2 , L

(`)
r3 , and L

(`)
3g after one

P-PD iteration is given by

E
[
L

(`+1)
r3 − L(`)

r3

∣∣∣G(`)
]

= −3l
(`)
r3

e(`)

(
P

(`)
p1 +

d+1∑

w=1

wP (`)
cw

)
+O(1/E), (B.7)

E
[
L

(`+1)
r2 − L(`)

r2

∣∣∣G(`)
]

=

(
2l

(`)
g3

e(`)
− 2l

(`)
r2

e(`)

)(
P

(`)
p1 +

d+1∑

w=1

wP (`)
cw

)
+O(1/E), (B.8)

E
[
L

(`+1)
g3 − L(`)

g3

∣∣∣G(`)
]

= −
3l

(`)
g3

e(`)

(
P

(`)
p1 +

d+1∑

w=1

wP (`)
cw

)
+O(1/E), (B.9)

where e(`) = l
(`)
r3 + l

(`)
g3 + l

(`)
g3 and P

(`)
p1 and P

(`)
cw are given in (2.29) and (2.30)

respectively. In (B.8), we have used that that if a degree-3 GV node loses one edge,
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then the graph loses 3 edges with left GV degree 3 and gains 2 edges with left RV

degree 2. The conditional expected variation of the right DD of the residual graph

can be computed using (A.28)-(A.31) by taking a(`) = (3l
(`)
r3 + 2l

(`)
r2 + l

(`)
g3 )/e(`).

Finally, proving that the conditions in Wormald’s Theorem hold follows by the

same arguments as in the proof of Theorem 4 in Appendix A.1.
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C
Generator matrices of reference Codes

C.1 Generator matrices of reference Codes

Reference codes have been found by performing an exhaustive search over the

database [29, 30], which implements MAGMA [8] to design block codes with the

largest minimum distance.

Code R-I : Rate-1/2 Hamming (6, 3) linear block code with generator matrix

GR-I =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


 (C.1)

Code R-II : Rate-1/3 Cordaro-Wagner 2-dimensional repetition code of length
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6 with generator matrix

GR-II =


1 1 1 1 0 0

0 0 1 1 1 1


 (C.2)

Code R-III: Rate-4/7 Hamming (7,4) code with generator matrix

GR-III =




1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1




(C.3)

Code R-IV: Rate-3/7 linear block code with generator matrix

GR-IV =




0 1 1 1 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1


 (C.4)

Code R-V: Rate-1/2 extended (7, 4)-Hamming code with extra parity bit, i.e.,

(8, 4) Hamming code. Another example is a Quasi-Cyclic (8, 4, 4) code with gen-

erator matrix

GR-V =




1 0 0 1 0 1 0 1

0 1 1 0 0 1 0 1

0 1 0 1 1 0 0 1

0 1 0 1 0 1 1 0




(C.5)

Code R-VI: Rate-3/8 cyclic linear block code with generator matrix

GR-VI =




1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1


 (C.6)
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Code R-VII: Rate-1/4 Cordaro-Wagner 2-dimensional repetition code of length

8 with generator matrix

GR-VII =


1 0 1 1 0 1 1 1

0 1 0 0 1 1 1 1


 (C.7)

Code R-VIII: Rate-11/15 linear block code with generator matrix

GR-VIII =




0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 1 1 0 0 0 0 0 0 0 1




(C.8)

Code R-IX: Rate-2/3 linear block code with generator matrix
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GR-IX =




0 1 1 0 0 1 0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1 0 1 0 0 0 1 0

0 0 1 0 0 1 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 1 0 0 0 0 0 1 1

0 0 1 1 0 1 0 1 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 0 0 0 0 0 1 1




(C.9)
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Update Rules of the GC Nodes for the

(6,3) Shortened Hamming code

D.1 Update Rules of the GC Nodes for the (6,3) Short-

ened Hamming code

Let vector (pi0, pi1) denote the probabilistic input message coming from the ith

variable connected to the GC node, where pi0 +pi1 = 0 and index i, i = 1, 2, . . . , 6,

corresponds to the ith position of the component code. Similarly, we denote by

(p̃i0, p̃i1) the probabilistic output message extrinsic probabilities from the GC node

to the ith variable node connected to it.

According to the (6,3) Hamming codebook in (3.9), we can check by enumer-
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code

ation that, for instance, we can compute p̃10 and p̃11 as follows

p̃10 = p20p30p40p50p60 + p20p31p40p51p61 + p21p30p41p50p61

+ p21p31p41p51p60,

p̃11 = p20p30p41p51p60 + p20p31p41p50p61 + p21p30p40p51p61

+ p21p31p40p50p60. (D.1)

Let λ̃p1 = p̃10/p̃11 and Λ̃p1 = log(λ̃p1), thus

Λ̃p1 = (D.2)

log(eΛp2+Λp3+Λp4+Λp5+Λp6 + eΛp2+Λp4 + eΛp3+Λp5 + eΛp6)

− log(eΛp2+Λp3+Λp6 + eΛp2+Λp5 + eΛp3+Λp4 + eΛp4+Λp5+Λp6)

which is decided by the biggest exponent of the subtrahend and the minuend using

the log-sum expression. The expression in (D.2) can be easily generated for all

output messages in the GC nodes as follows. Let C
(6,3)
i,m denote the m-th bit of the

i-th codeword, where C
(6,3)
i,m is given in (3.9). Then we have

Λ̃j = log



∑

i∈{1,8}
Ci,j=0

exp




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 0)](Λpj − Λ∗)







− log



∑

i∈{1,8}
Ci,j=1

exp




∑

m∈{1,6}
m6=j

I[(C
(6,3)
i,m = 1)](Λpj − Λ∗)





 . (D.3)
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