856 research outputs found

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc

    Synchronization of Distant Optical Clocks at the Femtosecond Level

    Full text link
    The use of optical clocks/oscillators in future ultra-precise navigation, gravitational sensing, coherent arrays, and relativity experiments will require time comparison and synchronization over terrestrial or satellite free-space links. Here we demonstrate full unambiguous synchronization of two optical timescales across a free-space link. The time deviation between synchronized timescales is below 1 fs over durations from 0.1 s to 6500 s, despite atmospheric turbulence and kilometer-scale path length variations. Over several days, the time wander is 40 fs peak-to-peak. Our approach relies on the two-way reciprocity of a single-spatial-mode optical link, valid to below 225 attoseconds across a turbulent 4-km path. This femtosecond level of time-frequency transfer should enable optical networks using state-of-the-art optical clocks/oscillators.Comment: 19 pages, 9 figure

    Predictive Duty Cycling of Radios and Cameras using Augmented Sensing in Wireless Camera Networks

    Get PDF
    Energy efficiency dominates practically every aspect of the design of wireless camera networks (WCNs), and duty cycling of radios and cameras is an important tool for achieving high energy efficiencies. However, duty cycling in WCNs is made complex by the camera nodes having to anticipate the arrival of the objects in their field-of-view. What adds to this complexity is the fact that radio duty cycling and camera duty cycling are tightly coupled notions in WCNs. Abstract In this dissertation, we present a predictive framework to provide camera nodes with an ability to anticipate the arrival of an object in the field-of-view of their cameras. This allows a predictive adaption of network parameters simultaneously in multiple layers. Such anticipatory approach is made possible by enabling each camera node in the network to track an object beyond its direct sensing range and to adapt network parameters in multiple layers before the arrival of the object in its sensing range. The proposed framework exploits a single spare bit in the MAC header of the 802.15.4 protocol for creating this beyond-the-sensing-rage capability for the camera nodes. In this manner, our proposed approach for notifying the nodes about the current state of the object location entails no additional communication overhead. Our experimental evaluations based on large-scale simulations as well as an Imote2-based wireless camera network demonstrate that the proposed predictive adaptation approach, while providing comparable application-level performance, significantly reduces energy consumption compared to the approaches addressing only a single layer adaptation or those with reactive adaptation

    Doctor of Philosophy

    Get PDF
    dissertationRecording the neural activity of human subjects is indispensable for fundamental neuroscience research and clinical applications. Human studies range from examining the neural activity of large regions of the cortex using electroencephalography (EEG) or electrocorticography (ECoG) to single neurons or small populations of neurons using microelectrode arrays. In this dissertation, microscale recordings in the human cortex were analyzed during administration of propofol anesthesia and articulate movements such as speech, finger flexion, and arm reach. Recordings were performed on epilepsy patients who required long-term electrocorticographic monitoring and were implanted with penetrating or surface microelectrode arrays. We used penetrating microelectrode arrays to investigate the effects of propofol anesthesia on action potentials (APs) and local field potentials (LFPs). Increased propofol concentration correlated with decreased high-frequency power in LFP spectra and decreased AP firing rates, as well as the generation of large amplitude spike-like LFP activity; however, the temporal relationship between APs and LFPs remained relatively consistent at all levels of propofol anesthesia. The propofol-induced suppression of neocortical network activity allowed LFPs to be dominated by low-frequency spike-like activity, and correlated with sedation and unconsciousness. As the low-frequency spike-like activity increased, and the AP-LFP relationship became more predictable, firing rate encoding capacity was impaired. This suggests a mechanism for decreased information processing in the neocortex that accounts for propofol-induced unconsciousness. We also demonstrated that speech, finger, and arm movements can be decoded from LFPs recorded with dense grids of microelectrodes placed on the surface of human cerebral cortex for brain computer interface (BCI) applications using LFPs recorded over face-motor area, vocalized articulations of ten different words and silence were classified on a trial-by-trial basis with 82.4% accuracy. Using LFPs recorded over the hand area of motor cortex, three individual finger movements and rest were classified on a trial-by-trial basis with 62% accuracy. LFPs recorded over the arm area of motor cortex were used to continuously decode the arm trajectory with a maximum correlation coefficient of 0.82 in the x-direction and 0.76 in the y-direction. These findings demonstrate that LFPs recorded by micro-ECoG grids from the surface of the cerebral cortex contain sufficient information to provide rapid and intuitive control a BCI communication or motor prosthesis

    Towards model-based control of Parkinson's disease

    Get PDF
    Modern model-based control theory has led to transformative improvements in our ability to track the nonlinear dynamics of systems that we observe, and to engineer control systems of unprecedented efficacy. In parallel with these developments, our ability to build computational models to embody our expanding knowledge of the biophysics of neurons and their networks is maturing at a rapid rate. In the treatment of human dynamical disease, our employment of deep brain stimulators for the treatment of Parkinson’s disease is gaining increasing acceptance. Thus, the confluence of these three developments—control theory, computational neuroscience and deep brain stimulation—offers a unique opportunity to create novel approaches to the treatment of this disease. This paper explores the relevant state of the art of science, medicine and engineering, and proposes a strategy for model-based control of Parkinson’s disease. We present a set of preliminary calculations employing basal ganglia computational models, structured within an unscented Kalman filter for tracking observations and prescribing control. Based upon these findings, we will offer suggestions for future research and development

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    The Telecommunications and Data Acquisition Report

    Get PDF
    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported

    A review on frequency synchronization in collaborative beamforming: a practical approach

    Get PDF
    Coherent signal reception from distributed beamforming nodes of virtual antenna array formation requires frequency synchronization of the participating nodes. Signals at the target receiver are out of phase due to unsynchronized local oscillator’s (LO) reference signal of all the nodes in the systems. Practical cases of this problem are considered. In this article, a brief overview is presented of the need for the frequency synchronization and the resulting effect of mitigation avoidance. A variant of the closed-loop feedback algorithm is used to provide LO drifts information to the beamforming transmitters. These feedbacks are used to estimate, correct, and predict the nonlinear LO offsets that will result in near (0) phase offset of the received signal. The algorithms are implemented in software defined radio (SDR) and transmitted through the RF front end of devices like the NI 2920/N210 USRP
    corecore