259 research outputs found

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    Differential geometry methods for biomedical image processing : from segmentation to 2D/3D registration

    Get PDF
    This thesis establishes a biomedical image analysis framework for the advanced visualization of biological structures. It consists of two important parts: 1) the segmentation of some structures of interest in 3D medical scans, and 2) the registration of patient-specific 3D models with 2D interventional images. Segmenting biological structures results in 3D computational models that are simple to visualize and that can be analyzed quantitatively. Registering a 3D model with interventional images permits to position the 3D model within the physical world. By combining the information from a 3D model and 2D interventional images, the proposed framework can improve the guidance of surgical intervention by reducing the ambiguities inherent to the interpretation of 2D images. Two specific segmentation problems are considered: 1) the segmentation of large structures with low frequency intensity nonuniformity, and 2) the detection of fine curvilinear structures. First, we directed our attention toward the segmentation of relatively large structures with low frequency intensity nonuniformity. Such structures are important in medical imaging since they are commonly encountered in MRI. Also, the nonuniform diffusion of the contrast agent in some other modalities, such as CTA, leads to structures of nonuniform appearance. A level-set method that uses a local-linear region model is defined, and applied to the challenging problem of segmenting brain tissues in MRI. The unique characteristics of the proposed method permit to account for important image nonuniformity implicitly. To the best of our knowledge, this is the first time a region-based level-set model has been used to perform the segmentation of real world MRI brain scans with convincing results. The second segmentation problem considered is the detection of fine curvilinear structures in 3D medical images. Detecting those structures is crucial since they can represent veins, arteries, bronchi or other important tissues. Unfortunately, most currently available curvilinear structure detection filters incur significant signal lost at bifurcations of two structures. This peculiarity limits the performance of all subsequent processes, whether it be understanding an angiography acquisition, computing an accurate tractography, or automatically classifying the image voxels. This thesis presents a new curvilinear structure detection filter that is robust to the presence of X- and Y-junctions. At the same time, it is conceptually simple and deterministic, and allows for an intuitive representation of the structure’s principal directions. Once a 3D computational model is available, it can be used to enhance surgical guidance. A 2D/3D non-rigid method is proposed that brings a 3D centerline model of the coronary arteries into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid on top of the interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures, which reduces the uncertainty inherent in 2D interventional images. A fully non-rigid registration model is proposed and used to compensate for any local shape discrepancy. This method is based on a variational framework, and uses a simultaneous matching and reconstruction process. With a typical run time of less than 3 seconds, the algorithms are fast enough for interactive applications

    SEED LOCALIZATION IN IMAGE-GUIDED PROSTATE BRACHYTHERAPY INTRAOPERATIVE DOSIMETRY SYSTEMS

    Get PDF
    Prostate cancer is the most common cancer among men in the United States. Many treatments are available, but prostate brachytherapy is acknowledged as a standard treatment for patients with localized cancer. Prostate brachytherapy is a minimally invasive surgery involving the permanent implantation of approximately 100 grain-sized radioactive seeds into the prostate. While effective, contemporary practice of brachytherapy is suboptimal because it spreads the stages of planning, implant, and dosimetry over several weeks. Although brachytherapy is now moving towards intraoperative treatment planning (ITP) which integrates all three stages into a single day in the operating room,the American Brachytherapy Society states, “the major current limitation of ITP is the inability to localize the seeds in relation to the prostate.” While the procedure is traditionally guided by transrectal ultrasound (TRUS), poor image quality prevents TRUS from accurately localizing seeds to compute dosimetry intraoperatively. Alternative methods exist, but are generally impractical to implement in clinics worldwide. The subject of this dissertation is the development of two intraoperative dosimetry systems to practically solve the problem of seed localization in ITP. The first system fuses TRUS with X-ray fluoroscopy using the ubiquitous non-isocentric mobile C-arm.The primary contributions of this dissertation include an automatic fiducial and seed segmentation algorithm for fluoroscopic images, as well as a next generation intraoperative dosimetry system based on a fiducial with seed-like markers. Results from over 30 patients prove that both contributions are significant for localizing seeds with high accuracy and demonstrate the capability of detecting cold spots. The second intraoperative dosimetry system is based on photoacoustic imaging, and uses the already implemented TRUS probe to detect ultrasonic waves converted from electromagnetic waves generated by a laser. The primary contributions of this dissertation therefore also include a prototype benchtop photoacoustic system and an improved clinical version usable in the operating room. Results from gelatin phantoms, an ex vivo dog prostate, and an in vivo dog study reveal that multiple seeds are clearly visible with high contrast using photoacoustic imaging at clinically safe laser energies.Together, both systems significantly progress the latest technologies to provide optimal care to patients through ITP

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Developing Ultrasound-Guided Intervention Technologies Enabled by Sensing Active Acoustic and Photoacoustic Point Sources

    Get PDF
    Image-guided therapy is a central part of modern medicine. By incorporating medical imaging into the planning, surgical, and evaluation process, image-guided therapy has helped surgeons perform less invasive and more precise procedures. Of the most commonly used medical imaging modalities, ultrasound imaging offers a unique combination of cost-effectiveness, safety, and mobility. Advanced ultrasound guided interventional systems will often require calibration and tracking technologies to enable all of their capabilities. Many of these technologies rely on localizing point based fiducials to accomplish their task. In this thesis, I investigate how sensing and localizing active acoustic and photoacoustic point sources can have a substantial impact in intraoperative ultrasound. The goals of these methods are (1) to improve localization and visualization for point targets that are not easily distinguished under conventional ultrasound and (2) to track and register ultrasound sensors with the use of active point sources as non-physical fiducials or markers. We applied these methods to three main research topics. The first is an ultrasound calibration framework that utilizes an active acoustic source as the phantom to aid in in-plane segmentation as well as out-of-plane estimation. The second is an interventional photoacoustic surgical system that utilizes the photoacoustic effect to create markers for tracking ultrasound transducers. We demonstrate variations of this idea to track a wide range of ultrasound transducers (three-dimensional, two-dimensional, bi-planar). The third is a set of interventional tool tracking methods combining the use of acoustic elements embedded onto the tool with the use of photoacoustic markers

    3D Reconstruction of Interventional Material from Very Few X-Ray Projections for Interventional Image Guidance

    Get PDF
    Today, minimally invasive endovascular interventions are usually guided by 2D fluoroscopy, i.e. a live 2D X-ray image. However, 3D fluoroscopy, i.e. a live 3D image reconstructed from a stream of 2D X-ray images, could improve spatial awareness. 3D fluoroscopy is, however, not used today, since no appropriate 3D reconstruction algorithm is known. Existing algorithms for the real-time reconstruction of interventional material (guidewires, stents, catheters, etc.) are either only capable of reconstructing a single guidewire or catheter, or use too many X-ray images and therefore too much dose per 3D reconstruction. The goal of this thesis was to reconstruct complex arrangements of interventional material from as few X-ray images as possible. To this end, a previously proposed algorithm for the reconstruction of interventional material from four X-ray images was adapted. Five key improvements allowed to reduce the number of X-ray images per 3D reconstruction from four to two: a) use of temporal information in a rotating imaging setup, b) separate reconstruction of different types of interventional material enabled by the computation of semantic interventional material extraction images, c) compensation of stent motion by spatial transformer networks, d) per-projection backprojection and e) binarization of the guidewire extraction images. While previously only single curves could be reconstructed from two newly acquired X-ray images, the proposed pipeline can reconstruct stents and even stent-guidewire combinations. Submillimeter reconstruction accuracy was demonstrated on measured X-ray images of interventional material inside an anthropomorphic phantom with simulated respiratory motion. Measurements of the dose area product rate of the proposed 3D reconstruction pipeline indicate a dose burden roughly similar to that of 2D fluoroscopy
    corecore