53,169 research outputs found

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n1/m1(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1o(1)1-o(1) for any p(n)=o(n1/m1(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    Optimization of Robustness of Complex Networks

    Full text link
    Networks with a given degree distribution may be very resilient to one type of failure or attack but not to another. The goal of this work is to determine network design guidelines which maximize the robustness of networks to both random failure and intentional attack while keeping the cost of the network (which we take to be the average number of links per node) constant. We find optimal parameters for: (i) scale free networks having degree distributions with a single power-law regime, (ii) networks having degree distributions with two power-law regimes, and (iii) networks described by degree distributions containing two peaks. Of these various kinds of distributions we find that the optimal network design is one in which all but one of the nodes have the same degree, k1k_1 (close to the average number of links per node), and one node is of very large degree, k2N2/3k_2 \sim N^{2/3}, where NN is the number of nodes in the network.Comment: Accepted for publication in European Physical Journal

    Continuum Line-of-Sight Percolation on Poisson-Voronoi Tessellations

    Full text link
    In this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson-Voronoi tessellation in the dd-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition ZZ of these two processes, two points of ZZ are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0-1 law, a subcritical phase as well as a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.Comment: 30 pages, 4 figures. Accepted for publication in Advances in Applied Probabilit

    Revisiting Interval Graphs for Network Science

    Full text link
    The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The generalization is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science
    corecore