5,099 research outputs found

    Walking dynamics are symmetric (enough)

    Full text link
    Many biological phenomena such as locomotion, circadian cycles, and breathing are rhythmic in nature and can be modeled as rhythmic dynamical systems. Dynamical systems modeling often involves neglecting certain characteristics of a physical system as a modeling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady-state (limit-cycle). Here we adapt statistical cross validation in order to examine whether there are statistically significant asymmetries, and even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modeling convenience---it can produce a better model.Comment: Draft submitted to Journal of the Royal Society Interfac

    Application of a novel automatic method for determining the bilateral symmetry midline of the facial skeleton based on invariant moments

    Get PDF
    © 2020 by the authors. Assuming a symmetric pattern plays a fundamental role in the diagnosis and surgical treatment of facial asymmetry, for reconstructive craniofacial surgery, knowing the precise location of the facial midline is important since for most reconstructive procedures the intact side of the face serves as a template for the malformed side. However, the location of the midline is still a subjective procedure, despite its importance. This study aimed to automatically locate the bilateral symmetry midline of the facial skeleton based on an invariant moment technique using pseudo-Zernike moments. A total of 367 skull images were evaluated using the proposed technique. The technique was found to be reliable and provided good accuracy in the symmetry planes. This new technique will be utilized for subsequent studies to evaluate diverse craniofacial reconstruction techniques

    Bioinspired symmetry detection on resource limited embedded platforms

    Get PDF
    This work is inspired by the vision of flying insects which enables them to detect and locate a set of relevant objects with remarkable effectiveness despite very limited brainpower. The bioinspired approach worked out here focuses on detection of symmetric objects to be performed by resource-limited embedded platforms such as micro air vehicles. Symmetry detection is posed as a pattern matching problem which is solved by an approach based on the use of composite correlation filters. Two variants of the approach are proposed, analysed and tested in which symmetry detection is cast as 1) static and 2) dynamic pattern matching problems. In the static variant, images of objects are input to two dimentional spatial composite correlation filters. In the dynamic variant, a video (resulting from platform motion) is input to a composite correlation filter of which its peak response is used to define symmetry. In both cases, a novel method is used for designing the composite filter templates for symmetry detection. This method significantly reduces the level of detail which needs to be matched to achieve good detection performance. The resulting performance is systematically quantified using the ROC analysis; it is demonstrated that the bioinspired detection approach is better and with a lower computational cost compared to the best state-of-the-art solution hitherto available

    The effect of increasing heel height on lower limb symmetry during the back squat in trained and novice lifters

    Get PDF
    Background: Symmetry during lifting is considered critical for allowing balanced power production and avoidance of injury. This investigation assessed the influence of elevating the heels on bilateral lower limb symmetry during loaded (50% of body weight) high-bar back squats. Methods: Ten novice (mass 67.6 ± 12.4 kg, height 1.73 ± 0.10 m) and ten regular weight trainers (mass 66.0 ± 10.7 kg, height 1.71 ± 0.09 m) were assessed while standing on both the flat level floor and on an inclined board. Data collection used infra-red motion capture procedures and two force platforms to record bilateral vertical ground reaction force (GRFvert) and ankle, knee and hip joint kinematic and kinetic data. Paired t-tests and statistical parametric mapping (SPM1D) procedures were used to assess differences in discrete and continuous bilateral symmetry data across conditions. Results: Although discrete joint kinematic and joint moment symmetry data were largely unaffected by raising the heels, the regular weight trainers presented greater bilateral asymmetry in these data than the novices. The one significant finding in these discrete data showed that raising the heels significantly reduced maximum knee extension moment asymmetry (P = 0.02), but in the novice group only. Time-series analyses indicated significant bilateral asymmetries in both GRFvert and knee extension moments mid-way though the eccentric phase for the novice group, with the latter unaffected by heel lift condition. There were no significant bilateral asymmetries in time series data within the regular weight training group. Conclusions: This investigation highlights that although a degree of bilateral lower limb asymmetry is common in individuals performing back squats, the degree of this symmetry is largely unaffected by raising the heels. Differences in results for discrete and time-series symmetry analyses also highlight a key issue associated with relying solely on discrete data techniques to assess bilateral symmetry during tasks such as the back squat

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    Cotutela con il Dipartimento di Biotecnologie e Scienze della Vita, UniversiitĂ  degli Studi dell'Insubria.openThis Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that oïŹ€ers, in addition to all the functionality speciïŹcally described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient.openInformaticaPedoia, ValentinaPedoia, Valentin

    Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

    Get PDF
    This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provide

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that oïŹ€ers, in addition to all the functionality speciïŹcally described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient
    • 

    corecore