76,773 research outputs found

    New binary and ternary LCD codes

    Get PDF
    LCD codes are linear codes with important cryptographic applications. Recently, a method has been presented to transform any linear code into an LCD code with the same parameters when it is supported on a finite field with cardinality larger than 3. Hence, the study of LCD codes is mainly open for binary and ternary fields. Subfield-subcodes of JJ-affine variety codes are a generalization of BCH codes which have been successfully used for constructing good quantum codes. We describe binary and ternary LCD codes constructed as subfield-subcodes of JJ-affine variety codes and provide some new and good LCD codes coming from this construction

    Boosting Nearest Neighbor Classifiers for Multiclass Recognition

    Full text link
    This paper introduces an algorithm that uses boosting to learn a distance measure for multiclass k-nearest neighbor classification. Given a family of distance measures as input, AdaBoost is used to learn a weighted distance measure, that is a linear combination of the input measures. The proposed method can be seen both as a novel way to learn a distance measure from data, and as a novel way to apply boosting to multiclass recognition problems, that does not require output codes. In our approach, multiclass recognition of objects is reduced into a single binary recognition task, defined on triples of objects. Preliminary experiments with eight UCI datasets yield no clear winner among our method, boosting using output codes, and k-nn classification using an unoptimized distance measure. Our algorithm did achieve lower error rates in some of the datasets, which indicates that, in some domains, it may lead to better results than existing methods

    Linear Codes from Some 2-Designs

    Full text link
    A classical method of constructing a linear code over \gf(q) with a tt-design is to use the incidence matrix of the tt-design as a generator matrix over \gf(q) of the code. This approach has been extensively investigated in the literature. In this paper, a different method of constructing linear codes using specific classes of 22-designs is studied, and linear codes with a few weights are obtained from almost difference sets, difference sets, and a type of 22-designs associated to semibent functions. Two families of the codes obtained in this paper are optimal. The linear codes presented in this paper have applications in secret sharing and authentication schemes, in addition to their applications in consumer electronics, communication and data storage systems. A coding-theory approach to the characterisation of highly nonlinear Boolean functions is presented

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    Binary Cyclic Codes from Explicit Polynomials over \gf(2^m)

    Full text link
    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. In this paper, monomials and trinomials over finite fields with even characteristic are employed to construct a number of families of binary cyclic codes. Lower bounds on the minimum weight of some families of the cyclic codes are developed. The minimum weights of other families of the codes constructed in this paper are determined. The dimensions of the codes are flexible. Some of the codes presented in this paper are optimal or almost optimal in the sense that they meet some bounds on linear codes. Open problems regarding binary cyclic codes from monomials and trinomials are also presented.Comment: arXiv admin note: substantial text overlap with arXiv:1206.4687, arXiv:1206.437
    corecore