948 research outputs found

    Implementation of High Speed Railway Mobile Communication System

    Get PDF
    High speed railways (HSR) provide highly efficient transport mode which improves the quality of railway services, saves time of the passengers which leads to greater customer satisfaction as well as improves the economics of the society. This has introduced significant challenges like developing new technologies, improving the existing architecture and controlling costs etc. Due to the improvements in the speed, ability to access internet and stream live media there is a requirement of an advanced high speed communication and signaling system. This system demands higher bandwidth, higher reliability and shorter response time for efficient operation and safety. This paper introduces the existing system deployed by the railway based on Global System for Mobile communication (GSM) , analyzes it and presents a much more advanced communication and signaling system based on 4G Long Term Evolution (LTE) technology

    Performance investigation of spatial modulation systems under realistic channel models

    Get PDF
    In order to fulfil the explosive demand for convenient wireless data access, novel wireless technologies such as the multiple-input-multiple-output (MIMO) have widely been used to improve the link reliability and capacity of wireless communication systems. In recent years, a new MIMO technology named the spatial modulation (SM) has attracted signi cant research interest due to its reported enhancement on the system performance with the reasonable system complexity. Before a new technology comes into real use, it is necessary to comprehensively evaluate its performance under different scenarios. In this thesis, we investigate the performance of SM systems under some important realistic scenarios for future wireless communications, such as the vehicle-to-vehicle (V2V), the high-speed train (HST), and the massive MIMO scenarios. Firstly, the bit error rate (BER) performance of SM systems under a novel threedimensional (3D) geometry based stochastic model (GBSM) for V2V MIMO channels is investigated by both theoretical analysis and system simulations. The impacts of vehicle tra c density (VTD), Doppler effect, and 3D feature on the BER performance of SM systems are thoroughly studied. In addition, other MIMO technologies, such as the vertical Bell Labs layered space-time (V-BLAST), the Alamouti scheme are compared with SM under different simulation settings. Secondly, the BER performance of SM systems is studied under a non-stationary wideband HST GBSM considering the non-ideal channel estimation case. The timevarying behaviour of the channel and its impact on the performance of SM systems are comprehensively investigated. The accurate theoretical BER expression of SM systems under a non-stationary wideband HST channels with non-ideal channel estimation is derived. A novel statistic property named stationary interval in terms of the space-time correlation function (STCF) is introduced in order to clearly explain all theoretical and simulation results. Thirdly, the performance of SM systems is evaluated under a Kroneck-based massive MIMO channel model. As a massive MIMO system employs large numbers of antennas, antenna elements are distributed over a wide range. Thus, different antenna elements may observe different sets of clusters. How this phenomenon affects the performance of SM systems is investigated by considering a survival probability of clusters, which abstracts the birth-death process of each cluster in the channel model. Moreover, the performance of SM systems is also compared with that of other MIMO technologies under the massive MIMO channel model. In summary, all research works in this thesis have considered realistic MIMO channel models, which are meaningful for the test, performance evaluation, and implementation of SM technology for future advanced wireless communications systems

    Towards a Seamless Future Generation Network for High Speed Wireless Communications

    Get PDF
    YesThe MIMO technology towards achieving future generation broadband networks design criteria is presented. Typical next generation scenarios are investigated. The MIMO technology is integrated with the OFDM technology for effective space, time and frequency diversity exploitations for high speed outdoor environment. Two different OFDM design kernels (fast Fourier transform (FFT) and wavelet packet transform (WPT)) are used at the baseband for OFDM system travelling at terrestrial high speed for 800MHz and 2.6GHz operating frequencies. Results show that the wavelet kernel for designing OFDM systems can withstand doubly selective channel fading for mobiles speeds up to 280Km/hr at the expense of the traditional OFDM design kernel, the fast Fourier transform

    Performance Improvement of LeastSquares Adaptive Filter for High-Speed Train Communication Systems

    Get PDF
    The downlink communication channel from high-altitude platform (HAP) to high-speed train (HST) in the Ka-band is a slowly time-varying Rician distributed flat fading channel with 10-25 dB Rician K factor. In this respect, the received signal is mainly affected by the Doppler shift of the line-of-sight (LOS) link. In order to increase receiver performance, we propose to firstly compensate the Doppler shift of the received signal before least-squares (LS) adaptive filtering is pursued. Implementing the proposed method requires a priori knowledge of the time-varying phase of the LOS component. This is justified since signalling between the train and the controller exists such that the train velocity and location are predictable. Implementing the proposed method to the recursive LS (RLS) received beamforming algorithm shows reduction of mean square error (MSE) and bit error rate (BER)

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    • …
    corecore